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0.1 Abstract

Strongly correlating liquids are defined by having strong correlations in the NVT ensemble between
the equilibrium fluctuations of the potential energy U and the virial W . These liquids were discov-
ered by researchers of the ”Glass and Time” group, Roskilde University, via molecular dynamics
computer simulations and detailed in a series of papers (Bailey et al. [2008a,b], Gnan et al. [2009],
Schrøder et al. [2009a, 2011]). Strongly correlating liquids have also been verified in experiments
(Gundermann et al. [2011]). This thesis expands on the basic understanding of strongly correlating
liquids in three directions and uses motivation derived from these liquids to perform research in a
fourth direction.

1. We show that strongly correlating liquids have a rather simple thermodynamics in the sense
that temperature separates into a product of a function of excess entropy per particle and a
function of density. This fact leads to the proposal of a more general scaling procedure, the
”isomorph scaling”, which is in contrast to the traditional ”density scaling” procedure that
breaks down when considering larger density changes than usually applied in experiments.
In addition, we show that the expressions of Rosenfeld and Tarazona (Rosenfeld and Tara-
zona [1998]) for the potential energy and heat capacity along an isochore holds to a better
approximation for strongly than non-strongly correlating liquids.

2. Strongly correlating liquids are characterized by having isomorphs to a good approximation.
Isomorphs are curves in a liquid’s phase diagram along which structure and dynamics are
invariant in reduced units as well as some thermodynamic quantities. Originally, isomorphs
were investigated for bulk atomic systems (Gnan et al. [2009]). We extend the concept
of isomorphs to systems composed of rigid molecules and show that these systems can have
isomorphs to a good approximation, too. We also extend the isomorph concept to confined
liquids. Confined liquids exhibit stratification, i.e. the particles of the liquid order themselves
in well-defined layers, and position-dependent relaxation processes. Despite of these facts,
confined liquids have isomorphs to a good approximation. This observation establishes a
connection to a novel excess entropy scaling procedure for predicting confined-liquid behavior
via knowledge of their bulk relationships (Mittal et al. [2006]).

3. We propose that strongly correlating liquids are to be identified with simple liquids. This
new definition of ”what is a simple liquid?” is in contrast to the more traditional definition as
being systems with radially symmetric pair potentials. The motivation for this new definition
is derived from a discovery relating to strongly correlating liquids, namely that structure and
dynamics are determined to a good approximation only by the interactions within the first
coordination shell (FCS), i.e. the nearest-neighbor interactions. In fact, we show that the
FCS property holds to a good approximation also in confinement. Bulk and confined liquids
are thus more closely related than what is traditionally believed to be the case.

4. We present a new molecular dynamics, NVU dynamics that, instead of conserving the energy
E as in standard Newtonian NVE dynamics, conserves the total potential energy U . From
simulations and theoretical arguments, we show that NVE and NVU dynamics become
equivalent in the thermodynamic limit for both atomic and molecular systems. NVE and
NVU dynamics may thus be used interchangeably in simulations for most purposes.



0.2 Resumé

Stærkt korrelerede væsker er definerede ud fra eksistensen af stærke korrelationer i NVT ensem-
blet mellem ligevægtsfluktuationerne af den potentielle energi U og virialet W . Disse væsker
blev opdaget af forskere ved ”Glas og Tid”, Roskilde Universitet ved anvendelse af molekylær dy-
namik computer simuleringer og er efterfølgende blevet beskrevet i en serie af artikler (Bailey et al.
[2008a,b], Gnan et al. [2009], Schrøder et al. [2009a, 2011]). Eksperimenter har ligeledes p̊avist
eksistensen af stærkt korrelerede væsker (Gundermann et al. [2011]). Denne afhandling udvider
vor fundamentale forst̊aelse af stærkt korrelerede væsker i tre forskellige retninger og anvender in-
spiration fra tidligere forskningsresultater vedrørende disse væsker til videreførelse af forskningen i
en fjerde retning.

1. Vi viser, at termodynamikken for stærkt korrelerede væsker er af simpel natur, idet tem-
peraturen faktoriserer i et produkt af en funktion af ”excess”-entropien per partikel og en
funktion af tætheden. Dette faktum fører til en formulering af en mere generel skaleringsme-
tode, ”isomorf-skaleringen”, som st̊ar i modsætning til den traditionelle skaleringsmetode
”tæthedsskalering”, der bryder ned ved større tæthedsændringer end typisk anvendt i eksper-
imenter. Vi viser yderligere, at udtryk formulerede af Rosenfeld og Tarazona (Rosenfeld and
Tarazona [1998]) for den potentielle energi og varmekapaciteten langs en ”isochore” udgør en
bedre approksimation for stærkt korrelerede væsker end for ikke-stærkt korrelerede væsker.

2. Stærkt korrelerede væsker er karakteriserede ved at have isomorfer til en god approksima-
tion. Isomorfer er kurver i en væskes fasediagram, hvor struktur og dynamik er invariant
i reducerede enheder, samt yderligere nogle termodynamiske størrelser. Oprindeligt er iso-
morfer kun blevet undersøgt for ”bulk” atomare systemer (Gnan et al. [2009]). Vi udvider
her isomorf-konceptet til systemer best̊aende af stive molekyler og viser, at disse systemer til
en god approksimation ogs̊a har isomorfer. Vi udvider ligeledes isomorf-konceptet til ”rum-
meligt begrænsede” væsker. Rummeligt begrænsede væsker udviser stratifikation, dvs. en
lagdeling af partiklerne, samt positionsafhængige relaksationsprocesser. Til trods for at rum-
meligt begrænsede væsker udviser disse fænomener, kan de ogs̊a have isomorfer til en god
approksimation. Denne observation etablerer herved en forbindelse til en ny excess-entropi
skaleringsmetode, hvis form̊al er at forudsige egenskaberne af rummeligt begrænsede væsker
ud fra deres bulk sammenhænge (Mittal et al. [2006]).

3. Vi foresl̊ar, at stærkt korrelerede væsker identificeres med simple væsker. Denne nye defini-
tion af ”hvad er en simpel væske?” st̊ar i modsætning til den mere traditionelle definition,
som værende systemer med radialt-symmetriske par potentialer. Inspiration til formuleringen
af denne nye definition er hentet fra en ny opdagelse for stærkt korrelerede væsker, nemlig
at struktur og dynamik til en god approksimation kun bestemmes af interaktioner inden
for første koordinationsskal (FCS) dvs. kun af de nærmeste nabointeraktioner. Tilsvarende
viser vi, at denne FCS egenskab ogs̊a holder for rummeligt begrænsede væsker. Bulk og rum-
meligt begrænsede væsker er s̊aledes mere nært beslægtede end hvad der er den almindelige
opfattelse.

4. Vi præsenterer en ny molekylær dynamik metode, NVU dynamik, der bevarer den totale
potentielle energi U i stedet for at bevare energien E, som er tilfældet for Newtonsk NVE
dynamik. Ud fra simuleringer samt teoretiske overvejelser viser vi, at NVE og NVU dynamik
er ækvivalente i den termodynamiske grænse for b̊ade atomare og molekylære systemer. NVE
og NVU dynamik kan s̊aledes anvendes i flæng i simuleringer til de fleste formål.



0.3 Preface

This is the philosophiae doctor (Ph.D.) thesis of Trond Sylvan Ingebrigtsen. The Ph.D. was
initiated March 1st, 2010, and the thesis was submitted February 28th, 2013, thus lasting
the three years of the Danish Ph.D. programme. The thesis has been supervised by Prof.
Jeppe C. Dyre, ”Glass and Time”, Roskilde University. The thesis has 8 companion papers
as follows (see Appendix E).
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I. Communication: Thermodynamics of condensed matter with strong pressure-energy cor-
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061102, 2012.

II. Scaling of viscous dynamics in simple liquids: theory, simulation and experiment.
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Schrøder, New J. Phys., 14, 113035, 2012.
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IV. Do the repulsive and attractive pair forces play separate roles for the physics of liquids?
L. Bøhling, A. A. Veldhorst, T. S. Ingebrigtsen, N. P. Bailey, J. S. Hansen, S. Toxvaerd,
T. B. Schrøder, and J. C. Dyre, J. Phys.: Condens. Matter, 25, 032101, 2013.

V. Isomorphs in Model Molecular Liquids.
T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, J. Phys. Chem. B, 116, 1018, 2012.

VI. NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface.
T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, J.
Chem. Phys., 135, 104101, 2011. Editors’ Choice 2011.

VII. NVU dynamics. II. Comparing to four other dynamics.
T. S. Ingebrigtsen, S. Toxvaerd, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys., 135,
104102, 2011.

VIII. NVU dynamics. III. Simulating molecules at constant potential energy.
T. S. Ingebrigtsen, and J. C. Dyre, J. Chem. Phys., 137, 244101, 2012.

The thesis contains ten chapters and assumes no prior knowledge of the papers listed above.
References are, however, made throughout the text to these articles, and the thesis does not
cover all aspects. Thus, for a detailed understanding, the thesis should be accompanied by the
associated papers. In addition, basic knowledge about computer simulations, mathematics
and statistical mechanics is assumed. The thesis is organized as follows.



1. Chapter 1 establishes a background for the thesis by considering the topics of molecular
dynamics, simulations via graphics cards (GPUs), as well as supercooled liquids and
the glass transition.

2. Chapter 2 introduces the so-called ”strongly correlating liquids” (Pedersen et al. [2008]),
their isomorphs (Gnan et al. [2009]) and the consequences of isomorphs in a liquid’s
phase diagram.

3. Chapter 3 develops the thermodynamics of strongly correlating liquids (Paper I) with
the remarkable simple result that temperature separates into a product of a function
of excess entropy per particle and a function of density. In addition, the so-called
”isomorph scaling” is introduced (Papers I and II) which stands in contrast to the more
traditional ”density scaling” (Tölle [2001]) often used to describe viscous liquids.

4. Chapter 4 investigates whether the expressions proposed by Rosenfeld and Tarazona
(Rosenfeld and Tarazona [1998]) for the potential energy and isochoric heat capacity
along an isochore are a better approximation for strongly correlating liquids than for
non-strongly correlating liquids.

5. Chapter 5 details a new ”chemical” characterization of strongly correlating liquids via
the role of the first coordination shell interactions for these liquids. A new definition
of: What is a simple liquid? is also proposed (Papers III and IV).

6. Chapter 6 extends the concept of isomorphs for atomic systems (Gnan et al. [2009])
to molecular systems composed of rigid molecules (Paper V).

7. Chapter 7 extends the concept of isomorphs to confined systems.

8. Chapter 8 investigates the new definition of simplicity in the context of a confined sys-
tem. It is shown that confined liquids, although exhibiting stratification and position-
dependent relaxation processes, in essence are as simple as bulk liquids.

9. Chapter 9 presents a new molecular dynamics that conserves the total potential en-
ergy, i.e., NVU dynamics (Papers VI, VII and VIII). Via simulations and theoret-
ical arguments it is concluded that NVU dynamics becomes equivalent to standard
energy-conserving Newtonian NVE dynamics in the thermodynamic limit. Frame-
work for simulating both atomic and molecular systems at constant potential energy
is considered.

10. Chapter 10 concludes and presents new, exciting topics for future research.

Many different numerical model systems are encountered in the present work and for the
convenience of the reader, all the specific model details are given in Appendix A. The reader
is referred to this appendix whenever a new model system is mentioned in the text.
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Chapter 1

BACKGROUND

Throughout the last 60 years the interaction between humans and computers has been
steadily increasing (Shneiderman and Plaisant [2005]). This is in particular true for the
use of computers in science. The first molecular dynamics (MD) computer simulations were
performed by Alder and Wainwright in 1957 who studied a system composed of hard-sphere
particles (Allen and Tildesley [1987]). Since then, computers have been used to solve funda-
mental problems that even real experiments could not resolve, for instance, whether a purely
entropic system can have a first-order phase transition (Frenkel and Smit [2002]).

Computer simulations are not a replacement for real experiments, as emphasized recently
in a letter by Buchenau [2012] in The Journal of Physical Chemistry Letters with the title
”Simulation and Experiment – A Difficult Interaction”. Computer simulations may, however,
form the basis of testing the applicability and validity of new theories which could be difficult
to verify through experiments. Simulations can also serve as a catalyst for the creation of
new theories which in the end may be tested experimentally. A recent example of the latter
case derives from a series of articles of the ”Glass and Time” group, Roskilde University
(Bailey et al. [2008a,b], Gnan et al. [2009], Schrøder et al. [2009a, 2011]). Here, a new
class of liquids was identified via MD computer simulations. An iterative process between
simulations and ”theory making” improved the basic understanding of these liquids and
ultimately enabled the first experimental verification of this class of liquids in a paper by
Gundermann et al. [2011] from 2011 in Nature Physics.

The present thesis is a continuation of the understanding of these liquids. These new liq-
uids are introduced more rigorously in Chapter 2. The thesis work is based on MD computer
simulations, and to establish a foundation for the results presented here the framework of
MD is introduced in Section 1.1. The main focus of the ”Glass and Time” group is the study
of vitrification and of the preceeding supercooled liquid phase. Terminology associated with
supercooled liquids and the glass transition is introduced in Section 1.3. Performing com-
puter simulations of highly viscous supercooled liquids is not an easy task, since changing
temperature by a few percentage may change relaxation times orders of magnitude. There
is thus a ”need for speed” in the study of viscous liquids, and Section 1.2 briefly reviews
state-of-the-art graphics card (GPU) computing.

1.1 Molecular Dynamics. Solving Newton’s 2nd law

Standing on the prominent shoulders of Galileo and Brahe/Kepler, Sir Isaac Newton for-
mulated in 1687 his famous laws of motion (Newton [1687]). The second law of Newton
states

F = ma, (1.1)
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where F is the force, a the acceleration, and m the inertial mass of a given particle. For a
particle undergoing a free fall, i.e. the particle is only affected by gravity, Newton’s 2nd law
reads

mg = m
d2y

dt2
. (1.2)

Here g is the acceleration due to gravity, and a coordinate system is applied with the y-axis
in the direction of the force on the particle. This second-order, inhomogenous, ordinary
differential equation can easily be solved, and its solution is usually the first thing students
of classical mechanics meet (Knudsen and Hjorth [2002]). The solution to Eq. (1.2) is

y =
1

2
gt2 + v0yt+ y0, (1.3)

where v0y and y0 are integration constants. Equation (1.3) uniquely detemines the motion of
the particle in the past, present, and future. Suppose now, we consider an electrically charged
particle in a constant and spatially homogenous magnetic field. The force is here given by
the famous Lorentz Force, F = q(v ×B), where v and q are, respectively, the velocity and
charge of the particle, and B is the magnetic-field vector. Newton’s 2nd law now produces
a set of coupled differential equations, as follows (taking the z-axis to be aligned with the
field)

qBzvy = m
dvx
dt

, (1.4)

−qBzvx = m
dvy
dt
, (1.5)

0 = m
dvz
dt
. (1.6)

These equations may be solved, although not as easily as the free fall, and the general
solution is the ”helix” curve (Knudsen and Hjorth [2002]).

Increasing the complexity; suppose we have a system of N particles each affected by a
force derived from a potential function U via F = −∇U(r1, ..., rN ), where rk is the position
vector of particle k and ∇ the gradient operator. This potential function could be a sum of
pair potentials U =

∑
i<j v(rij), in which rij is the distance between particles i and j. An

example of a typical pair potential v is given in Fig. 1.1 and is the famous Lennard-Jones
(LJ) pair potential (Allen and Tildesley [1987]).
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Figure 1.1: The Lennard-Jones (LJ) pair potential v(r) = 4ε[(σ/r)12 − (σ/r)6], where σ
and ε define, respectively, the length and energy scales of the potential. The LJ potential
diverges at r = 0 and goes to zero at infinity. This potential was used in some of the first
MD simulations, more specific by Rahman in 1964 (Allen and Tildesley [1987]).

In this case, solving Newton’s 2nd law is not as easy as the former two examples, as
the force on a given particle is now dependent on the position of all the other N particles.
In fact, solving this analytically is not possible and is known as the N -body problem1 in
mechanics (Goldstein et al. [2002]).

Molecular dynamics, in all its simplicity, solves the N -body problem. However, since
it cannot be solved analytically, MD resorts to a numerical integration of the equations of
motion, using a so-called numerical integrator. As an example of a numerical integrator, we
may write Eq. (1.1), applying to the acceleration a what is known as a central-difference
discretization (Allen and Tildesley [1987]), as

F(t) ≈ m

r(t+∆t)−r(t)
∆t − r(t)−r(t−∆t)

∆t

∆t
, (1.7)

where ∆t is a ”small” time step increment. Rearranging this equation leads to a numerical
integrator known as the ”Verlet algorithm” (Verlet [1967])

r(t+ ∆t) = 2r(t)− r(t−∆t) +
(∆t)2

m
F(t). (1.8)

Supposing the initial positions r at times t−∆t and t are given, then the recursion formula
of Eq. (1.8) can be used to track the motion of all N particles (choosing some appropriate
time step ∆t).

The careful reader will at this point object that the solution generated by Eq. (1.8) may
have nothing to do with the analytical solution. This is indeed an active research area and

1 One typically refers to the N -body problem when the force is gravitational, but we
disregard this minor detail.
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may justify a thesis (or two) on its own. The interested reader is referred to the extensive
literature about this particular issue (see, for instance, Toxvaerd et al. [2012] and references
therein).

The motion of the N particles is in MD limited to a box of volume V . To avoid surface
effects, box edges are often eliminated via so-called periodic boundary conditions (Frenkel
and Smit [2002]), where replicates of the simulation box are translated in a space-filling
manner around the ”main” box itself (see Fig. 1.2). Since the motion in all replicate boxes
is identical, the number of particles N is still conserved (along with the volume).

Figure 1.2: An illustration of periodic boundary conditions. Replicates of the simulation
box are translated in a space-filling manner around the main box itself (middle box). The
purple atom moves as indicated by the blue arrow, and enters on the other side of the box
due to periodic boundary conditions. The motion in all replicate boxes is identical and is
thus not stored explicitly.

If the force field is conservative (Knudsen and Hjorth [2002]), then Newton’s 2nd law
conserves the total energy E = K+U , in which K is the kinetic energy, and MD simulations
are often referred to as NVE simulations. The MD technique has since its introduction
evolved rapidly, and simulations at constant temperature NVT (Hoover [1985], Nosé [1984]),
constant pressure NPT (Frenkel and Smit [2002], Nosé [1984]), or even constant chemical
potential µVT (Lynch and Pettitt [1997]) can now be carried out. In Chapter 9, a new MD
technique is derived conserving the total potential energy, NVU.

Molecular dynamics is thus a very versatile technique, but why apply MD in the first
place? The main advantage of MD is that the microscopic motion of the individual particles
is known exactly (within the classical mechanical picture) and enables the calculation of
virtually any observable on a routine basis; observables that may be difficult or even im-
possible to realise in real experiments. Molecular dynamics has thus been applied to a wide
range of fields ranging from non-equilibrium flow of water in nano-confinement (Hansen et al.
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[2011]) to the study of the mechanism behind the human immunodeficiency virus (Wartha
et al. [2005]). Supercooled liquids and the glass transition are in this respect no exception
where, for instance, growing length scales and cooperative dynamics (Cavagna [2009], Dyre
[2006]) cannot be measured in real experiments as easily as they can through computer simu-
lations. Every technique has, however, its limitations, and the main limitation of MD is that
the time step ∆t is governed by the femtosecond vibrations; thus to study the relaxation of
an experimental glass forming liquid on the order of 1017 time steps are needed. There is
thus not only a need, but a dire ”need for speed” in this field of research, and here graphics
cards (GPUs) enter the scene.

1.2 State-of-the-art molecular dynamics

The MD simulations presented in this thesis have used the Roskilde University Molecular
Dynamics (RUMD) program, which is an open-source MD program (avaliable at http:

//rumd.org) that utilizes graphics cards (GPUs). RUMD is developed in the ”Glass and
Time” group and written using the graphics card vendor NVIDIA’s CUDA programming
model (NVIDIA [2012]). CUDA2 is a general purpose parallel computing architecture that
also provides an extension of the C programming language (Deitel and Deitel [2001]) to
enable easy interaction with the GPU.

In this section, we first give a non-exhaustive introduction to GPU computing using
CUDA, and then we give an introduction to the basic ideas behind the RUMD program.
The introduction becomes technical and is best understood with knowledge of standard
computer hardware (see also NVIDIA [2012]). NVIDIA has released different generations
of their GPUs that utilize CUDA where each generation provides different features and
changes certain hardware specifications. In the following, we assume the so-called ”Tesla”
architecture3 from NVIDIA. The RUMD program currently only uses features related to this
architecture to ensure compatibility of the code with older and newer graphics cards (and
maintaining just one ”version” of the code).

1.2.1 GPU computing using CUDA

Figure 1.3 shows a drawing of the GPU hardware in the Tesla architecture.

2 CUDA stands for Compute Unified Device Architecture, and we use the term loosely
to describe all the features provided by NVIDIA for GPU computing.

3 The latest architecture anno 2012 is the ”Keplar” architecture which is two generations
after Tesla.
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Figure 1.3: A drawing of the GPU hardware in the ”Tesla” architecture (taken from
NVIDIA [2012]). The GPU consists of N (≈ 30) multi-processors each with M (= 8) cores.
The M cores are synchronized to execute the same instruction but are able to operate on
different data.

The GPU consists of N (≈ 30) multi-processors each with M (= 8) cores. Each of these
cores is comparable to a standard CPU and can execute a single instruction. The M cores
are, however, synchronized to execute the same instruction but can operate on different
data (in computer science called a Single Instruction Multiple Data or Single Instruction
Multiple Thread architecture). For example, if the code to be executed on the GPU contains
an IF-statement that some cores evaluate to be true while others evaluate it to be false;
then each of these IF-clauses must be executed serialized (with an associated penalty on
performance). The M cores share a fast local memory called ”shared memory” where reading
from the shared memory is as fast as reading from the registers (within certain restrictions,
see NVIDIA [2012]). The size of the shared memory is 16KB. In comparison, all the multi-
processors have access to a slower global ”device memory” on the GPU of the order of 1GB
of storage. The device memory (in the Tesla architecture) is, however, not cached as in the
usual CPU, and the typical workflow of a CUDA-program starts by reading data from device
memory into shared memory for efficient calculations.

The piece of code, written in CUDA, to be executed on the GPU is called a ”kernel”.
It is specified in the execution of this kernel, how many threads4 should be spawned from
the code. The threads are then divided (by the programmer) into a number of blocks. Each
block is then executed on a given multi-processor, where one core handles the execution of
a single thread. As a technical detail, the GPU partitions the threads of a given block into
so-called ”warps” of size n (= 32), and it is among these n threads the execution of a single
instruction must remain synchronized. A GPU is ideally suited to execute MD programs,

4 A thread, in general, is the smallest unit of work that can be performed.
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since the (pair) force calculation of a typical MD program takes up 90% of the total run
time of the program (Allen and Tildesley [1987]) but involves mostly arithmetic operations
applied to the different data for the atoms. The GPU has dedicated most of its hardware to
these kinds of operations and do not have any logic to handle, for instance, branch prediction,
e.g. deciding when an IF-statement or recursive loops are taken.

In the above many details related to GPU computing using CUDA are left out, and the
reader is referred to, for instance, NVIDIA [2012] for much more detail. Equipped with this
small introduction to GPU computing, the next section introduces the basic ideas behind
the RUMD program for running efficient MD on the GPU, i.e., we focus on evaluating the
pair forces efficiently on the GPU.

1.2.2 Roskilde University Molecular Dynamics. RUMD

The basic framework of the RUMD program is constructed from the so-called ”N -body”
program (Nyland et al. [2008]) that calculates gravitational interactions on the GPU among
N interacting ”atoms”. In the N -body program, the calculation of the forces is an O(N2)
algorithm since all pair interactions must be evaluated explicitly with this kind of long-
ranged force. The latter corresponds to filling the entries of a (anti-symmetric) N ×N force
matrix, where each entry corresponds to the force (i.e. x, y, z-components) among a pair of
atoms.

A sketch of the force calculation in the N -body program is shown in Fig. 1.4. The
N × N force matrix is divided into ”tiles” (for the first tiles, see colors in Fig. 1.4), and
the forces are evaluated by filling the entries of each tile, from the left to the right. The
force calculation proceeds in the following way. A thread is created for each atom (row),
and the N threads are divided into N/p blocks, i.e., p threads per block. In a given block,
the p threads read p atomic positions from device into shared memory5. The forces of a
given tile (of size p2) are then calculated by the p threads using the data in shared memory.
Afterwards, another batch of p atomic positions is read into shared memory (see arrows),
and the forces of the next tile are calculated. This procedure continues until all the tiles
have had their interactions evaluated. In this scheme, there is thus a trade-off between a
large value for p which reduces the number of reads from device memory, and small value
for p which creates more blocks to be executed on the GPU. It should also be noted that
the above approach does not utilize Newton’s third law, which is common to MD programs,
and is because arithmetic operations are fast on the GPU.

5 In this way, only (N/p)2 · p = N2/p reads from device memory (instead of N2) are
performed.
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Figure 1.4: Evaluation of the N × N force matrix in the N -body program. The forces
are calculated by filling the entries of a given tile from the left to the right. The force
calculation proceeds as follows. A thread is created for each particle (row), and the N
threads are divided into N/p blocks (in this example 3 blocks). In a given block, the p
threads read p atomic positions from device into shared memory, and the shared memory
is then used to calculate the forces of a given tile (the different colors show the evaluation
of the first tiles). Afterwards, another batch of coordinates is read into shared memory (see
arrows) and the forces of the next tile are calculated. This procedure continues until all the
tiles (here 9 tiles) have had their interactions evaluated.

As mentioned previously, the device memory is not cached, and the GPU hides the
memory latency6 by executing different warps (recall that the execution was synchronous
only among a warp) while fetching data from the device memory (NVIDIA [2012]). A simple
optimization of the brute-force scheme is thus to use q ”threads per atom”. The additional
q − 1 threads calculate the forces of the remaining tiles concurrently with the ”original”
thread (Nyland et al. [2008]). This is shown in Fig. 1.5 using q = 2 threads per atom
(row). The speed-up gained using more threads per atom is small at larger sample sizes, as
the multi-processors have a large pool of threads to schedule from.

6 A request from data in global memory involves not only the time taken to transfer data
into local memory, but also time spent waiting for the request to be performed. This is called
memory latency and may be of the order of many hundreds of instructions.
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Figure 1.5: Evaluation of the N × N force matrix in the N -body program. Here, the
basic scheme is optimized by using q ”threads per atom” enabling the possibility of better
memory latency hiding. In the example of the figure, q = 2, and the first two tiles are being
evaluated concurrently by the threads. For larger system sizes this scheme does not provide
a significant speed-up as the GPU has a large pool of threads to schedule from (Nyland et al.
[2008]).

By using the N -body program with LJ instead of gravitational interactions, a good
speedup is obtained for small system sizes (roughly a factor of 3) over a highly optimized
serial MD program. However, to develop an efficient MD program, RUMD has optimized in
different ways on this basic O(N2) brute-force scheme for calculating the forces. In MD, a
pair potential cutoff at a distance rc is often introduced after which the forces are neglected.
Doing so, the complexity of the force calculation may be reduced to O(N), by using a
so-called ”Verlet neighbor-list” that specifies the interactions among the atoms within the
cutoff distance rc (Allen and Tildesley [1987]). In RUMD, the neighbor-list is implemented
using a bit-pattern for each (CUDA) block and atom (for instance; the pattern 0110, where
1 specifies interaction among a pair of atoms). This bit-pattern is represented by integer
values (of 32-bits) and may be efficiently decoded using the intrinsic CUDA ffs function
(NVIDIA [2012]) that returns the position of the least significant non-zero bit of the pattern.

For larger system sizes, additional optimizations must be introduced as the forces are
evaluated from the neighbor-list as the particles happen to appear in memory at the program
start (i.e. starting from the particle with index 0 and stopping at the particle with index
N − 1). This may result in a large number of blocks with a few or no interactions. In
this scheme of evaluating the forces, all the relevant interactions should ideally be grouped
together in a single block. RUMD solves this problem by using a spatial sorting of the atoms
based on their coordinates in space.
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1.3 Supercooled liquids and the glass transition

We consider here briefly a few key issues associated with supercooled liquids and the glass
transition. Reviews may be found in, for instance, Cavagna [2009], Debenedetti and Still-
inger [2001], Dyre [2006]. When a liquid is cooled below its freezing temperature (see Tm in
Fig. 1.6) and avoids crystallization, it is termed ”supercooled”. The liquid is here thermody-
namically unstable with regards to the crystal, however, the supercooled liquid state may be
rather long-lived7. It is thus possible to equilibrate the liquid below its melting temperature,
and with respect to all measurements one cannot detect that it is indeed the crystal that is
the thermodynamically stable state (unless the system actually crystallizes). Some liquids
supercool more easily than others, but is not a topic that we will discuss here. However,
with a suitable cooling rate most liquids can be cooled below their freezing temperatures
and become supercooled.

The supercooling of the liquid is associated with an increase in characteristic relaxation
times, in particular, those associated with the relaxation of the structure of the liquid; there
is thus also an increase in the viscosity µ upon cooling. Monitoring, for instance, the entropy
vs temperature (see Fig. 1.6); the entropy decreases as the temperature is lowered, however,
at some point, there is a sudden change in the slope from the liquid value to a slope similar
to the crystal; the system here forms a glass. The temperature at which it forms a glass is
denoted Tg. Since the structural relaxation time τ increases upon cooling, this value will at
some point become comparable to the cooling rate, and at the point where the system is not
given enough time to equilibrate; the system forms a glass. The glass is thus a highly viscous
out-of-equilibrium liquid. The glass transition temperature Tg is then not well-defined as it
depends on the cooling rate (red, orange, and yellow curves correspond to different cooling
rates). It is often only weakly dependent as we will see below.

7 Crystallization involves both nucleation, i.e., the formation of a critical nucleus, as well
as growth, i.e., the diffusion of particles into the critical nucleus.
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Figure 1.6: An illustration of the supercooled liquid and its path to becoming a glass
(taken from Cavagna [2009]). The entropy is monitored as the liquid is cooled below its
freezing temperature Tm; the entropy decreases as the temperature is lowered. However,
at some point there is a change in slope from the liquid value to a slope similar to the
crystal; at this point the liquid forms a glass. The observed change in the slope is, however,
not associated with any discontinuity as seen in the transition from liquid to crystal. The
remaining temperatures are associated with different theories and aspects relating to the
glass transition, see Cavagna [2009].

The so-called ”Angell plot” is shown in Fig. 1.7, where the logarithm of the viscosity is
plotted against Tg/T , for a number of different liquids. Some liquids show an Arrhenius-type
behavior (i.e., a straight line), while others show a dramatic increase in the viscosity when
the temperature is lowered (non/super-Arrhenius behavior). The latter is typically referred
to as, respectively, ”strong”8 and ”fragile” behavior. We see that a prime example of a fragile
liquid is o-terphenyl (OTP); three benzene molecules bonded together in the ortho-position.
Since there is such a dramatic increase in viscosity (or relaxation time), the temperature at
which the liquid forms a glass is only weakly dependent on the cooling rate. The explana-
tion of the non-Arrhenius-type behavior is one the most important challenges relevant for
understanding the glass transition, and many different theories have been proposed (see, for
instance, Cavagna [2009], Dyre [2006], Shintani and Tanaka [2006] and references therein).

8 This term is not to be mistaken with the use of ”strongly correlating liquids”.
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Figure 1.7: The so-called ”Angell plot” (taken from Cavagna [2009]) where the logarithm
of the viscosity µ is plotted against Tg/T , where Tg is the glass transition temperature. Some
liquids show an Arrhenius-type behavior (i.e., a straight line), while others show a dramatic
increase in the viscosity, when the temperature is lowered. This behavior is referred to as,
respectively, ”strong” and ”fragile” behavior.

In the next section, we introduce and consider properties of the so-called ”strongly cor-
relating liquids”. These liquids, as we shall see, appear simpler than other types of liquids.
The latter statement includes the supercooled liquid phase and the glass. Thus, the un-
derstanding of these liquids may also appear fruitful for the understanding of supercooled
liquids and the glass transition, in general (Angell and Klein [2011], Gundermann et al.
[2011]).
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Chapter 2

INTRODUCTION TO STRONGLY CORRELATING LIQUIDS

In a recent series of articles (Bailey et al. [2008a,b], Gnan et al. [2009], Schrøder et al.
[2009a, 2011]) a new class of liquids was identified, namely the class of ”strongly correlating
liquids”. An example of a strongly correlating liquid is the famous single-component LJ
liquid with more than 95% correlation (see next section) in large parts of its phase diagram.
Although the term ”liquid” is used frequently, crystals or glasses are not excluded from being
strongly correlating (Bailey et al. [2008a]). In fact, crystals and glasses are typically as
strongly correlating as the preceeding liquid phase from which they are derived. In the gas
phase or near the critical point, however, a system ceases to be strongly correlating.

Strongly correlating liquids are characterized by having ”isomorphs”1 to a good approx-
imation (Gnan et al. [2009]). Isomorphs are curves in a liquid’s phase diagram along
which certain thermodynamic properties, structure and dynamics are invariant in so-called
”reduced units”. The concept of isomorphs, itself, refers only to configurational Boltzmann
factors and not to a specific system or phase behavior. The only system for which isomorphs
are exact is the inverse power-law r−n (IPL) system2. For any other model system or real
experimental liquids, isomorphs are an approximate concept. The success of the isomorph
concept is captured in the fact, that for many systems; it is a good approximation. Only
computer simulations of the actual system may, so far, give insight into how good an ap-
proximation it is. We now introduce more rigorously strongly correlating liquids and their
isomorphs (Gnan et al. [2009]).

2.1 What is a strongly correlating liquid?

A strongly correlating liquid is defined by having strong correlations in the NVT ensemble
between the equilibrium fluctuations of the potential energy U and the virial W (Bailey et al.
[2008a]). Recall, that the instantaneous energy E and pressure p can both be written as a
sum of a (fluctuating) kinetic part and a (fluctuating) configurational part, as follows

1 The term ”isomorph” is inspired from the mathematical concept of isomorphism mean-
ing essentially same mathematical ”structure”. The physical reason for this name will become
apparent later.

2 More precisely, all potential functions that are Euler homogenous U(λR) = λkU(R)
(in which R ≡ (r1, ..., rN )) have exact isomorphs. Thus, systems with 3-body, 4-body, etc.
interactions can also have exact isomorphs assuming these interactions scale in the same
way. In this chapter, we refer to the Euler homogenous systems simply as inverse power-law
systems, but the latter fact should always be kept in mind.
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E = K + U, (2.1)

pV = NkBT +W, (2.2)

where K is the kinetic energy, V the system volume and N the number of atoms. The virial
W (Allen and Tildesley [1987]) is then the contribution to the pressure coming from the
interactions between the particles of the system, and it is defined by3

W ≡ 1

3

∑
i

ri · Fi, (2.3)

where ri and Fi are, respectively, the position and force of particle i. For the LJ system (see
Fig. 1.1) with U = ULJ =

∑
i<j v(rij), the virial is W = WLJ = −

∑
i<j rijv

′(rij)/3. The

correlation between U and W is quantified via the correlation coefficient4 R (−1 ≤ R ≤ 1)
given by

R =
〈∆W∆U〉√

〈(∆W )2〉
√
〈(∆U)2〉

, (2.4)

where ∆U = U − 〈U〉, ∆W = W − 〈W 〉, and 〈...〉 denotes NVT ensemble average. The
class of strongly correlating liquids is defined by R ≥ 0.90 (Pedersen et al. [2008]), and
only IPL systems r−n are perfectly correlating, i.e., R = 1 (since ∆W = (n/3)∆U for all
microconfigurations).

An illustration of strong virial/potential energy correlation for the asymmetric dumbbell
model (see Appendix A for model details) is given in Fig. 2.1. Figure 2.1(a) shows the
normalized time evolution of U and W from a molecular dynamics simulation, while Fig.
2.1(b) shows a scatter plot of the instantaneous values of U and W . It is clear that the latter
two quantities are highly correlated, and in this case the correlation coefficient is R = 0.96.

3 This chapter is mainly concerned with systems of atoms whereas later chapters consider
systems composed of molecules.

4 The correlation coefficient R is a common measure of linear correlation between two
quantities in statistics.
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Figure 2.1: Two different ways of visualizing (taken from Paper V) the strong
virial/potential energy correlation for the asymmetric dumbbell model at ρ = 0.932 and
T = 0.465 (see Appendix A for model details and the units used). (a) The time evolution of
U (black) and W (red) per particle normalized to zero mean and unity standard deviation.
(b) A scatter plot of the instantaneous values of U and W per particle. The correlation
coefficient R is 0.96.

Many different model systems have been identified to belong to the class of strongly
correlating liquids (Bailey et al. [2008a,b], Coslovich and Roland [2008, 2009], Pedersen
[2009], Pedersen et al. [2008, 2010a], Schrøder et al. [2009b], Veldhorst et al. [2012]), and
include

• The standard single-component LJ liquid (SCLJ),

• The Kob-Andersen binary LJ mixture (KABLJ),

• The Wahnström binary LJ mixture (WABLJ),

• The asymmetric dumbbell model,

• The Lewis-Wahnström o-terphenyl model (OTP),

• And several others.

In addition, strong WU correlation has experimentally been verified for

• Tetramethyl-tetraphenyl-trisiloxane which is a molecular van der Waals liquid (Gun-
dermann et al. [2011]),

• Supercritical argon (Pedersen et al. [2008]).

The class of strongly correlating liquids is believed to include most or all van der Waals and
metallic liquids, whereas covalently, hydrogen-bonding or strongly ionic or dipolar liquids are
not strongly correlating (Bailey et al. [2008a]). The latter reflects the fact that competing
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interactions tend to destroy the strong correlation. A recent study indicates, however, that
all liquids may become strongly correlating at sufficiently high pressures if crystallization is
avoided (Papini et al. [2011]). This would, however, often imply pressures in the GPa range
which is nevertheless still geological relevant pressures (Goel et al. [2011]).

2.1.1 The cause of strong WU correlation in the SCLJ liquid

We consider here the cause of strong WU correlation in the SCLJ liquid. This explanation
holds5 for many of the strongly correlating liquids (Bailey et al. [2008b], Pedersen et al.
[2011]). As mentioned previously, only r−n systems are perfectly correlating with R = 1.

It was, however, shown in Bailey et al. [2008b] that the first and second moments of the
fluctuations in U and W (i.e. the quantities appearing in Eq. (2.4)) have contributions due
to pair distances, corresponding to the entire first peak of the radial distribution function
(Hansen and McDonald [2006]); with larger distances making negligible contributions. Over
this range, the LJ potential usually has attractions (see Fig. 2.2(a)), and thus it is not at
all obvious how the strong WU correlation in the SCLJ system connects to IPL systems.

Figure 2.2(a) shows the LJ pair potential and the difference between this potential and
an appropriately chosen vIPL ∝ r−18 approximating the repulsive part of the LJ potential6.
It is observed from the figure that the difference between these two potentials to a good
approximation is linear over the first peak (red curve). As shown in Fig. 2.2(b), the LJ
potential may thus be approximated by vLJ ≈ vIPL + B + Cr over most of the first peak
(also called an extended IPL pair potential).

5 An exception is strong correlations in the Weeks-Chandler-Andersen (WCA) system
(Weeks et al. [1971]) where the potential is truncated at the minimum. In the WCA
system, the correlation is a single particle-pair effect (Gnan [2010]).

6 Note that the exponent needed is larger than 12, as would be expected from the repulsive
term of the LJ potential (Pedersen et al. [2010b]).
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Figure 2.2: (a) Approximation of the LJ potential by an effective IPL potential proportional
to r−18 (taken from Pedersen et al. [2011]). The open circles mark the radial distribution
function at a typical low-pressure state point. The blue dotted curve marks the IPL potential
which approximates the LJ potential quite well below the minimum. The difference between
the LJ potential and the IPL potential is approximately linear in r over the first peak (red
curve). (b) Approximation of the LJ potential by an extended IPL potential vIPL+B+Cr
(magenta curve) with vIPL ∝ r−18. This approximation holds for most of the first peak.

In addition, it was argued in Bailey et al. [2008b] that the linear term B+Cr at constant
volume approximately sums to a constant over the nearest neighbors and does not contribute
much to the fluctuations. In this way, the SCLJ liquid becomes strongly correlating, but
only after summation over the nearest neighbors; it is thus a collective phenomenon. The
strong correlation will also disappear, should the volume fluctuate as in the constant pressure
ensembles.

2.2 Isomorphs. Invariance curves in the phase diagram

This section introduces the concept of isomorphs for strongly correlating liquids (Gnan et al.
[2009]). Consider two state points in a liquid’s thermodynamical phase diagram with density
and temperature (ρ1, T1) and (ρ2, T2). These two state points are defined to be isomorphic
if the following holds: Whenever a microconfiguration of state point (1) and one of state
point (2) have the same reduced coordinates (for all particles i = 1, ..., N and ρ = N/V in
which V is the system volume)

ρ
1/3
1 r

(1)
i = ρ

1/3
2 r

(2)
i , (2.5)

these two configurations have proportional Boltzmann factors, i.e.,

e
−U(r

(1)
1 ,...,r

(1)
N )/kBT1 = C12e

−U(r
(2)
1 ,...,r

(2)
N )/kBT2 . (2.6)
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Here C12 is a constant that depends only on the state points (1) and (2) and not on the
microconfigurations. An isomorph is then defined as a continuous curve of state points that
are all pairwise isomorphic.

From statistical thermodynamics (Hill [1986]) it is well-known that Boltzmann factors
determine the canonical ensemble averages, and from this fact it follows that different quan-
tities will be invariant along an isomorph, since the constant C12 vanishes when normalizing
the canonical probabilities. For instance, Sec. 2.2.1 proves the invariance of structure in
reduced units along an isomorph. The invariance is, however, not limited to static quanti-
ties, but also the dynamics in reduced units is invariant along an isomorph (details follow in
Sec. 2.2.2). The reduced units are defined as follows: Measuring length, energy and mass

in terms of macroscopic properties, i.e., ρ−1/3, kBT and 〈m〉, the units of other properties
follow (Allen and Tildesley [1987]). Quantities can then be made dimensionless (”reduced”)
via expressions like (in which t is time)

• r̃ = ρ1/3r,

• Ũ = U/kBT ,

• m̃ = m/〈m〉,

• t̃ = t ρ1/3
√
kBT/〈m〉,

• and so forth.

Whenever the phrase ”reduced units” is mentioned in this thesis, the above scalings are
implied. Only IPL systems have exact isomorphs, with C12 = 1, and are characterized by
having ργ/T = const where γ = n/3. For IPL systems, isomorphs thus capture the well-
known scaling properties for thermodynamics (Hoover et al. [1970], Klein [1919], Stishov
[1975]) and dynamics (Hiwatari et al. [1974], Hoover and Ross [1971], Zhakhovskii [1994]).

For any other strongly correlating model system, however, C12 6= 1 and has the conse-
quence that only some of the scaling properties of pure IPL systems generalize to the class
of strongly correlating liquids. The quantities that typically do not generalize to become iso-
morph invariants relate to a volume derivative of the excess Helmholtz free energy Fex (Gnan
et al. [2009]). For instance, the (reduced) excess pressure coefficient βex

V ≡ −∂
2Fex/∂T∂V

is not an isomorph invariant. A list of some important isomorph invariants for this thesis is
given below (Gnan et al. [2009]).

1. The structure in reduced units,

2. The dynamics in reduced units,

3. The excess entropy Sex = S − Sid
7,

4. The excess isochoric heat capacity Cex
V = (∂U/∂T )V ,

5. Any reduced relaxation time τ̃α.

7 Sid is the ideal-gas entropy at the same density and temperature as the liquid.
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We will now prove the invariance of some of the isomorph invariants mentioned above (Gnan
et al. [2009]). Before doing so, we note that there are additional consequences of isomorphs
beyond isomorph invariants. One consequence is; since by Eq. (2.6), two isomorphic state
points have identical canonical probabilities, an instantaneous change of temperature and of
density from an equilibrated state point to an isomorphic state point does not lead to any
relaxation. This fact is independent of the relaxation time of the state points and is called
an ”isomorphic jump” (Gnan et al. [2009]).

2.2.1 Invariance of the structure in reduced units along an isomorph

We show here that the structure in reduced units is invariant along an isomorph. The
NVT configurational probability is given by (where R ≡ (r1, ..., rN ), dR ≡ dr1...drN , and

R̃ ≡ ρ1/3R)

P̂ (R) =
e−U(R)/kBT∫
e−U(R)/kBT dR

. (2.7)

The probability distribution of the reduced structure is thus (the mapping is bijective)

P̃ (R̃) = P̂ (ρ−1/3R̃)|J| = ρ−N P̂ (ρ−1/3R̃), (2.8)

where |J| = ρ−N is the determinant of the Jacobian of the transformation. The probability
to observe a given reduced structure P̃ (R̃)dR̃ at state point (1) is related to state point (2)
via (dR̃ = ρNdR)

P̃ (R̃
(1)

)dR̃
(1)

=
e−U(R(1))/kBT1∫

e−U(R(1))/kBT1dR(1)
dR(1), (2.9)

=
C12 e

−U(R(2))/kBT2

C12
∫
e−U(R(2))/kBT2

(
ρ2
ρ1

)N
dR(2)

(ρ2

ρ1

)N
dR(2), (2.10)

=
e−U(R(2))/kBT2∫

e−U(R(2))/kBT2dR(2)
dR(2), (2.11)

= P̃ (R̃
(2)

)dR̃
(2)
, (2.12)

where the second equation applies Eq. (2.6). Since R̃ was chosen arbitrarily, the structure
in reduced units is invariant along an isomorph.

2.2.2 Invariance of the dynamics in reduced units along an isomorph

We now consider the invariance of the dynamics in reduced units along an isomorph. The
dynamics is assumed to be Newtonian dynamics, i.e. governed by Newton’s 2nd law;
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Fi = miai. (2.13)

Applying the reduced units introduced previously, Newton’s 2nd law reads (with F̃i =

ρ−1/3Fi/kBT , m̃i = mi/〈m〉, and ãi = 〈m〉ρ−1/3ai/kBT )

kBTρ
1/3F̃i =

〈m〉m̃i kBTρ
1/3

〈m〉
ãi. (2.14)

Eliminating the common factors, we have

F̃i = m̃iãi. (2.15)

Taking now the logarithm of the isomorph definition Eq. (2.6), we have the following relation

(recall R̃ ≡ ρ1/3R)

−U(ρ
−1/3
1 R̃)/kBT1 = −U(ρ

−1/3
2 R̃)/kBT2 + lnC12. (2.16)

Applying the gradient ∇r̃i
, the constant disappears, and we conclude

F̃
(1)
i = F̃

(2)
i . (2.17)

This equation states that the reduced force is the same for scaled microconfigurations of
isomorphic state points. The invariance of Newtonian dynamics in reduced units then follows
immediately from Eq. (2.15). The microscopic dynamics is not limited to deterministic
dynamics, but also stochastic dynamics can be invariant (see Gnan et al. [2009]).

2.2.3 Invariance of the heat capacity along an isomorph

The invariance of the excess isochoric heat capacity (in which ∆U = U − 〈U〉)

Cex
V =

〈(∆U)2〉
kBT

2
, (2.18)

along an isomorph can be seen rather easily (recall also Cex
V = −T (∂2Fex/∂T

2)V ). Defining
X ≡ U/kBT , we may write Eq. (2.18) as (where ∆X = X − 〈X〉)

Cex
V = kB〈(∆X)2〉. (2.19)

From the logarithm of Eq. (2.6), we have

U(R(1))/kBT1 = U(R(2))/kBT2 − lnC12. (2.20)

From this equation, we conclude that

(∆X(1))2 = (∆X(2))2. (2.21)

Thus, since scaled microconfigurations have identical values for (∆X)2 and identical Boltz-
mann probabilities, the invariance of Cex

V along an isomorph now follows. The ideal-gas
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contribution to the heat capacity only gives a constant contribution, and thus the invariance
of the full heat capacity also follows (Gnan et al. [2009]). In the next section, we consider
how to verify the existence of isomorphs in a given system via the so-called ”direct isomorph
check”.

2.2.4 Direct isomorph check

Taking again the logarithm of Eq. (2.6), and rearranging, we get (recall R ≡ (r1, ..., rN ))

U(R(2)) =
T2

T1
U(R(1)) + kBT2 lnC12. (2.22)

Equation (2.22) is called the ”direct isomorph check” (Gnan et al. [2009]) as it provides
a convenient way of testing for isomorphs. The procedure is as follows: A simulation is
performed at one state point (1), and the obtained configurations are scaled to a different
density ρ2 where the potential energy is evaluated. The respective potential energies of
the two state points are then plotted against each other. According to Eq. (2.22), this
procedure should give a near straight line (see discussion below) if the system has isomorphs.
The temperature T2 of the isomorphic state point with density ρ2 can be calculated from
the slope of a linear regression fit by multiplying with T1. Afterwards, a simulation can
be performed at the state point (ρ2, T2) to verify the invariance of the aforementioned
properties.

A direct isomorph check for the KABLJ mixture is shown in Fig. 2.3 for a 15% density
increase where the correlation coefficient of the direct isomorph check is RDI = 0.98. We
note from Fig. 2.3 that the intersection is non-zero, and thus C12 6= 1 for the KABLJ
mixture.
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Figure 2.3: Direct isomorph check for the KABLJ mixture. During a simulation at state
point (ρ1, T1) = (1.204, 0.600) the positions (R ≡ (r1, ..., rN )) are scaled to density ρ2 =
1.385. The potential energy is then evaluated from the scaled configurations and plotted
against the potential energy of the unscaled configurations. According to Eq. (2.22), this
procedure should give a (near) straight line if the system has isomorphs.

For any system, if the change in density is sufficiently small RDI will trivially be high.
Is this fact equivalent to all systems having isomorphs? It is only for strongly correlating
liquids a high RDI is observed when the density increase is large. The latter fact may be
justified from a relation derived in Appendix C of Gnan et al. [2009] between the correlation
coefficient R (Eq. (2.4)) and that of the direct isomorph check RDI . The relation is given
by

1

R2
DI

− 1 = (d lnT )2
( 1

R2
− 1
)
. (2.23)

From this equation, it follows that RDI → 1 when either d ln ρ → 0 (and thus d lnT → 0)
and/or when R→ 1. It is also shown in Appendix A of Gnan et al. [2009], in a different way,
that a liquid has isomorphs to a good approximation if and only if it is strongly correlating.

2.2.5 What do isomorphs look like?

At the current point in time, isomorphs may seem like a rather abstract concept, and we
delay the discussion of how to actually generate an isomorph in a liquid’s phase diagram
to later chapters (Gnan et al. [2009], Schrøder et al. [2011]). Isomorphs may, however,
be visualized rather easily for a strongly correlating liquid by ”just” knowing the phase
diagram. Figure 2.4 shows the SCLJ phase diagram in terms of temperature T and density
ρ (Andersen et al. [1976], Hansen and Verlet [1969]).
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Figure 2.4: The SCLJ phase diagram (taken from Andersen et al. [1976] and modified
slightly) in terms of temperature T and density ρ. The melting line is itself an isomorph
(Gnan et al. [2009], Schrøder et al. [2011]).

It is argued in Gnan et al. [2009] and Schrøder et al. [2011] that the melting line
is itself an isomorph, and explains a number of simple observations along the melting line
(Andrade [1931], Gnan et al. [2009], Khrapak and Morfill [2011], Schrøder et al. [2011]).
Since two different isomorphs cannot intersect8, the isomorphs of the liquid-part of the
phase diagram run ”parallel” to the liquid-side of the coexistence line (see the blue arrow),
where the vertical dashed line gives a good estimate of where in the phase diagram the
properties of isomorphs start to vanish, e.g. close to the critical point and in the gas phase.
Isomorphs extend far into the super-critical fluid region and also run (Albrechtsen and Olsen
[2013]) in the crystalline-part of the phase diagram (even inside the solid-liquid coexistence
region). From simulations, it has been observed that liquid isomorphs can be metastable
inside the liquid-gas coexistence region, and a conjecture is that they are simply limited by
the spinodal (Brazhkin and Trachenko [2012]). Thus, isomorphs are not just some abstract
curves, but they are actually of high relevance for both liquid and solid-state physics and
can be visualized rather easily by just following the melting line of a strongly correlating
liquid.

8 Two different isomorphs cannot intersect as this would violate the basic property of
isomorphs (Gnan et al. [2009], Schrøder et al. [2011]).
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Chapter 3

THERMODYNAMICS OF STRONGLY CORRELATING LIQUIDS
(PAPERS I AND II)

The previous chapter argued that the excess isochoric heat capacity Cex
V and the excess

entropy Sex are invariant along an isomorph. This observation is now used to show a rather
unusual property of strongly correlating liquids, namely that temperature separates into
a product of a function of excess entropy per particle and a function of density. In the
following, the number of particles N is kept fixed. Since Cex

V and Sex are both invariant
along an isomorph, we may write

Cex
V = f(Sex), (3.1)

where f is some function. From the thermodynamic identity Cex
V = T (∂Sex/∂T )V =

(∂Sex/∂ lnT )V , keeping the volume V fixed, it then follows from Eq. (3.1) that

d lnT =
dSex
f(Sex)

. (3.2)

Integrating this equation (at constant volume) we get

lnT = φ(Sex) + χ(V ). (3.3)

Taking then the exponential function, we arrive at the result (sex ≡ Sex/N)

T = g(Sex)h(V ) = g(sex)h(ρ). (3.4)

For a strongly correlating liquid, temperature thus separates into a product of a function
of excess entropy per particle and a function of density. An analytical expression for the
function h(ρ) is derived in the next section for a particular system with isomorphs.

3.1 An analytical expression for h(ρ)

Consider a system for which the total average potential energy U is written as a sum of IPLs
r−n, i.e.,

U =
∑
n

vn
∑
i<j

〈r−nij 〉. (3.5)

Here 〈...〉 denotes ensemble average, rij is the distance between particles i and j and vn is

a factor1 depending on the exponent n. In the case of the LJ system (recall Fig. 1.1), U

1 For simplicity in the notation we consider only single-component systems, but the results
are entirely general.
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would contain only the terms v6 = −4εσ6 and v12 = 4εσ12. Applying the reduced units of
Eq. (2.5) (r̃ = ρ1/3r), we may write

U =
∑
n

vn
∑
i<j

〈r̃−nij 〉ρ
n/3 =

∑
n

Hn(Sex)ρn/3. (3.6)

The last equation utilizes that 〈r̃−nij 〉 is an isomorph invariant since the structure in reduced

units is also invariant along an isomorph; thus

〈r̃−nij 〉 = Fn(Sex) ∝ Hn(Sex). (3.7)

Taking now the derivative with respect to temperature at constant volume of Eq. (3.6), it
follows that (where Cex

V = (∂U/∂T )V = T (∂Sex/∂T )V )

T
(∂Sex
∂T

)
V =

∑
n

H ′n(Sex)
(∂Sex
∂T

)
V ρ

n/3. (3.8)

In the equation above H ′n(Sex) ≡ dHn/dSex. Dividing then by (∂Sex/∂T )V gives

T =
∑
n

H ′n(Sex)ρn/3. (3.9)

Since temperature by Eq. (3.4) separates into a product of a function of excess entropy and
a function of density, Eq. (3.9) can only be consistent with this result if H ′n(Sex) (for all
n) is proportional to some function Φ(Sex). This function Φ(Sex) is within a multiplicative
constant given by g(Sex). We thus identify (within a multiplicative constant)

h(ρ) =
∑
n

Cnρ
n/3. (3.10)

In the case of a LJ-type system (i.e., a system with only v6 and v12 appearing in U), we
have

h(ρ) = C6ρ
2 + C12ρ

4. (3.11)

Since h(ρ) is only defined within a multiplicative constant, we can multiply h(ρ) with 1/(C6+
C12) giving

h(ρ) = (1− α)ρ2 + αρ4, (3.12)

where α ≡ C12/(C6 + C12). There is thus only one free parameter α in h(ρ) for a LJ-type
system, and this parameter can be determined from simulations at a single state point (see
Papers I or II for more details). It is also shown in Paper II that the constants Cn are
actually related to the heat capacities of the individual IPL terms appearing in U . For
a LJ-type system with U = U6 + U12 we have C6 = Cex

V,6/C
ex
V and C12 = Cex

V,12/C
ex
V ,

where Cex
V,n ≡ 〈(∆Un)2〉/kBT 2. These ”heat capacities” may, however, be either positive or

negative with the restriction that their sum Cex
V remains positive.

Since isomorphs are approximate, the derived theory must also be tested via simulations.
For a LJ-type system it was argued above that H ′12(Sex) ∝ H ′6(Sex). Integrating this
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equation gives H12 = αH6 + β, where β does not depend on volume since H12 is a function
of excess entropy only. In Fig. 3.1, H12 is plotted against H6 for the KABLJ mixture (i.e.
a LJ-type system) over a range of state points where density is varied by a factor of eight
and temperature by a factor of 40 000. The non-perfect, although quite good, collapse of
the data points reflects the approximative nature of the theory.
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Figure 3.1: H12 as a function of H6 for the KABLJ mixture (taken from Paper I). The
isomorph theory predicts that H12 = αH6 + β. A good collapse is seen, although density is
varied by a factor of eight and temperature by a factor of 40 000.

3.2 Beyond density scaling. Defining the isomorph scaling

As mentioned previously, the excess entropy is invariant along an isomorph, and from the
separation identity of Eq. (3.4) we conclude that h(ρ)/T is also an isomorph invariant. Since
any reduced relaxation time τ̃α is also invariant, we may write

τ̃α = G
(h(ρ)

T

)
. (3.13)

This equation defines the so-called ”isomorph scaling” (Papers I and II). For an IPL system,
we see from Eq. (3.10) that h(ρ) = ργ where γ = n/3, and in this particular case Eq. (3.13)
becomes

τ̃α = G
(ργ
T

)
. (3.14)

Equation (3.14) defines what is known as ”density scaling” (Tölle [2001]), and the origin
behind the term ργ/T for highly viscous liquids, in general, has been the topic of much
debate in the literature (see, for instance, Alba-Simionesco et al. [2004], Casalini and
Roland [2004], Dreyfus et al. [2003, 2004], Fragiadakis and Roland [2011]). In the concept
of density scaling, the exponent γ is a constant such that
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γ =
(∂ lnT

∂ ln ρ

)
τ̃α
. (3.15)

We now consider whether density scaling holds for all strongly correlating liquids, taking
Eq. (3.15) as a general definition of the density scaling exponent. By the separation identity
T = g(Sex)h(ρ), we may write (by taking the logarithm)

d lnT = d ln g(Sex) + d lnh(ρ). (3.16)

Along an isomorph both Sex and τ̃α are constant, and the first term on the right-hand side
is then zero. We then have d lnT = d lnh(ρ), and using these facts, Eq. (3.15) becomes

γ =
(∂ lnT

∂ ln ρ

)
Sex

=
(d lnh(ρ)

d ln ρ

)
Sex

=
d lnh(ρ)

d ln ρ
= γ(ρ). (3.17)

In the general case, we expect γ to change along an isomorph since h is a function of density
and depends on the particular system. If γ changes significantly along an isomorph, we thus
expect a break down of density scaling as the latter assumes a constant γ. The isomorph
scaling (Eq. (3.13)) is nevertheless expected to hold as this is based only on the assumption
of isomorphs (and not on constant γ).

This conclusion is confirmed via simulations of the KABLJ mixture; Fig. 3.2(a) shows
that density scaling breaks down when larger density variations are considered than typically
chosen in experiments (usually 10%). The isomorph scaling of Fig. 3.2(b) shows no sign of a
breakdown. Isomorph scaling is thus not merely a ”higher-order” approximation to density
scaling (in terms of the function h(ρ)) but rather a fundamental fact of the isomorph theory,
as shown above. In fact, as mentioned previously, h(ρ) contains only one free parameter for
the KABLJ mixture that may be determined from simulations at a single state point.
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Figure 3.2: Reduced average structural relaxation times τ̃α along three different isochores
for the KABLJ mixture (taken from Paper II). (a) Density scaling τ̃α = G(ργ/T ) is applied.
Two individual isochores can be scaled to superpose whereas the remaining isochore fails
to scale. (b) Isomorph scaling τ̃α = G(h(ρ)/T ) is applied. All three isochores scale to
superpose. Recall that for LJ-type systems h(ρ) has only one free parameter (see Sec. 3.1).
The inset shows γ = 〈∆U∆W 〉/〈(∆U)2〉 (see Gnan et al. [2009]) calculated from the
fluctuations of U and W at a single state point along different isochores and isomorphs, as
well as γ(ρ) calculated via Eq. (3.17) from h(ρ). The agreement between simulations and
theory is excellent.

3.3 Grüneisen-type configurational equation of state

The Grüneisen equation of state is given by (Burakovsky and Preston [2004], Ross and
Young [1993])

p = γg(ρ)Evib + p0(ρ), (3.18)

where p is the pressure, Evib the vibrational energy, γg the Grüneisen parameter (per unit
volume), and p0 a function of density. This equation is frequently used as an equation of
state for high pressure solids (Burakovsky and Preston [2004], Ross and Young [1993]). It
is now shown that a similar type equation of state applies for the configurational degrees of
freedom of a strongly correlating liquid. The fundamental equation of thermodynamics is
given by (pex ≡ W/V and dV/V = d lnV = −d ln ρ for fixed N)

dU = TdSex − pexdV = TdSex +Wd ln ρ, (3.19)

and produces the relations

T =
( ∂U

∂Sex

)
ρ
, (3.20)

W =
( ∂U

∂ ln ρ

)
Sex

. (3.21)
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Since T = g(Sex)h(ρ), we conclude via integration of Eq. (3.20) that

U = G(Sex)h(ρ) + φ(ρ). (3.22)

Taking the logarithmic derivative of this equation with respect to density (at constant Sex),
and using Eq. (3.21), we get

W = G(Sex)
dh(ρ)

d ln ρ
+
dφ(ρ)

d ln ρ
. (3.23)

Applying, from Eq. (3.22), then the relation

G(Sex) =
U − φ(ρ)

h(ρ)
, (3.24)

gives the following expression

W =
d lnh(ρ)

d ln ρ
U + Φ(ρ) = γ(ρ)U + Φ(ρ). (3.25)

Equation (3.25) is the configurational version of Eq. (3.18). The virial W plotted versus the
potential energy U along an isochore is then a straight line with slope γ (Bailey et al. [2008a],
Schrøder et al. [2011]). Appendix B proves the converse statement that the Grüneisen-type
configurational equation of state implies a separation of temperature.
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Chapter 4

INVESTIGATION OF ROSENFELD-TARAZONA FOR VARIOUS LIQUIDS

Rosenfeld and Tarazona (Rosenfeld and Tarazona [1998]) derived via liquid-state density
functional theory (a review of DFT may be found in Evans [1979]), a temperature expansion
of the average potential energy which to leading order reads

U(ρ, T ) = α(ρ)T 3/5 + β(ρ), (4.1)

where α(ρ) and β(ρ) are functions of density. From Eq. (4.1), an expression for the excess
isochoric heat capacity may also be obtained (recall Cex

V = (∂U/∂T )V )

Cex
V = 3/5α(ρ)T−2/5. (4.2)

Rosenfeld and Tarazona concluded that these (truncated) expressions should hold to a high
degree of accuracy for IPL fluids and confirmed this via simulations. Later on, different
authors (Agarwal et al. [2010], Chopra et al. [2010b], Gebremichael et al. [2005], May and
Mausbach [2012], Mossa et al. [2002]) investigated the applicability of Eq. (4.1), and its
related equations, to describe as diverse liquids as Lewis-Wahnström OTP, SPC/E water,
Dzugutov liquid, Gaussian core model (GCM), and more. In general, the authors concluded
that Eq. (4.1) is a good approximation to the potential energy (and heat capacity) of these
systems. However, some authors did notice deviations for liquids such as the Dzugutov and
GCM. The latter two liquids do not belong to the class of strongly correlating liquids. It
is thus natural to investigate, since IPL fluids are perfectly correlating, whether Eqs. (4.1)
and (4.2) better describe strongly than non-strongly correlating liquids. Recall that Cex

V =

〈(∆U)2〉/kBT 2 and can be calculated independently from the potential energy. It is also
possible to calculate, for instance, the excess entropy, but it is a much more computational
intensive task.

We start the investigation by showing in Fig. 4.1 the potential energy U and excess
isochoric heat capacity Cex

V along a single isochore for each of 18 different model systems,
including both strongly and non-strongly correlating liquids. For reference, all the inves-
tigated model systems are listed in Table 4.1 along with selected data presented in this
chapter.
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System ρ SU SCex
V

R

Strongly correlating liquids (14)

Dumbbell 0.93 9.99997 ·10−1 9.99346 ·10−1 0.96

Confined dumbbell 0.93 9.99996 ·10−1 9.97617 ·10−1 0.91

Girifalco 0.40 9.98785 ·10−1 -6.63833 ·10−1 0.91

KABLJ 1.20 9.99983 ·10−1 9.84013 ·10−1 0.93

IPL 6 0.85 9.99986 ·10−1 9.97261 ·10−1 1.00

IPL 12 0.85 9.99997 ·10−1 9.99501 ·10−1 1.00

IPL 18 0.85 9.99967 ·10−1 9.88366 ·10−1 1.00

LJC 10 1.00 9.99993 ·10−1 9.98303 ·10−1 0.86

LJC 4 1.00 9.99990 ·10−1 9.91327 ·10−1 0.90

OTP 0.33 9.99982 ·10−1 9.95318 ·10−1 0.91

Repulsive LJ 1.00 9.99979 ·10−1 9.95072 ·10−1 1.00

SCB 1.00 9.99979 ·10−1 9.91343 ·10−1 0.99

SCLJ 0.85 9.99927 ·10−1 9.73529 ·10−1 0.96

WABLJ 1.30 9.99851 ·10−1 9.10703 ·10−1 0.98

Non-strongly correlating liquids (4)

Core soft water 0.40 9.73950 ·10−1 4.72855 ·10−1 0.097

Dzugutov 0.80 9.96993 ·10−1 7.86436 ·10−1 0.71

Molten salt 0.37 9.99839 ·10−1 9.51729 ·10−1 0.15

SPC/E water 1.00 9.86504 ·10−1 5.58319 ·10−1 0.067

Table 4.1: Model systems (see Appendix A) investigated with respect to the expressions
of Rosenfeld and Tarazona in Eqs. (4.1) and (4.2). SU and SCex

V
are, respectively, the

coefficient of determination (Eq. (4.3)) for the potential energy and heat capacity along the
isochore of density ρ. The correlation coefficient R is given for the lowest temperature state
points along the isochores.

In general, we observe from the figure that for all liquids Cex
V decreases with increasing

temperature.
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Figure 4.1: A single isochore for each of 18 different model systems including both
strongly and non-strongly correlating liquids. (a) The potential energy U per atom as a
function of temperature. The values for SPC/E water have been shifted for clarity with
-3 in the x-direction and 33 in the y-direction. (b) The excess isochoric heat capacity
Cex
V = 〈(∆U)2〉/kBT 2 per atom as a function of temperature. The values for SPC/E water

have been shifted for clarity with -3 in the x-direction. For all liquids Cex
V decreases with

increasing temperature.

Turning now to the expressions of Rosenfeld and Tarazona, we show in, respectively, Figs.
4.2(a) and (b) the coefficient of determination SX (Steel and Torrie [1960]) for the potential
energy U and excess isochoric heat capacity Cex

V as a function1 of 1−R. The coefficient of
determination SX is defined via the expression

SX = 1−
∑N
i=1

(
Xi − fXi

)2∑N
i=1(Xi − 〈X〉)2

, (4.3)

where X is a generic quantity, and the average 〈X〉 is taken over a set of data points with
elements X = {X1, ..., XN}. fX is a function that provides the ”model” values for each Xi
(with i = 1, ..., N), and is in our case given by fits to the data points in X (as a function

of temperature T ) using, respectively, fU = A0 T
3/5 +A1, and fCex

V
= 3/5A2 T

−2/5, where

A0, A1, and A2 are constants (since density is fixed by using a single isochore).

1 The value of R is given for the lowest temperature state points along the isochores.
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Figure 4.2: The coefficient of determination SX (Eq. (4.3)) as a function of 1−R calculated
from data along a single isochore for each of 18 different model systems, including both
strongly and non-strongly correlating liquids. (a) SU is calculated via the potential energy.
(b) SCex

V
is calculated via the excess isochoric heat capacity.

SX is a measure of the proportion of variability in a data set that is accounted for by the
statistical model (Steel and Torrie [1960]). A value of SX = 1 implies perfect account of
the variability and is independent on the (energy) scale used. The elements of X = U and
X = Cex

V (shown in Fig. 4.1) have been generated as follows.

1. First, the system is isochoric cooled until either of the following happens: 1) The
system crystallizes. 2) The pressure becomes negative. 3) The relaxation time is on
the order of 105 time units. After the cooling, the temperature Tmin is noted and the
system simulated to equilibrium; in the case of crystallization or negative pressure, the
temperature is increased slightly in order to have a stable phase.

2. Next, the temperature is increased from Tmin by a factor of three (i.e., up to Tmax =
3Tmin), probing state points along the isochore with a spacing of ∆T = (Tmax −
Tmin)/7. A total of 8 equilibrium state points are hereby generated.

3. Finally, the 8 generated state points are then used to calculate the elements of X = U
and X = Cex

V .

We see from Fig. 4.2(a) that for both strongly and non-strongly correlating liquids SU gives a
value close to 1. Nevertheless, for all non-strongly correlating liquids (except the molten salt
model) a lower value is obtained than for the strongly correlating liquids. In the case of SCex

V
in Fig. 4.2(b), the data shows a bit more scatter due to the uncertainty in estimating the heat
capacity from the fluctuations. A similar behavior is nevertheless observed (note the change
of scale), as for SU , except that the Girifalco system now gives a value for SCex

V
significantly

different than from any other strongly or non-strongly correlating system. The Girifalco
system is rather unusual (see Apppendix A) in the sense that it diverges at a non-zero
distance, representing the effective interaction between two C60 molecules (Girifalco [1992]).
If we disregard, for the moment, the Girifalco system, the results indicate that the expression
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of Rosenfeld-Tarazona for Cex
V is a better approximation for strongly correlating liquids, too.

The second lowest value for SCex
V
≈ 0.91 of the strongly correlating liquids is obtained for

the WABLJ mixture that in the supercooled regime creates crystal-like structures in terms
of Frank-Casper bonds (Pedersen et al. [2010c]).

Turning now to the Girifalco system, we plot in Fig. 4.3, SCex
V

as function of 1−R, but

using the expression fCex
V

= 3/5A2 T
−2/5 + A3, i.e., the system is allowed to have a non-

vanishing excess isochoric heat capacity at very high temperatures. This time, the Girifalco
system follows to a good approximation the chosen power-law T−2/5. Physically, however,
this approach is questionable, but it is nevertheless interesting that the same exponent is
applicable.
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Figure 4.3: The coefficient of determination for the excess isochoric heat capacity SCex
V

as a function of 1 − R calculated from data along a single isochore for each of 18 different
model systems, including both strongly and non-strongly correlating liquids. A different
model expression than in Fig. 4.2 is applied, namely fCex

V
= 3/5A2 T

−2/5 + A3, where A3

is a constant.

We conclude that the expressions of Rosenfeld and Tarazona may be used to a fair approx-
imation for most systems (depending on the quantity of interest), but a better approximation
is obtained when the system is strongly correlating in the range of state points in question.
It should be noted that for non-strongly correlating liquids, we observe no clear connection
between the value of R and the ”goodness” of Rosenfeld-Tarazona.

We now consider how the function α(ρ) in the Rosenfeld-Tarazona expression relates to
h(ρ) (see Eq. (3.10)) for strongly correlating liquids. Along an isomorph both Cex

V and
h(ρ)/T are invariant, thus

Cex
V = F

(h(ρ)

T

)
. (4.4)
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Since by Rosenfeld-Tarazona; Cex
V = 3/5α(ρ)T−2/5 = 3/5

(
α(ρ)5/2/T

)2/5
, it follows that

h(ρ) = α(ρ)5/2. (4.5)

Equation (4.5) is tested in Fig. 4.4 for the repulsive LJ system (see Appendix A), where
density is changed by a factor of eight2. The function h(ρ) is determined via the expression

h(ρ) = (γ0/2− 1)ρ4 + (2− γ0/2)ρ2, (4.6)

with γ0 = 3.56. This expression appears after using the identity γ(ρ) = d lnh(ρ)/d ln ρ at
the reference state point of ρ = 1 and T = 1 (see Paper I for details). We determine α(ρ)

from the constant A0 by fitting the expression A0 T
3/5 + A1 to the potential energy as a

function of temperature (since the potential energy has better statistics) along six different
isochores of the repulsive LJ system (with ρ in the range 0.50 - 4.00). Fig. 4.4 shows that

α(ρ) to a very good approximation is given by h(ρ)2/5.
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Figure 4.4: The function h(ρ), given by Eq. (4.6), plotted as a function of α(ρ) in the
Rosenfeld-Tarazona expression, for six different densities of the repulsive LJ system (black

data points). The red curve gives C1 α
5/2, where C1 is a constant uniquely determined from

the state point ρ = 4.00; h(ρ) is only determined within a multiplicative constant.

2 A similar test using power-law density scaling can be found in Pedersen et al. [2010b].

45



Chapter 5

THE FIRST COORDINATION SHELL CHARACTERIZATION OF
STRONGLY CORRELATING LIQUIDS (PAPERS III AND IV)

In this chapter, we present a new ”chemical” characterization of strongly correlating liquids
via the role of the first coordination shell (FCS) interactions for these liquids (Paper III).
The FCS (Chandler [1987]) is defined as the nearest-neighbor molecules around a given
molecule and is illustrated schematically in Fig. 5.1 for a (two-dimensional) LJ liquid. A
LJ liquid has approximately 12 nearest neighbors (in two dimensions: 6 nearest neighbors),
whereas the FCS of water, due to its local tetrahedral nature, comprises between 4 and 5
molecules (Hujo et al. [2011]). The concept of nearest neighbors is derived from solids but
is often applied to liquids as it provides a useful way of thinking on liquids.

Figure 5.1: A schematic snap-shot of a configuration of a two-dimensional LJ liquid. The
purple atom is surrounded by its nearest neighbors (green atoms), second-nearest neighbors
(yellow), etc. For a strongly correlating liquid (see text below) it is the interactions between
the purple and green atoms that to a good approximation determine structure and dynamics.

In two recent articles, Toxvaerd and Dyre (Toxvaerd and Dyre [2011a,b]) studied the
use of shifted-force (SF) pair potential cutoffs in molecular dynamics computer simulations
of the SCLJ liquid and the KABLJ mixture. If the pair potential is v(r) and the pair force
is f(r) = −v′(r), the SF is given by

fSF (r) =

{
f(r)− f(rc) if r ≤ rc ,

0 if r > rc .
(5.1)

The force remains continuous at the cutoff distance rc, after which it is set to zero. An SF
cutoff corresponds to the use of the following pair potential below rc

vSF (r) = v(r)− v′(rc)(r − rc)− v(rc). (5.2)
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An SF cutoff thus adds a linear term to the ”original” pair potential v(r) which does not affect
structure nor dynamics (recall the discussion of Sec. 2.1.1). The linear term does, however,
affect some of the thermodynamical quantities, for instance, the energy and pressure are
different from the original v(r) system. These properties may, however, also be extracted
from the radial distribution function (RDF) using the original potential v(r) (Chandler
[1987], Hansen and McDonald [2006]), and thus this is not a crucial problem (Toxvaerd and
Dyre [2011a,b]).

It was discovered by Toxvaerd and Dyre that at low cutoff distances, the use of SF
cutoffs was crucial to ensuring reliable simulation results due to an otherwise large force
discontinuity. In addition, the authors found for the SCLJ liquid and the KABLJ mixture
that an SF cutoff at the distance of the first minimum of the RDF gave identical results,
for both structure and dynamics, to simulations with a very large pair potential cutoff. The
first minimum of the RDF is the standard way of delimiting the FCS (Chandler [1987]),
and we denote from now on this particular type of cutoff; an FCS cutoff. The SCLJ liquid
and KABLJ mixture are both strongly correlating liquids (see Sec. 2.1). Recent studies by
Fennell and Gezelter [2006] found, however, that for SPC/E water, an SF cutoff at distances
beyond the FCS is needed to ensure good simulation results. Water is a prime example of a
non-strongly correlating liquid. These results thus motivate the following conjecture (Paper
III):

The FCS interactions determine to a good approximation structure and dynamics, if and
only if, the liquid at the state point in question is strongly correlating.

This conjecture is investigated in more detail in the next few sections by applying an FCS
cutoff to a number of different systems1, both strongly and non-strongly correlating liquids,
and probing the resulting structure and dynamics. A total number of 21 systems were studied
in Paper III, and we present here only representatives for these systems. Additional systems
besides those presented in Paper III are also studied here (recall that model details are given
in Appendix A).

5.1 Single-component inverse power-law fluids

We study here four different single-component IPL fluids with exponents n = 3, 4, 12, 18.
The IPL pair potentials are shown in Fig. 5.2, ranging from harsh repulsive (n = 18) to
quite soft and long-ranged (n = 3).

1 As a technical detail, in the case of systems with more than one particle-pair interactions,
we apply cutoffs in units of the largest particle; see also Paper III.
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Figure 5.2: Four different IPL pair potentials with exponents n = 3, 4, 12, 18, ranging
from harsh repulsive (n = 18) to quite soft and long-ranged (n = 3).

Figures 5.3(a)-(d) then quantify the structure of the IPL fluids via the RDF at ρ = 0.85
and two different temperatures applying, in simulations, different types of cutoffs. The black
and orange curves correspond to simulations with a very large SF cutoff (we denote this
reference simulations), whereas the red and green circles correspond to simulations with an
FCS cutoff. In all figures, the FCS is marked by the vertical red dashed lines. In addition,
the insets quantify the deviations in the RDF from the reference RDF as functions of the
SF cutoff.

For all four investigated IPL fluids, excellent agreement is seen between the FCS cutoff
and the large SF cutoff. In particular, we see from the insets that the deviations increase
dramatically when the cutoff enters the FCS (blue crosses). Considering, however, the n = 3
IPL fluid some deviation is noted near the first peak of the RDF. This deviation is suspected
to be related to the dimensionality of the system (d = 3) with respect to the IPL exponent
(n = 3). One possible way to verify this conjecture would be to simulate a two-dimensional
system using the n = 3 exponent; in this case the FCS approach should work perfectly again.
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Figure 5.3: RDFs for single-component IPL fluids with exponents n = 3, 4, 12, 18, each
simulated at two temperatures and density ρ = 0.85 (Figs. 5.3(b) and (d) are taken from
Paper III). The black and orange curves show reference simulation results using a large
SF cutoff representing the true IPL behavior, whereas the red and green circles give results
from simulations with an FCS cutoff (marked by the vertical red dashed lines). The insets
quantify the deviations in the RDF from the reference RDF as functions of the SF cutoff;
deviations increase dramatically when the cutoff enters the FCS (blue crosses). In all panels,
the virial/potential energy correlation coefficient R is given for the lowest temperature state
point (R = 1 for IPL systems with infinite cutoff). (a) n = 3 , T = 0.50 and T = 0.05. (b)
n = 4, T = 0.70 and T = 0.10. (c) n = 12, T = 1.5 and T = 0.50. (d) n = 18, T = 0.70
and T = 0.30.

Next, we consider in Figs. 5.4(a)-(d) the dynamics of the IPL fluids by showing the
incoherent intermediate scattering function (ISF) defined by (Hansen and McDonald [2006])

Fs(q, t) = 〈exp[iq · (r(t)− r(0))]〉, (5.3)

for the lowest temperature state points of Fig. 5.3. We average over wave vectors q in,
respectively, the x, y, and z-direction and present results for q = |q| which corresponds
approximately to the first diffraction peak in the static structure factor of the liquid.

The black and red curves show, respectively, a large SF cutoff and an FCS cutoff. The
blue curves show an SF cutoff at the distance of the half-height from the first minimum of
the RDF towards the first maximum. The green curves show a cutoff to the right of the first
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minimum of the RDF, at the same difference in distance between the red and blue curves.
To a good approximation, for all IPL fluids, the dynamics attained using the FCS cutoff is
identical to that of the large SF cutoff. Interestingly for the n = 3 IPL fluid, a larger SF
cutoff (green curve) provides a slightly worse approximation to the dynamics than the FCS
cutoff.
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Figure 5.4: Incoherent ISFs for the IPL fluids at the lowest temperature state points of
Fig. 5.3 (Figs. 5.4(b) and (d) are taken from Paper III). The black curves give results for
a large cutoff, the red crosses for an FCS cutoff (marked by the vertical red dashed lines in
Fig. 5.3). In all panels, the virial/potential energy correlation coefficient R is given at the
simulated state point (R = 1 for IPL systems with infinite cutoff). (a) n = 3 , T = 0.05.
(b) n = 4, T = 0.10. (c) n = 12, T = 0.50. (d) n = 18, T = 0.30.

IPL fluids with infinite cutoff are perfectly correlating with R = 1, and the results pre-
sented in this section thus call for further investigations into whether the proposed conjecture
also holds when the virial/potential energy correlation decreases.

5.2 Generalized Kob-Andersen binary LJ mixtures

In this section, we consider the application of FCS cutoffs to generalized KABLJ mixtures
(see Appendix A) with repulsive exponent m = 12 and attractive exponents n = 4, 6. These
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systems are both strongly correlating liquids. Figure 5.5 shows the AA-particle pair poten-
tials of these systems.
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Figure 5.5: AA-particle generalized KABLJ pair potentials with repulsive exponent m = 12
and attractive exponents n = 4, 6.

Here and in the forthcoming sections, we use the definitions and meanings introduced in
Sec. 5.1 with respect to the figures. Figure 5.6 shows AA-particle RDFs of the generalized
KABLJ mixtures applying an FCS cutoff and a very large cutoff. For both systems, we again
observe excellent agreement between these two cutoff schemes.
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Figure 5.6: AA-particle RDFs of generalized KABLJ mixtures (Fig. 5.6(a) is taken from
Paper III) with repulsive exponent m = 12 and attractive exponent n using an FCS cutoff
(red) and a very large cutoff (black). (a) n = 4, ρ = 1.20, and T = 0.40. (b) n = 6, ρ = 1.20,
and T = 0.60.

Turning then to the dynamics, the A-particle incoherent ISFs are shown in Fig. 5.7 for
the same state points as in Fig. 5.6. The FCS cutoff gives an excellent approximation to

51



the true dynamics (black curve). We note, however, very minor deviations between the FCS
cutoff and the reference simulation, and it is related to the way we delimit the FCS. The
interested reader is referred to Appendix B of Paper III for more details on a different way
of delimiting the FCS.
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Figure 5.7: A-particle incoherent ISFs of generalized KABLJ mixtures (Fig. 5.7(a) is taken
from Paper III) with repulsive exponent m = 12 and attractive exponent n using an FCS
cutoff (red) and a very large cutoff (black). The blue curves give results within the FCS. (a)
n = 4, ρ = 1.20, and T = 0.40. (b) n = 6, ρ = 1.20, and T = 0.60.

Paper III additionally shows results for the generalized KABLJ mixture with attractive
exponent n = 10, and the Wahnström binary LJ mixture which are both strongly correlating
liquids. For both of these systems we arrive at results similar to those shown in this section,
i.e., the FCS cutoff gives a good approximation to the true structure and dynamics.

5.3 Dzugutov liquid

We have so far only studied systems that are strongly correlating, and we now therefore
turn to study systems with R < 0.90, i.e., non-strongly correlating liquids. An example of
which is the Dzugutov (DZ) liquid (Dzugutov [1992]) with R ≈ 0.71. Figure 5.8 shows
the DZ pair potential which was originally proposed as a candidate for a good model glass
former, since it penalizes the distances corresponding to the next-nearest neighbors of the
face-centered cubic lattice. The DZ liquid was, however, found upon medium supercooling
to create quasi-crystals (Dzugutov [1993]).
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LJ pair potential (black curve). The DZ potential approximates the LJ potential around
the first minimum but has a maximum at larger distances corresponding to the next-nearest
neighbors of the face-centered cubic lattice. See Appendix A for definitions of the constants.

Figure 5.9 shows RDFs and ISFs of the DZ liquid in, respectively, Figs. 5.9(a) and (b),
applying an FCS cutoff and a very large SF cutoff. We see that both the structure and
the dynamics of the DZ liquid are not approximated well when using an FCS cutoff. This
is not surprising given the fact that using an FCS cutoff removes the maximum of the DZ
potential. What is important here, however, is that the poor FCS-cutoff results correlate
with the fairly weak virial potential-energy correlations (R ≈ 0.71). This suggests studying
other non-strongly correlating liquids in order to investigate whether this is a general trend.
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Figure 5.9: The effect on the structure and dynamics (taken from Paper III) when the
cutoff for the DZ liquid at ρ = 0.80 and T = 0.75 (R = 0.71) is varied. The red and black
curves give, respectively, results for an FCS cutoff and a large cutoff. (a) RDFs. The inset
quantifies the deviation in the RDF from the reference RDF as a function of the cutoff. (b)
The incoherent ISF, including results for a cutoff within the FCS (blue crosses).
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5.4 Hansen-McDonald molten salt

We consider here a model of a singly-charged molten salt (i.e., a two-component model with
R = 0.15) due to Hansen and McDonald (Hansen and McDonald [1975]). Figure 5.10
shows the results for structure and dynamics. The structure is poorly approximated using
an FCS cutoff, whereas the dynamics to a good approximation is identical to the large SF
cutoff. These results are consistent with recent results of Hansen et al. [2012] who studied
the Hansen-McDonald molten salt model and concluded that large SF cutoffs are needed in
order to get good simulation results.
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Figure 5.10: The effect on the structure and dynamics (taken from Paper III) when the
cutoff for the Hansen-McDonald molten salt at ρ = 0.37 and T = 0.018 (R = 0.15) is varied.
The red and black curves give, respectively, results for an FCS cutoff and a large reference
cutoff. (a) AA-RDFs. The inset quantifies the deviation in RDF from the reference RDF
as a function of the cutoff. (b) The A-particle incoherent ISF including results for a cutoff
within the FCS (blue crosses).

5.5 Lewis-Wahnström OTP

Turning the study to molecules, we investigate the Lewis-Wahnström OTP model; a rigid
molecule with the shape of an isosceles triangle (see Appendix A). The structure and dy-
namics of this model, when an FCS cutoff and a large SF cutoff are applied, are given in Fig.
5.11. The spikes of the RDFs derive from the rigid-bonds of the model. We observe good
results using the FCS cutoff also for molecules, consistent with the fact that this model is
strongly correlating (R = 0.91). Again, the small deviations in the dynamics are related to
delimiting the FCS (see Paper III).
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Figure 5.11: The effect on the structure and dynamics (taken from Paper III) when the
cutoff for the Lewis-Wahnström OTP model at ρ = 0.33 and T = 0.70 (R = 0.91) is varied.
The red and black curves give, respectively, results for an FCS cutoff and a large reference
cutoff. (a) RDFs. The inset quantifies the deviation in RDF from the reference RDF as a
function of the cutoff. (b) The incoherent ISF including results for a cutoff within the FCS
(blue crosses).

5.6 Rigid SPC/E water

As the last example we consider the rigid SPC/E water model in Fig. 5.12. This model is not
strongly correlating at ambient conditions, a fact that directly reflects water’s well-known
density maximum (Bailey et al. [2008a]). The FCS cutoff fails to approximate the structure,
however, as is the case with the Hansen-McDonald molten salt model, the dynamics seems
to be very well approximated using the FCS cutoff. Interestingly, using an SF cutoff at
rc = 0.924 (blue curve in Fig. 5.12(b)) the dynamics slows down many orders of magnitude
and is related to crystallization of the model.
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Figure 5.12: The effect on the structure and dynamics (taken from Paper III) when the
cutoff for the rigid SPC/E water model at ρ = 1.00 and T = 4.00 (R = 0.08) is varied. The
red and black curves give, respectively, results for an FCS cutoff and a large reference cutoff.
(a) Oxygen-oxygen RDFs. The inset quantifies the deviation in RDF from the reference
RDF as a function of the cutoff. (b) The oxygen incoherent ISF including results for a cutoff
within the FCS (blue crosses).

This hereby concludes our investigation on FCS cutoffs in strongly and non-strongly
correlating liquids, where the next section summarizes the observed results. Recall that
more model systems are avaliable in Paper III.

5.7 Summarizing the FCS results

Paper III and the previous sections showed that structure and dynamics are well approxi-
mated in simulations using an FCS cutoff for the following atomic and molecular systems:

• IPL fluids (n = 3, 4, 6, 12, 18),

• SCLJ liquid at density ρ = 0.85,

• Generalized KABLJ mixtures,

• Wahnström binary LJ mixture,

• Single-component Buckingham liquid,

• The Lewis-Wahnström OTP model,

• The asymmetric dumbbell model.

These systems are all strongly correlating (Bailey et al. [2008a,b], Gnan et al. [2009],
Schrøder et al. [2009a, 2011]). Thus for strongly correlating liquids it is enough to know
the intermolecular interactions within the FCS in order to accurately simulate structure and
dynamics.
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The simulations showed further that for all of the following atomic and molecular systems
structure and/or dynamics are not properly reproduced, when an FCS cutoff is used:

• Dzugutov liquid,

• Lennard-Jones Gaussian liquid,

• Gaussian core model,

• Hansen-McDonald molten salt model,

• Rigid SPC/E water model.

None of these liquids are strongly correlating. For all these systems larger cutoffs are needed
in order to faithfully reproduce the system’s physics (Fennell and Gezelter [2006], Hansen
et al. [2012]).

In conclusion, a shifted-forces FCS cutoff leads to accurate results if and only if the liquid
is strongly correlating at the state point in question. This suggests that strongly correlating
liquids are characterized by the fact that intermolecular interactions beyond the FCS can be
ignored which was the conjecture proposed at the start of this chapter. These results then
question some of the major assumptions in liquid-state physics (Weeks et al. [1971], Widom
[1967]), and we touch upon this issue in the next section (see also Paper III).

5.8 Is the Weeks-Chandler-Andersen approach to liquids correct?

In a seminal paper by B. Widom in Science from 1967 (Widom [1967]), the following picture
of simple uniform liquids is proposed,

”..., in a fluid as dense as a liquid at its triple point, the attractive forces exerted on any
molecule by its neighbors largely cancel, while the negative potentials largely add, ...”.

This and other works (for instance, Reiss [1965]) later inspired the Weeks-Chandler-Andersen
(WCA) approach to liquids (Weeks et al. [1971]), where the liquid is related to a reference
system with pair interactions that are truncated at the potential minimum. The WCA
method was shown to give a good approximation to the structure of simple liquids, and later
on the method was conjectured to work for the dynamics too (see Andersen et al. [1976],
and references therein).

We have in the previous sections seen that for strongly correlating liquids, it is the FCS
interactions that determine the structure and dynamics of the liquid, and not simply the
repulsive forces. Is the picture proposed by Widom and others then correct? As an example,
the minimum of the LJ potential is located at the fixed distance rc = 21/6σ ≈ 1.12σ, and
near the LJ triple point, the FCS is located at rc ≈ 1.50σ. The WCA method does then
not take into account all the relevant interactions for the determination of the structure and
dynamics of the liquid. Berthier and Tarjus also showed that using the WCA method in
the supercooled liquid regime gave rise to a significantly different dynamics for the KABLJ
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mixture (Berthier and Tarjus [2009, 2011]). The location of the FCS does, however, depend
on state point and implies that at extremely high densities the WCA method takes into
account all the relevant interactions, since the FCS, here, is ”pushed” to the left of the
potential minimum. This was exactly a point made by Toxvaerd and Dyre (Toxvaerd and
Dyre [2011b]). It should, however, be noted that in doing so, some of the WCA repulsion
may then also be removed.

5.9 What is a simple liquid?

In the light of the results presented in the previous sections, the class of strongly correlating
liquids may now be characterized in three, but equivalent, ways as follows

1. The FCS interactions determine structure and dynamics (chemical).

2. The existence of isomorphs in the phase diagram (physical).

3. Invariance curves of the reduced constant-potential-energy hypersurface Ω̃ in the phase
diagram (mathematical).

The chemical characterization was detailed in the previous sections (see also Paper III), the
physical characterization in Chapter 2, and the mathematical characterization of strongly
correlating liquids is shown in Appendix A of Gnan et al. [2009]. We will return to
the mathematical characterization in Chapter 9 and simply state it for now. From each of
these characterizations, the simpler properties of strongly correlating liquids may be derived;
perhaps most easily from the physical characterization.

Since the class of strongly correlating liquids is characterized in three distinct ways this
fact implies that the class is fundamental. In addition, since the properties derived from
these concepts are simpler than what is known for other types of liquids it suggests that the
class of strongly correlating liquids should be identified with the ”class of simple liquids”.
We thus propose that

Strongly correlating liquid = Simple liquid

Traditionally, a simple liquid is defined as systems with, nearly spherical, nonpolar molecules
(particles) interacting via radially symmetric pair potentials (Hansen and McDonald [2006]).
The new definition of a simple liquid thus has a certain overlap with this traditional view-
point, but also important difference. For instance, in the new definition;

1. Simplicity is quantified by the continuous variable R and varies throughout the phase
diagram; it is not an on/off property.

2. All systems may become simple at very high pressures if crystallization is avoided (this
is a conjecture based on results in Papini et al. [2011]).

3. R = 1 (IPL liquid) is the prime example or ”gold standard” of a simple liquid.
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4. Not all atomic systems with radially symmetric pair potentials are simple at low pres-
sures (i.e., Dzugutov liquid, GCM, and Hansen-McDonald molten salt).

5. Elongated non-spherical molecules may also be simple (for instance, small polymers
Veldhorst [2013]).

In defining strongly correlating liquids as simple liquids one obtains a quantitative criterion
via R for when a liquid is simple at a given state point, however, the answer is not yes or no
anymore based on the given system. A priori, there is no particular reason as to why this
definition should be clear-cut, and it is argued in Paper III that the latter is actually not to
be expected due to the diversity of liquids in general.
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Chapter 6

ISOMORPHS IN MODEL MOLECULAR LIQUIDS (PAPER V)

Chapter II introduced the concept of isomorphs for atomic systems (Gnan et al. [2009])
and considered their implications. For example, it was shown in Chapter III that isomorphs
imply a separation of temperature into a product of a function of excess entropy per particle
and a function of density. In this connection, one may wonder whether it is possible to
extend the isomorphic framework beyond atomic systems to help improve the understanding
of more ”complex” systems. This could perhaps be liquids composed of molecules, liquids
undergoing a homogenous shear flow (Evans and Morriss [1984], Ladd [1984], Separdar
et al. [2012]), or even liquids that are spatially confined. Let us take liquids that are
spatially confined as an example. Confined liquids exhibit stratification, i.e., the particles
of the liquid order themselves in well-defined layers, creating a non-uniform density profile
in the liquid (Schoen et al. [1987], Toxvaerd [1981]). In addition to stratification there
may be strong interactions with the confining walls that can have a significant impact on the
structure and dynamics of the liquid. Extending isomorphs beyond atomic systems could
thus appear problematic due to new and rich phenomenology encountered in ”complex”
systems.

Truskett, Errington, and co-workers studied in a number of articles (Chopra et al.
[2010a], Goel et al. [2008, 2009], Mittal et al. [2006, 2007]) the effect of confinement
on Rosenfeld’s excess entropy scaling (Rosenfeld [1977, 1999]), i.e. that a reduced trans-
port coefficient X̃ can be written as some function of excess entropy X̃ = f(Sex). They
concluded that Rosenfeld’s excess entropy scaling is also valid for confined systems and that
the functional form f to a good approximation is unaffected by the degree of confinement.
Additionally, Schrøder et al. [2009b] studied scaling of structure and dynamics for systems
composed of rigid molecules: the asymmetric dumbbell model and the Lewis-Wahnström
OTP model. More specifically, they considered state points in the phase diagram with iden-
tical ργ/T , as motivated by pure IPL systems, and tested for collapse of, for instance, the
reduced unit radial distribution function. A good collapse of the considered quantities was
hereby achieved.

The previous observations are all consistent with the properties of isomorphs for (bulk)
atomic systems. In the case of Schrøder et al. [2009b], the reduced-unit radial distribution
function is identical for isomorphic state points, and in the case of Truskett, Errington, and
co-workers, since X̃ and Sex are both invariant along an isomorph, a reduced transport
coefficient can be written as some function of excess entropy. These results thus motivate
further investigations into extending the isomorphic framework to these types of ”complex”
systems, and such an investigation is performed in this chapter for systems of rigid molecules,
whereas the next chapter considers confined systems.
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6.1 Extending the isomorph concept

We consider here the extension of isomorphs to systems composed of rigid (non-flexible)
molecules. In the definition of isomorphs for atomic systems (see Sec. 2.2), the mapping
among microconfigurations of isomorphic state points is defined via an isotropic scaling of the
atomic coordinates. This mapping thus violates the rigid structure of the molecules, and the
first task is to formulate a definition of isomorphs that preserves the rigidity of the molecules.
A simple modification of isomorphs is to redefine the mapping among microconfigurations
in terms of the molecular center-of-masses. In this way, the mapping does not violate the
rigid structure of the molecules.

We thus define two state points (ρ1, T1) and (ρ2, T2) in the phase diagram of a liquid
composed of rigid molecules to be isomorphic if the following holds: Whenever two configu-
rations of state points (1) and (2) for all molecules i have identical reduced center-of-mass
coordinates

ρ
1/3
1 r

(1)
CM,i = ρ

1/3
2 r

(2)
CM,i, (6.1)

and identical Eulerian angles (Gray and Gubbins [1984])

φ
(1)
i = φ

(2)
i , θ

(1)
i = θ

(2)
i , χ

(1)
i = χ

(2)
i , (6.2)

these two configurations have proportional Boltzmann factors, i.e., [where R ≡ (rCM,1, φ1,
θ1, χ1, ..., rCM,N , φN , θN , χN )]

e−U(R(1))/kBT1 = C12e
−U(R(2))/kBT2 . (6.3)

As for atomic isomorphs, C12 is a constant that depends only on the state points (1) and
(2). In contrast to atomic systems, since the bonds do not follow the overall scaling of the
system, the above definition of isomorphs does not imply the existence of exact isomorphs
for rigid molecules with intermolecular IPL interactions.

Having defined isomorphs for systems composed of rigid molecules, we may use the direct
isomorph check in analogy to atomic systems (see Section 2.2.4) in order to examine the
presence of isomorphs in specific model systems. Figure 6.1 performs a direct isomorph
check for the asymmetric dumbbell model, the model that was also investigated by Schrøder
et al. [2009b].
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Figure 6.1: Direct isomorph check for the asymmetric dumbbell model (taken from Paper
V). During a simulation at state point (ρ1, T1) = (0.868, 0.309) the center-of-mass of each
dumbbell is scaled to density ρ2 = 0.999, keeping the Eulerian angles fixed. The potential
energy is evaluated from the scaled configurations and plotted against the potential energy
of the unscaled configurations. The temperature T2,slope of the isomorphic state point at
density ρ2 is calculated by multiplying the linear regression slope with T1. T2,Sex is the
temperature of the isomorphic state point calculated by keeping the excess entropy constant
(see Sec. 6.3).

For a 15% density increase, the correlation coefficient of the direct isomorph check is
RDI = 0.97 and indicates (recall the discussion of Sec. 2.2.4) that the asymmetric dumbbell
model has isomorphs in the above meaning of the term. These isomorphs are considered
in more detail in Sec. 6.4. Additionally, we note from Fig. 6.1 that the intersection of the
linear regression fit is non-zero, and thus C12 6= 1.

6.2 Isomorph invariants in liquids composed of rigid molecules

The isomorphs defined in the last section for systems composed of rigid molecules differ
slightly from the atomic case. A natural question is then: Do all isomorph invariants
for atomic systems generalize to molecular systems? Most of the isomorph invariants for
atomic systems generalize directly to molecular systems, however, some invariants must be
modified to be consistent with the rigid molecular structure. For instance, it is easy to
show (see Appendix B of Paper V) that the dynamics in reduced units of the individual
particles, constituting a rigid molecule, is not invariant along an isomorph. In this case, it is
necessary to consider the center-of-mass motion and the motion relative to the center-of-mass
separately.

The canonical configurational probability for a system of N rigid molecules (Gray and
Gubbins [1984]) is given by (where dR ≡ drCM,1dτ1 ... drCM,NdτN with τ ≡ (φ, θ, χ) and
dτ = sin θ dθ dφ dχ)
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P̂ (R) =
e−U(R)/kBT∫
e−U(R)/kBT dR

. (6.4)

In combination with Eq. (6.3), it follows that all mapped configurations of state points (1)
and (2) have identical Boltzmann probabilities, i.e.,

P̂ (R(1))dR(1) = P̂ (R(2))dR(2). (6.5)

The proof of isomorph invariants, such as the center-of-mass structure, is thus similar to
the derivation shown in Chapter II for atomic systems (see Sec. II of Paper V). For the
dynamics, the center-of-mass motion is simply governed by Newton’s 2nd law1

FCM,i = MiaCM,i, (6.6)

and we can use the same arguments here, too. For example, the following quantities appear
as isomorph invariants for liquids composed of rigid molecules.

1. The center-of-mass structure in reduced units,

2. The center-of-mass dynamics in reduced units,

3. The excess entropy Sex,

4. The excess isochoric heat capacity Cex
V ,

5. Any molecular relaxation time τ̃α,

6. And more.

As for atomic systems by Eq. (6.5), isomorphic jumps (see Sec. 2.2) are also a property of
isomorphs for systems composed of rigid molecules, where isomorphic jumps for the asym-
metric dumbbell and Lewis-Wahnström OTP models can be found in Paper V.

6.3 Generating isomorphs for rigid molecules

As of this chapter, we have not considered how isomorphs in the phase diagram can be
generated from a chosen state point. For atomic systems, an isomorph is generated by
keeping the excess entropy constant (Gnan et al. [2009]). In the NVT ensemble, the excess
entropy can conveniently be kept constant via the following exact relation

γ ≡ 〈∆W∆U〉
〈(∆U)2〉

=
(∂ lnT

∂ ln ρ

)
Sex

. (6.7)

1 The constraint force maintaining rigidity is an internal force and does not contribute
to the center-of-mass motion. See Paper V for details on simulating molecules.
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The procedure for generating an isomorph is as follows: 1) The left-hand side is calculated
from the fluctuations at a given state point. 2) A new state point is identified by a dis-
cretization of Eq. (6.7) by changing the density by 1%. The temperature of the isomorphic
state point is calculated from ∆ lnT = γ∆ ln ρ. 3) The procedure is repeated, and in this
way an isomorph is generated in the phase diagram.

The above procedure for generating isomorphs of atomic systems can be generalized to
systems of rigid molecules since the excess entropy is also constant for isomorphs of molecular
systems. It should, however, be noted that in going from atomic to molecular systems, there
are different contributions to the potential energy U and virial W . For a system of rigid
molecules interacting via the LJ potential (see Fig. 1.1), the potential energy and virial are

U = ULJ , (6.8)

W = WLJ +WCON . (6.9)

The new term WCON is the contribution to the virial deriving from the rigid bonds (see also
Appendix A of Paper V). In generating an isomorph, the virial W must thus include this
additional contribution.

6.4 The isomorphs of the asymmetric dumbbell model

We now consider the isomorphs of the asymmetric dumbbell model applying the procedure
described in the former section for generating an isomorph. The corresponding results for
isomorphs of the Lewis-Wahnström OTP model and a symmetric IPL dumbbell model can
be found in Paper V. A drawing of the asymmetric dumbbell model (see Appendix A) is
shown in Fig. 6.2 and is a simplistic computer model of Toluene. The asymmetric dumbbell
model is a convenient model system to simulate, as it is not prone to crystallization, and
can be cooled into a highly viscous state.

The asymmetric dumbbell

B A

Figure 6.2: A drawing of the asymmetric dumbbell model; a simplistic computer model of
Toluene. The model details are found in Appendix A.

Figure 6.3(a) shows molecular center-of-mass radial distribution functions in reduced
units along an isomorph with 19% density increase. For comparison, an isotherm with 12%
density increase is shown in Fig. 6.3(b). The structure is to a good approximation invariant
along the isomorph whereas the isotherm shows slightly larger deviations in the scaling,
especially near the second peak.
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Figure 6.3: Molecular center-of-mass radial distribution functions in reduced units (r̃ =

ρ1/3r) for the asymmetric dumbbell model (taken from Paper V). (a) Along an isomorph
with 19% density increase. (b) Along an isotherm with 12% density increase.

Next, the invariance of the dynamics is quantified in Fig. 6.4 by probing the molecular
center-of-mass incoherent intermediate scattering function at a wave vector q corresponding
approximately to the first peak of the static structure factor. This function is shown along the
same isomorph and isotherm as Fig. 6.3. An excellent collapse is seen for the dynamics along
the isomorph while the isotherm shows approximately three orders of magnitude variation
in the dynamics.
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Figure 6.4: Molecular center-of-mass incoherent intermediate scattering functions in re-
duced units (r̃ = ρ1/3r) for the asymmetric dumbbell model keeping the reduced wave
vector q constant (taken from Paper V). (a) Along the isomorph of Fig. 6.3 with 19%
density increase. (b) Along the isotherm of Fig. 6.3 with 12% density increase.

The excess isochoric heat capacity Cex
V (i.e., Cex

V = CV −Cid
V ) was in Sec. 6.2 predicted to

be invariant along an isomorph (recall, however, that Cid
V only adds a state point independent

constant contribution). Figure 6.5 shows Cex
V as a function of density along the previous

isomorph and isotherm. The excess isochoric heat capacity changes less than 2% along the
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isomorph while the isotherm shows a 25% increase. The heat capacity is thus to a good
approximation invariant along an isomorph, but not along an isotherm.
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Figure 6.5: The excess isochoric heat capacity per particle CexV /N for the asymmetric
dumbbell model (taken from Paper V) as a function of density along the isomorph (black)
and isotherm (red, T = 0.465) of Figs. 6.3-6.4. The density increase is 19% and 12%,
respectively. The excess isochoric heat capacity increases less than 2% along the isomorph
while the isotherm shows a 25% increase. For the isotherm the dynamics becomes very slow
for densities higher than ρ = 0.950 and the system becomes difficult to equilibrate properly.

We conclude from the results presented here and in Paper V that systems composed of
rigid molecules can also have isomorphs. This is the first example in extending isomorphs
beyond the atomic system.

6.5 The approximative nature of isomorphs

In the study of supercooled liquids and the glass transition, it is an unresolved issue of
what controls the average structural relaxation time τ̃α. As in all parts of physics a theory
is searched for which explains the phenomena and at the same time captures the very di-
verse spectrum of liquids. Any proposed universal theory must certainly hold for strongly
correlating liquids.

The (reduced) average structural relaxation time is an isomorph invariant and can thus
only be controlled by another isomorph invariant, for instance, the excess entropy. This
observation is called the ”isomorphic filter” (Gnan et al. [2009]) as it can be used to filter
out some existing (universal) theories of the glass transition. The usual version of the theory
of Adam and Gibbs (Adam and Gibbs [1965]) states that τ̃α ∝ exp[A/TSc] (in which A
is a constant and Sc is the configurational entropy) and does not pass the isomorphic filter
since TSc is not an isomorph invariant. The Adam-Gibbs relation does, however, pass the
isomorphic filter if A is assumed to be the function of density A(ρ) = h(ρ).
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Isomorphs are, however, approximate, and not all isomorph invariants for a strongly
correlating liquid may be equally good in capturing a relaxation time. Figure 6.6 shows a
reduced molecular relaxation time τ̃α, extracted from the molecular center-of-mass interme-
diate scattering function when FsCM (τ̃α) = 0.2, for the asymmetric dumbbell model as a
function of (a) excess entropy and (b) excess isochoric heat capacity. Both quantities are
predicted to be invariant along an isomorph (see Sec. 6.2). It is clear from Fig. 6.6, that the
heat capacity for this particular system does not describe τ̃α as well as the excess entropy
and reflects the approximative nature of isomorphs. The correlation between τ̃α and Cex

V is
nevertheless high as expected from the isomorph theory.

The excess entropy at a given state point has been calculated from the thermodynamic
relation Sex = (U − Fex)/kBT using an approach similar to that outlined in Chopra et al.
[2010a]. We first employ grand canonical transition matrix Monte Carlo simulation (Fitzger-
ald et al. [1999]) to obtain the density dependence of the absolute Helmholtz free energy
of the fluid at relatively high temperature. We then use expanded ensemble Monte Carlo
simulation (Lyubartsev et al. [1992]) to follow the variation in the Helmholtz free energy
with temperature and density. For example, when moving along an isochore, we create a
series of subensembles with variable T and fixed ρ. The potential energy U is obtained from
an ensemble average within the relevant subensemble. A system of volume V = 1000 is used
to complete grand canonical simulations. All expanded ensemble simulations employ n =
1000 molecules.
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Figure 6.6: Reduced molecular relaxation times τ̃α extracted from the molecular center-
of-mass intermediate scattering function for the asymmetric dumbbell model along three
different isochores and an isotherm. (a) As a function of excess entropy per molecule. (b)
As a function of excess isochoric heat capacity per atom.

In the next section, we consider briefly a more technical topic relating to isomorphs,
namely the shape of isomorphs in the (U,W )-phase diagram (Schrøder et al. [2011]). This
is a new phase diagram that provides a useful framework for studying isomorphs as shown
in Schrøder et al. [2011].
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6.6 The shape of isomorphs in the (U,W )-phase diagram

Schrøder et al. [2011] studied isomorphs of atomic single-component and multi-component
LJ liquids with generalized exponents m and n. It was found that for given exponents (m,
n) all isomorphs have the same shape in the (U ,W )-phase diagram; i.e., a so-called master
isomorph exists from which all isomorphs can be generated via a simple scaling of the WU -
coordinates. For instance, the shape of isomorphs in the (U ,W )-phase diagram of the SCLJ
liquid and of the KABLJ mixture is the same. The proof of this fact uses that the structure
(in reduced units) of the atomic positions to a good approximation is invariant along an
isomorph. The shape of isomorphs for a LJ system (i.e. a system with m = 12 and n = 6)
was shown to be given by the expressions below (ρ̃ ≡ ρ/ρ∗ and the superscript ∗ denotes
reference state point)

U = ULJ = U∗mρ̃
4 + U∗nρ̃

2, (6.10)

W = WLJ = 4U∗mρ̃
4 + 2U∗nρ̃

2. (6.11)

Here (U∗m, U∗n) are reference coefficients calculated from a chosen state point along the
isomorph (see Schrøder et al. [2011] for details). For rigid molecular systems, however, the
virial W has several contributions as follows (see Sec. 6.3)

U = ULJ , (6.12)

W = WLJ +WCON . (6.13)

In addition, it is the molecular center-of-mass structure that is invariant along an isomorph.
It is thus natural to wonder whether the above facts affect the presence of master isomorphs
in rigid molecular systems with (generalized) intermolecular LJ interactions.

Figure 6.7 investigates this aspect in more detail, where Fig. 6.7(a) shows three different
isomorphs in the (U ,W )-phase diagram for the asymmetric dumbbell model2 in two different
versions: One for the total virial W and one replacing W with WLJ along the isomorph.
Figure 6.7(b) shows the same isomorphs as in (a), but after scaling each isomorph to super-
pose with a factor identified by trial and error. We see for both versions of the virial that
all isomorphs collapse onto a single curve, i.e., a master isomorph still exists.

2 Recall from Appendix A that the asymmetric dumbbell model has intermolecular LJ
interactions, i.e. m = 12 and n = 6.
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Figure 6.7: (a) Three different isomorphs for the asymmetric dumbbell model in two
different versions with 19%, 21% and 22% density increase, respectively (black, magenta and
green). The crosses give the total virial W , the asterisks give WLJ = W −WCON . τ̃α is the
reduced relaxation time extracted from the incoherent intermediate scattering function. (b)
The same isomorphs as in (a) where WU and WLJU are each scaled to superpose with a
factor identified by trial and error. The black points have unity scaling factor. The figures
have been taken from Paper V.

A priori, however, the shape of isomorphs for molecular systems is expected to depend
also on the topology of the molecule; taking the limit of vanishing bond length d for the
asymmetric dumbbell model, one expects to recover the shape of isomorphs for atomic sys-
tems given by Eqs. (6.10) and (6.11). Figures 6.8(a) and (b) show four different isomorphs
scaled to superpose in, respectively, the (U ,WLJ ) and (U ,W )-phase diagrams, corresponding
to four dumbbells of length d = 0.0400, 0.184, 0.584, 0.784. The parameters are that of the
asymmetric dumbbell model, and it is only the bond length that is changed in this study.
The shape of isomorphs, in both versions of the virial, is seen to depend strongly on the
length of the dumbbell.

The expressions of Eqs. (6.10) and (6.11), for atomic systems, given by the orange
curve capture the shape of isomorphs for the dumbbell of length d = 0.0400. Considering,
however, larger lengths (d > 0.184), deviations from the atomic shape start to occur. This
is consistent with the fact that it is the molecular center-of-mass structure that is invariant
along an isomorph (see Paper V). In addition, Paper V showed the existence of a ”general”
master isomorph in the (U ,WLJ )-phase diagram between the asymmetric dumbbell model
and the Lewis-Wahnström OTP model. Here, we see that this result depends on the specific
molecular topology chosen to perform the comparison. In general, a theory for the shape of
isomorphs in the (U ,WLJ ) or (U ,W )-phase diagrams for rigid molecules is also missing (see
Paper V for additional details).
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Figure 6.8: Four different isomorphs scaled to superpose (the green curve has unity scaling
factor) corresponding to four dumbbell models of lengths d = 0.0400, 0.184, 0.584, 0.784.
The dumbbell of length d = 0.584 is the asymmetric dumbbell model, and it is only the bond
length that is changed in the current study. (a) Isomorphs in the (U,WLJ )-phase diagram.
The orange curve is calculated from Eqs. (6.10) and (6.11) and gives the shape of isomorphs
for atomic systems. (b) Isomorphs in the (U,W )-phase diagram.

70



Chapter 7

ISOMORPHS IN MODEL CONFINED LIQUIDS

Having established isomorphs for systems composed of rigid molecules in the previous chap-
ter, we now leave bulk equilibrium liquids to study the existence of isomorphs in liquids that
are spatially confined. Reviews of nanoscale-confined liquid’s behavior may be found in, for
instance, Alcoutlabi and McKenna [2005], Baschnagel and Varnik [2005], Richert [2011].
There exist many different forms of confining geometries relevant for the study of liquids in
confinement, but we limit the investigation to a study of the so-called ”slit-pore” geometry.
The slit-pore is shown in Fig. 7.1 and consists of two identical and parallel walls confining
the liquid in the direction normal to the walls (z-direction). The slit-pore remains infinite in
the directions parallel to the walls (x and y-directions) and is thus a quasi two-dimensional
system (Diestler and Schoen [1995]).

The phase diagram of the bulk (equilibrium) liquid may be described in terms of two
variables, for example, density and temperature or pressure and temperature. The phase
diagram of a liquid confined to a slit-pore is extended by an additional variable, namely
with the width of the slit-pore H (Diestler and Schoen [1995]). The phase diagram is thus
three-dimensional and may be described in terms of the variables (H, A, T ), where A is
the interfacial area of the slit-pore (Diestler and Schoen [1995]). The variables H and A
appear as the analogs of volume for bulk systems. For very large H, the three-dimensional
phase-diagram must, of course, ”collapse” into the two-dimensional phase-diagram of the
bulk system.

H

x

y

z

Figure 7.1: A schematic picture of a slit-pore. Two identical and parallel walls confine the
liquid in the direction normal to the walls (z-direction). H is the width of the slit-pore, i.e.
the distance between the two confining walls. The system remains infinite in the directions
parallel to the walls (x and y-directions), where A is the interfacial area of the slit-pore
(Diestler and Schoen [1995]).

As we have seen in the previous sections, the hallmark of isomorphs is the proportionality
of Boltzmann factors of scaled microconfigurations. A priori, there is no particular reason to
think that confinement should call for a change of the proportionality of Boltzmann factors.
However, since the phase diagram of a confined liquid is three-dimensional, it is possible
to define surfaces as well as curves where properties are constant. Isomorphs are curves in
the phase-diagram of the bulk equilibrium liquid, but is the latter also the case for confined
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systems? And if isomorphs remain curves, how should H and A be varied? These questions
are studied in more detail in the next section.

7.1 Isomorphs in a three-dimensional phase diagram

As mentioned above, the proportionality of Boltzmann factors of scaled microconfigurations
is expected to remain the hallmark of isomorphs in confinement. Similar to the bulk system,
we may then use the ”direct isomorph check” (see Sec. 2.2.4) to search for isomorphic
state points in the phase diagram, and by doing so to clarify the nature of isomorphs in
confinement.

Figure 7.2 shows four different direct isomorph checks for the asymmetric dumbbell model
in a slit-pore where H and A are varied in different ways1. We consider the following direct
isomorph checks:

1. A is varied by scaling the x and y-coordinates of the molecular center-of-masses with

ρ
1/3
r (where ρr = 0.932/1.071), keeping H constant.

2. H is varied by scaling the z-coordinates of the walls and the molecular center-of-masses

with ρ
1/3
r , keeping A constant.

3. H and A are varied by scaling all lengths with ρ
1/3
r .

4. H and A are varied by scaling the x and y-coordinates with ρ
1/3
r , and the z-coordinates

with (1 + ρ
1/3
r )/2.

The highest correlation coefficient of the direct isomorph checks (RDI = 0.95) is achieved
when all lengths are scaled with the same factor whereas for constant H or A the correlation
coefficient is significantly lower (RDI < 0.90). The latter suggests that isomorphs are curves
in the confined phase diagram rather than surfaces where properties are constant (recall
that the phase diagram is three-dimensional). It should also be noted that the scaling of the
z-coordinates by half the factor (scheme 4) gives a lower correlation coefficient (RDI = 0.93)
than scaling all lengths equally.

Thus it appears that isomorphs in the confined phase diagram are similar to bulk iso-
morphs. In defining isomorphs of the bulk system, however, the coordinates are scaled
isotropically with ρ1/3. The phase diagram of the confined liquid is three-dimensional, and
the variables H and A should not appear in a definition of isomorphs in confinement, only
via their product HA, but should reflect their independence.

1 We delay the discussion of defining H in simulations to Sec. 7.3.
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Figure 7.2: Four different ”direct isomorph checks” for the asymmetric dumbbell model in
a slit-pore initiated from the state point ρ = 0.932, T = 0.750, H = 8.13. Black circles: A is

varied by scaling the x and y-coordinates of the molecular center-of-masses with ρ
1/3
r (where

ρr = 0.932/1.071), keeping H constant. Red circles: H is varied by scaling the z-coordinates

of the walls and the molecular center-of-masses with ρ
1/3
r , keeping A constant. Green circles:

H and A are varied by scaling all lengths with ρ
1/3
r . Blue circles: H and A are varied by

scaling the x and y-coordinates with ρ
1/3
r and the z-coordinates with (1 + ρ

1/3
r )/2.

The above results and discussion motivate the following definition of isomorphs in con-
finement: We define two state points (H1, A1, T1) and (H2, A2, T2) in the phase diagram
of a liquid confined to a slit-pore, where the state variables are related via

H2
1

A1
=
H2

2

A2
, (7.1)

to be isomorphic if the following holds: Whenever two configurations of state points (1)
and (2) for all molecules i have identical reduced center-of-mass coordinates (ρH ≡ n/H,
ρA ≡ n/A, and n is the number of molecules)

ρ
1/2
A1

x
(1)
CM,i = ρ

1/2
A2

x
(2)
CM,i, (7.2)

ρ
1/2
A1

y
(1)
CM,i = ρ

1/2
A2

y
(2)
CM,i, (7.3)

ρH1
z

(1)
CM,i = ρH2

z
(2)
CM,i, (7.4)

and identical Eulerian angles (Gray and Gubbins [1984])

φ
(1)
i = φ

(2)
i , θ

(1)
i = θ

(2)
i , χ

(1)
i = χ

(2)
i , (7.5)

these two configurations have proportional Boltzmann factors, i.e., [where R ≡ (rCM,1, φ1,
θ1, χ1, ..., rCM,N , φN , θN , χN )]
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e−U(R(1))/kBT1 = C12e
−U(R(2))/kBT2 . (7.6)

As before, C12 is a constant and depends only on the state points (1) and (2). The scalings
introduced in Eqs. (7.2) - (7.4) take into account the independence2 of the state variables
H and A.

7.2 Isomorph invariants of liquids in a slit-pore

The canonical configurational probability for a liquid in a slit-pore is given by (Diestler and
Schoen [1995])

P̂ (R) =
e−U(R)/kBT∫
e−U(R)/kBT dR

. (7.7)

In the case of a LJ liquid U = ULJ + UWALL, and the only difference between bulk and
confined systems is therefore the appearance of the term UWALL in the Boltzmann factor
and a restriction of the coordinates in the z-direction. Since the isomorph definition is merely
based on the proportionality of Boltzmann factors of scaled microconfigurations, isomorph
invariants of the slit-pore follow completely analogous to the bulk system (see Chapter 2 for
derivation). We then have the following isomorph invariants in a confined system.

1. The center-of-mass structure in reduced units,

2. The center-of-mass dynamics in reduced units,

3. The excess entropy3 Sex,

4. The excess isochoric heat capacity Cex
V ≡ (∂U/∂T )H,A,

5. And more.

As for bulk systems, isomorphic jumps are also expected to be properties of confined iso-
morphs. The next section considers the generation of isomorphs in simulations of confined
systems.

7.3 Generating isomorphs in a slit-pore

In the bulk system, an isomorph was generated by keeping the excess entropy constant (Sec.
6.3). In appendix C, we derive the following equation for keeping the excess entropy constant
in a slit-pore

2 When we consider isomorphs in confinement via simulations, we use for simplicity the
factor ρ1/3 (with ρ = n/(HA)) to perform the scaling to reduced units.

3 The reference state for the excess entropy is defined as an ideal gas of volume V ≡ HA.
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γ ≡ 〈∆W∆U〉
〈(∆U)2〉

= −2/3
(∂ lnT

∂ lnA

)
Sex,H

− 1/3
( ∂ lnT

∂ lnH

)
Sex,A

, (7.8)

= −
( ∂ lnT

∂ lnHA

)d lnH=d lnA/2

Sex
. (7.9)

The (fluctuating) virial W is defined equivalent to the bulk system as

W ≡ −HA
3

[
Sxx + Syy + Szz

]
, (7.10)

where Sxx, Syy, and Szz are, respectively, the xx, yy, and zz-components of the configu-

rational part of the stress tensor4, i.e. the kinetic degrees of freedom have been subtracted.
Since the slit-pore is isotropic in the radial direction, the average stress tensor components
parallel to the walls 〈Sxx〉 = 〈Syy〉 ≡ S|| are identical whereas the average off-diagonal

components are zero (Diestler and Schoen [1995]).
As for the bulk system, the potential energy U and virial W have several contributions.

For a rigid molecular LJ system confined to a slit-pore, they are given by

U = ULJ + UWALL, (7.11)

W = WLJ +WCON +WWALL. (7.12)

The new terms with respect to the bulk system are UWALL and WWALL, i.e., the contribu-
tions to the potential energy and virial deriving from the confining walls of the slit-pore. In
our study, UWALL is defined via (zlower < 0 < zupper)

UWALL =
∑
i

(
v9,3(zupper − zi) + u9,3(zi − zlower)

)
, (7.13)

where

v9,3(z) =
4πεiwρwσ

3
iw

3

[ 1

15

(σiw
z

)9
− 1

2

(σiw
z

)3]
. (7.14)

Here, z is the distance between the divergence of the potential and the particle in question.
σiw and εiw are parameters similar to the LJ potential, and ρw defines the density of the
confining solid. The confining walls are thus modelled via a smooth potential (Eq. (7.14))
that appears after considering the total interaction of a LJ particle with a semi-infinite solid
continuum of LJ particles (Steele [1973], Toxvaerd [1981]). This potential is also known as
the ”Steele” potential.

Hence Sxx, Syy and Szz may be calculated (disregarding the rigid bonds) using the
following expressions (Diestler and Schoen [2000], Varnik et al. [2000])

4 The negative of the pressure tensor is the stress tensor.
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Sαα =
1

2HA

N∑
i=1

N∑
j=16=i

v′(rij)α2
ij

rij
, α = x, y, (7.15)

Szz =
1

2HA

N∑
i=1

N∑
j=16=i

v′(rij)z2
ij

rij
(7.16)

− 1

V

N∑
i=1

[
f9,3(zupper − zi) ·

(
H/2− zi

)
+ f9,3(zi − zlower) · (zi +H/2

)]
. (7.17)

Equation (7.17) is a new term representing the contribution to the (configurational) pressure
coming from the interactions with the walls. The walls are taken to be particles of infinite
mass, and hence have no contribution to the kinetic energy (Diestler and Schoen [2000],
Varnik et al. [2000]).

To generate an isomorph via Eq. (7.9) one needs to define H. Here and henceforth,
we define H as the distance between the two points where the wall potentials diverge, i.e.;
H = zupper − zlower. This definition is, however, not unique (more on this issue to come).
Thus, to investigate the consistency of Eq. (7.9) with this definition of H, we take a different
approach to generate an isomorph than in the bulk system. Instead, we generate an isomorph
via the direct isomorph check (recall Sec. 2.2.4)

U(R(2)) =
T2

T1
U(R(1)) + kBT2 lnC12, (7.18)

changing H and A according to Eq. (7.1) by a few percentage. The linear regression slope
of the direct isomorph check provides the ratio T2/T1, and T2 can thus be calculated by
multiplying with T1. This procedure is repeated for each state point along the isomorph
until a curve in the phase diagram is generated.

In the next two sections we consider the isomorphs of the KABLJ mixture and the asym-
metric dumbbell model (see Appendix A) confined to a slit-pore via the Steele potential. We
apply periodic boundary conditions in the (x,y)-directions. The simulations are performed
in the NVT ensemble using the Nosé-Hoover algorithm, and the solid density ρw is kept
constant for all simulations (the asymmetric dumbbell has ρw = 0.932 and KABLJ mixture
ρw = 1.204). A shifted-potential cutoff at the distance rc (Allen and Tildesley [1987]) is used
for the LJ interactions with rc = 5.00σαβ and rc = 2.50σαβ for, respectively, the KABLJ
mixture and the asymmetric dumbbell model. The Steele potential interacts with the entire
slit-pore region, i.e., no cutoff is applied. We use σAw = 1, εAw = 1, σBw = (1 + σBB)/2,
εBw =

√
1 · εBB .

7.4 Isomorphs of the Kob-Andersen binary LJ mixture in a slit-
pore

A liquid that is spatially confined exhibits stratification (Schoen et al. [1987], Toxvaerd
[1981]), i.e., the particles of the liquid order themselves in well-defined layers. The density of
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the liquid ρ(ri) is then a varying function of space and is not constant as in the bulk liquid.
The Steele potential depends only on the distance z, and hence the density is a function
of zi only ρ(ri) = ρ(zi). In addition, the pair-correlation function g(ri, rj) depends on the
cylindrical coordinates (rij , zij) of particle j with respect to particle i, that is g(ri, rj) =
g(zi, rij , zij) (Schoen et al. [1987, 1988]).

In Fig. 7.3 we show the A-particle density profile (in reduced units) of the KABLJ
mixture in a slit-pore along an isotherm and isomorph with, respectively, 5% and 27%
density increase. The density profile is to a fair approximation invariant in reduced units
along both the isotherm and isomorph (noting the difference in density increase). However,
the isomorph shows a better invariance of the second peak.
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Figure 7.3: A-particle density profiles (in reduced units z̃ = ρ1/3z) of the KABLJ mixture
in a slit-pore. The numbers identify the layers. (a) Along an isotherm with 5% density
increase. (b) Along an isomorph with 27% density increase.

Continuing the investigation of the structure of the liquid, we study the pair-correlation
function. Since g(zi, rij , zij) is a function of three variables, we consider only the so-called
”in-plane” pair-correlation function, i.e., g(zi, rij , zij = 0). To increase the statistics; all
the particles of a given layer are considered to have the same coordinates of zi and zij = 0
(Schoen et al. [1987, 1988]). Here and henceforth, we define a layer of the liquid (referring
to the density profile) as the particles enclosed within two imaginary planes located at z = z1
and z = z2 (the chosen values for z1 and z2 correspond approximately to adjacent minima).
The delimitation of selected layers are given in Table 7.1 (see also Fig. 7.3) where reduced
units are used to specify the planes (the density profile is state point dependent). In addition,
we average over the layer in question and its reflection in the mirror plane at z = 0 (since
the walls of the slit-pore are identical).
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Layer z̃1 z̃2

1 1.827 2.549
3 0 1.031

Table 7.1: Delimitation of selected layers (referring to the A-particle density profile in Fig.
7.3) by imaginary planes located at z̃ = z̃1 and z̃ = z̃2 for the KABLJ mixture in a slit-pore

(z̃ = ρ1/3z).

We consider in Fig. 7.4 the AA-radial distribution functions (RDF) for layers 1 and
3 along the previous isotherm and isomorph. We note that the RDF of layer 1 is solid-
like whereas the RDF of layer 3 resembles that of a bulk liquid (Schoen et al. [1987]).
Nevertheless, the structure of both layers is to a good approximation invariant along the
isomorph, with some deviation noted for the second peak of layer 3. On the isotherm, the
RDF is also invariant for layer 3, however, in layer 1 the solid-like structure ”thaws” and
becomes bulk-liquid-like; the structure on the isotherm is thus not invariant.
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Figure 7.4: AA-particle RDFs (in reduced units) for different layers (see Fig. 7.3 and Table
7.1) of the KABLJ mixture in a slit-pore along the isotherm and isomorph of Fig. 7.3. (a)
Isotherm, layer 1. (b) Isomorph, layer 1. (c) Isotherm, layer 3. (d) Isomorph, layer 3.

The corresponding dynamics of the two layers is shown in Fig. 7.5 by probing the A-
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particle incoherent intermediate scattering function (ISF) for constant reduced wave vector
parallel to the walls. The dynamics is to a good approximation invariant along the isomorph
whereas the dynamics on the isotherm, for both layers, is not. For layer 1 on the isomorph
(Fig. 7.5(b)), the red curve corresponding to ρ = 1.204 deviates more significantly than the
general trend of the other scaled curves; we currently have no explanation for this behavior.
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Figure 7.5: A-particle incoherent ISFs (in reduced units) for constant reduced wave vector
parallel to the walls for different layers of the KABLJ mixture in a slit-pore. The isotherm
and isomorph of Figs. 7.3-7.4 are shown. (a) Isotherm, layer 1. (b) Isomorph, layer 1. (c)
Isotherm, layer 3. (d) Isomorph, layer 3.

7.5 Isomorphs of the asymmetric dumbbell model in a slit-pore

The isomorphs of the asymmetric dumbbell model in a slit-pore are now considered. Figure
7.6 shows the molecular center-of-mass (CM) density profile (in reduced units) along an
isotherm and isomorph with, respectively, 8% and 20% density increase. As with the KABLJ
mixture, the density profile is to a good approximation invariant both on the isotherm and
the isomorph.
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Figure 7.6: Molecular CM density profiles in (reduced units) for the asymmetric dumbbell
model in a slit-pore. The numbers identify the layers. (a) Along an isotherm with 8% density
increase. (b) Along an isomorph with 20% density increase.

Next, we consider in Fig. 7.7 the molecular CM RDFs for layers 1 and 5 (see Fig. 7.6
and Table 7.2) along the previous isotherm and isomorph. The RDFs seem equally invariant
for the isotherm and isomorph. The density increase on the isomorph is, however, a factor
of two larger than the density increase on the isotherm.

Layer z̃1 z̃2

1 3.021 3.400
5 0.408 1.203

Table 7.2: Delimitation of selected layers (referring to the CM density profile in Fig. 7.6)
by imaginary planes located at z̃ = z̃1 and z̃ = z̃2 for the asymmetric dumbbell model in a
slit-pore (z̃ = ρ1/3z).

We note from Figs. 7.7(a) and (b) that layer 1, i.e., the contact layer of the liquid, shows
no sign of solidification as was the case for the KABLJ mixture, and the RDF resembles that
of a bulk liquid.
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Figure 7.7: Molecular CM RDFs (in reduced units) for different layers (see Table 7.2) of
the asymmetric dumbbell model in a slit-pore along the isotherm and isomorph of Fig. 7.6.
(a) Isotherm, layer 1. (b) Isomorph, layer 1. (c) Isotherm, layer 5. (d) Isomorph, layer 5.

Focusing the study on the dynamics of the liquid, Fig. 7.8 shows the molecular CM
incoherent ISF for constant reduced wave vector parallel to the walls. This function is
averaged over the entire slit-pore. The dynamics is to a good approximation invariant along
the isomorph while the isotherm shows approximately three orders of magnitude change in
the dynamics.
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Figure 7.8: Molecular CM incoherent ISFs (in reduced units) for constant reduced wave
vector parallel to the walls. (a) Along the isotherm of Figs. 7.6-7.7. (b) Along the isomorph
of Figs. 7.6-7.7.

Figure 7.9 shows the corresponding dynamics in layers 1 and 5. Both layers show excellent
scaling on the isomorph while the isotherm shows a significant change in the dynamics. It
should be noted that the dynamics of the contact layer (layer 1) is only slightly slower than
the dynamics in the middle of the slit-pore (layer 5).
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Figure 7.9: Molecular CM incoherent ISF (in reduced units) for constant reduced wave
vector parallel to the walls for different layers of the asymmetric dumbbell model in a slit-
pore. The isotherm and isomorph of Figs. 7.6-7.8 are shown. (a) Isotherm, layer 1. (b)
Isomorph, layer 1. (c) Isotherm, layer 5. (d) Isomorph, layer 5.

Finally in Fig. 7.10, we study the mean-square displacement in the z-direction of the
molecular CM along the previous isomorph. The figure shows an excellent collapse also for
the dynamics normal to the confining walls. The long-time limit of the particle mean-square
displacement is given by H2/6 (Schoen et al. [1988]). Concluding on the investigation of
the isomorph, structure was observed to be almost equally invariant along the isotherm and
isomorph. However, for the dynamics the observation was different. A striking difference
in the dynamics between the isotherm and the isomorph was observed, with the isomorph
showing excellent invariance.
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Figure 7.10: Molecular CM mean-square displacements (in reduced units) of the asym-
metric dumbbell normal to the confining walls. The isomorph of Figs. 7.6-7.9 is shown. The
long-time limit of the particle mean-square displacement is given by H2/6 (Schoen et al.
[1988]).

7.5.1 Increasing the degree of confinement

It is also interesting to study the effect on isomorphs by increasing the degree of confinement
(i.e., making H smaller). Here we study this aspect using again the asymmetric dumbbell
model in a slit-pore. Figure 7.11 shows the density profile of the molecular CM along
an isotherm and an isomorph with 33% density increase and H ≈ 4. We now observe
larger deviations for the density profile along the isomorph, and is consistent with the lower
correlation coefficient for the investigated state points (R is in the range 0.87 − 0.90). The
structure along the isotherm displays a qualitative change at the density of ρ = 0.737 and
is thus less invariant compared to the isomorph (note, however, the slight asymmetry in the
density profile at ρ = 0.979 which indicates that this state point is not fully equilibrated).
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Figure 7.11: Molecular CM density profiles in (reduced units) for the asymmetric dumbbell
model in a slit-pore (H ≈ 4). The numbers identify the layers. (a) Along an isotherm with
33% density increase. (b) Along an isomorph with 33% density increase.

Figure 7.12 shows the incoherent ISF averaged over the entire slit-pore for the same
isotherm and isomorph. The dynamics is to a good approximation invariant along the
isomorph whereas the dynamics along the isotherm shows a striking five orders of magnitude
change. For the density ρ = 0.737, along the isomorph, we observe (black curve) a worse
scaling at longer times than what would be estimated from the behavior of the other curves.
We currently have no explanation for this observation.
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Figure 7.12: Molecular CM incoherent ISFs (in reduced units) for constant reduced wave
vector parallel to the walls (H ≈ 4). (a) Along the isotherm of Fig. 7.11. (b) Along the
isomorph of Fig. 7.11.

Investigating now the layer properties, Fig. 7.13 shows the molecular CM RDFs of the
two main layers of the slit-pore (bulk and contact layer, see Fig. 7.11) along the previous
isotherm and isomorph. Along the isomorph, clear deviations in the structure are noted
for both layers where the structure of the contact layer (layer 1) shows a better invariance
than the structure of the layer in the center of the pore (layer 3). We suspect that this is
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a consequence of the significantly higher density of the contact layer. The aforementioned
qualitative change in the structure along the isotherm is most prominent for the contact
layer whereas the structure of layer 3 shows a similar ”invariance” to the isomorph.
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Figure 7.13: Molecular CM RDFs (in reduced units) for different layers (see Fig. 7.11)
of the asymmetric dumbbell model in a slit-pore along the isotherm and isomorph of Figs.
7.11-7.12. (a) Isotherm, layer 1. (b) Isomorph, layer 1. (c) Isotherm, layer 3. (d) Isomorph,
layer 3.

Additionally, we show in Fig. 7.14 the molecular CM incoherent ISFs of the two pre-
vious layers, and again we observe deviations in the scalings along the isomorph. On the
other hand, the isotherm shows a significant change in the dynamics similar to the behavior
observed for the average dynamics.
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Figure 7.14: Molecular CM incoherent ISF (in reduced units) for constant reduced wave
vector parallel to the walls for different layers of the asymmetric dumbbell model in a slit-
pore. The isotherm and isomorph of Figs. 7.11-7.13 are shown. (a) Isotherm, layer 1. (b)
Isomorph, layer 1. (c) Isotherm, layer 3. (d) Isomorph, layer 3.

7.6 Is the definition of the width of the slit-pore H meaningful?

The excess entropy in confinement can be kept constant via the relation (recall the discussion
in Sec. 7.3)

γ ≡ 〈∆W∆U〉
〈(∆U)2〉

= −
( ∂ lnT

∂ lnHA

)d lnH=d lnA/2

Sex
. (7.19)

In the previous sections we defined H as the distance between the two points where the
wall potentials diverge. We now examine this definition of H for consistency with Eq.
(7.19) using the state points of the two previously generated isomorphs for the asymmetric
dumbbell model. Recall from Sec. 7.3 that we used the direct isomorph check to generate
the isomorphs; only for perfect isomorphs does this imply that Sex is rigorously constant.

Figure 7.15 shows γ calculated from the fluctuations via the left-hand side of Eq. (7.19)
〈∆W∆U〉/〈(∆U)2〉 (black and red circles) and calculated from the state points of the iso-

morphs via the right-hand side −(∂ lnT/∂ lnHA)
d lnH=d lnA/2
Sex

(magenta and cyan aster-
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isks). An excellent agreement between the two expressions is obtained and implies that the
definition of H is not only meaningful, but also that Sex to excellent approximation is in-
variant along the isomorph. Figure 7.16 shows Sex along an isotherm and ”Isomorph 1” of
Fig. 7.15, confirming the latter conclusion (the excess entropy has been calculated via the
methods mentioned in Sec. 6.5). In this connection it is important to note that we have only
tested one particular definition of H in connection with isomorph, and thus the results does
not exclude other meaningful definitions of the width of the slit-pore. However, the chosen
definition is certainly the most simple.
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Figure 7.15: γ = 〈∆W∆U〉/〈(∆U)2〉 as a function of n/(HA) ≡ ρ calculated via UW
and ULJWLJ+CON (i.e., excluding the wall contributions to UW ) along the two previous
isomorphs of the asymmetric dumbbell model in a slit-pore (black and red data points). Also
shown is d lnT/d ln ρ = −d lnT/d lnHA of Eq. (7.19) along the same isomorphs (magenta
and cyan asterisks). The inset shows corresponding quantities for the correlation coefficient

R = 〈∆W∆U〉/
√
〈(∆W )2〉

√
〈(∆U)2〉.

We note additionally from Fig. 7.15 that γ calculated using ULJWLJ+CON is different
from γ calculated using UW by approximately 10%. Thus, the contribution from the wall
potentials to the fluctuations in U and W cannot in general be neglected.
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Figure 7.16: The excess entropy Sex per molecule along an isotherm (red crosses) and
”Isomorph 1” of Fig. 7.15 (black circles) for the asymmetric dumbbell model in a slit-pore.
The middle point on the isotherm is slightly lower than the isomorph due to the uncertainty
in the simulations. The reference state for the excess entropy of the confined system is an
uncorrelated ideal gas with volume V = HA (see the next section). Sex is to an excellent
approximation invariant along the isomorph, but not on the isotherm.

7.7 Excess entropy scaling in bulk and confinement

Truskett, Errington, and co-workers (see the introduction to Chapter 6) established a rela-
tionship between bulk and confined systems via excess entropy (Chopra et al. [2010a], Goel
et al. [2008], Mittal et al. [2006, 2007]). They found that Rosenfeld’s excess entropy scaling
is also valid for confined systems and that the functional form f to a good approximation is
unaffected by the degree of confinement. Since isomorphs have now been established for con-
fined systems, it is natural to ask whether the invariance (upon confinement) of the function
f can be understood in terms of isomorphs.

We start by verifying the bulk/confined excess entropy scaling relationship for the asym-
metric dumbbell model. In confined systems, different reference states for defining the excess
entropy have been proposed. For instance, one may define a reference state of an ideal gas
having the same one-body spatial and oriential distribution as the liquid. Chopra et al.
[2010a] investigated different versions of the excess entropy with the purpose of collapsing
the confined state points onto the bulk excess entropy curve. They found that a reference

state of an uncorrelated ideal gas with volume V ≡ HeffA was the most succesful where Heff

is the distance5 H between the two walls corrected for the ”non-accessible” volume of the
particles near the walls. The non-accessible volume appears as a consequence of the wall-

5 Recall that H is defined as the distance between the two points where the wall potentials
diverge, i.e.; H = zupper − zlower.
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fluid interactions and makes the density of the system higher than what would be estimated
from V = HA.

In this study, we follow the procedure outlined in Chopra et al. [2010a] to calculate Heff

with the only exception that the absolute minimum of the effective wall-liquid interaction
potential is used as a shift. The procedure is as follows.

1. We start by constructing the potential of mean force of the wall ueff(z)/kBT =
− ln(ρ(z)) from the total particle density profile ρ(z).

2. The potential ueff,0(z)/kBT is then constructed by shifting the ueff(z)/kBT curve by

an amount that corresponds to the absolute minimum in ueff(z)/kBT .

3. Finally, we locate the first point at which ueff,0(z)/kBT = 1. The distance of this point

σHS marks the location of an effective ”hard” wall. We then calculateHeff = H−2σHS
since the slit-pore is symmetric.

The outlined procedure is performed for every confined state point to calculate Heff (Chopra
et al. [2010a]) but it must be stressed that this is not a state point dependent ”fitting”
procedure onto the bulk curve. Alternatively, one could also use the particle density profile

itself to estimate Heff.
Figure 7.17 shows a reduced molecular relaxation time τ̃α, extracted from the molec-

ular center-of-mass incoherent intermediate scattering function when FsCM (τ̃α) = 0.2, as
a function of excess entropy for the asymmetric dumbbell model in the bulk (black data
points) and in a slit-pore (red data points). Figure 7.17(a) applies a reference state for the
excess entropy of an uncorrelated ideal gas with volume V = HA, and Fig. 7.17(b) applies a

version with V = HeffA. The version of excess entropy defined via Heff collapses, to a good
approximation, all the data points into a single curve while the version of excess entropy
defined via H shows some scatter in the data points. The latter confirms the observations
of Chopra et al. [2010a].
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Figure 7.17: A reduced molecular relaxation time τ̃α extracted from the molecular center-
of-mass incoherent intermediate scattering function as a function of excess entropy (per
molecule) for the asymmetric dumbbell model in the bulk (black data points) and in a slit-
pore (red data points). The reference state for the excess entropy in the slit-pore is an

uncorrelated ideal gas with volume V . (a) V = HA. (b) V = HeffA where Heff is the
distance H corrected for the ”non-accessible” volume of the particles near the walls (see the
text).

It was argued in the previous sections that isomorphs are curves and not surfaces in the
confined three-dimensional phase diagram. If isomorphs were surfaces, only one number6 is
needed to specify the isomorph, for instance, the excess entropy. The latter implies that

τ̃α = f
(
Sex

)
, (7.20)

thus explaining the invariance of the function f upon confinement. Isomorphs are, however,
curves in the phase diagram of the confined liquid, and two numbers are needed to specify an
isomorph. Considering the surfaces in the phase diagram where Sex and CexV are constant
and assuming that these surfaces do not coincide, the intersection of these surfaces identifies
the isomorph. Thus, one concludes

τ̃α = f
(
Sex, C

ex
V

)
, (7.21)

and cannot a priori expect a single-parameter collapse as in the bulk case. In this sense, Fig.
7.17(a) is consistent with isomorphs in confinement while Fig. 7.17(b) cannot be explained
directly in terms of isomorphs.

The excellent collapse of the bulk/confined excess entropy scaling, however, also raises
the question: Is the collapse of dynamical quantities onto the bulk curve (Mittal [2009],
Mittal et al. [2006]) a unique property of excess entropy? Figure 7.18(a) shows the reduced
molecular relaxation times of Fig. 7.17 as a function of excess isochoric heat capacity (an
isomorph invariant). Here, it is important to note that the excess isochoric heat capacity,
itself, is not dependent on the definition of the width of the slit-pore. Within the scattering

6 One number specifies a level surface in the confined phase diagram.
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of the bulk data, the confined state points collapse onto the bulk curve. In comparison,
Figs. 7.18(b) and (c) show the same state points plotted as a function of total density

ρtot = n/(HA) and effective density ρeff = n/(HeffA); here, no collapse is seen.
Thus, one concludes that the collapse of the confined data points onto the bulk curve

is not a unique property of excess entropy as the excess heat capacity may also be used
(although, the excess entropy gave a better collapse than the excess heat capacity). The
isomorph theory, itself, does not imply any causality among the properties that are invariant
along an isomorph, and a conjecture is thus that all isomorph invariants can be used to
perform the bulk/confined scaling; this, however, remains to be verified.
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Figure 7.18: Reduced molecular relaxation times τ̃α of Fig. 7.17 for the asymmetric
dumbbell model in the bulk (black data points) and in confinement (red data points). (a) As

a function of excess isochoric heat capacity. (b) As a function of total density ρtot = n/(HA).

(c) As a function of effective density ρeff = n/(HeffA), see text.

Finally, we show in Fig. 7.19 that density scaling (Tölle [2001]) also works in confinement.
The relaxation time τ̃α has been defined analogous to the aforementioned definition.
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γavg is the average of γ = 〈∆W∆U〉/〈(∆U)2〉 over all the state points of the figure.
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Chapter 8

ARE LIQUIDS IN NANOSCALE CONFINEMENT SIMPLE?

We consider here some very recent and unfinished research relating to the role of the FCS
for liquids in confinement. We learned in Chapter 5 that simple liquids are characterized by
the fact, in addition to having isomorphs, that the FCS interactions determine to a good
approximation their structure and dynamics. We have in the previous chapter detailed the
existence of isomorphs for liquids in confinement, but is the FCS property still meaningful
for confined liquids? And in this case, how should the wall-liquid interactions be treated in
this picture? These questions are studied below.

In Fig. 8.1, we show the density profile and the ”layer RDF” for each layer (layers 1-3) of
the SCLJ liquid confined to the slit-pore at ρ = 0.85, T = 1.80, and H = 6.13. The confining
potential is throughout this chapter still the Steele potential, see Sec. 7.3. From Fig. 8.1(b),
we see that the structure depends significantly on the distance to the wall; the distance at
which the RDFs attain their first local minimum is seen to be largest for the contact layer
(layer 1). Thus, a simple FCS scheme for the liquid-liquid interactions is to choose an FCS
cutoff from this particular layer (see the red dashed line in Fig. 8.1(b)) and to apply it to all
the layers of the liquid (i.e. the usual cutoff procedure in molecular dynamics simulations).

Next, we consider the wall-liquid interactions. The density profile given in Fig. 8.1(a)
can be thought of as the RDF of a particle with infinite radius (the wall itself), and the strat-
ification in confined liquids thus appears similar to the ordering in nearest-neighbor shells of
the bulk liquid (Diestler et al. [1991]). A conjecture is then that the wall-liquid interactions,
for a strongly correlating liquid, extend no further than to the first local minimum of the
density profile (see the red dashed lines in Fig. 8.1(a)), i.e., the analog of the FCS cutoff for
the liquid-liquid interactions.
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Figure 8.1: (a) Density profile for the SCLJ liquid in a slit-pore at ρ = 0.85, T = 1.80,
and H = 6.13 with pair potential cutoff rc = 5.000. The red dashed line marks the FCS of
the wall ”particle” at the distance r = 1.250 from the wall. (b) Lateral RDFs of layers 1-3
(layer 1 being the contact layer, and layer 3 the bulk layer) of the density profile in (a). The
red dashed line marks the FCS of layer 1 at r = 1.549.

Having now chosen a scheme for the FCS cutoffs in a confined system, we are faced with
an additional challenge before the proposed picture can be tested. As noted in Chapter 5
an SF truncation scheme is needed to ensure reliable results for bulk systems at low cutoff
distances (Toxvaerd and Dyre [2011a]). It is, however, known that using an SF cutoff
near interfaces can lead to spurious behavior (Allen and Tildesley [1987]) and may be
understood as follows. An SF truncation scheme is equivalent to adding a linear term to the
pair potential, however, for this linear term to sum to a constant (and not effect the structure
and dynamics), the neighbors of a given atom must have a fairly uniform distribution around
the main atom itself. The atoms near the walls are, however, missing (in loose terms) ”half
a coordination shell”. Thus, for the linear term not to modify the structure and dynamics,
the wall must compensate for the missing atoms.

We have empirically found from simulations that using an SF truncation scheme on the
wall-liquid interactions will compensate some amount, but not enough. Instead, we choose
here an ad-hoc based correction on the wall-liquid interactions that seems to work well in
practice. The procedure is as follows: We first apply an SF truncation on the liquid-liquid
and wall-liquid interactions, separately. Afterwards, an additional term is added to the
force from the wall given by the absolute difference in the SF corrections, i.e., the term
∆F = |fLJ (rc)− fWALL(rc)| is added to the force from the wall, where f(rc) is the force at
the cutoff distance rc. It must be stressed that we have not yet found a rigorous theoretical
argument for adding this particular term to the force from the wall, and it is based merely on
the observation that it works well for a range of simulated state points and model systems.
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8.1 The single-component LJ liquid in a slit-pore. ρ = 0.85

Applying the above FCS scheme to the state point of Fig. 8.1 (R = 0.96), we arrive at the
results presented in Fig. 8.2. Figure 8.2(a) shows the density profile whereas Fig. 8.2(b)
shows the RDF of layer 1 (i.e., the contact layer). The black curves give a simulation with a
very large pair potential cutoff in combination with no cutoff for the wall-liquid interactions.
The red curves give an FCS cutoff for both the liquid and wall interactions, while the
turquoise curves give, for comparison, a WCA-type cutoff1 (Weeks et al. [1971]) for the
liquid and wall interactions. By comparing to the WCA method, we do not imply that this
picture is supposed to be applicable to confined systems, but it provides merely for now a
good reference system. The FCS cutoff gives excellent results whereas the WCA-type cutoff
shows slight deviations in the density profile (Fig. 8.2(a)).
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Figure 8.2: FCS and WCA-type cutoff simulations for the SCLJ liquid confined to a slit-
pore. The black curves give a large pair potential cutoff in combination with no cutoff for the
wall interactions. The red curves give a cutoff at the FCS for the liquid and wall interactions
whereas the turquoise curves give a WCA-type cutoff for the liquid and wall interactions.
(a) Density profiles. (b) Lateral RDFs of layer 1 (see Fig. 8.1).

The RDFs of layer 2 and 3 are shown in Fig. 8.3. Again, the FCS cutoff gives a good
approximation to the structure in these two layers whereas the WCA-type cutoff shows a
slightly larger deviation than seen for layer 1.

1 Recall that the WCA method truncates at the potential minimum.

96



0.0 1.0 2.0 3.0 4.0 5.0
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0
L

at
er

al
 R

D
F

 o
f 

L
ay

er
 2

LJ-Large and Wall-Full

LJ-FCS and Wall-FCS
LJ-WCA and Wall-WCA

SCLJ:

(ρ = 0.85, T = 1.80, H = 6.13)

(a)

0.0 1.0 2.0 3.0 4.0 5.0
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L
at

er
al

 R
D

F
 o

f 
L

ay
er

 3

LJ-Large and Wall-Full

LJ-FCS and Wall-FCS
LJ-WCA and Wall-WCA

SCLJ:

(ρ = 0.85, T = 1.80, H = 6.13)

(b)

Figure 8.3: FCS and WCA-type cutoff simulations for the SCLJ liquid confined to a slit-
pore. The black curves give a large pair potential cutoff in combination with no cutoff for the
wall interactions. The red curves give a cutoff at the FCS for the liquid and wall interactions
whereas the turquoise curves give a WCA-type cutoff for the liquid and wall interactions.
(a) Lateral RDFs of layer 2. (b) Lateral RDFs of layer 3.

Next, we consider the incoherent ISF for a wave vector parallel to the walls (chosen to
be the same for all layers) in Fig. 8.4. For all layers, the FCS cutoff approximates well the
dynamics while the WCA-type cutoff shows slight deviations in layers 2 and 3.
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Figure 8.4: FCS and WCA-type cutoff simulations for the SCLJ liquid confined to a slit-
pore. The black curves give a large pair potential cutoff in combination with no cutoff for the
wall interactions. The red curves give a cutoff at the FCS for the liquid and wall interactions
whereas the turquoise curves give a WCA-type cutoff for the liquid and wall interactions.
(a) Lateral ISFs of layer 1. (b) Lateral ISFs of layer 2. (c) Lateral ISFs of layer 3.

In the following two sections, we lower the density of the slit-pore for the SCLJ system,
keeping H constant, and compare the effect on using an FCS cutoff. In doing so, the
correlation coefficient R is seen to decrease, and the FCS results are expected to become
more approximative. Throughout the chapter, we use the same definitions and meanings
introduced in this section (unless specified otherwise).

8.2 The single-component LJ liquid in a slit-pore. ρ = 0.75

We show in Fig. 8.5 the density profile and layer RDFs for the SCLJ liquid at ρ = 0.75, T
= 0.80, and H = 6.13 (R = 0.87).
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Figure 8.5: (a) Density profile for the SCLJ liquid in a slit-pore at ρ = 0.75, T = 0.80,
and H = 6.13 with pair potential cutoff rc = 5.000. The red dashed line marks the FCS of
the wall ”particle” at the distance r = 1.317 from the wall. (b) Lateral RDFs of layers 1-3
(layer 1 being the contact layer, and layer 3 the bulk layer) of the density profile in (a). The
red dashed line marks the FCS of layer 1 at r = 1.617.

Figure 8.6 then shows results for the density profile and contact-layer RDF (layer 1)
using the FCS cutoff. The FCS cutoff gives a good approximation to the structure where
the WCA-type cutoff shows only minor deviations and is similar to the behavior observed
for ρ = 0.85.
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Figure 8.6: FCS and WCA-type cutoff simulations for the SCLJ liquid confined to a slit-
pore. The black curves give a large pair potential cutoff in combination with no cutoff for the
wall interactions. The red curves give a cutoff at the FCS for the liquid and wall interactions
whereas the turquoise curves give a WCA-type cutoff for the liquid and wall interactions.
(a) Density profiles. (b) Lateral RDFs of layer 1.

Considering the layer RDFs of layer 2 and 3 in Fig. 8.7, we now observe larger deviations
for the WCA-type cutoff whereas the FCS cutoff still gives an excellent approximation to
the structure of the liquid.
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Figure 8.7: FCS and WCA-type cutoff simulations for the SCLJ liquid confined to a slit-
pore. The black curves give a large pair potential cutoff in combination with no cutoff for the
wall interactions. The red curves give a cutoff at the FCS for the liquid and wall interactions
whereas the turquoise curves give a WCA-type cutoff for the liquid and wall interactions.
(a) Lateral RDFs of layer 2. (b) Lateral RDFs of layer 3.

Probing then the dynamics of all layers in Fig. 8.8 via the incoherent ISF, we observe
also larger deviations for the WCA-type cutoff than at the density ρ = 0.85. The FCS cutoff
only shows slight deviations for layer 3 and is consistent with the border-line correlation
coefficient of R = 0.87 at this state point.
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Figure 8.8: FCS and WCA-type cutoff simulations for the SCLJ liquid confined to a slit-
pore. The black curves give a large pair potential cutoff in combination with no cutoff for the
wall interactions. The red curves give a cutoff at the FCS for the liquid and wall interactions
whereas the turquoise curves give a WCA-type cutoff for the liquid and wall interactions.
(a) Lateral ISFs of layer 1. (b) Lateral ISFs of layer 2. (c) Lateral ISFs of layer 3.

8.3 The single-component LJ liquid in a slit-pore. ρ = 0.65

Decreasing now the density even more to ρ = 0.65, we arrive at a state point that is not
strongly correlating with R = 0.74. Again, for reference, Fig. 8.9 shows the density profile
and layer RDFs for this state point.
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Figure 8.9: (a) Density profile for the SCLJ liquid in a slit-pore at ρ = 0.65, T = 0.80,
and H = 6.13 with pair potential cutoff rc = 7.500. The red dashed line marks the FCS of
the wall ”particle” at the distance r = 1.377 from the wall. (b) Lateral RDFs of layers 1-3
(layer 1 being the contact layer, and layer 3 the bulk layer) of the density profile in (a). The
red dashed line marks the FCS of layer 1 at r = 1.660.

As before, we show in Fig. 8.10 results for the density profile and contact-layer RDF
using the FCS cutoff. The density profile now displays more deviations using the FCS cutoff
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whereas the WCA-type cutoff shows significant deviations, in particular near the walls. On
the other hand, for the layer RDF only very minor deviations are seen for either cutoff
scheme.
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Figure 8.10: FCS and WCA-type cutoff simulations for the SCLJ liquid confined to a
slit-pore. The black curves give a large pair potential cutoff in combination with no cutoff
for the wall interactions. The red curves give a cutoff at the FCS for the liquid and wall
interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and wall
interactions. (a) Density profiles. (b) Lateral RDFs of layer 1.

In contrast to the results for the contact-layer, the WCA-type cutoff shows clear devi-
ations for layers 2 and 3 in Fig. 8.11. The FCS cutoff gives a good approximation to the
structure in both layers.
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Figure 8.11: FCS and WCA-type cutoff simulations for the SCLJ liquid confined to a
slit-pore. The black curves give a large pair potential cutoff in combination with no cutoff
for the wall interactions. The red curves give a cutoff at the FCS for the liquid and wall
interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and wall
interactions. (a) Lateral RDFs of layer 2. (b) Lateral RDFs of layer 3.

The dynamics of the three layers are shown in Fig. 8.12. We observe minor deviations
using the WCA-type cutoff. Thus, although this state point is not strongly correlating
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(R = 0.74), and the results for the FCS cutoff are seen to become more approximate, it still
gives a good approximation to both the structure and the dynamics of the liquid.
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Figure 8.12: FCS and WCA-type cutoff simulations for the SCLJ liquid confined to a
slit-pore. The black curves give a large pair potential cutoff in combination with no cutoff
for the wall interactions. The red curves give a cutoff at the FCS for the liquid and wall
interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and wall
interactions. (a) Lateral ISFs of layer 1. (b) Lateral ISFs of layer 2. (c) Lateral ISFs of layer
3.

8.4 The single-component LJ liquid in a slit-pore. ρ = 4.00

As a final example for the SCLJ system, it is illustrative to consider a state point for which
the location of the FCS is pushed to the left of the potential minimum for both the liquid-
liquid and wall-liquid interactions. Having the discussion presented in Sec. 5.8 in mind,
one expects that a WCA-type cutoff works satisfactorily, and we thus show no results using
the WCA approach. In Fig. 8.13 we show the density profile and the layer RDF for each
layer of the SCLJ liquid at ρ = 4.00, T = 1179, and H = 3.66 with R = 0.99. We see that
the FCS (delimited by the red dashed lines) is indeed ”pushed” to smaller distances than,
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respectively, 21/6σ and (2/5)1/6σw for the pair and wall interactions. These values define
the distances of the minima for the simulated potentials (σ = σw = 1).
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Figure 8.13: (a) Density profile for the SCLJ liquid in a slit-pore at ρ = 4.00, T = 1179,
and H = 3.66 with pair potential cutoff rc = 5.000. The red dashed line marks the FCS of
the wall ”particle” at the distance r = 0.669 from the wall. (b) Lateral RDFs of layers 1-3
(layer 1 being the contact layer, and layer 3 the bulk layer) of the density profile in (a). The
red dashed line marks the FCS of layer 1 at r = 0.934.

Figure 8.14 shows the density profile and layer RDF of layer 1 using different cutoffs. The
black and red curves give, respectively, reference and FCS simulations. The blue curves give
an SF-type cutoff for the liquid and wall interactions at the distance of the first maximum
for, respectively, the RDF of layer 1 and the density profile. We see that the FCS cutoff gives
an excellent approximation to the structure although the pair and wall potential cutoffs are
quite small, respectively, rc = 0.934 and rw = 0.669. In comparison, applying a cutoff inside
the FCS (blue curves) shows significant deviations.
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Figure 8.14: FCS and first-maximum-type cutoff simulations for the SCLJ liquid confined
to a slit-pore. The black curves give a large pair potential cutoff in combination with no
cutoff for the wall interactions. The red curves give a cutoff at the FCS for the liquid and
wall interactions whereas the blue curves give an SF-type cutoff for the liquid and wall
interactions at the distance of the first maximum for, respectively, the RDF of layer 1 and
the density profile. (a) Density profiles. (b) Lateral RDFs of layer 1 (see Fig. 8.13).

The same conclusion is reached considering the RDFs of layers 2 and 3 in Fig. 8.15.
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Figure 8.15: FCS and first-maximum-type cutoff simulations for the SCLJ liquid confined
to a slit-pore. The black curves give a large pair potential cutoff in combination with no
cutoff for the wall interactions. The red curves give a cutoff at the FCS for the liquid and
wall interactions whereas the blue curves give an SF-type cutoff for the liquid and wall
interactions at the distance of the first maximum for, respectively, the RDF of layer 1 and
the density profile. (a) Lateral RDFs of layer 2. (b) Lateral RDFs of layer 3.

Turning now to the dynamics via the self-part of the ISF in Fig. 8.16. The same behavior
as for the structure is observed where the FCS cutoff gives an excellent approximation to
the dynamics whereas applying a cutoff inside the FCS shows deviations.
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Figure 8.16: FCS and first-maximum-type cutoff simulations for the SCLJ liquid confined
to a slit-pore. The black curves give a large pair potential cutoff in combination with no
cutoff for the wall interactions. The red curves give a cutoff at the FCS for the liquid and
wall interactions whereas the blue curves give an SF-type cutoff for the liquid and wall
interactions at the distance of the first maximum for, respectively, the RDF of layer 1 and
the density profile. (a) Lateral ISFs of layer 1. (b) Lateral ISFs of layer 2. (c) Lateral ISFs
of layer 3.

8.5 The Kob-Andersen binary LJ mixture in a slit-pore

We now consider the application of an FCS cutoff to the KABLJ mixture that was also
investigated for isomorphs in Sec. 7.4. Figure 8.17(a) shows the A and B-particle density
profiles for the KABLJ mixture confined to a slit-pore at ρ = 1.20, T = 1.40, and H = 5.97
(R = 0.95) while Fig. 8.17(b) shows the AA-particle RDF for each layer. As mentioned in
Sec. 7.4, the contact layer (layer 1) shows clear sign of solidification.
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Figure 8.17: (a) A and B-particle density profiles for the KABLJ mixture confined to a
slit-pore at ρ = 1.20, T = 1.40, and H = 5.97 with pair potential cutoff rc = 8.000. The red
dashed line marks the FCS of the wall ”particle” at the distance r = 1.252 from the wall.
(b) Lateral AA-particle RDFs of layers 1-3 (layer 1 being the contact layer, and layer 3 the
bulk layer) of the A-particle density profile in (a). The red dashed line marks the FCS of
layer 1 at r = 1.479.

Probing now the density profile for both particles using an FCS cutoff in Fig. 8.18,
we see excellent agreement with the reference simulations (black curves), whereas using a
WCA-type cutoff shows some deviation. In particular for the WCA-type cutoff, we note for
the B-particle density profile of Fig. 8.18(b) that a small amount of excess B-particles have
been absorbed into the A-particle rich contact layer (turquoise curve and around z ≈ 2.2).
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Figure 8.18: Density profiles of the KABLJ mixture confined to slit-pore. The black curves
give a large pair potential cutoff in combination with no cutoff for the wall interactions. The
red curves give a cutoff at the FCS for the liquid and wall interactions, and the turquoise
curves give a WCA-type cutoff for the liquid and wall interactions. (a) A-particle density
profiles. (b) B-particle density profiles.

Considering in Fig. 8.19 the AA-particle RDF for each layer, the FCS simulations show
nearly perfect agreement with the reference simulations. In comparison, the WCA-type
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cutoff shows clear deviations for all layers, in particular, for the contact layer.
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Figure 8.19: FCS and WCA-type cutoff simulations for the KABLJ mixture confined to a
slit-pore. The black curves give a large pair potential cutoff in combination with no cutoff
for the wall interactions. The red curves give a cutoff at the FCS for the liquid and wall
interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and wall
interactions. (a) Lateral AA-particle RDFs of layer 1. (b) Lateral AA-particle RDFs of
layer 2. (c) Lateral AA-particle RDFs of layer 3.

Finally, we consider the corresponding dynamics of each layer in Fig. 8.20. Again,
the agreement with the FCS simulations is excellent while the WCA-type cutoff mimics
the behavior seen in the RDFs, i.e., showing pronounced deviations for the contact layer.
Appendix D shows simulations of two additional model systems: the WABLJ mixture and
the asymmetric dumbbell model. These systems give rise to the same conclusions.
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Figure 8.20: FCS and WCA-type cutoff simulations for the KABLJ mixture confined to a
slit-pore. The black curves give a large pair potential cutoff in combination with no cutoff
for the wall interactions. The red curves give a cutoff at the FCS for the liquid and wall
interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and wall
interactions. (a) Lateral A-particle ISFs of layer 1. (b) Lateral A-particle ISFs of layer 2.
(c) Lateral A-particle ISFs of layer 3.

8.6 Concluding on the FCS results for confined liquids

In conclusion, the above results (and Appendix D) suggest that also for a confined system, it
is merely the interactions within the FCS that determine the structure and dynamics. The
latter also holds to a good approximation near the interface, and, as such, the interfacial
layer is no more special than any other layer of the liquid. In addition, the wall influences
only particles at distances beyond the first layer, indirectly, via their interactions with the
particles of the contact layer. A similar effect is seen for completely hard walls with specular
or ”Maxwellian” microscopic roughness where the memory of colliding with the walls is lost
in the contact layer (Diestler et al. [1991]). At first sight, a confined system appears complex
due to stratification and a significant change in the dynamics compared to the bulk system,
however, as shown here; the physics can still be quite simple. It must, however, be noted
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that these results are expected to hold only for liquids that are strongly correlating in the
confinement.

Alternatively, one may argue (Weeks [2012]) that some of the state points studied for the
SCLJ system are high density and high temperature states with an external wall potential
with attractions such that the original WCA force cancellation arguments (Widom [1967])
work pretty well for the fluid between the walls. Applying then a cutoff at large distances as
in the FCS approach would then appear trivial. We observed, however, large deviations using
the WCA-type approach on the liquid-liquid and wall-liquid interactions at high density for
the KABLJ mixture, the WABLJ mixture (see Appendix D), the asymmetric dumbbell,
and for the SCLJ liquid at somewhat lower densities (ρ = 0.75, 0.65). In all cases the FCS
cutoff gave an excellent approximation to the structure and dynamics. The most striking
evidence, however, for the proposed FCS picture in confined systems is supplied by the SCLJ
system at ρ = 4.00 where cutoffs well below the WCA minima could safely be applied to the
liquid-liquid and wall-liquid interactions.

The investigation in this chapter is limited to one particular confining potential, the
Steele potential, and the generality of the FCS results for a variety of external fields remains
to be shown.

8.7 Other methods for approximating non-uniform liquids

The FCS approach outlined above seems to be a promising new way to approximate confined
liquids. There exist, however, other more general approaches to describing non-uniform
liquids:

• Mode-coupling theory (Götze [2009]), which relates the dynamic density correlations
of a viscous fluid to its static structure, has been extended to treat simple model fluids
(e.g. hard-sphere) under confinement (Biroli et al. [2006], Krakoviack [2005, 2011],
Lang et al. [2010, 2012]).

• Local Molecular Field (LMF) theory by Weeks and co-workers (Rodgers and Weeks
[2008], Weeks et al. [1995, 1997, 1998]). LMF theory,

”...generally accounts for the averaged effects of long-ranged components of the inter-
molecular interactions by using an effective or restructured external field. The deriva-
tion starts from the exact Yvon–Born Green hierarchy and shows that the approxima-
tion can be very accurate when the interactions averaged over are slowly varying at
characteristic nearest-neighbor distances.” (Rodgers and Weeks [2008]).

A specific example of the method (Weeks et al. [1995]) would be to use the WCA
approximation for the liquid in confinement and then account for the long-ranged
part of the potential using the effective external field determined in a self-consistent
manner. The LMF theory has been applied to a wide range of systems ranging from
weak dispersion interactions to systems with strong electrostatic interactions with good
results. The theory has, however, only been developed to approximate static quantities
and does not yet incorperate dynamics (Rodgers and Weeks [2008]).
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• Mathematical force-error estimate approaches for inhomogeneous systems (Wang et al.
[2012]).

In general, for systems with strong electrostatic interactions, the FCS approach is not ex-
pected to work as competing interactions tend to destroy the strong correlation.
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Chapter 9

NVU DYNAMICS (PAPERS VI, VII AND VIII)

Molecular dynamics (MD) has since its introduction evolved rapidly and is now a very ver-
satile technique being applied to simulations at constant temperature NVT (Hoover [1985],
Nosé [1984]), constant pressure NPT (Frenkel and Smit [2002]), or even constant chemical
potential µVT (Lynch and Pettitt [1997]). In this chapter, we consider a new MD method
that conserves the total potential energy NVU (Papers VI, VII, and VIII).

NVU dynamics is defined by motion that traces out a geodesic curve (see below) on the
constant-potential-energy hypersurface Ω given by

Ω = {R ∈ R3N | U(R) = U0}. (9.1)

Here R ≡ {r(1), ..., r(N)} in which r(k) is the position vector of the k’te particle, U is the
potential-energy function of a N -particle classical system, and U0 is a constant. Equa-
tion (9.1) specifies a (3N − 1)-dimensional hypersurface (a level surface) embedded in the
Euclidean 3N -dimensional configuration space and is a so-called Riemannian differential
manifold (Gallot et al. [2004], Schlichtkrull [2009, 2010]).

A geodesic on Ω is then a curve that satisfies the condition of stationary length for fixed
endpoints RA and RB (Gallot et al. [2004], Kopeikin et al. [2011]), i.e.,

δ

∫ RB

RA

dl

∣∣∣∣∣
Ω

= 0, (9.2)

where dl is the line element of the metric, and here and henceforth δ denotes the variation
of variational calculus (Hansen [1973]). The condition of Eq. (9.2) expresses that small
perturbations of the curve on Ω, keeping the endpoints fixed, to lowest order do not change
the curve length (Hansen [1973]). The shortest path between any two points is thus a
geodesic. Geodesics and their fascinating properties have been studied extensively in pure
mathematics, physics as well as computer science see, for instance, Baek et al. [2007],
Caselles et al. [1997], Cheng et al. [2002], Kimmel and Sethian [1998], Kopeikin et al.
[2011], Schlichtkrull [2010] and references therein. Physically, traversing a geodesic at con-
stant velocity corresponds simply to a generalization of Newton’s first law, i.e. the law of
inertia, to a curved space (the surface itself). NVU dynamics may thus simply be imagined
as going ”straight ahead” on the hypersurface Ω.

An illustration of geodesics on a sphere in three dimensions (called great circles) is shown
via the black curves in Fig. 9.1. We observe that between the two poles there exist an infinite
number of geodesics, and geodesics may thus in general intersect each other.
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Figure 9.1: An illustration of geodesics on a sphere (black curves, taken from Schiller-
Institute [2013]). The geodesics may be derived by intersecting the sphere with a plane
containing the central point of the sphere. There exist an infinite number of geodesics
between the two poles; the shortest path between any two points is a geodesic.

The motivation to study NVU dynamics derives from the theory of strongly correlating
liquids. If a liquid to a good approximation has isomorphs in the phase diagram, then along
these curves the reduced coordinate constant-potential-energy hypersurface Ω̃ defined by
(recall R̃ = ρ1/3R)

Ω̃ = {R̃ ∈ R3N | U(ρ−1/3R̃) = 〈U〉}, (9.3)

is also (approximately) invariant (Dyre [2013], Gnan et al. [2009]). In this equation 〈U〉
denotes the average potential energy of the respective state points along the isomorph. Thus,
it is natural to speculate that the isomorph invariants are simply encoded in the geometry of
Ω̃. However, to understand the dynamical invariants of the isomorph, one needs a dynamics
that refers exclusively to Ω̃, and the simplest deterministic dynamics is geodesic dynamics.
In fact, all liquids have constant-potential-energy hypersurfaces Ω (Eq. (9.1)), and NVU
dynamics is consequently defined for any liquid, not just the strongly correlating liquids.

Molecular dynamics at constant potential energy has previously been considered by a
number of authors.

• Cotterill, Madsen and co-workers (Cotterill and Madsen [1986, 2006], Li et al. [1992])
used dynamics at constant potential energy to understand the differences between
crystalline and non-crystalline states of matter in terms of the geometry of Ω. The
authors used an algorithm similar to the one presented in this chapter. However,
no connection to geodesics was made, and the applied algorithm violates the usual
stability criteria for algorithms in MD (see Paper VI).

• Scala et al. [2002] studied diffusive dynamics on Ω focusing on the entropic nature of
barriers in the potential energy landscape (i.e., the graph of U(R)) by regarding these
as ”bottlenecks”. A picture shared by Cotterill, Madsen and co-workers who imagined
Ω as consisting of pockets connected by ”tubes”.

• Stratt and co-workers (Nguyen and Stratt [2010], Nguyen et al. [2012], Wang and
Stratt [2007a,b]) considered geodesic pathways in the ”potential-energy-landscape
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ensemble”. This novel ensemble is defined by including all configurations with potential
energy less than or equal to some potential energy U0. A geodesic in the potential-
energy-landscape ensemble consists of a curve that is partly geodesic on the constant-
potential-energy surface Ω, partly a straight line in the space defined by U < U0.
In this approach, the picture shifts, ”perspective from finding stationary points on the
potential energy landscape to finding and characterizing the accessible pathways through
the landscape. Within this perspective pathways would be slow, not because they have
to climb over high barriers, but because they have to take a long and tortuous route to
avoid such barriers...” (Wang and Stratt [2007a]). Thus, the more ”convoluted and
labyrinthine” the geodesic pathways are, the slower is the dynamics.

In the next section, we derive a numerical algorithm for performing NVU geodesic motion
on Ω in the case of atomic systems (Papers VI and VII) whereas in Sec. 9.2 we extend this
algorithm in order to simulate molecular systems with rigid bonds (Paper VIII). Simulations
of rigid bonds, in general, are rather involved, as it requires solving systems of nonlinear
equations (see, for instance, Ingebrigtsen et al. [2010], Ryckaert et al. [1977], Toxvaerd
et al. [2009]).

9.1 Discrete geodesic motion on Ω for atomic systems

The geodesics of Ω were in Eq. (9.2) defined via the variation over the arc length (Hansen
[1973]). However, geodesics on Ω may also be defined1 via second-order, nonlinear differential
equations given as (Schlichtkrull [2010])

d2ui(t)

dt2
+
∑
j,k

Γijk(γ(t))
duj(t)

dt

duk(t)

dt
= 0, (9.4)

where ui(t) are coordinates of the curve γ(t) parameterized by t, and Γijk are the Christoffel

symbols (Schlichtkrull [2009, 2010]), having somewhat complicated expressions and for
clarity of presentation left out (see Schlichtkrull [2010]). These equations are also called the
”geodesic equations”, and finding geodesics is usually a matter of solving these differential
equations.

In analogy, classical mechanics may also be formulated via Hamilton’s principle (Gold-
stein et al. [2002]), instead of Newton’s second law (Fi −mir̈i = 0), given by

δ

∫ t2

t1

Ldt = 0. (9.5)

Here L = K − U is the Lagrangian function, K is the kinetic energy, and in Eq. (9.5) one
considers a path in configuration space between times t1 and t2 and requires the ”action” to
be stationary (Goldstein et al. [2002]).

1 In fact, the geodesic equations follow by carrying out the variational principle (Kopeikin
et al. [2011]).
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Lately, a new class of numerical integrators was proposed, the so-called ”variational time
integrators” (Kane et al. [1999], Lew [2003], Marsden and West [2001], Stern and Desbrun
[2006], West [2004]). In this approach, the numerical integrator is derived directly from
a variational principle, i.e., by first discretizing the variational principle and then carrying
out the variation. The motivation behind variational time integrators is that by deriving the
discrete algorithm from a variational principle, the intrinsic geometrical properties of the flow
are maintained. It has been shown that the variational approach generates algorithms with
equivalent or superior stability to the usual numerical approaches for differential equations
(Kane et al. [1999], Lew [2003], Marsden and West [2001], Stern and Desbrun [2006],
West [2004]). As an example, applying the variational integration technique to Hamilton’s
principle (Eq. (9.5)) results in the Verlet algorithm (see West [2004] for a derivation).

In this spirit, we take Eq. (9.2) as the starting point for developing the numerical NVU
algorithm rather than using the geodesic equations. Before proceeding, however, we must
define the measure of length appearing in Eq. (9.2). Motivated by the results to come, we
define dl via the expression

dl2 ≡
∑
k

m̃k

(
dr(k))2, (9.6)

where m̃k = mk/〈m〉 is the ”reduced” mass of particle k. Equation (9.6) is not the standard
Euclidean measure of length (except when all masses are equal), it is rather derived from a
metric proposed by Heinrich Hertz (Hertz [1894], Lützen [2005]). The point of choosing this
particular metric, as we shall see, is that it ensures equivalence between NVU and standard
energy-conserving Newtonian NVE dynamics in the thermodynamic limit for systems of
varying masses. Thus, although we consider only the configuration space in NVU dynamics,
the (relative) masses still enter via the definition of length.

With this choice for dl, a discretization of Eq. (9.2) can now be performed in different
ways (Stern and Desbrun [2006]), and one possibility is

δS ≡ δ
(∑

i

√∑
k

m̃k

(
r
(k)
i − r

(k)
i−1

)2 −∑
i

λiU(Ri)
)

= 0. (9.7)

In this expression, the path is divided into a number of discrete points indexed by i (starting
from RA and ending at RB), and one Lagrangian multiplier λi is introduced for every point
i to keep the potential energy constant (Hansen [1973]). The expression of Eq. (9.7) is
dependent on all the k particles and discrete points i. For the variation to vanish, this
corresponds simply to (see Stern and Desbrun [2006])

∂S/∂r
(k)
i = 0, (9.8)

for all k = 1, ..., N and discrete points2 i. In addition, we also make an Ansatz3 of constant
step length l0 (Paper VI), i.e.,

2 We neglect here the endpoints A and B as they are fixed.
3 This corresponds simply to a constant time step length ∆t in Newtonian dynamics.
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∑
k

m̃k

(
r
(k)
i − r

(k)
i−1

)2
≡ l20. (9.9)

Taking then the partial derivative ∂S/∂r
(k)
i = 0 and applying Eq. (9.9) gives

m̃k

(
r
(k)
i − r

(k)
i−1

)
+ m̃k

(
r
(k)
i − r

(k)
i+1

)
+ l0λif

(k)
i = 0, (9.10)

where f
(k)
i = −∇

r
(k)
i

U . Equivalently, the NVU algorithm can be written

r
(k)
i+1 = 2r

(k)
i − r

(k)
i−1 + l0λi〈m〉 f

(k)
i /mk. (9.11)

Equation (9.11) constitutes the NVU algorithm for atomic systems with varying mass. How-
ever, to complete the NVU algorithm an expression for the Lagrangian multipliers λi must
be determined.

9.1.1 Determining the discrete NVU Lagrangian multipliers

We determine the Lagrangian multipliers λi as follows. Defining first

a
(k)
i ≡ r

(k)
i − r

(k)
i−1, (9.12)

b
(k)
i ≡ r

(k)
i − r

(k)
i+1. (9.13)

The Ansatz of Eq. (9.9) then expresses that∑
k

m̃k((a
(k)
i )2 − (b

(k)
i )2) =

∑
k

m̃k(a
(k)
i + b

(k)
i ) · (a(k)

i − b
(k)
i ) = 0, (9.14)

and via Eq. (9.10) we have∑
k

m̃k

(
− l0λif

(k)
i /m̃k

)
·
(
r
(k)
i+1 − r

(k)
i−1

)
= 0. (9.15)

Equivalently, ∑
k

f
(k)
i · r

(k)
i+1 =

∑
k

f
(k)
i · r

(k)
i−1. (9.16)

Combining Eq. (9.16) with the discrete NVU algorithm of Eq. (9.10) gives the following
result

l0λi =
−2
∑
k f

(k)
i · (r

(k)
i − r

(k)
i−1)∑

k(f
(k)
i )2/m̃k

. (9.17)

The atomic NVU algorithm with varying masses is then given by
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r
(k)
i+1 = 2r

(k)
i − r

(k)
i−1 −

2
∑
k f

(k)
i · (r

(k)
i − r

(k)
i−1)∑

k(f
(k)
i )2/m̃k

f
(k)
i /m̃k. (9.18)

We denote this the ”basic” NVU algorithm. Similar to the Verlet algorithm of NVE dy-
namics (recall Eq. (1.8)), if we are given the positions at step i− 1 and i, the algorithm of
Eq. (9.18) can be used to generate a geodesic on Ω.

In addition, note that a switch of the index i− 1 with i+ 1 results in the same discrete
algorithm; the NVU algorithm is thus reversible in the configuration space. In the Appendix
of Paper VI, it is also shown that the NVU algorithm is symplectic (Goldstein et al. [2002])
in the same sense as the standard Verlet algorithm. The NVU algorithm has thus all the
properties normally associated with stability of molecular dynamics algorithms (Frenkel and
Smit [2002]). Paper VI additionally shows that the Ansatz of constant step length is obeyed
in the discrete algorithm of Eq. (9.18).

The basic NVU algorithm (Eq. (9.18)) may also be reformulated in the following form

(defining δ
(k)
i+1/2

≡ r
(k)
i+1 − r

(k)
i )

δ
(k)
i+1/2

= δ
(k)
i−1/2

−
2
∑
k f

(k)
i · δ

(k)
i−1/2∑

k(f
(k)
i )2/m̃k

f
(k)
i /m̃k, (9.19)

r
(k)
i+1 = r

(k)
i + δ

(k)
i+1/2

. (9.20)

This is the Leap-frog version (Allen and Tildesley [1987]) of the basic NVU algorithm.

9.1.2 Properties of the basic NVU algorithm

We consider here properties4 of the basic NVU algorithm given in Eq. (9.18). Figure 9.2(a)
shows an NVU simulation for the SCLJ liquid at ρ = 0.85 and T = 0.70 started from two
consecutive (equilibrium) NVE configurations that were randomly chosen, and provide the
positions at step i and i− 1.

4 The simulations are actually performed using Eqs. (9.19) and (9.20) but the discussion
is easier to understand in the Verlet form of Eq. (9.18).
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Figure 9.2: The potential energy as a function of integration step number in NVU dynamics
(using the basic NVU algorithm) for the SCLJ liquid at ρ = 0.85 and T = 0.70 (taken from
Paper VI). The insets show the first 10 integration steps. (a) The NVU simulation is started
from two randomly chosen consecutive NVE configurations. (b) The NVU simulation is
started from two consecutive configurations of an NVE simulation with a very small potential
energy difference.

The NVU algorithm seems to show motion on two distinct ”hypersurfaces” where the
inset of Fig. 9.2(a) shows that the algorithm actually jumps every second step between
these two surfaces. The NVU algorithm was constructed to perform motion on a single
hypersurface Ω, thus: How can we understand this behavior?

Introducing the notation Ui−1 ≡ U(Ri−1), Ui ≡ U(Ri), etc., and Taylor expanding Ui+1
and Ui−1 around Ui we have (in which Fi ≡ −∇Ri

U)

Ui+1 = Ui − Fi · (Ri+1 −Ri) +O(l20), (9.21)

Ui−1 = Ui − Fi · (Ri−1 −Ri) +O(l20). (9.22)

Subtracting these two equations, we get

Ui+1 = Ui−1 − Fi · (Ri+1 −Ri−1) +O(l20), (9.23)

Equation (9.16) expresses that Fi · (Ri+1 −Ri−1) = 0, and Eq. (9.23) then becomes5

Ui+1 = Ui−1 +O(l20). (9.24)

Equation (9.24) states that the potential energy of NVU algorithm is conserved, but only
every second step. Thus, starting the NVU algorithm from two randomly chosen consecutive
configurations of an NVE simulation, in which the potential energy fluctuates, will result in
motion between two distinct hypersurfaces.

5 In the case of identical particle masses the order is O(l30); see Paper VI.
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In this understanding, if the two consecutive NVE configurations are carefully chosen
to have a small potential energy difference, the NVU algorithm should still show motion
between two hypersurfaces, but on a much smaller potential energy scale. Figure 9.2(b)
shows that this is indeed the case. In addition, Fig. 9.3 supports this conclusion where
the distribution of the term l0λi (Eq. (9.17)) is shown for Figs. 9.2(a) and (b). A bimodal
distribution is observed for the two randomly chosen configurations (green) whereas only one
peak is observed when carefully choosing the NVE starting configurations to have a small
potential energy difference (blue).
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Figure 9.3: The distribution of l0λi (Eq. (9.17)) for Figs. 9.2(a) and (b). The distribution
of Fig. 9.2(a) shows a bimodal distribution (green) whereas the distribution of Fig. 9.2(b)
shows a single peak (blue). The figure is taken from Paper VI.

9.1.3 Developing a stabilized NVU algorithm

In Fig. 9.4 we show the potential energy and step length, for the SCLJ liquid at ρ = 0.85
and T = 0.70, as functions of integration step number for a long simulation using the basic
NVU algorithm (red curves). For the long simulation, both quantities are seen to drift
due to accumulating round-off errors. The observed drift of the NVU algorithm is no more
serious than what is seen for the energy using the (NVE ) Verlet algorithm6. However, to
perform very long simulations, e.g. as is needed for viscous liquids, a completely stable NVU
algorithm needs to be developed for a fully practical use in any situation.

6 The simulations are performed in single-precision floating point arithmetic.
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Figure 9.4: Simulations using the basic (red) and stabilized (black) NVU algorithm for the
SCLJ liquid at ρ = 0.85 and T = 0.70 (taken from Paper VI). (a) The potential energy as a
function of integration step number. The stabilized algorithm uses U0 = -5.220638. (b) The

step length (
∑
k m̃k(δ

(k)
i+1/2

)2)1/2 as a function of integration step number. The stabilized

algorithm uses l0 = 0.01347921.

We stabilize the NVU algorithm in two steps. First, the potential energy drift is elimi-
nated by modifying the basic algorithm as given below

δ
(k)
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= δ
(k)
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−
2
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(k)
i · δ

(k)
i−1/2
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k(f

(k)
i )2/m̃k

f
(k)
i /m̃k. (9.25)

From this equation, we have∑
k

f
(k)
i · (r

(k)
i+1 − r

(k)
i−1) =

∑
k

f
(k)
i · (δ

(k)
i+1/2

+ δ
(k)
i−1/2

) = Ui−1 − U0. (9.26)

It then follows by Eq. (9.23) that

Ui+1 = U0 +O(l20). (9.27)

In this way, the potential energy is set equal to U0 (the constant defining Ω) at every
integration step, and no numerical drift can occur. Next, the step length is stabilized by
introducing a normalizing factor in the algorithm, as follows

δ
(k)
i+1/2

= l0
χ

(k)
i+1/2√∑

k m̃k(χ
(k)
i+1/2

)2

, (9.28)

r
(k)
i+1 = r

(k)
i + δ

(k)
i+1/2

, (9.29)

where
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f
(k)
i /m̃k. (9.30)

As shown in Fig. 9.5, the normalizing factor is close to unity and is thus a small perturbation

of the basic algorithm. It ensures trivially
∑
k m̃k(δ

(k)
i+1/2

)2 = l20, i.e., that the step length

is conserved. Formally, we should now also show the effect of the step length stabilization
on the properties derived above; these details are, however, found in Paper VI with the
conclusion that the properties shown above still apply. It should, however, be noted that
in the stabilized version, it is not possible to prove that the NVU algorithm is reversible in
the configuration space. Motivated by the simulation results to come, we suspect that this
is still the case.
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Figure 9.5: δi ≡ 1− l0/(
∑
k m̃k(χ

(k)
i+1/2

)2)1/2 as a function of integration step number for

the SCLJ liquid at ρ = 0.85 and T = 0.70 (taken from Paper VI). The dotted lines serve as
a guide to the eye. The step length perturbation of the basic NVU algorithm is seen to be
small.

In fact, Fig. 9.4 shows that the NVU algorithm is now absolutely stable (black curves)
conserving both potential energy and step length for any number of integration steps. The
stabilized NVU algorithm was in Paper VI tested by probing the structure of the SCLJ liquid
at various state points. Instead, we focus here on the sampling properties for the KABLJ
mixture (Paper VII). The dynamics for this system is very sensitive to small ”errors” in
the supercooled liquid phase (Berthier and Tarjus [2009, 2011]) and thus serves as a good
reference system for testing the NVU algorithm.
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9.1.4 Sampling properties for the Kob-Andersen binary LJ mixture

The sampling properties of the stabilized NVU algorithm, described in the previous section,
for the KABLJ mixture are investigated in this section by comparing the results of NVU
dynamics to other well-known dynamics, in particular, to Newtonian NVE dynamics. For a
comparison of NVE dynamics to other types of dynamics see, for instance, Berthier [2007],
Berthier and Kob [2007], Flenner and Szamel [2005], Gleim et al. [1998], Szamel and
Flenner [2004].

In NVU dynamics there is, as such, no measure of time since the geodesic can be traversed
with any velocity on the manifold. Thus, to be able to compare to NVE dynamics a measure
of time is needed. In fact, by comparing the NVU algorithm (Eq. (9.11)) to the (NVE )
Verlet algorithm

r
(k)
i+1 = 2r

(k)
i − r

(k)
i−1 + (∆t)2f

(k)
i /mk, (9.31)

one can define a step-dependent ”time step” of NVU algorithm via the definition

(∆ti,NV U )2 ≡ l0λi〈m〉. (9.32)

This identification enables a comparison of dynamical quantities with NVE dynamics, and
the average of Eq. (9.32) is used for simplicity in the following. We compare as follows.
First, an NVE simulation at a given state point is performed to provide an equilibrated
starting configuration for NVU dynamics. Afterwards, the value of U0 is chosen as the
average potential energy of the NVE simulation, and l0 is chosen to give an NVU ”time
step” comparable to the NVE simulation.

Figure 9.6 shows radial distribution functions for the KABLJ mixture at two different
state points corresponding to ρ = 1.20 and T = 2.00 and 0.405. The black curves give NVE
simulations whereas the colored circles give the corresponding NVU simulations. For all
pair-correlation functions, a quantitative agreement between NVE and NVU dynamics is
obtained; even at the highly viscous state point of T = 0.405.
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Figure 9.6: Comparison of radial distributions functions in NVE (black curves) and NVU
dynamics (colored circles) for the KABLJ mixture at ρ = 1.20 (taken from Paper VII). (a)
T = 2.00. (b) T = 0.405.
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Turning now to the dynamics in Fig. 9.7, we show the A-particle mean-square displace-
ment and incoherent intermediate scattering functions over a range of state points with
ρ = 1.20 and T = 2.00, 0.80, 0.60, 0.50, 0.44, 0.42, 0.405. Although the dynamics changes
roughly five orders of magnitude over this temperature range, the agreement between NVE
and NVU dynamics remains quantitative and quite striking for both dynamical quantities.
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Figure 9.7: Comparison of dynamical quantities in NVE (black curves) and NVU dynamics
(red crosses) for the KABLJ mixture at ρ = 1.20 and T = 2.00, 0.80, 0.60, 0.50, 0.44, 0.42,
0.405 (taken from Paper VII). (a) The A-particle mean-square displacement. (b). The
A-particle incoherent intermediate scattering function.

It has previously been reported (Berthier [2007], Berthier and Kob [2007]) that different
microscopic dynamics should have different dynamical fluctuations. For instance, Berthier
and Kob [2007] showed that the dynamical fluctuations for the KABLJ mixture quantified
via χ4,A = NA[〈F 2

sA(q, t)〉 − 〈FsA(q, t)〉2] between NVE and NVT dynamics are not the
same. We now investigate whether this is also true for NVU dynamics. In Fig. 9.8(a) we
show χ4 for the KABLJ mixture at three different temperatures in NVE and NVU dynamics.
Here, deviations are noted between the two dynamics, and considering a twice as large system
in Fig. 9.8(b) does not seem to improve the behavior.
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Figure 9.8: Comparison of dynamical fluctuations via χ4,A = NA[〈F 2
sA(q, t)〉−〈FsA(q, t)〉2]

between NVE (black curves) and NVU dynamics (colored curves) for the KABLJ mixture
at ρ = 1.20. (a) N = 1024 particles and T = 0.44, 0.42, 0.405. (b) N = 2048 particles and
T = 0.50, 0.44, 0.42.

Finally, we consider in Fig. 9.9 the A-particle incoherent intermediate scattering function
for the KABLJ mixture at ρ = 1.20 comparing now five different dynamics. We consider NVE
dynamics, NVT dynamics, NVU dynamics, Metropolis NVT Monte-Carlo, and a random-
walk on Ω (see Paper VII for a description of the algorithms used). It has previously been
reported that the long-time behavior of viscous liquids is independent of the microscopic
dynamics (Gleim et al. [1998], Szamel and Flenner [2004]). This may be understood as
the dynamics becomes more and more influenced by barriers in the landscape, and so the
microscopic details of the dynamics become less important. Figure 9.9 shows quantitative
agreement between the deterministic dynamics at all temperatures whereas the long-time
behavior of the stochastic and deterministic dynamics becomes identical only in the low-
temperature limit (here, less than T = 0.80).
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Figure 9.9: The incoherent intermediate scattering function for the KABLJ mixture at ρ =
1.20 and T = 2.00, 0.80, 0.60, 0.50, 0.44 comparing five different dynamics (taken from Paper
VII). The dynamics are as follows: NVE dynamics (black curves), NVT dynamics (green
squares), NVU dynamics (red crosses), Metropolis NVT Monte-Carlo (purple diamonds),
and a random-walk on Ω (blue triangles). For a description of the algorithms used, see
Paper VII.

9.1.5 Equivalence between NVE and NVU dynamics in the thermodynamic
limit

The previous section detailed a quantitative agreement between NVE and NVU dynamics
and naturally raises the question whether the two dynamics are related in some well-defined
sense? Figure 9.10 shows the distribution of the NVU ”time step” (∆ti,NV U )2 ≡ l0λi〈m〉
(Eq. (9.32)) for different system sizes of the SCLJ liquid: N = 256, 1024, 8192 particles.
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Figure 9.10: Distribution of (∆i,NV U )2 ≡ l0λi〈m〉 (see Eq. (9.32)) for different system
sizes of the SCLJ liquid: N = 256, 1024, 8192 particles (taken from Paper VII). The relative
variation of the NVU ”time step” becomes smaller as the number of particles increases.

A narrowing of this distribution is observed as the number of particles increases, in fact,
the relative variation becomes smaller, as N increases. As the number of particles increases,
it becomes a better and better approximation to treat this term as constant. Comparing the
NVU algorithm

r
(k)
i+1 = 2r

(k)
i + r

(k)
i−1 + l0λi〈m〉 f

(k)
i /mk, (9.33)

to the Verlet algorithm in Eq. (9.31), one expects from the latter observation that NVE
and NVU dynamics become equivalent in the thermodynamic limit. The latter statement
should be understood in the sense that, for instance, the relative deviations between NVE
and NVU time auto-correlation functions go to zero as N → ∞. The simulations of the
former section used N ≈ 1000 particles, however, simulations as few as N = 65 particles
were simulated with quantitative agreement.

It should be noted, however, that Fig. 9.8 showed that the dynamical fluctuations were
not identical between NVE and NVU dynamics. Consider also for the moment the famous
example of Newton’s falling apple. NVU dynamics predicts that this apple remains fixed
in (level) space to keep the potential energy constant whereas Newton’s second law predicts
that the apple should fall to the ground converting potential into kinetic energy. Thus, for
very few degrees of freedom one does not expect quantitative agreement between NVE and
NVU dynamics.

It is also natural to ask, for large enough system sizes: Does the agreement depend on
the functional choice of U? In general, one could construct functional forms of U where
the observed equivalence would break down. However, potential functions representing real-
world systems have a complex energy surface, including anharmonicity, and for these systems
one would expect to find a quantitative agreement between NVE and NVU dynamics.
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9.2 Discrete geodesic motion on Ω for molecular systems

The NVU algorithm detailed above was in Paper VIII extended to simulate molecules at
constant potential energy. Molecular systems are in general simulated by using flexible
and/or rigid bonds in the modelling. Introducing flexible bonds in the simulations merely
adds additional contributions to the total potential energy, and the NVU algorithm can
therefore readily simulate flexible bonds. The rigid bonds, however, introduce a number G
of constraints among the particle coordinates of the system (α = 1, ..., G)

σα(R) ≡ (r(kα) − r(lα))2 ≡ (rα)2 = C2
α. (9.34)

Equation (9.34) expresses that the distance between particles kα and lα is a constant, Cα.
The geodesic motion on Ω with rigid bonds is thus restricted to a submanifold ω of Ω where
the rigid-bond constraints are satisfied, i.e., the motion is restricted to

ω = {R ∈ Ω | σα(R) = C2
α , α = 1, ..., G}. (9.35)

If the bond constraints are independent, ω is a (3N −G− 1)-dimensional compact Rieman-
nian differential manifold (Schlichtkrull [2009]). The variational principle defining NVU
dynamics with rigid bonds is then given by (compare Eq. (9.2))

δ

∫ RB

RA

dl = 0

∣∣∣∣∣
ω

. (9.36)

Applying now the variational integration technique to Eq. (9.36) gives
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 = 0 . (9.37)

The path is divided into a number of discrete points, and one Lagrangian multiplier Λαi is
introduced for each constraint α at every point i. Following standard notation for constraint
molecular dynamics (Goldstein et al. [2002], Ryckaert et al. [1977]), the Lagrangian
multipliers of the bond constraints are chosen with a positive sign. Applying the Ansatz of
constant step length l0, i.e., ∑

k

m̃k

(
r
(k)
i − r

(k)
i−1

)2
≡ l20, (9.38)

and carrying out the variation of Eq. (9.37) using Eq. (9.38) leads to
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Λαiσα. (9.39)

This equation constitutes the NVU algorithm with rigid bonds. It has a close resemblance
to the Lagrangian equations of motion with holonomic constraints (Goldstein et al. [2002]),
i.e., rigid-bond NVE dynamics (Ryckaert et al. [1977]). Equation (9.39) contains G + 1
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Lagrangian multipliers for each integration step which must be determined to complete the
rigid-bond NVU algorithm. This procedure is very technical as it involves solving systems of
non-linear equations, and the reader is instead referred to Paper VIII for details on calculating
the Lagrangian multipliers (see also Ingebrigtsen et al. [2010], Toxvaerd et al. [2009] for
rigid-bonds in general). Nevertheless, the basic idea behind rigid bonds in NVU dynamics
is detailed in the above text.

In the next section, we show the sampling properties of the rigid-bond NVU algorithm
for two rigid molecules: the asymmetric dumbbell model and SPC/E water (model details
are available in Appendix A). Paper VIII additionally shows simulations of the Lewis-
Wahnström OTP model.

9.2.1 Sampling properties for the asymmetric dumbbell model

Figure 9.11(a) and (b) show, respectively, the molecular center-of-mass (CM) radial dis-
tribution functions (RDF) and molecular CM incoherent intermediate scattering functions
(ISF) for the asymmetric dumbbell model. The black curves give NVT dynamics simula-
tions whereas the red crosses give NVU dynamics. We do not compare, as before, to NVE
dynamics as it is well-known that NVE and NVT dynamics give equivalent results (Evans
and Holian [1985]).
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Figure 9.11: Comparison of structure and dynamics in NVU and NVT simulations of the
rigid asymmetric dumbbell model (taken from Paper VIII). The black circles and curves
give NVT, the red crosses NVU simulation results. (a) The molecular CM RDFs at ρ =
0.932 and T = 0.500. (b) The molecular CM incoherent ISFs at ρ = 0.932 and T = 0.500,
0.600, 0.700, 0.800, 0.900.

For both structure and dynamics, an excellent agreement between NVT and NVU dy-
namics is obtained. Paper VIII shows simulations for a flexible dumbbell model where the
same conclusion is reached.
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9.2.2 Sampling properties for rigid SPC/E water

Applying the same meanings and notations as for the asymmetric dumbbell, the molecular
CM RDFs and ISFs are shown in Fig. 9.12 for rigid SPC/E water. The same conclusion is
reached as for the asymmetric dumbbell model. It should be noted that the rigid SPC/E
water is a prime example of a non-strongly correlating liquid.
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Figure 9.12: Comparison of structure and dynamics in NVU and NVT simulations of rigid
SPC/E water (taken from Paper VIII). The black circles and curves give NVT, the red
crosses NVU simulation results. (a) The molecular CM RDFs at ρ = 1.000 and T = 3.800.
(b) The molecular CM ISFs at ρ = 1.000 and T = 3.800, 4.200, 5.000.

We thus conclude from the results presented here (and in Paper VIII) that also for
molecular systems do NVE and NVU dynamics become equivalent in the thermodynamic
limit, since NVE and NVT dynamics are known to give equivalent results (Evans and Holian
[1985]).
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Chapter 10

CONCLUDING REMARKS

This thesis has focused on developing a further understanding of the properties of strongly
correlating liquids or in the terminology of this thesis, ”simple liquids” (Paper III). In this
chapter, we shall refer to this class only as simple liquids.

10.1 Brief summary of results

The thermodynamics of simple liquids (Paper I) was shown to be simple as temperature
separates into a product of a function of excess entropy per particle and a function of density,
i.e.,

T = g(sex)h(ρ). (10.1)

This fact leads to a more general scaling, the ”isomorph scaling” (Papers I and II), in
contrast to the traditional ”density scaling” which breaks down when considering larger
density changes than usually applied in experiments. Originally, the theory of simple liquids
was investigated for bulk atomic systems (Gnan et al. [2009], Schrøder et al. [2011]). We
have, however, seen that this theory is not limited to systems of atoms but also extends to
systems composed of rigid molecules (Paper V). In fact, it has recently been shown that even
flexible polymer models can have isomorphs to a good approximation (Veldhorst [2013]). A
new characterization of simple liquids was also discovered as for these liquids the structure
and dynamics are determined to a good approximation only by the interactions within the
first coordination shell (Paper III).

Biological relevant liquids often occur in confined spaces with a resultant change in struc-
ture and dynamics from the bulk liquid. As a first step, we investigated isomorphs and the
first coordination shell property of simple liquids in a ”neutral” external field (see Chapters
7 and 8). It was shown that these systems, too, have isomorphs to a good approximation;
an observation that connects to a novel excess entropy scaling behavior of bulk and confined
systems (Mittal et al. [2006]). By itself, isomorphs in confined systems provide a way to un-
derstand the dynamical changes that occur when liquids are confined spatially1. Motivated
also by the theory, a new molecular dynamics, NVU dynamics, was proposed and shown to
be equivalent to standard Newtonian NVE dynamics for both atomic and molecular systems
(Papers VI, VII, and VIII).

As emphasized in Chapter 1 simulations are not a replacement for real experiments
(Buchenau [2012]), and thus the experimental counterparts of these simulations are missing.
A milestone for the future would be to test, for instance, density or excess entropy scaling
in a nanoscale confined system.

1 The additional state variable H does, however, not change much along the isomorph
itself.
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10.2 Additional considerations

We identified in this thesis the class of strongly correlating liquids with the class of ”simple
liquids”. However, at the end of the day; is this choice just another way of introducing a
perhaps more broad appealing name for the same class of liquids? It was argued that this
class is fundamental as it may be characterized in four equivalent ways, and the properties
derived from these concepts have been considered to be simple liquid behavior for many
years (Rosenfeld [1977]). The properties of simple liquids also generalize beyond the bulk
equilibrium system to both confined equilibrium liquids, crystals (Albrechtsen and Olsen
[2013]), as well as liquids undergoing homogenous shear flow (Separdar et al. [2012]). In
fact, preliminary work has shown that even the first coordination shell property of simple
liquids generalizes to confined systems. It is also likely that a connection can be established
to continuum descriptions (Navier-Stokes equations) of nanoscale confined liquids (Travis
et al. [1997]). The answer to the former question must thus be considered to be no. It
will be interesting to see how far and to what situations the theory of simple liquids may be
extended.

Inspired also from the theory of simple liquids, this thesis detailed a new molecular
dynamics that conserves the total potential energy, i.e., NVU dynamics. However, will NVU
dynamics become a standard simulation tool in the future as, for instance, NVT dynamics
is today? The first thing to note is that NVU dynamics is not faster than NVE or NVT
dynamics. There is thus no performance gain in using NVU dynamics as a replacement for
NVE or NVT dynamics. NVU dynamics does, however, provide a new way of thinking on the
dynamics of a classical mechanical system. A new way of thinking that has already proven
useful (Dyre [2013]) to understand quasi-universal observations among single-component
atomic systems (see, for instance, Andrade [1931], Dzugutov [1996], Rosenfeld [1977],
Young and Andersen [2003, 2005]). The introduction of NVT dynamics (Nosé [1984]) had
its obvious advantage in the control of temperature instead of the energy. Whether NVU
dynamics also has such a practical advantage remains, however, to be seen. In the next
section, we consider a few of the possible paths for new research that the current thesis work
motivates.

10.3 Future research topics

The work presented in this thesis opens up for new paths of research related to the theory
of simple liquids. Listed below are a few such topics.

1. Liquid-vapor interfaces.
Isomorphs of nanoscale confined systems were investigated in Chapter 7. In generel,
however, one may ask: What kind of interfaces are strong enough to break the po-
tential energy/virial correlation entirely? In the above understanding, gasses are not
simple, and one may speculate that systems with liquid-vapor interfaces are not sim-
ple either. The (reduced) surface tension has been observed to exhibit near universal
behavior (Grosfils and Lutsko [2009], Guggenheim [1945]) for liquid films surrounded
by their vapor when plotted against (ρl − ρv)/ρc (Galliero [2010]), where ρc is the
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critical density. ”Concerning hydrogen-bonding fluids, reduced surface tensions of both
methanol and water clearly deviate from the universal Parachor behavior” (Galliero
[2010]). Water and methanol are not simple liquids, and this fact motivates that the
near universal observation might be related to a property of simple liquids.

2. Simple liquids in a variety of external fields.
A related topic to the above is the study of simple liquids in different external fields used
to model solids. The surfaces encountered in nature are atomistically discrete, have
defects, charges, different chemical compositions, and so forth. All of these features
will affect the strong correlation (and thus also isomorphs), but to what extent? Is the
oil present in pores of chalk layers (Stipp et al. [1998]), simple? If the latter is the
case, excess entropy or heat capacity scaling of the bulk system can be used to predict
the dynamics in the confinement. A natural extension is also to study the effect of the
external field on the first coordination shell property as was initiated in Chapter 8.

3. Excess entropy or heat capacity scaling in non-equilibrium systems?
Recently, it was shown that non-equilibrium systems can also have isomorphs (Separdar
et al. [2012]). More specific, it was shown that liquids undergoing a Couette shear flow
via the SLLOD equations of motion (Evans and Morriss [1984], Ladd [1984]) have
isomorphs to a good approximation. The isomorphs extend into the non-trivial region
of the phase diagram where so-called ”shear thinning” is observed. Defining entropy
and temperature in a non-equilibrium system is still highly speculative (Evans and
Morriss [2008]), however, it is natural to ask: Does excess entropy and/or heat capacity
scaling (observed for the confined equilibrium liquid) extend to non-equilibrium liquids?

This method would then be an alternative to other approaches for predicting non-
equilibrium behavior (Suzuki and Hayakawa [2013]). In addition, should such a
connection exist, one would have a mapping not only between an equilibrium and
a non-equilibrium liquid, but also between a non-equilibrium and a nanoscale-confined
liquid. This would result in a highly non-trivial and quite puzzling quasi-universality
relation.

4. What separates a liquid from a gas?
Near the triple point, some liquids are simple in the above meaning of the term and
have certain features associated with the liquid phase, for instance, the role of the FCS
interactions. These features are not present in the gas phase. Thus, for these kinds of
liquids it may be possible to use the correlation coefficient R as a quantitative criterion
for where in the critical region the liquid properties start to diminish when going from
liquid to gas beyond the critical point. This topic of research is motivated by recent
work of Brazhkin and Trachenko [2012] who ask the exact title question. Liquids such
as water can, however, not be included in this type of investigation as they are not
strongly correlating.

5. Does polydispersity affect intrinsic liquid properties?
The KABLJ mixture is more than 95% correlating in large parts of its phase diagram.
On the other hand, the WABLJ mixture is 99% strongly correlating; both are binary
mixtures. Inspired by this observation, a more general question might be: How does
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polydispersity affect intrinsic liquid properties? Polydispersity is often used in colloidal
systems to avoid crystallization, but in this process: Is the essence of the physics lost?

6. A study of liquid crystals.
A liquid crystal is an interesting phase with both liquid and crystal-like properties.
The modelling of this phase is often taken as the Gay-Berne potential (Gay and Berne
[1981]). The Gay-Berne potential is an anisotropic form of the LJ pair potential. It
would thus be interesting and highly relevant for practical purposes (modern televisions
use liquid crystals in their displays) to investigate how simple this phase truly is.

7. Medium-Range Crystalline Order and simple liquids.
Recently, an explanation was presented by H. Tanaka and co-workers (Kawasaki et al.
[2007], Leocmach and Tanaka [2012], Shintani and Tanaka [2006], Watanabe and
Tanaka [2008]) of the viscous slow down seen in supercooled, glass-forming liquids in
terms of the growth of ”medium-range crystalline order” (MRCO). MRCO are regions
of the supercooled liquid with high crystalline symmetry but appear as part of the
supercooled liquid’s natural thermal fluctuations. Growth of MRCO, upon cooling,
has been observed both in simulations (Kawasaki et al. [2007], Shintani and Tanaka
[2006]) as well as experiments (Leocmach and Tanaka [2012], Watanabe and Tanaka
[2008]), and it is believed to be closely related to the increase in dynamical hetero-
geneity seen in glass-forming liquids upon cooling. It is also believed that MRCO is
related to the increase in average structural relaxation time τα. In the MRCO picture
τα = f(ε), where ε is the characteristic size of the MRCO regions. In addition, a
connection between ε and S2 was also observed (Kawasaki et al. [2007]). S2 is the
two-particle contribution to the excess entropy and is an isomorph invariant (Gnan
et al. [2009]).

Simple liquids and their isomorphs imply the relationship τα = f(S2) whereas MRCO
suggests S2 = f(ε). The latter then leads to τα = f(ε) as proposed by the MRCO
theory. It is thus natural to ask if the two concepts are related in some well-defined
sense?

The above mentioned projects are only a few of the possible paths one may follow; other
obvious paths are a more in-depth study of isomorphs in mixtures of molecules, for instance,
a mixture of water and oil (and possibly a surfactant): At what mole fraction does the
correlation break?

Trond S. Ingebrigtsen, ”Glass and Time”, Roskilde University.
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Appendix A

NUMERICAL MODEL SYSTEMS

The model systems appearing in the thesis (and their abbreviations) are presented below
where quantities are given in dimensionless units defined by setting ε = σ = 1. Masses that
are not specified are unity.

1. Single-component inverse power-law (IPL) fluids :
N particles interacting via v(r) = ε(σ/r)n.

2. Single-component Lennard-Jones (SCLJ) liquid :
N particles interacting via v(r) = 4ε[(σ/r)12 − (σ/r)6].

3. Single-component repulsive LJ liquid (Paper I):
N particles interacting via v(r) = 4ε[(σ/r)12 + (σ/r)6]. The parameters are σ = 1,
ε = 1/8.

4. Buckingham liquid (Buckingham [1938], Veldhorst et al. [2012]):
N particles interacting via v(r) = ε

[
6/(α − 6) exp[α(1 − r/rm)] - α/(α − 6)(rm/r)

6
]
.

The parameters are ε = 1, α = 14.5, rm = 21/6.

5. Generalized Kob-Andersen binary LJ (KABLJ) mixture (Kob and Andersen [1995a,b]):
A binary mixture of 80% A particles and 20% B particles interacting via v(r) =
εαβ/(12 − n)

[
n(σαβ/r)

12 − 12(σαβ/r)
n
]
. The parameters are εAB = 1.5, εBB = 0.5,

σAA = 21/6, σAB = 0.8 · 21/6, σBB = 0.88 · 21/6.

6. Wahnström binary LJ (WABLJ) mixture (Wahnström [1991]):
An equimolar binary mixture of A and B particles interacting via the LJ potential. The
parameters are εAA = εAB = εBB = 1, σAA = 1, σBB = 1/1.2, σAB = (σAA+σBB)/2,
mA = 2, mB = 1.

7. Dzugutov (DZ) liquid (Dzugutov [1992]):
N particles interacting via v(r) = v1 + v2, where v1 = A(r−n −B) exp(c/(r − a)) and
v2 = B exp(d/(r − b)) and r ≥ a ⇒ v1 = 0, r ≥ b ⇒ v2 = 0 (a < b). The parameters
are a = 1.87, b = 1.94, c = 1.1, d = 0.27, A = 5.82, B = 1.28, n = 16.

8. Lennard-Jones Gaussian (LJG) liquid (Engel and Trebin [2007], Hoang and Odagaki
[2008]):
N particles interacting via v(r) = ε

(
(σ/r)12 − 2(σ/r)6 − ε0 exp[−(r − r0)2/2σ2

0]
)
. The

parameters are σ2
0 = 0.02, ε0 = 1.50, r0 = 1.47.

9. Gaussian core model (GCM) (Stillinger [1976]):
N particles interacting via v(r) = ε exp

[
−(r/σ)2

]
.
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10. Girifalco (Girifalco [1992]):
N particles interacting via v(r) = −α

[
1/s(s−1)3+1/s(s+1)3−2/s4

]
+β
[
1/s(s−1)9+

1/s(s+ 1)9 − 2/s10
]

with s = r/σ. The parameters are α = 0.17, β = 3.08397 · 10−4.

11. Core soft water (de Oliveira et al. [2006]):

N particles interacting via the LJG potential. The parameters are σ = 21/6, ε = 1,
σ2

0 = 1/2, ε0 = −5, r0 = 0.7.

12. Fermi Jagla (Abraham et al. [2011]):
N particles interacting via v(r) = ε

[
(σ/r)n+A0/(1+exp[A1/A0(r/σ−A2)])−B0/(1+

exp[B1/B0(r/σ − B2)])
]
. The parameters are n = 20, A0 = 4.56, A1 = 28.88, A2 =

1.36, B0 = 1, B1 = 3.57, B2 = 2.36.

13. Smooth Repulsive Shoulder (Fomin et al. [2008]):
N particles interacting via v(r) = (σ/r)n + ε[1− tanh(k0(r− σs))]/2. The parameters
are n = 14, k0 = 10, σs = 1.35.

14. Hansen-McDonald molten salt (Hansen and McDonald [1975]):
An equimolar binary mixture of singly-charged cations (+) and anions (−). The po-
tential between two particles of charge qα and qβ is given by v(r) = (1/9)r−9 +qαqβ/r,
where q+ = 1, q− = −1.

15. Lennard-Jones Chain (LJC) (Kremer and Grest [1990]):
We simulated linear chains of N = 4 and N = 10 LJ particles that were rigidly bonded
with bond distance r = 1. Only the nearest-neighbor LJ interactions are removed.

16. The asymmetric dumbbell (Schrøder et al. [2009b]):
A large (A) and a small (B) LJ particle rigidly bonded with bond distance rAB =
0.29/0.4963. The parameters are σBB = 0.3910/0.4963, εBB = 0.66944/5.726, mB =
15.035/77.106. TheA-B interaction in different molecules is determined by the Lorentz-
Berthelot mixing rule (Allen and Tildesley [1987]).

17. Lewis-Wahnström OTP (Lewis and Wahnström [1994a,b]):
Three identical LJ particles rigidly bonded in an isosceles triangle with unity sides and
top-angle of 75◦.

18. Rigid SPC/E water (Berendsen et al. [1987]):
A rigid isosceles triangle with sides rOH = 1/3.166 and base line 2rOH sin(109.47/2).
The O-O intermolecular interactions are given by the LJ pair potential (εOO = 1,
σOO = 1, mO = 15.9994/1.00794) with no intermolecular LJ interactions for H-H and

H-O. The three particles are charged with qO = −0.8476e/(8.2316π ε0 Å kJ/mol)1/2

and qH = |qO|/2.
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Appendix B

A GRÜNEISEN-TYPE CONFIGURATIONAL EQUATION OF STATE
IMPLIES A SEPARATION OF TEMPERATURE

In this appendix we prove that a Grüneisen-type configurational equation of state implies a
separation of temperature into a product of a function of excess entropy and a function of
density. The Grüneisen-type equation of state is given by

W = γ(ρ)U + Φ(ρ). (B.1)

The fundamental equation of thermodynamics (pex ≡ W/V )

dU = TdSex − pexdV = TdSex +Wd ln ρ, (B.2)

produces the relations

T =
( ∂U

∂Sex

)
ρ
, (B.3)

W =
( ∂U

∂ ln ρ

)
Sex

. (B.4)

Taking the derivative of Eq. (B.1) with respect to excess entropy (at constant density), and
applying Eq. (B.3), gives

( ∂W
∂Sex

)
ρ

= γ(ρ)
( ∂U

∂Sex

)
ρ

= γ(ρ)T. (B.5)

The left-hand side of Eq. (B.5) can also be written as( ∂W
∂Sex

)
ρ

=
∂

∂Sex

∣∣∣
ρ

∂

∂ ln ρ

∣∣∣
Sex

U =
∂

∂ ln ρ

∣∣∣
Sex

T, (B.6)

by using Eqs. (B.3) and (B.4). We then conclude via Eq. (B.5) that

(∂ lnT

∂ ln ρ

)
Sex

= γ(ρ). (B.7)

The separation identity of temperature now follows via integration.
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Appendix C

KEEPING EXCESS ENTROPY CONSTANT IN A SLIT-PORE

This appendix considers how to keep the excess entropy constant in a slit-pore (see Fig. 7.1,
page 71 for a description of the slit-pore). The fundamental equations of thermodynamics
for a slit-pore are (Diestler and Schoen [1995])

dU = TdSex + S||HdA+ SzzAdH, (C.1)

dFex = −SexdT + S||HdA+ SzzAdH, (C.2)

where Fex is the excess Helmholtz free energy, S|| and Szz are, respectively, the configura-

tional stress tensor components parallel and normal to the slit-pore. From Eq. (C.2), we
have the following Maxwell relations

−
(∂Sex
∂A

)
T,H

= H
(∂S||
∂T

)
H,A

, (C.3)

−
(∂Sex
∂H

)
T,A

= A
(∂Szz
∂T

)
H,A

, (C.4)(∂S||H
∂H

)
T,A

=
(∂SzzA

∂A

)
T,H

. (C.5)

We define the average virial W of the slit-pore in analogy to bulk systems as

W ≡ −HA
3

[
2S|| + Szz

]
. (C.6)

Combining the above Maxwell relations with standard fluctuation formulas in the NVT
ensemble (see Appendix B of Bailey et al. [2008a]) gives the following expression

γ ≡ 〈∆W∆U〉
〈(∆U)2〉

=

(∂W
∂T

)
H,A(∂U

∂T

)
H,A

, (C.7)

=
−2HA/3

(∂S||
∂T

)
H,A
−HA/3

(∂Szz
∂T

)
H,A

T
(∂Sex
∂T

)
H,A

, (C.8)

=
2A/3

(∂Sex
∂A

)
T,H +H/3

(∂Sex
∂H

)
T,A

T
(∂Sex
∂T

)
H,A

, (C.9)

where we have used from Eq. (C.1) that (∂U/∂T )H,A = T (∂Sex/∂T )H,A. Note that

〈∆W∆U〉/〈(∆U)2〉 refer to the instantaneous virial/potential energy whereas (∂W/∂T )H,A,
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etc. refers to ensemble averages; for ease of notation this is left out. If we keep the excess
entropy constant, we may write

dSex =
(∂Sex
∂A

)
T,H

dA+
(∂Sex
∂H

)
T,A

dH +
(∂Sex
∂T

)
H,A

dT = 0. (C.10)

From this equation, it then follows that

(∂Sex
∂A

)
T,H

= −
(∂Sex
∂T

)
H,A

(∂T
∂A

)
Sex,H

, (C.11)(∂Sex
∂H

)
T,A

= −
(∂Sex
∂T

)
H,A

( ∂T
∂H

)
Sex,A

. (C.12)

Applying Eqs. (C.11) and (C.12) to Eq. (C.9) gives

γ =
〈∆W∆U〉
〈(∆U)2〉

= −2/3
(∂ lnT

∂ lnA

)
Sex,H

− 1/3
( ∂ lnT

∂ lnH

)
Sex,A

, (C.13)

= −
( ∂ lnT

∂ lnHA

)d lnH=d lnA/2

Sex
, (C.14)

where the condition on the superscript is motivated by Eq. (7.1). Equation (C.14) provides
via discretization a procedure for keeping the excess entropy constant in a slit-pore (see Sec.
6.3 for bulk systems).
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Appendix D

SIMULATIONS OF FIRST COORDINATION SHELL CUTOFFS IN
CONFINED LIQUIDS

This appendix presents results from simulations of FCS cutoffs for liquids confined to a slit-
pore and expands on the results shown in Chapter 8. A description of each simulation is
given in the figure captions.

D.1 The Wahnström binary LJ mixture in a slit-pore
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Figure D.1: (a) A and B-particle density profiles for the WABLJ mixture in a slit-pore at
ρ = 1.20, T = 1.10, and H = 6.56 with pair potential cutoff rc = 4.500. The red dashed line
marks the FCS of the wall ”particle” at the distance r = 1.229 from the wall. (b) Lateral
AA-particle RDFs of layers 1-3 (layer 1 being the contact layer, and layer 3 the bulk layer)
of the A-particle density profile in (a). The red dashed line marks the FCS of layer 1 at
r = 1.460.
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Figure D.2: Density profiles of the WABLJ mixture confined to a slit-pore. The black
curves give a large pair potential cutoff in combination with no cutoff for the wall interactions.
The red curves give a cutoff at the FCS for the liquid and wall interactions, and the turquoise
curves a WCA-type cutoff for the liquid and wall interactions. (a) A-particle density profile.
(b) B-particle density profile.
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Figure D.3: FCS and WCA-type cutoff simulations for the WABLJ mixture confined to a
slit-pore. The black curves give a large pair potential cutoff in combination with no cutoff
for the wall interactions. The red curves give a cutoff at the FCS for the liquid and wall
interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and wall
interactions. (a) Lateral AA-particle RDFs of layer 1. (b) Lateral AA-particle RDFs of
layer 2. (c) Lateral AA-particle RDFs of layer 3.
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Figure D.4: FCS and WCA-type cutoff simulations for the WABLJ mixture confined to a
slit-pore. The black curves give a large pair potential cutoff in combination with no cutoff
for the wall interactions. The red curves give a cutoff at the FCS for the liquid and wall
interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and wall
interactions. (a) Lateral A-particle ISFs of layer 1. (b) Lateral A-particle ISFs of layer 2.
(c) Lateral A-particle ISFs of layer 3.

D.2 The asymmetric dumbbell model in a slit-pore
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Figure D.5: (a) A and B-particle density profiles for the asymmetric dumbbell model in a
slit-pore at ρ = 0.932, T = 0.750, and H = 8.13 with pair potential cutoff rc = 4.000. The
red dashed line marks the FCS of the wall ”particle” at the distance r = 1.300 from the wall.
(b) Lateral AA-particle RDFs of layers 1, 3, 5 (layer 1 being the contact layer, and layer 5
the bulk layer) of the A-particle density profile in (a). The red dashed line marks the FCS
of layer 1 at r = 1.565.
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Figure D.6: FCS and WCA-type cutoff simulations for the asymmetric dumbbell model
confined to a slit-pore. The black curves give a large pair potential cutoff in combination
with no cutoff for the wall interactions. The red curves give a cutoff at the FCS for the liquid
and wall interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and
wall interactions. (a) A-particle density profiles. (b) Lateral AA-particle RDFs of layer 1.
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Figure D.7: FCS and WCA-type cutoff simulations for the asymmetric dumbbell model
confined to a slit-pore. The black curves give a large pair potential cutoff in combination
with no cutoff for the wall interactions. The red curves give a cutoff at the FCS for the liquid
and wall interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and
wall interactions. (a) Lateral AA-particle RDFs of layer 3. (b) Lateral AA-particle RDFs of
layer 5.
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Figure D.8: FCS and WCA-type cutoff simulations for the asymmetric dumbbell model
confined to a slit-pore. The black curves give a large pair potential cutoff in combination
with no cutoff for the wall interactions. The red curves give a cutoff at the FCS for the liquid
and wall interactions whereas the turquoise curves give a WCA-type cutoff for the liquid and
wall interactions. (a) Lateral A-particle ISFs of layer 1. (b) Lateral A-particle ISFs of layer
3. (c) Lateral A-particle ISFs of layer 5.

157



Appendix E

REPRINT OF THESIS ARTICLES

158



THE JOURNAL OF CHEMICAL PHYSICS 136, 061102 (2012)

Communication: Thermodynamics of condensed matter with strong
pressure-energy correlations

Trond S. Ingebrigtsen, Lasse Bøhling, Thomas B. Schrøder, and Jeppe C. Dyrea)

DNRF Centre “Glass and Time”, IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260,
DK-4000 Roskilde, Denmark

(Received 20 December 2011; accepted 31 January 2012; published online 14 February 2012)

We show that for any liquid or solid with strong correlation between its NVT virial and potential-
energy equilibrium fluctuations, the temperature is a product of a function of excess entropy per
particle and a function of density, T = f(s)h(ρ). This implies that (1) the system’s isomorphs (curves
in the phase diagram of invariant structure and dynamics) are described by h(ρ)/T = Const., (2) the
density-scaling exponent is a function of density only, and (3) a Grüneisen-type equation of state
applies for the configurational degrees of freedom. For strongly correlating atomic systems one has
h(ρ) = ∑

nCnρ
n/3 in which the only non-zero terms are those appearing in the pair potential expanded

as v(r) = ∑
nvnr−n. Molecular dynamics simulations of Lennard-Jones type systems confirm the

theory. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3685804]

The class of strongly correlating liquids was introduced
in Refs. 1 and 2. These liquids are defined by having a
correlation coefficient above 0.9 of the constant-volume
equilibrium fluctuations of virial W and potential energy
U. The WU correlation coefficient varies with state point,
but we found from computer simulations that a system has
either poor WU correlations in the entire phase diagram or
is strongly correlating at most of its condensed-phase state
points.1–5 Van der Waals and metallic liquids are generally
strongly correlating, whereas hydrogen-bonded, ionic, and
covalently bonded liquids are generally not. The solid phase
is usually at least as strongly correlating as the liquid phase.
Theoretical arguments, numerical evidence, and experiments
show that strongly correlating liquids are simpler than liquids
in general.1–7

The simplicity of strongly correlating liquids compared
to liquids in general8 derives from the fact that the former
have “isomorphs” in their phase diagram, which are curves of
isomorphic state points. Two state points with particle density
and temperature (ρ1, T1) and (ρ2, T2) are termed isomorphic3

if all pairs of physically relevant microconfigurations of the
state points that trivially scale into one another (i.e., ρ

1/3
1 r(1)

i

= ρ
1/3
2 r(2)

i for all particles i) have proportional configurational
Boltzmann factors:

e−U (r(1)
1 ,...,r(1)

N )/kBT1 = C12 e−U (r(2)
1 ,...,r(2)

N )/kBT2 . (1)

Only inverse-power-law liquids9 have exact isomorphs (here
C12 = 1), but as shown in Appendix A of Ref. 3 a system is
strongly correlating if and only if it has isomorphs to a good
approximation.

The invariance of the canonical probabilities of scaled
microconfigurations along an isomorph has several implica-
tions, for instance:1–3 (1) the excess entropy and the isochoric
specific heat are isomorph invariants, (2) the reduced-unit dy-
namics is isomorph invariant for both Newtonian and stochas-

a)Electronic mail: dyre@ruc.dk.

tic dynamics, (3) all reduced-unit static correlation functions
are isomorph invariant, and (4) a jump between isomorphic
state points takes the system instantaneously to equilibrium.
Using reduced units means measuring length in terms of the
unit ρ−1/3 and time in units of ρ−1/3√m/kBT where m is
the average particle mass. Since isomorphs are generally ap-
proximate, isomorph properties are likewise rarely rigorously
obeyed.

All thermodynamic quantities considered below are ex-
cess quantities, i.e., in excess of those of an ideal gas at the
same density and temperature. Thus, S is the excess entropy
(S < 0), CV is the excess isochoric specific heat, p is the excess
pressure (i.e., p = W/V), etc.

Briefly, the reason that S and CV are isomorph invariants
is the following.3 The entropy is determined by the canoni-
cal probabilities, which are identical for scaled microconfig-
urations of two isomorphic state points. From Einstein’s for-
mula CV = 〈(�U)2〉/kBT2 the isomorph invariance of CV fol-
lows easily by taking the logarithm of Eq. (1) and making
use of the isomorph invariance of scaled microconfiguration
probabilities.

Since S and CV are invariant along the same curves in
the phase diagram, CV is a function of S: CV = φ(S). Thus,
T(∂S/∂T)V = φ(S) or at constant volume: dS/φ(S) = dT/T.
Integrating this leads to an expression of the form ψ(S)
= ln (T) + k(V), which implies T = exp [ψ(S)]exp [−k(V)].
The generic version of this involves only intensive quantities
(s ≡ S/N):

T = f (s)h(ρ) . (2)

For inverse-power-law interactions (∝r−n) the entropy is well
known to be a function of ργ /T where γ = n/3: S = K(ργ /T).
Applying the inverse of the function K shows that these per-
fectly correlating systems obey Eq. (2) with h(ρ) = ργ .

The thermodynamic separation identity Eq. (2) is the
main result of this communication. We proceed to discuss
some consequences and numerical tests.

0021-9606/2012/136(6)/061102/4/$30.00 © 2012 American Institute of Physics136, 061102-1
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Density scaling: Since entropy is an isomorph invariant,
it follows from Eq. (2) that the variable characterizing an
isomorph may be chosen as h(ρ)/T. In particular, the reduced
relaxation time τ̃ , which is also an isomorph invariant, may
be written for some function G:

τ̃ = G

(
h(ρ)

T

)
. (3)

This is the form of “density scaling” proposed by Alba-
Simionesco et al. in 2004 from different arguments;10 at the
same time Dreyfus et al., as well as Casalini and Roland, fa-
vored the more specific form τ̃ = G(ργ /T ).10 Isochrones for
many supercooled liquids and polymers follow to a good ap-
proximation the latter “power-law density scaling” relation.11

For large density changes, however, it was recently shown that
the density-scaling exponent varies significantly in both sim-
ulations and experiments;12 these cases conform to the more
general equation (3).

An expression for the density-scaling exponent: The gen-
eral, state-point dependent density-scaling exponent γ is
defined2, 3 by

γ ≡
(

∂ ln T

∂ ln ρ

)
S

=
(

∂ ln T

∂ ln ρ

)
τ̃

. (4)

The physical interpretation of Eq. (4) is the following. If
density is increased by 1%, temperature should be increased
by γ % for the system to have the same entropy and re-
duced relaxation time. Equation (2) implies d ln T = d ln f(s)
+ d ln h(ρ); thus along an isomorph one has d ln T = d ln h.
Via Eq. (4) this implies

γ = d ln h

d ln ρ
. (5)

In particular, γ depends only on density: γ = γ (ρ).3

Configurational Grüneisen equation of state: The
Grüneisen equation of state expresses that pressure equals
a density-dependent number times energy plus a term that
is a function of density only.13 This equation of state is
used routinely for describing condensed matter at high pres-
sures and temperatures. We proceed to show that strongly
correlating systems obey the configurational version of the
Grüneisen equation of state, which as suggested by Casalini
et al.14 has the density-scaling exponent as the proportionality
constant:3, 4

W = γ (ρ)U + 	(ρ) . (6)

To prove this, note first that (∂U/∂S)ρ = T = f(S)h(ρ) by in-
tegration implies U = F(S)h(ρ) + k(ρ) where F′(S) = f(S)
(S is the extensive entropy). Since W = (∂U/∂ln ρ)S (which
follows from the standard identity TdS = dU + pdV), we get
W = F(S)dh/d ln ρ + dk/d ln ρ. Substituting into the latter ex-
pression F(S) isolated from U = F(S)h(ρ) + k(ρ) leads to
Eq. (6), in which γ (ρ) is given by Eq. (5). It is straightforward
to show that, conversely, Eq. (6) implies the thermodynamic
separation identity Eq. (2).

The isomorphs of atomic systems: We consider now pre-
dictions for systems of “atomic” particles interacting via pair
potentials of the form15 (where r is the distance between two

particles)

v(r) =
∑

n

vnr
−n . (7)

For simplicity only the case of identical particles is consid-
ered, but the arguments generalize trivially to multicompo-
nent systems. Consider the thermal average 〈r−n〉. Switch-
ing to reduced units defined by r̃ ≡ ρ1/3r , we have 〈r−n〉
= 〈r̃−n〉ρn/3. Since structure is isomorph invariant in reduced
units, 〈r̃−n〉 is an isomorph invariant. Consequently, it is a
function of any other isomorph invariant, for instance the en-
tropy: 〈r̃−n〉 = Gn(S). Noting that the average potential en-
ergy is a sum of Eq. (7) over all particle pairs, we conclude
that (where Hn(S) ∝ vnGn(S))

U =
∑

n

Hn(S)ρn/3 . (8)

Taking the derivative of this equation with respect to temper-
ature at constant volume leads to(

∂U

∂T

)
V

=
∑

n

H ′
n(S)

(
∂S

∂T

)
V

ρn/3 . (9)

The left-hand side is T(∂S/∂T)V, so Eq. (9) implies

T =
∑

n

H ′
n(S)ρn/3 . (10)

This is consistent with the thermodynamic separation identity
Eq. (2) only if all the functions H ′

n(S) are proportional to some
function, i.e., if one can write H ′

n(S) = Cnφ(S). We identify
φ(S) as the function f(s) of Eq. (2), which means that

h(ρ) =
∑

n

Cnρ
n/3 . (11)

Thus, for strongly correlating atomic liquids, the thermody-
namic function h(ρ) has an analytical structure, which is in-
herited from v(r) in the sense that the only non-zero terms of
h(ρ) are those corresponding to non-zero terms of v(r). Note
that not all systems with potentials of Eq. (7) are strongly cor-
relating and that the derivation applies only if this is the case.

As an illustration we present results from NVT simula-
tions of the Kob-Andersen binary Lennard-Jones (KABLJ)
liquid,16 which is strongly correlating at its condensed-phase
state points.1–3 The application of the above to LJ systems
predicts that H ′

12(S) ∝ H ′
6(S), where H12(S) is the reduced co-

ordinate average of the r−12 term of U. Integrating this leads
to H12(S) = αH6(S) + β, implying that if the repulsive term
in U is plotted against the attractive term in reduced units,
all points are predicted to fall onto a common line. Figure 1
presents data where density was changed by a factor of eight
and temperature by a factor of 40 000. The data collapse is
good but not exact, which reminds us that the relations de-
rived are approximate.

The theory implies a simple mathematical description of
the isomorphs in the (ρ, T) phase diagram. From the fact that
the potential energy contains only r−12 and r−6 terms, it fol-
lows that h(ρ) = Aρ4 − Bρ2. Consequently, LJ isomorphs are
given by

Aρ4 − Bρ2

T
= Const. (12)

Downloaded 09 Mar 2012 to 130.226.173.83. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 1. The thermal average of r−12 versus that of −r−6 in reduced units for
a large range of state points of the Kob-Andersen binary Lennard-Jones liquid
simulated with 1000 particles (εAA = σAA = 1). These quantities correspond
to H12(S) and H6(S) in Eq. (8). The theory predicts that H ′

12(S) ∝ H ′
6(S),

implying that all data points should fall onto a common line according to
H12(S) = αH6(S) + β.

The invariance of the Boltzmann statistical weights of scaled
microconfigurations implies that an isomorph cannot cross the
liquid-solid coexistence curve. In particular, the coexistence
curve is itself predicted to be an isomorph,3 which was re-
cently confirmed by simulations of generalized LJ liquids.4, 17

Consequently, the coexistence line is given by Eq. (12). This
validates a recent conjecture of Khrapak and Morfill.18

Predictions for the repulsive Lennard-Jones fluid: As a fi-
nal illustration we consider the “repulsive” single-component
LJ fluid defined by the pair potential v(r) = (r−12 + r−6)/2,
a system with WU correlation coefficient above 99.9% in its
entire phase diagram. At low densities (ρ � 1) the repulsive
LJ fluid behaves as an r−6 fluid, whereas it for ρ 	 1 is effec-
tively an r−12 fluid. Thus, the density-scaling exponent γ (ρ)
varies from 2 to 4 as density increases, a much larger variation
than that of previously studied strongly correlating systems.

Since h(ρ) is only defined within an overall multiplicative
constant, one can write for the repulsive LJ fluid h(ρ) = αρ4

+ (1−α)ρ2. This leads via Eq. (5) to γ 0 = 2 + 2α, where
γ 0 is the density-scaling exponent at reference density unity,
implying that

h(ρ) = (γ0/2 − 1)ρ4 + (2 − γ0/2)ρ2 . (13)

Our simulations identified from the expression γ 0

= 〈�W�U〉/〈(�U)2〉 (Ref. 3) the exponent γ 0 = 3.56 at the
state point (ρ, T) = (1, 1). Equation (13) with γ 0 = 3.56
was tested in two different ways. First, we compared at
each state point along an isomorph the exponent γ (ρ)
predicted from Eqs. (5) and (13) with that calculated from
the fluctuations via γ = 〈�W�U〉/〈(�U)2〉 (right panel of
Fig. 2). The left panel presents a second test of Eq. (13)
by showing results from simulating five temperatures at ρ

= 1, plotting for each temperature instantaneous values of
the potential energy versus the potential energy of the same
microconfigurations scaled to three other densities (ρ = 0.5,
1.6, 2.0). The theory behind the observed straight lines is
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FIG. 2. “Multiple direct isomorph check” applied to simulations of
N = 1000 particles of the repulsive LJ fluid defined by the pair potential (r−12

+ r−6)/2. The left panel shows a scatter plot of the potential energies of pairs
of microconfigurations, where the potential energy of a given microconfigu-
ration at density 1.0 is denoted U(1.00) and that of the same microconfigura-
tion scaled to density ρ is denoted U(ρ) (ρ = 0.5, 1.6, 2.0). This was done for
T = 0.6, 0.8, 1.0, 1.2, 1.4. The yellow asterisks mark the average of
each scatter plot. The black lines are the predictions (see the text) with
slopes determined via Eq. (13) from the fluctuations calculated at the state
point (ρ, T) = (1, 1) marked by an arrow. The right panel shows the
density-scaling exponent along an isomorph predicted from Eqs. (5) and (13)
(full curve) and the exponent calculated at each state point from the fluctua-
tion formula γ = 〈�W�U〉/〈(�U)2〉 (Ref. 3) (red crosses). The arrow marks
the state point (ρ, T) = (1, 1).

the following. Consider two isomorphic state points (ρ0,
T0) and (ρ, T) and suppose each temperature is changed a
little, keeping both densities constant. If the two new state
points are also isomorphic, the entropy change is the same
for both: dU0/T0 = dU/T. This implies dU/dU0 = T/T0, i.e.,
(∂U/∂U0)ρ0,ρ

= T/T0. Since h(ρ)/T is constant along an
isomorph, this implies (∂U/∂U0)ρ0,ρ

= h(ρ)/h(ρ0). Integrat-
ing this at constant ρ0 and ρ leads to U = [h(ρ)/h(ρ0)]U0

+ φ(ρ0, ρ). In our case of reference density unity ρ0 = 1 and
h(ρ0) = 1. Thus, plotting U versus U0 is predicted to result
in straight lines with slope h(ρ) (yellow asterisks in the left
panel of Fig. 2). The scaled state points are isomorphic to
the original ρ = 1 state points, with temperatures given by T
= T0h(ρ). Via the “direct isomorph check”3 this implies that
the scaled microconfigurations form elongated ovals also
with slope h(ρ).

In summary, we have shown that for strongly correlating
liquids or solids, temperature separates into a function of en-
tropy times a function of density. For these systems the energy
scale is consequently determined by density alone. It is an
open question whether, conversely, the thermodynamic sepa-
ration identity equation (2) implies that the system in question
is strongly correlating. We anticipate that this is the case, at
least for realistic potentials.

The centre for viscous liquid dynamics “Glass and Time”
is sponsored by the Danish National Research Foundation
(DNRF).
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Abstract. Supercooled liquids are characterized by relaxation times that
increase dramatically by cooling or compression. From a single assumption
follows a scaling law according to which the relaxation time is a function
of h(ρ) over temperature, where ρ is the density and the function h(ρ)

depends on the liquid in question. This scaling is demonstrated to work well
for simulations of the Kob–Andersen binary Lennard-Jones mixture and two
molecular models, as well as for the experimental results for two van der Waals
liquids, dibutyl phthalate and decahydroisoquinoline. The often used power-
law density scaling, h(ρ) ∝ ργ , is an approximation to the more general form
of scaling discussed here. A thermodynamic derivation was previously given
for an explicit expression for h(ρ) for liquids of particles interacting via the
generalized Lennard-Jones potential. Here a statistical mechanics derivation is
given, and the prediction is shown to agree very well with simulations over large
density changes. Our findings effectively reduce the problem of understanding
the viscous slowing down from being a quest for a function of two variables to a
search for a single-variable function.
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The relaxation time of a supercooled liquid increases markedly upon cooling, in some cases by
a factor of 10 or more when the temperature decreases by just 1% [1–11]. This phenomenon
lies behind glass formation, which the takes place when a liquid upon cooling is no longer able
to equilibrate on laboratory time scales due to its extremely long relaxation time. It has long
been known that increasing the pressure at constant temperature increases the relaxation time in
much the same way as does cooling at ambient pressure. Only during the last decade, however,
have large amounts of data become available on how the relaxation time varies with temperature
and density. Following pioneering works by Tölle [12], it was demonstrated by Dreyfus et al
[13], Alba-Simionesco et al [14] as well as Casalini and Roland [15] that for many liquids and
polymers the relaxation time is a function of a single variable. Roland et al [16] reviewed the
field and demonstrated that for a large number of molecular liquids and polymers the relaxation
time to a good approximation is a function of ργ /T , where γ is an empirical material-dependent
parameter. For recent works on this ‘power-law density scaling’, or ‘thermodynamic scaling’,
see, e.g., [17–20]. The consensus is now that van der Waals liquids and most polymers conform
to the scaling, whereas hydrogen-bonding liquids disobey it.

A standard model in simulation studies of viscous liquids is the Kob–Andersen binary
Lennard-Jones (KABLJ) mixture [21], which can be cooled to a highly viscous state and only
crystallizes for extraordinarily long simulations [22]. The system consists of 80% large Lennard-
Jones (LJ) particles (A) interacting strongly with 20% smaller LJ particles (B). The KABLJ
mixture was shown by Coslovich and Roland [23] to obey power-law density scaling to a
good approximation with γ = 5.1 for the density range ρ ≡ N/V = 1.15 to ρ = 1.35, whereas
Pedersen et al [24] used the slightly different value γ = 5.16 to scale the density range 1.1–1.4.
Figure 1 demonstrates, however, that power-law density scaling breaks down when considering
a larger density range. Relaxation time data for the isochores ρ = 1.2 and 1.6 collapse very
well using γ = 4.90, whereas the isochores ρ = 1.6 and 2.0 collapse using γ = 4.45; in both
cases the third isochore deviates significantly. In the following, we show that power-law density
scaling is an approximation to a more general form of scaling, which is derived from the theory
of isomorphs [25, 26]. We further show that given that the two lowest densities of figure 1 obey
power-law density scaling with γ = 4.90, the isomorph theory predicts that the two highest
densities scale with γ = 4.45, as indeed seen in figure 1.

What causes power-law density scaling and its breakdown for large density variations?
A justification of density scaling may be given by reference to inverse power-law (IPL)
potentials (∝ r−n), where r is the distance between particles. For such unrealistic, purely
repulsive systems, density scaling is rigorously obeyed with γ = n/3 [27]. Assuming that
power-law density scaling reflects an underlying effective power-law potential, the scaling
exponent γ can be found from the NVT equilibrium fluctuations of the potential energy U
and the virial W = pV − NkT (IPL potentials have W = (n/3)U ) as follows:

γ =
〈1W1U 〉

〈(1U )2〉
. (1)

This was confirmed for the KABLJ mixture by Coslovich and Roland [23] and Pedersen
et al [24]. Pedersen et al [24] further supported this ‘hidden scale invariance’ explanation by
demonstrating that for the investigated density range the dynamics and structure of the KABLJ
mixture are accurately reproduced by an IPL mixture with exponent chosen in accordance with
equation (1).
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Figure 1. Breakdown of power-law density scaling for the reduced structural
relaxation time τ̃α in the KABLJ mixture, τ̃α ≡ ρ1/3(kBT/m)1/2τα, where τα

is the time at which the self-intermediate scattering function (Fs(q, t), q =

7.25(ρ/1.2)1/3) for the A particles has decayed to 1/e. Molecular dynamics
(MD) simulations in the NVT ensemble (N = 1000) were performed using
RUMD, an MD package optimized for state-of-the-art GPU computing (see
http://rumd.org). The time step was kept constant in reduced units, h̃ = 0.0025.
τ̃α is plotted for three isochores as a function of the density-scaling variable
ργ /T , where γ is an empirical scaling parameter. Left panel: γ = 4.90 collapses
the data for the two lowest densities. Right panel: γ = 4.45 collapses the data
for the two highest densities. It is not possible to find a single exponent that
collapses all the data; even though the two exponents differ by only 10%, power-
law scaling with a single exponent clearly fails.

The hidden scale invariance is not just a feature of the KABLJ mixture but of ‘strongly
correlating liquids’ in general [28–31]. These are defined by having strong correlations between
equilibrium NVT fluctuations of the potential energy and the virial (correlation coefficients
larger than 0.9). Also molecular models can be strongly correlating; examples include the
Lewis–Wahnstrom model of ortho-terphenyl and an asymmetric dumbell model. Both models
are strongly correlating and obey power-law density scaling with exponents consistent with
equation (1) for density increases of 8 and 16%, respectively [32]. Very recently, Gundermann
et al [20] investigated the van der Waals liquid tetramethyl-tetraphenyl-trisiloxane, and gave the
first experimental confirmation of the relation between the power-law density scaling exponent
and equation (1).

For any potential that is not an IPL the exponent γ as calculated from equation (1)
depends on the state point. Power-law density scaling corresponds to disregarding this state-
point dependence. It is thus not surprising that power-law density scaling breaks down when
large density changes are involved, but interestingly a more fundamental and robust form of
scaling can be derived [33]. In the following, we proceed to derive the new scaling by a different
route than used in [33].

New Journal of Physics 14 (2012) 113035 (http://www.njp.org/)
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Strongly correlating liquids have ‘isomorphs’ in their phase diagram, which are
curves along which the structure and dynamics in reduced units are invariant to a good
approximation [25, 26]. The invariance of structure implies invariance of the configurational
(‘excess’) entropy, Sex; thus the isomorphs are the configurational adiabats. Gnan et al [25]
discussed in detail the consequences of a liquid having isomorphs and also showed that a
liquid is strongly correlating if and only if it has isomorphs to a good approximation. The
precise definition of an isomorph [25] is that this is an equivalence class of state points, where
two state points are termed equivalent (‘isomorphic’) if all pairs of physically relevant micro-
configurations of the two state points, which trivially scale into one another, have proportional
configurational Boltzmann’s factors. From this single assumption several predictions can be
derived, including isomorph invariance of structure and dynamics in reduced units and that
jumps between isomorphic state points take the system instantaneously to equilibrium [25].

Letting R denote a micro-configuration (all particle coordinates) of a reference state
point (ρ∗, T∗), the condition for state point (ρ, T ) to be isomorphic with (ρ∗, T∗), i.e. the
proportionality of pairs of Boltzmann’s factors can, by taking the logarithm and rearranging,
be expressed as

U
(
ρ̃−

1
3 R

)
=

T

T∗

U (R) + K , ρ̃ ≡ ρ/ρ∗, (2)

where K is a constant that only depends on the two state points. Equation (2) is the basis of
the so-called direct isomorph check [25]: (a) draw micro-configurations R from a simulation at
(ρ∗, T∗), (b) evaluate the potential energies of these configurations scaled to density ρ, and plot
them in a scatter plot against the potential energies at ρ∗. If a state point (ρ, T ) exists that to a
good approximation is isomorphic with (ρ∗, T∗), this scatter plot will be close to a straight line
and the new temperature T is determined as T∗ multiplied by the slope.

In the following, we consider systems where the interaction potential between particles i
and j is given by a sum of IPLs:

φi j(ri j) =

∑
n

εn,i j

(
σ

ri j

)n

. (3)

This includes the standard 12-6 LJ potential, but also, e.g., potentials with more than two
power-law terms. We note that some systems interacting via equation (3) will not be strongly
correlating and thus not have good isomorphs. In the following, properties are derived for those
systems that do have good isomorphs.

The total potential energy of a given micro-configuration R at density ρ∗ is a sum over
contributions from the power-law terms, U =

∑
n Un. When scaling R to the density ρ, keeping

the structure invariant in reduced units, each power-law term is scaled by ρ̃
n
3 = (ρ/ρ∗)

n/3, and
the potential energy at the new density U ′

= U (ρ̃−1/3R) is [26]

U ′
=

∑
n

ρ̃
n
3 Un. (4)

Thus, the linear regression slope of the U ′, U -scatter plot in the direct isomorph check is given
by (where all averages refer to the reference state point (ρ∗, T∗))

〈1U ′1U 〉

〈(1U )2〉
=

∑
n

ρ̃
n
3
〈1Un1U 〉

〈(1U )2〉
. (5)

New Journal of Physics 14 (2012) 113035 (http://www.njp.org/)
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Using Einstein’s fluctuation formula for the excess isochoric heat capacity and the
corresponding formula for the ‘partial’ heat capacities (which can be negative),

Cex
v,n ≡

(
∂ 〈Un〉

∂T

)
V

=
〈1Un1U 〉

kBT 2
∗

, (6)

we obtain an expression for the new temperature T relative to the reference temperature T∗

(compare equation (2)):

T

T∗

=
〈1U ′1U 〉

〈(1U )2〉
=

∑
n

ρ̃
n
3
Cex

v,n

Cex
v

≡ h(ρ̃). (7)

Since Cex
v =

∑
n Cex

v,n the number of parameters in the scaling function h(ρ̃) is one less than the
number of terms in the potential (equation (3)). In particular, for the standard 12-6 LJ potential,
h(ρ̃) contains just a single parameter:

h(ρ̃) = ρ̃4c + ρ̃2 (1 − c) , c ≡ Cex
v,12/Cex

v . (8)

Using that U12 = W/2 − U for 12-6 LJ systems [26], h(ρ̃) can be conveniently expressed in
terms of γ∗ defined as equation (1) evaluated at the reference density ρ∗:

h(ρ̃) = ρ̃4 (γ∗/2 − 1) − ρ̃2 (γ∗/2 − 2) . (9)

Equation (7) provides a convenient method for numerically tracing out an
isomorph—previously this could only be done by changing density by a small amount,
e.g. 1%, and then adjusting temperature to keep the excess entropy constant, using that γ

(equation (1)) can also be expressed as [25]

γ =

(
∂ ln T

∂ ln ρ

)
Sex

. (10)

It is a prediction of the isomorph theory that γ depends only on density [25, 26]. This
means that the same differential equation, equation (10), determines the temperature on all
isomorphs, implying that h(ρ̃) is the same for all isomorphs—what changes between different
isomorphs is T∗. Thus h(ρ̃)/T is an isomorph invariant (compare equation (7)), which can be
used as a scaling variable for the reduced relaxation time τ̃ that is also an isomorph invariant
[25] τ̃ = f (h(ρ̃)/T ). This form of scaling was first proposed by Alba-Simionesco et al [14].
Here a theoretical derivation has been provided, as well as an explicit expression for h(ρ̃) for
systems interacting via generalized LJ potentials (equation (3)).

What is the difference between the derivation presented here and the derivation presented
in [33]? The derivation in [33] is thermodynamic in nature—from the invariance of excess
entropy and heat capacity along the same curves in the phase diagram (the isomorphs) follows
directly the general form of the scaling h(ρ̃)/T = const. In contrast, the derivation presented
here is statistical-mechanical in nature—from the direct isomorph check (equation (2)) and
the invariance of structure on isomorphs follows directly the specific form of the scaling for
generalized LJ systems (equation (7)).

From the scaling τ̃ = f (h(ρ̃)/T ) it follows that power-law density scaling is obeyed when
considering only pairs of isochores: choosing one of the densities as the reference density, γ

is uniquely determined so that ρ̃γ
= h(ρ̃) where ρ̃ is the other density divided by the reference

density. Since the power law is then equal to h(ρ̃) at the two densities involved (h(ρ̃ = 1) = 1,
see equation (7)), it follows that the two isochores obey power-law density scaling with the
exponent γ . This is indeed what is seen in figure 1. Choosing ρ∗ = 1.6 as the reference density,

New Journal of Physics 14 (2012) 113035 (http://www.njp.org/)
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Figure 2. Four different isomorphs in the KABLJ mixture, each generated from
the condition h(ρ̃)/T = const. Densities range from 1.2 to 2.0, and h(ρ̃) =

ρ̃4 (γ∗/2 − 1) − ρ̃2 (γ∗/2 − 2) (equation (9)) with γ∗ = 4.59 determined from the
scaling in figure 1, see text (ρ̃ ≡ ρ/ρ∗, ρ∗ = 1.6). (a) Self part of intermediate
scattering functions in reduced units. (b) Mean-square displacements in reduced
units. The data collapse confirms that true isomorphs have been identified.

the scaling in the left panel of figure 1 corresponds to h(1.2/1.6) = (1.2/1.6)4.90 which via
equation (9) leads to γ∗ = 4.59. Using this value we find that h(2.0/1.6) = 2.70 = (2.0/1.6)4.45.
Thus from one power-law scaling exponent in figure 1, the other is uniquely predicted.
Moreover, the value γ∗ = 4.59 is consistent with what is found by evaluating equation (1) at
the reference isochore ρ∗ = 1.6 in the temperature range T = 1.7–5, which leads to values of γ∗

decreasing from 4.6 to 4.5. In the following figures reporting the results for the KABLJ mixture,
we use γ∗ = 4.59 as estimated from the left panel of figure 1, i.e. no further fitting or adjustment
of parameters was applied.

As mentioned, the scaling function h(ρ̃) was derived assuming that good isomorphs exist.
In figure 2 we test this for the KABLJ mixture using the most sensitive isomorph invariant—the
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Figure 3. Reduced relaxation times for the KABLJ mixture scaled according
to the isomorph theory (same data as in figure 1). The scaling function h(ρ̃) is
the same as in figure 2 (equation (9), γ∗ = 4.59). Inset: comparing γ computed
from simulations (equation (1)) to the prediction of the isomorph theory, γ =

d ln h/d ln ρ (black curve). Isomorphs denoted by a reduced relaxation time are
each generated from a single reference point using equations (7) and (9), with
‘±’ quantifying the resulting variation of the reduced relaxation time on the
isomorph. Isochores are plotted with the same symbols as in the main figure.

dynamics of viscous states. State points with the same h(ρ̃)/T , predicted to be on the same
isomorph, are seen to have very similar dynamics even though the density varies from 1.2
to 2.0.

Figure 3 tests the proposed scaling for the KABLJ mixture using the data of figure 1.
Clearly, the new form of scaling works well. Combining equation (10) with the definition of
h(ρ̃) (equation (7)) shows that γ is the logarithmic derivative of h(ρ̃), γ = d ln h/d ln ρ. The
inset of figure 3 demonstrates that this prediction agrees well with simulations even when going
to large densities (where the purely repulsive r−12 limit is approached).

We now turn briefly to molecular models. In this case it is still a prediction of the isomorph
theory that an expression of the form h(ρ̃)/T is the right scaling variable [33], but we do not
have an explicit expression for h(ρ̃). Figure 4 demonstrates how power-law density scaling
breaks down for the Lewis–Wahnstrom model of ortho-terphenyl and an asymmetric dumbell
model when considering larger density changes than previously studied [32]. Like in figure 1,
power-law scaling works when considering pairs of isochores, consistent with the right scaling
variable being of the form h(ρ̃)/T . The insets of figure 4 test the isomorph prediction that γ

to a good approximation is a function of density only, the assumption used to derive the new
scaling. The prediction agrees well with simulations: γ is found to be much more dependent on
density than on temperature. For more results on isomorphs in these model molecular liquids,
see [34].

Finally, we present in figure 5 a new analysis of experimental data for the two van der
Waals liquids dibutyl phthalate (DBP) and decahydroisoquinoline (DHIQ), using larger density
increases than usually studied in scaling experiments (20 and 18%, respectively). For DBP,
dielectric relaxation times were taken from [35], and densities were calculated from the Tait
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Figure 4. Breakdown of power-law density scaling in two molecular models. In
accordance with the scaling derived in the present work, power-law scaling does
work when considering only pairs of isochores. (a) The asymmetric dumbbell
model. (b) The Lewis–Wahnstrom model of ortho-terphenyl (OTP). Insets:
(∂ ln γ /∂ ln T )ρ plotted against lnT (circles) and (∂ ln γ /∂ ln ρ)T plotted against
ln ρ (stars). Consistent with the isomorph theory, γ is found to be much more
dependent on density than on temperature.

equation of state [36] fitted to PVT data from Bridgman [37]. For DHIQ, dielectric relaxation
times were taken from [38], and the Tait equation of state with parameters estimated by Casalini
et al [39] was used to calculate densities. We find that the isochronal dependences log10 T versus
log10 ρ determined at given structural relaxation times in reduced units, τ̃ = τv−1/3

m (kBT/m)1/2,
where vm and m are the molecular volume and mass, are nonlinear (figures 5(b) and (e)).
This implies breakdown of power-law density scaling. The isochrones can be superposed after
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Figure 5. Deviation from power-law scaling in DBP ((a)–(c)) and DHIQ
((d)–(f)). (a) and (d) Density dependence of isobaric and isothermal structural
relaxation times τ̃ in reduced units. Solid lines represent separate fits to
the modified Avramov model [40]. (b) and (e) The isochronal dependences
log10 T versus log10 ρ determined at a given τ̃ . Fits are done to all isochrones
simultaneously. (c) and (f) The isochrones vertically shifted by the fitted values
A(τ̃ ). Deviations from power-law scaling (straight dashed lines) are evident. The
fitted h(ρ)’s correspond to γ values increasing from 2.6 to 3.9 (DBP) and from
2.0 to 4.3 (DHIQ).

vertical shifting, however (figures 5(c) and (f)), which implies that a scaling variable exists
of the form h(ρ)/T . The isochrones can be described by a phenomenological form of the
scaling function log10(h)(ρ) = A1 log10 ρ + A2 log2

10 ρ, chosen here simply to take into account
the curvature. Our results for DBP are consistent with those reported by Niss et al [41]. We
conclude that for DBP and DHIQ, power-law density scaling breaks down at large density
variations in the way predicted by the isomorph theory. Interestingly, the density dependence
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of γ is stronger than for the model systems and in the opposite direction; for the experimental
systems γ increases with density.

What are the perspectives of our findings? Based on the theory of isomorphs in dense
liquids we have now a form of density scaling that is more fundamental and more robust
than power-law density scaling and which is consistent with both simulations and experiments.
This ‘isomorph scaling’—in its mathematical form originally proposed by Alba-Simionesco
et al [14]—is predicted to apply for all strongly correlating liquids, i.e. van der Waals and
metallic liquids, but not, e.g., for hydrogen-bonding liquids. Our results should not be used to
abandon power-law density scaling—it is a useful approximation to isomorph scaling when the
scaling function h(ρ) is unknown and only moderate density changes are considered. Under
these conditions the isomorph theory predicts that power-law density scaling works with an
exponent determined by equation (1). Isomorph scaling provides a deeper understanding of
why—and when—power-law density scaling works.

An interesting perspective is to what extent isomorph scaling can be generalized
to Brownian dynamics in colloidal or nanoparticle suspensions. A necessary—but not
sufficient—condition is that the diffusion coefficient in appropriate reduced units [25] is
a single-valued function of excess entropy, since these are both isomorph invariants. This
condition rules out, e.g., the Gaussian core, Hertzian and effective star-polymer models [42].
On the other hand, it does leave open the possibility that, e.g., the Yukawa potential used to
model charge-stabilized colloidal suspensions and complex (dusty) plasmas has isomorphs, and
thus obeys isomorph scaling [43, 44].

Isomorph scaling has important consequences for the most fundamental open question in
the field of viscous liquids and glass transition: what controls the dramatic viscous slowing
down? In general, this question has to be considered as a search for a physically justified
function of two variables, temperature and density (or temperature and pressure). Our results
imply that this problem is now effectively reduced to a search for a function of a single variable,
at least for the class of strongly correlating liquids. This is particularly striking for LJ-type
systems such as the KABLJ mixture, where we have a prediction for the scaling function that
agrees very well with simulations for much larger density variations than usually considered.
The fact that the LJ scaling function contains just a single parameter—i.e. no more parameters
than power-law density scaling—confirms that isomorph scaling is more fundamental and not
merely a higher-order approximation compared to power-law density scaling. Isomorph scaling
must be taken into account in theories of the viscous slowing down: since the relaxation time
in reduced units obeys isomorph scaling, any quantity proposed to control the relaxation time
must also obey isomorph scaling [25].
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This paper is an attempt to identify the real essence of simplicity of liquids in John Locke’s

understanding of the term. Simple liquids are traditionally defined as many-body systems of classical

particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be

defined instead by the property of having strong correlations between virial and potential-energy

equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions,

but also some notable differences. For instance, in the new definition simplicity is not a direct property of

the intermolecular potential because a liquid is usually only strongly correlating in part of its phase

diagram. Moreover, not all simple liquids are atomic (i.e., with radially symmetric pair potentials) and not

all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity

by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions

may be ignored beyond the first coordination shell (FCS). This is demonstrated by NVT simulations of the

structure and dynamics of several atomic and three molecular model liquids with a shifted-forces cutoff

placed at the first minimum of the radial distribution function. The liquids studied are inverse power-law

systems (r�n pair potentials with n ¼ 18; 6; 4), Lennard-Jones (LJ) models (the standard LJ model, two

generalized Kob-Andersen binary LJ mixtures, and the Wahnstrom binary LJ mixture), the Buckingham

model, the Dzugutov model, the LJ Gaussian model, the Gaussian core model, the Hansen-McDonald

molten salt model, the Lewis-Wahnstrom ortho-terphenyl model, the asymmetric dumbbell model, and the

single-point charge water model. The final part of the paper summarizes properties of strongly correlating

liquids, emphasizing that these are simpler than liquids in general. Simple liquids, as defined here, may be

characterized in three quite different ways: (1) chemically by the fact that the liquid’s properties are fully

determined by interactions from the molecules within the FCS, (2) physically by the fact that there are

isomorphs in the phase diagram, i.e., curves along which several properties like excess entropy, structure,

and dynamics, are invariant in reduced units, and (3) mathematically by the fact that throughout the phase

diagram the reduced-coordinate constant-potential-energy hypersurfaces define a one-parameter family of

compact Riemannian manifolds. No proof is given that the chemical characterization follows from the

strong correlation property, but we show that this FCS characterization is consistent with the existence of

isomorphs in strongly correlating liquids’ phase diagram. Finally, we note that the FCS characterization of

simple liquids calls into question the physical basis of standard perturbation theory, according to which the

repulsive and attractive forces play fundamentally different roles for the physics of liquids.

DOI: 10.1103/PhysRevX.2.011011Subject Areas: Chemical Physics, Condensed Matter Physics, Statistical Physics

I. INTRODUCTION

Going back to Plato, classification or categorization is
the epistemological process that groups objects based on
similar properties [1]. Having primarily biological ex-
amples in mind, Aristotle defined categories as discrete
entities characterized by properties shared by their mem-
bers [2]. Aristotle, and Locke in 1690 in much more detail,
distinguished between the nominal essence and the real
essence of an object [3]. The nominal essence comes from
experience and represents the object’s appearance, whereas
the real essence represents the object’s deeper, constituting

features. For instance, the real essence of a material thing is
its atomic constitution, because this is the causal basis of
all the thing’s observable properties [4]. A scientific clas-
sification is particularly useful if it reflects the real essence
of the objects in question by identifying their underlying
common features, from which the more obvious and easily
observable nominal properties follow. Having in mind
Locke’s concept of real essence, we argue below for a
new definition of the class of simple liquids.
Physicists love simple systems. This reflects the funda-

mental paradigm that, in order to capture a given phenome-
non, simpler is better. Most classifications in physics are
clear-cut, for example, the classification of elementary
particles into baryons and leptons, whereas classifications
in other sciences usually have a wealth of borderline cases.
Because of the diversity of molecules, it is reasonable to
expect a definition of ‘‘simple liquids’’ to be of the latter
type.
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The concept of a simple liquid is old, but it remains
central as evidenced by the 2003 book entitled Basic
Concepts for Simple and Complex Liquids [5] or the
review of nonsimple liquids entitled Theory of
Complicated Liquids from 2007 [6]. Generations of
liquid-state theorists were introduced to this exciting
topic by studying Hansen and McDonald’s textbook
Theory of Simple Liquids [7]. This book first appeared
in 1976, following a period of spectacular progress in the
theory of liquids, catalyzed by some of the very first
scientific computer simulations.

In Ref. [7] a simple liquid is defined as a classical system
of approximately spherical, nonpolar molecules interacting
via pair potentials. This and closely related definitions
of liquid simplicity have been standard for many years
[8–12]. In this definition, simple liquids have much in
common with the chemists’ ‘‘nonassociated liquids’’
[13], but there are some significant differences. Chemists
generally regard a liquid as simple even if it consists of
elongated molecules, as long as these are without internal
degrees of freedom and interact primarily via van der
Waals forces. Many physicists would probably disagree.
Thus, it is far from trivial to ask: What characterizes a
simple liquid? More accurately: Given a classical system
of rigid bodies with potential energy as a function of the
bodies’ centers of masses and their spatial orientations, is it
possible to give a quantitative criterion for how simple the
system is? If yes, is simplicity encoded uniquely in the
potential-energy function or may the degree of simplicity
vary throughout the phase diagram?

Recent works identified and described the properties of
what we have termed strongly correlating liquids [14–25].
By definition, in these liquids the virialW and the potential
energy U correlate strongly in their constant-volume
thermal-equilibrium fluctuations. Recall that the average
virial hWi gives the contribution to the pressure from inter-
molecular interactions, which is added to the ideal-gas term
NkBT, deriving from momentum transport via particle mo-
tion (belowp is the pressure,V the volume,N the number of
particles, kB Boltzmann’s constant, and T the temperature):

pV ¼ NkBT þ hWi: (1)

The term strongly correlating liquid refers to the case when
theWU correlation coefficient in theNVT ensemble is larger
than 0.9 [17]. If angular brackets denote an NVT ensemble
average, the correlation coefficient R is defined by

R ¼ h�W�Uiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�WÞ2ihð�UÞ2ip : (2)

An example of a strongly correlating liquid is the standard
Lennard-Jones (LJ) liquid at typical condensed-phase state
points. Many other systems, including some molecular mod-
els, have been shown to be strongly correlating; we refer the
reader to papers that derive and document the several simple
properties of strongly correlating liquids [14–25]. These

properties are summarized briefly in Sec. IVA after the
presentation of the simulation results.
The present work is motivated by developments initiated

by recent findings by Berthier and Tarjus [26,27]. These
authors showed that for the viscous Kob-Andersen binary
Lennard-Jones mixture [28,29] the dynamics is not repro-
duced properly by cutting the potentials at their minima
according to the well-known Weeks-Chandler-Andersen
(WCA) recipe [30]. The role of the cutoff was subse-
quently studied in two papers [31,32], showing that placing
a shifted-forces cutoff at the first minimum of the pair
correlation function—thus defining the first coordination
shell (FCS)—gives good results for Lennard-Jones–type
systems. This is the case not only at moderate densities, but
also at very high densities. Applying the same cutoff to
water does not work properly [33]. Water is an example of
a nonstrongly correlating liquid with R � 0 at ambient
conditions, a consequence of water’s density maximum
[17]. These findings led us to speculate whether it is a
general property of strongly correlating liquids that the
intermolecular interactions may be ignored beyond the
FCS without compromising accuracy to any significant
extent. The main part of this paper shows that, indeed,
using such an ‘‘FCS cutoff’’ gives accurate simulation
results if the liquid is strongly correlating.
The paper presents results obtained from computer simu-

lations of several different systems, only some of which are
strongly correlating. We investigate the role of the FCS in
determining liquid structure and dynamics. Structure is
probed by the radial distribution function (RDF), dynamics
by the incoherent or, in a few cases, coherent intermediate
scattering function (ISF) at the wave vector defined by the
maximum of the static structure factor. The numerical evi-
dence is clear. By varying the cutoff of the intermolecular
forces,we find that in order to get accurate simulation results
it is enough to take into account merely the interactions
within the FCS if and only if the liquid is strongly correlat-
ing. In other words, for strongly correlating liquids, inter-
actions beyond the FCS are unimportant, and this applies
only for these liquids. At present there are no compelling
arguments for this empirical ‘‘FCS property,’’ but we argue
briefly in Sec. IVB that it is consistent with known proper-
ties of strongly correlating liquids.
The FCS property of strongly correlating liquids shows

that these are simpler than liquids in general. A number of
other simple properties of strongly correlating liquids have
been identified previously [14–25]. Altogether, these facts
motivate our new definition of liquid simplicity.
Section II presents the results from molecular dynamics

simulations and Sec. III summarizes the results. Section IV
gives an overview of the many simple properties of
strongly correlating liquids, motivating our suggestion
that a liquid is to be defined as simple if it is strongly
correlating at the state point in question. Section V gives a
few concluding remarks.
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II. MOLECULAR DYNAMICS SIMULATIONS OF
ATOMIC AND MOLECULAR LIQUIDS

In a computer simulation, the interactions, which usually
extend in principle to infinity, are truncated at some cutoff
distance rc beyond which they are ignored. To avoid a
discontinuity in the force, which can severely affect the
results [31,34], the simulations reported below use poten-
tials modified such that the force goes continuously to zero
at rc. This is done by applying a so-called shifted-forces
(SF) cutoff [34–36] where, if the pair potential is vðrÞ and
the pair force is fðrÞ ¼ �v0ðrÞ, the shifted force is given by

fSFðrÞ ¼
8<
:
fðrÞ � fðrcÞ if r < rc

0 if r > rc:
(3)

This corresponds to using the following pair potential
below rc: vSFðrÞ ¼ vðrÞ � v0ðrcÞðr� rcÞ � vðrcÞ. Using
a SF cutoff gives more accurate results and better numeri-
cal stability than using the standard shifted-potential (SP)
cutoff [31]. This is so despite the fact that a SF cutoff does
not have the correct pair force for any r, whereas the pair
force is correct below rc for a SP cutoff. Apparently,
avoiding discontinuity of the force at rc is more important
than maintaining the correct force. It was recently dis-
cussed [18] why adding a linear term to the pair potential
affects neither structure nor dynamics to any significant
extent. The reason is that, when one nearest-neighbor
distance decreases, others increase in such a way that their
sum is virtually constant. This argument is exact in one
dimension and holds to a good approximation in 3D
constant-volume simulations [18] (in constant-pressure
simulations the volume fluctuates and the argument no
longer applies). Coulomb interactions have also been
treated by the SF cutoff procedure. Although the
Coulomb interaction is long ranged and conditionally con-
vergent, when rc is sufficiently large, a SF cutoff gives
results close to those of the standard, much more involved,
Ewald summation method [37,38].

All simulations were performed in the NVT ensemble
with periodic boundary conditions using the Nose-Hoover
algorithm [39–41]. We used the Roskilde University
Molecular Dynamics package developed for state-of-the-
art graphics processing unit (GPU) computing [42]. For
the molecular models, bond lengths were held fixed using
the time-symmetrical central-difference algorithm [43–45].

The effect on the structure and dynamics of varying the
pair-potential cutoff rc was recently investigated for the
single-component Lennard-Jones liquid and the Kob-
Andersen binary LJ mixture [31,32]. For both systems, it
was found that if a SF cutoff is applied instead of the
commonly used SP cutoff, the standard cutoff rc ¼ 2:5�
can be decreased to 1:5� and still give the correct physics.
The value rc ¼ 1:5� is close to the first minimum of the
RDF, implying that all nearest-neighbor interactions are
accounted for. Decreasing the cutoff further quickly affects

the simulations, an effect that is quite pronounced for the
dynamics in the viscous regime [26,27].
In the following we investigate, for several systems,

whether it is possible to choose a FCS cutoff and still get
the correct physics. We start by studying strongly correlat-
ing atomic liquids. Then, data are presented for a few
atomic liquids that are not strongly correlating. Finally,
data are given for two strongly correlating molecular
liquids and a water model. Details of the models studied,
the number of particles, etc., are given in Appendix A.

A. Three inverse-power-law fluids

We consider first systems with 100% correlation be-
tween virial and potential-energy equilibrium fluctuations
in the NVT ensemble. It follows from the definition of the
virial W ¼ �1=3

P
ri � riU [34] that a necessary and

sufficient condition for W to correlate perfectly with U is
that the potential energy is an Euler homogeneous function
of the particle coordinates ri. This is clearly the case for
systems with inverse power-law (IPL) pair potentials
[vðrÞ / r�n], but note that potentials with nontrivial angu-
lar dependence may also be Euler homogeneous.
We simulated single-component IPL pair-potential

systems with exponents n ¼ 18; 6; 4 at density � ¼ 0:85.
Each system was studied at two temperatures. The simu-
lated systems range from n ¼ 18, which is very harsh and
repulsive, to n ¼ 4, which is quite soft and long ranged.
The role of the cutoff is investigated by choosing three
different, fairly small cutoffs: one placed at the first mini-
mum of the RDF (red), one corresponding to the half
height of the RDF from its minimum to its maximum
(blue), and one placed to the right of the RDF first mini-
mum (green), displaced the same amount as the difference
between the first and the second cutoff.
The RDFs gðrÞ are shown for n ¼ 18; 6; 4 in Fig. 1;

n ¼ 12 gives similar results (not shown). The simulations
with a SF cutoff at the first minimum of the RDF—referred
to as FCS-cutoff simulations—give a faithful representa-
tion of the structure. The insets show, as functions of the
cutoff, the deviations in RDF between the results for a FCS
cutoff and the ‘‘true’’ large-cutoff results, quantified by
integrating the numerical difference in the pair correlation
function. Clearly, deviations increase sharply when the
cutoff enters the FCS (blue crosses).
We simulated also the n ¼ 3 and n ¼ 1 IPL fluids. For

both systems, a FCS cutoff does not lead to the correct
physics. Both models do not have a proper thermodynamic
limit, for which the exponent must be larger than the dimen-
sion [46]. For the n ¼ 1 IPL (Coulomb) fluid, this problem
may be solved by introducing a uniform, neutralizing back-
ground of opposite charges, resulting in thewell-knownone-
component plasma model [47]. An indication that a FCS
cutoff works poorly when the IPL exponent approaches the
dimension is seen for the n ¼ 4 simulation, for which the
WU correlation coefficient for the FCS cutoff starts to
deviate significantly from unity. Moreover, but almost

WHAT IS A SIMPLE LIQUID? PHYS. REV. X 2, 011011 (2012)

011011-3



invisible in the figure, the n ¼ 4 pair correlation function’s
first maximum deviates slightly when comparing FCS and
true simulations.

Figure 2 shows the incoherent ISFs evaluated at the
wave vector corresponding to the first maximum of the
static structure factor for the low-temperature state points

of each of the three IPL systems. A good representation of
the dynamics is obtained for all systems when the FCS
cutoff is used.

B. Lennard-Jones liquids

Next, we consider what is probably the most studied
potential in the history of computer simulations, the LJ pair
potential,

vLJðrÞ ¼ 4�

��
�

r

�
12 �

�
�

r

�
6
�
: (4)

Here, � and � define, respectively, the length and energy
scale of the interaction (dimensionless units defined by
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FIG. 1. RDFs for single-component IPL fluids with exponents
n ¼ 18; 6; 4, each simulated at two temperatures at density
� ¼ 0:85. The black and orange curves show reference simula-
tion results with large cutoffs representing the true IPL behavior,
the red and green dots give results from simulations with a FCS
cutoff (marked by the vertical red dashed lines). The insets
quantify the deviations in the RDF from the reference RDF as
functions of the cutoff; deviations increase dramatically when
the cutoff enters the FCS (blue crosses). In panels (a), (b), and
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� ¼ � ¼ 1 are used below). This potential does not have
100% virial potential-energy correlations, but has still
quite strong correlations with correlation coefficients
R> 0:9 in the condensed-fluid part of the phase diagram
(and also in the crystalline phase [18]). We studied the
single-component LJ (SCLJ) liquid, two generalized
80=20 Kob-Andersen binary LJ (KABLJ) mixtures with
repulsive exponent 12 and attractive exponents n ¼ 4; 10,
and the Wahnstrom 50=50 binary LJ mixture (Fig. 3 and
Appendix A give model details). The influence of a SF
cutoff on simulation accuracy was investigated recently for
the SCLJ liquid and the standard KABLJ mixture (n ¼ 6)
[31,32], but for completeness we include results for the
SCLJ system here as well. See also Table I.

The role of the cutoff is again investigated by choosing
three different cutoffs: one placed at the first minimumof the
RDF (red color in Figs. 4–8), one corresponding to the half
height of the RDF from its minimum to its maximum (blue
color in Figs. 4–8), and one displaced to the right of the
minimum by the same amount as the difference between the
first and the second cutoff (green color in Figs. 4–8).

In Fig. 4, RDFs are shown for the SCLJ liquid at three
different state points. The red circles and curve show results
from simulations with a FCS cutoff (marked by the vertical
red dashed line); the black curves show the corresponding

simulations with a large cutoff (reference system).
The insets quantify the deviations in the simulated RDF
from the reference RDF as a function of the cutoff. The
reference RDF of Figs. 4(a) and 4(b) is clearly well repre-
sented using a FCS cutoff, while choosing the cutoff
inside the FCS results in significant deterioration. At low
density [Fig. 4(c)], deviations occur between FCS-cutoff
simulations and the reference system. As mentioned, the
SCLJ liquid is strongly correlating in large parts of its phase
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FIG. 3. TheAA-particle generalizedKABLJ pair potentials with
fixed repulsive exponent 12 and three different attractive exponents
n ¼ 4; 6; 10. The model parameters are given in Appendix A.

TABLE I. The results for five state points of the SCLJ liquid.
For each state point is given density, temperature, correlation
coefficient, maximum deviation from the true RDF using a FCS
cutoff, and maximum deviation from the true ISF using a FCS
cutoff. The deviations clearly increase as the WU correlation
decreases.

System � T R j�RDFjmax j�ISFjmax

SCLJ 0.85 1.00 0.97 1:31� 10�2 5:10� 10�3

SCLJ 0.85 0.70 0.96 1:68� 10�2 8:28� 10�3

SCLJ 0.85 0.65 0.96 1:63� 10�2 8:96� 10�3

SCLJ 0.50 1.50 0.69 11:2� 10�2 7:94� 10�3

SCLJ 0.55 1.13 0.50 15:2� 10�2 12:0� 10�3

0.0 1.0 2.0 3.0 4.0 5.0
r

0.0

1.0

2.0

3.0

4.0

g(
r)

r
c
 = 5.000

r
c
 = 1.538 

1.0 2.0 3.0 4.0 5.0
r
c

0.00

0.01

0.02

0.03

0.04

0.05

∫ |
g∞

(r
) 

- 
g(

r)
| d

r

SCLJ (ρ = 0.85, T = 0.70)

R(r
c
 = 5.000) = 0.96

R(r
c
 = 1.538) = 0.97 (a)

0.0 1.0 2.0 3.0 4.0 5.0
r

0.0

1.0

2.0

3.0

4.0

g(
r)

r
c
 = 5.000

r
c
 = 1.544

1.0 2.0 3.0 4.0 5.0
r
c

0.00

0.01

0.02

0.03

0.04

∫ |
g∞

(r
) 

- 
g(

r)
| d

r

SCLJ (ρ = 0.85, T = 1.00)

R(r
c
 = 5.000) = 0.97

R(r
c
 = 1.544) = 0.98 (b)

1.0 2.0 3.0 4.0 5.0 6.0
r
c

0.00

0.03

0.06

0.09

0.12

0.15

∫ |
g∞

(r
) 

- 
g(

r)
| d

r

0.0 1.0 2.0 3.0 4.0 5.0
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(
r)

r
c
 = 6.000

r
c
 = 1.645

SCLJ (ρ = 0.55, T = 1.13)

R(r
c
 = 6.000) = 0.50

R(r
c
 = 1.645) = 0.89 (c)

FIG. 4. RDFs for the SCLJ liquid at three different state points:
(a)� ¼ 0:85, T ¼ 0:70 (R ¼ 0:96); (b)� ¼ 0:85, T ¼ 1:00 (R ¼
0:97); (c) � ¼ 0:55, T ¼ 1:13 (R ¼ 0:50). The black curves show
reference simulations with large cutoffs; the red dots and curve
show results from simulations with a FCS cutoff (marked by the
vertical red dashed lines). The insets quantify the deviation in RDF
from the reference RDF as functions of the cutoff. At all three state
points, deviations increase significantly when the cutoff enters the
FCS (blue crosses in the insets). For state points (a) and (b), which
are strongly correlating (R> 0:9), a FCS cutoff leads to accurate
results. This is not the case for state point (c).
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diagram, but as density is lowered, the correlations decrease
gradually and the liquid is no longer strongly correlating at
state point (c), where R ¼ 0:50. These simulations suggest
that only when a liquid is strongly correlating, is it possible
to ignore interactions beyond the FCS.

Next, we investigated the SCLJ dynamics at the same
three state points. The dynamics is studied via the inco-
herent ISF. The ISFs are shown in Fig. 5; at all state points
the dynamics is well represented using a FCS cutoff.

We proceed to investigate mixtures of two different
particles (A and B) interacting with LJ type potentials.

The cutoff used for all three interactions (AA; AB; BB) is
placed at the same distance, referring to �AA. In Fig. 6 the
reference and FCS-cutoff results are shown for the
AA-particle RDFs of generalized KABLJ mixtures with
repulsive exponent 12 and attractive exponents n ¼ 4; 10.
For all investigated state points a FCS cutoff gives accurate
results. We found the same using the standard repulsive
exponent n ¼ 6 (results not shown) [32].
The A-particle ISFs for the state points of Fig. 6 are

shown in Fig. 7. For the KABLJ mixture also, placing the
cutoff inside the FCS (blue curves) fails to reproduce
the dynamics properly, whereas the dynamics is well
approximated using a FCS cutoff (red). Slight deviations
are noted for the red curves, an issue considered in
Appendix B, which discusses alternatives for delimiting
the FCS. Similar results are found for the B particles
(results not shown).
We also simulated the Wahnstrom 50=50 binary LJ

mixture [48], finding again that whenever R> 0:9, the
structure and dynamics are well reproduced using a FCS
cutoff. We do not show these results, but show instead
results for the AA coherent ISF at one state point (Fig. 8).
Again, the FCS cutoff (red crosses) gives the correct
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FIG. 5. Incoherent ISFs for the SCLJ liquid at the state points
of Fig. 4. The black curves give the reference cutoff results, the
red curves give the FCS-cutoff results, the blue curves give
results for a cutoff at the half-height towards the first maximum
of the RDF, and the green curves give results for a cutoff to the
right of the minimum. (a) � ¼ 0:85, T ¼ 0:70 (R ¼ 0:96);
(b) � ¼ 0:85, T ¼ 1:00 (R ¼ 0:97); (c) � ¼ 0:55, T ¼ 1:13
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dynamics, whereas reducing the cutoff further does not
give proper results (blue crosses).

In summary, for all LJ–type systems, whenever there are
strong virial potential-energy correlations (R> 0:9), a FCS
cutoff gives accurate results for both the structure and
dynamics.

C. Buckingham liquid

Next, we consider the single-component Buckingham
liquid (SCB). The Buckingham potential [49,50] is similar
to the LJ potential, but does not have an IPL repulsive term;
instead the potential’s short-distance behavior follows a
steep exponential (Fig. 9). Consequently, the Buckingham
potential does not diverge at r ¼ 0. The parameters of the
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Buckingham potential (Appendix A) were chosen such that
the LJ potential is well approximated in the lower-energy
repulsive part of the potential (Fig. 9).

Figures 10(a) and 10(b) show, respectively, the RDF and
ISF for the SCB liquid. The SCB liquid is strongly corre-
lating [50] and a FCS cutoff works well.

D. Dzugutov liquid

Figure 11 shows the Dzugutov (DZ) pair potential
[51], which was originally suggested as a model potential
for which crystallization is impeded by energetically
punishing particle separations corresponding to the next-
nearest-neighbor distance of crystallographic local order.
At short distances the DZ pair potential approximates the
LJ potential.

Figures 12(a) and 12(b) show, respectively, the RDF
and the coherent ISF of the DZ system. For this system,
the use of a FCS cutoff leads to poor results. This is not

surprising given the fact that using a FCS cutoff removes
the maximum of the DZ potential. What is important
here, however, is that the poor FCS-cutoff results
correlate with the fairly weak virial potential-energy cor-
relations (R ¼ 0:71). This suggests studying other non-
strongly correlating liquids in order to investigate whether
this is a general trend.

E. Lennard-Jones Gaussian liquid

The Lennard-Jones Gaussian (LJG) liquid [52] is a non-
strongly correlating liquid with the two-minimum pair
potential shown in Fig. 13. The parameters of the LJG
model (Appendix A) are such that the LJG potential mini-
mum does not coincide with that of the SCLJ system [53].
Results from the simulating structure and dynamics of

the LJG liquid are shown in Figs. 14(a) and 14(b). The FCS
cutoff does not give the correct RDF. Deviations in the
dynamics are fairly small, likely due to the fact that the
dynamics is fast [compare, e.g., the time scale of the decay
to that of the DZ liquid in Fig. 12(b)].
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F. Gaussian core model

The Gaussian core model (GCM) [54,55], which is
not strongly correlating, is defined by a Gaussian pair
potential and thus has a finite potential energy at zero
separation. The high-density regime of the GCM model
(� > 1:5) has recently received attention as a single-
component model glass former [56], because it is not
prone to crystallization and shows the characteristic fea-
tures of glass-forming liquids (large viscosity, two-step
relaxation, etc.).
Figure 15 shows the RDF and ISF for the GCM liquid.

The GCM crystallizes when a FCS cutoff is used. For this
reason, obviously, a FCS cutoff is not able to reproduce the
structure and dynamics of the reference system. Note,
however, that crystallization does not occur when the cut-
off is chosen in the neighborhood of the FCS cutoff (see the
inset).

G. The Hansen-McDonald molten salt model

The final atomic system we studied is the so-called
singly charged molten salt model proposed by Hansen
and McDonald [57]. In Fig. 16 we see that the structure
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is not represented well by a FCS cutoff. Interestingly, the
dynamics is well reproduced using this cutoff—even bet-
ter, in fact, than for a larger cutoff [Fig. 16(b), green curve].

H. Two strongly correlating molecular
model liquids

We finish the presentation of the numerical results by
giving data for three molecular model liquids. In this
subsection, data are given for two strongly correlating
molecular liquid models, the Lewis-Wahnstrom ortho-
terphenyl (OTP) model [58,59] and the asymmetric dumb-
bell model [19], which represent a molecule by three and
two rigidly bonded LJ spheres, respectively. The next
subsection gives data for a rigid water model.

Figures 17(a) and 17(b) show the LJ particle RDF and
ISF of the OTP model. Both quantities are well approxi-
mated using a FCS cutoff, although slight deviations
are noted for the ISF (red curve, see Appendix B for
considerations concerning this). The OTP model is a bor-
derline strongly correlating liquid (R ¼ 0:91).

Figures 18(a) and 18(b) show corresponding figures
for the large (A) particle of the asymmetric dumbbell
model at a viscous state point. The use of a FCS cutoff
gives accurate results for both the structure and dynamics.
The FCS cutoff was placed at the second minimum of
the AA RDF, because the AA RDF has here a lower value
than at the first minimum. If the cutoff is placed at the
first minimum, clear deviations are found (data not
shown).

I. Rigid SPC/E water model

We consider finally the rigid single-point charge (SPC/
E) water model [60] (Fig. 19). This model is not strongly
correlating at ambient conditions, a fact that directly re-
flects water’s well-known density maximum [18]. The
structure of the SPC/E water model is not well represented
using a FCS cutoff. Interestingly, the FCS-cutoff dynamics
shows only slight deviations from that of the reference
curve (black).
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FIG. 17. The effect on the structure and dynamics of
varying the cutoff for the Lewis-Wahnstrom OTP model. The red
and black curves give, respectively, results for a FCS cutoff and a
large reference cutoff. (a) RDF of the LJ particles at
� ¼ 0:33 and T ¼ 0:70 (R ¼ 0:91). The inset quantifies the
deviation in RDF from the reference RDF as a function of the
cutoff. The spikes derive from the bonds. (b) Incoherent ISF at
the same state point.
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III. SUMMARIZING THE SIMULATION RESULTS

The previous section showed that the structure and
dynamics are well approximated in simulations using a
FCS cutoff for the following atomic and molecular
systems:

(1) Inverse power-law systems (n ¼ 18; 6; 4),
(2) single-component Lennard-Jones liquid at density

� ¼ 0:85,
(3) generalized Kob-Andersen binary Lennard-Jones

mixtures,
(4) Wahnstrom binary Lennard-Jones mixture,
(5) single-component Buckingham liquid,
(6) Lewis-Wahnstrom OTP model,
(7) asymmetric dumbbell model.

These systems are all strongly correlating [17,18,20,21,24].
Thus, for strongly correlating liquids, it is enough to
know the intermolecular interactions within the FCS
in order to accurately simulate the structure and dynamics.

The simulations showed further that for all of the fol-
lowing atomic and molecular systems, structure and/or
dynamics are not properly reproduced when a FCS cutoff
is used:

(1) single-component Lennard-Jones liquid at density
� ¼ 0:55,

(2) Dzugutov liquid,
(3) Lennard-Jones Gaussian liquid,
(4) Gaussian core model,
(5) Hansen-McDonald molten salt model,
(6) rigid SPC/E water model.

For all these systems, larger cutoffs are needed in order to
faithfully reproduce the system’s physics. None of the
latter liquids are strongly correlating.
In conclusion, a shifted-forces FCS cutoff leads to ac-

curate results if and only if the liquid is strongly correlating
at the state point in question. We know of no exceptions to
this empirical rule. This suggests that strongly correlating
liquids are characterized by the property that intermolecu-
lar interactions beyond the FCS can be safely ignored.

IV. THE REAL ESSENCE OF
SIMPLICITY OF LIQUIDS

As discussed in the Introduction, a definition of simple
liquids is most useful if it identifies their real essence in
Locke’s understanding of the term [3], the underlying
fundamental characteristic from which these liquids’ sim-
ple features, their nominal essences, follow. We suggest
below that the class of simple liquids is to be identified
with the class of strongly correlating liquids (Sec. IVC).
This is motivated by first summarizing the many simple
properties of strongly correlating liquids (Sec. IVA), then
showing that this class of liquids can be characterized from
three different perspectives: mathematically, physically,
and chemically (Sec. IVB). This gives three very different
characterizations, indicating that the class of strongly cor-
relating liquids is fundamental, and further motivating the
suggestion that the real essence of liquid simplicity is the
existence of strong correlations of virial potential-energy
equilibrium NVT fluctuations. By connecting to the chem-
ists’ concept of nonassociated liquids, we then discuss
which real-world liquids are simple (Sec. IVD), liquids
near interfaces (Sec. IVE), and give examples of complex
liquid properties (Sec. IV F). Finally, Sec. IVG points out
that our results call into question the physical basis of
traditional perturbation theory, which assumes quite differ-
ent roles of the attractive and the repulsive forces; this
distinction is not deep and fundamental for simple liquids.

A. Strongly correlating liquids and their properties

The simple properties of strongly correlating liquids
follow from the existence of ‘‘isomorphs’’ in their phase
diagram (see below). Some simple properties were identi-
fied before isomorphs were defined in 2009 [21], however,
for instance that
(1) all eight fundamental thermoviscoelastic response

functions are given in terms of just one, i.e., the
dynamic Prigogine-Defay ratio is close to unity [16],
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FIG. 19. The effect on the structure and dynamics of varying
the cutoff for the rigid SPC/E water model [60]. The red and
black curves give, respectively, results for a FCS cutoff and a
large reference cutoff. (a) Oxygen-oxygen RDF at � ¼ 1:00 and
T ¼ 4:00 (R ¼ 0:08). The inset quantifies the deviation in RDF
from the reference RDF as a function of the cutoff. (b) Oxygen
incoherent ISF at the same state point.
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(2) aging may be described in terms of merely one extra
parameter [18,20],

(3) power-law density scaling [61] is obeyed to a
good approximation; i.e., for varying density and
temperature, the relaxation time is a function of
��=T [19].

An isomorph is an equivalence class of state points in the
phase diagram. Two state points (�1; T1) and (�2; T2) are
defined to be isomorphic [21] if the following holds:
Whenever one microconfiguration of state point (1) and
one of state point (2) have the same reduced coordinates

[i.e., �1=3
1 rð1Þi ¼ �1=3

2 rð2Þi for all particles i], these two mi-
croconfigurations have proportional configurational
Boltzmann factors,

e�Uðrð1Þ
1
;...;rð1ÞN Þ=kBT1 ¼ C12e

�Uðrð2Þ
1
;...;rð2ÞN Þ=kBT2 : (5)

For most systems, the isomorph concept is approximate
just as WU correlations are rarely perfect. Thus, we do
not require Eq. (5) to be rigorously obeyed for all micro-
configurations, but only to a good approximation for all
physically relevant microconfigurations. By this we mean
microconfigurations that are not a priori unimportant for
the physics. An isomorph defines a continuous curve of
state points in the liquid’s phase diagram.

Appendix A of Ref. [21] showed that a liquid is strongly
correlating if and only if it has isomorphs to a good
approximation. This was confirmed in Refs. [21,24], which
showed that Lennard-Jones–type atomic liquids have good
isomorphs. Likewise, Ref. [62] recently showed that the
strongly correlating Lewis-Wahnstrom OTP and asymmet-
ric dumbbell models have good isomorphs.

Equation (5) has many consequences. These were derived
and discussed in detail in the original isomorph paper from
2009 (Ref. [21]), to which the reader is referred. Basically,
the structure and dynamics at two isomorphic state points
are identical in reduced units. Quantities that are invariant
along an isomorph include (but are not limited to)

(1) The excess entropy, i.e., the entropy in excess of the
ideal-gas entropy at the same density and tempera-
ture—this is the configurational contribution to the
entropy (a quantity that is negative because a liquid
is always more ordered than an ideal gas at same
density and temperature).

(2) All N-body entropy terms. Recall that the excess
entropy can be expanded in a series of two-body,
three-body, etc., terms; each term is invariant along
an isomorph [21].

(3) The isochoric heat capacity.

(4) The structure in reduced units (defined by ~ri �
�1=3ri for all particles i). Not only the radial distri-
bution function, but all higher-order distribution
functions are isomorph invariant in reduced units.

(5) The Newtonian NVE and Nosé-Hoover NVT equa-
tions of motion in reduced units; likewise Brownian
dynamics.

(6) All autocorrelation functions in reduced units.
(7) All average relaxation times in reduced units.
(8) Reduced transport coefficients such as the diffusion

coefficient, viscosity, etc.
Isomorphs have the further interesting property that

there is no relaxation for an instantaneous change of
temperature and density when jumping from an equili-
brated state point to a different state point isomorphic
with the initial state. The absence of relaxation derives
from the fact that the Boltzmann probabilities of scaled
microconfigurations are identical. Such ‘‘isomorph
jumps’’ have been shown to work very well for the
KABLJ liquid [21], for the asymmetric dumbbell and
for the Lewis-Wahnstrom OTP molecular models [62].
Moreover, the effective temperature of a glass prepared
by a temperature-density jump from an equilibrium state
of a strongly correlating liquid depends only on the final
density [22]; this provides yet another example of a
simple feature of these liquids.
Some further predictions for the class of strongly

correlating liquids deriving from the existence of iso-
morphs are
(1) The solid-liquid coexistence curve is an isomorph

[21,24]. This implies invariance along the coexis-
tence curve of the reduced structure factor, the
reduced viscosity, the reduced diffusion constant,
etc., as well as pressure invariance of the melting
entropy and the reduced-unit Lindemann melting
criterion [21].

(2) Collapse of the two-order-parameter maps of
Debenedetti et al. [63–67] to one-dimensional
curves [21].

(3) Isochronal superposition [68], i.e., the fact that
when pressure and temperature are varied, the aver-
age relaxation time determines the entire relaxation
spectrum [21].

The above listed properties of strongly correlating
liquids all reflect one or the other kind of simplicity of
strongly correlating liquids. A final, recently established
simple property is a thermodynamic separation identity:
For all strongly correlating liquids, if s is the excess
entropy per particle, the temperature as a function of s
and density � factorizes as follows [69]:

T ¼ fðsÞhð�Þ: (6)

Equation (6) has a number of consequences [69],
for instance, the configurational Gruneisen equation of
state and that the isomorphs of LJ liquids—in particular,
the LJ solid-liquid coexistence curve—are given by
ðA�4 � B�2Þ=T ¼ const [70,71].

B. Mathematical, physical, and chemical
characterization of strongly correlating liquids

At a given state point, if the average potential energy
is denoted by hUi, the constant-potential-energy
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hypersurface is defined by � ¼ fðr1; . . . ; rNÞ 2
R3NjUðr1; . . . ; rNÞ ¼ hUig. This is a compact,
Riemannian ð3N � 1Þ-dimensional differentiable mani-
fold. Each state point has its own such hypersurface.
In this way, a family of high-dimensional manifolds is
defined throughout the phase diagram. In Appendix A of
Ref. [21] it was shown that the reduced-unit constant-
potential-energy manifold is invariant along a strongly
correlating liquid’s isomorphs, and that, conversely, in-
variance curves exist for these manifolds only for
strongly correlating liquids. Thus, for such liquids, these
manifolds constitute a one-parameter family of mani-
folds, not two-parameter families as expected from the
fact that the phase diagram is two-dimensional. This
provides a mathematical characterization of the class of
strongly correlating liquids.

The physical characterization of this class was discussed
already: A liquid is strongly correlating if and only if it has
isomorphs to a good approximation; this is shown in
Appendix A of Ref. [21]. The proof utilizes that a liquid
is strongly correlating if and only if its constant-virial
hypersurfaces in the 3N-dimensional configuration space
are (almost) identical to its constant-potential-energy
hypersurfaces.

The chemical characterization of strongly correlating
liquids is the property documented in the present paper:
A liquid is strongly correlating at a given state point if and
only if the liquid’s structure and dynamics are accurately
calculated by simulations that ignore interactions beyond
the first coordination shell. This is an empirical finding for
which we have, at present, no compelling argument. How
can one justify this FCS characterization of strongly cor-
relating liquids? Note first that the property of insignifi-
cance of interactions beyond the FCS is an isomorph
invariant: If a liquid has good isomorphs and if a FCS
cutoff works well at one state point, FCS cutoffs must work
well for all its isomorphic state points. Thus, the chemical
characterization of strongly correlating liquids is consis-
tent with the fact that these liquids have isomorphs. Note
further that it has been shown for the Lennard-Jones liquid
that almost all of the fluctuations in virial and potential
energy come from interparticle separations within the FCS
[18]. Finally, we give an nonrigorous argument that a SF
cutoff works well for any strongly correlating liquid:
Consider an atomic liquid with pair interaction vðrÞ that
is strongly correlating at the state point in question. Since
virial and potential-energy fluctuations correlate, one can
replace vðrÞ by �rv0ðrÞ where � is some constant. Thus the
radial force fðrÞ ¼ �v0ðrÞ can be replaced by
��½rv0ðrÞ�0 ¼ �½fðrÞ þ rf0ðrÞ�. This implies for some
constant � that fðrÞ ��rf0ðrÞ where � indicates equiva-
lence in MD simulations. Assuming the SF cutoff system is
likewise strongly correlating, we get fSFðrÞ ��rf0SFðrÞ.
Since f0ðrÞ ¼ f0SFðrÞ, one concludes that

fðrÞ � fSFðrÞ.

Most likely it is the existence of a well-defined
FCS that implies the almost cancellation of the linear term
of the shifted-force potential. The fact that interactions
beyond the FCS may be ignored shows that interactions
are effectively short ranged, which means that the structure
is dominated by what may be termed packing effects.

C. Defining the class of simple liquids

Section IVA listed several simple properties of strongly
correlating liquids. Section IVB showed that this liquid
class may be characterized from three quite different per-
spectives. It appears that the class of strongly correlating
liquids is fundamental. Since the properties of strongly
correlating liquids are generally simpler than those of
liquids in general, we now propose the following defini-
tion: Simple liquid=strongly correlating liquid. This is the
basic message of the present paper, which implies a quan-
tification of the degree of simplicity via the number R of
Eq. (2), the NVT ensemble equilibrium virial potential-
energy correlation coefficient.
Compared to the standard definition of simple liquids as

those with radially symmetric pair interactions, there are
some notable differences:
(1) Simplicity is quantified by a continuous variable, it

is not an on/off property.
(2) The degree of simplicity generally varies throughout

the phase diagram. Consequently, simplicity is not
merely encoded in a liquid’s intermolecular inter-
actions. In fact, most strongly correlating liquids
lose this property as density is lowered and the gas
phase is approached.

(3) Not all ‘‘atomic’’ liquids (i.e., with radially sym-
metric pair interactions) have simple regions in the
low-pressure part of the phase diagram (compare the
Dzugutov, Lennard-Jones Gaussian, Gaussian core,
and molten salt models);

(4) Not all simple liquids are atomic (compare the
Wahnstrom OTP and the asymmetric dumbbell
models).

According to the new definition of liquid simplicity, the
case where the potential energy is an Euler homogeneous
function of the particle positions (R ¼ 1) sets the gold
standard for simplicity. This is consistent with the many
simple properties of these liquids. Usually one has in mind
IPL systems with pair interactions that scale with the dis-
tance as r�n. However, R ¼ 1 systems as mentioned also
include some with angular dependencies in the potential
energy, as long as these scale with distance the sameway as
all other interactions. Because of the absence of attractions,
IPL fluids have no liquid-gas phase transition. In this sense
it may seem strange to claim that IPL fluids are the simplest
liquids. However, more realistic strongly correlating liquids
like the LJ liquid cease to be so when the liquid-vapor
coexistence line is approached, showing that this phase
transition cannot be understood in the framework of simple
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liquids. This contrasts with the liquid-solid phase transition,
where, for instance, the fact that the coexistence line for
simple liquids is an isomorph—confirmed for the LJ liquid
[24]—explains several previously noted regularities [21].

Is the hard-sphere fluid simple? One may define a con-
figurational virial function for this system, but it is not
obvious how to define a potential-energy function that is
different from zero. Thus, there is no meaningful correla-
tion coefficient R for hard-sphere fluids. On the other hand,
the hard-sphere liquid may be regarded as the n ! 1 limit
of an IPL liquid, and it is well known that, for instance, the
hard-sphere radial distribution function is close to that of,
e.g., an r�20 IPL liquid at a suitably chosen temperature.
This would indicate that hard-sphere liquids are simple,
which is consistent with the prevailing point of view.
Another interesting case is that of the WCA version of
the LJ liquid, which cuts off all attractions by putting the
force equal to zero beyond the potential-energy minimum.
This liquid is strongly correlating [72]. Despite this, we
found in simulations that the WCALJ liquid has somewhat
poorer isomorphs than the LJ liquid.

It is possible that the hard-sphere liquid and the WCALJ
liquid should be both excluded from the class of simple
liquids on the grounds that their potentials are not analytic.
For systems interacting via pair potentials, it could make
good sense to add the extra requirement that the pair
potential is an analytical function of the inverse pair dis-
tance, i.e., that an expansion exists of the form vðrÞ ¼P

nvnr
�n. Such an extra analyticity requirement would

not exclude any strongly correlating liquids occurring in
nature where all potentials are expected to be analytic.

D. Which liquids in the real world are simple?

Real-world liquids may be classified according to the
nature of the chemical bonds between the molecules. There
are five types of bonds [73], which are listed below with a
few typical examples (polymeric systems may be added as
a separate class):

(1) Van der Waals bonds (e.g., argon, toluene, butane,
etc.);

(2) Metallic bonds (e.g., gold, aluminum, alloys, etc.);
(3) Hydrogen bonds (e.g., water, glycerol, ethanol,

etc.);
(4) Ionic bonds (e.g., molten sodium chloride, molten

potassium nitrate, room-temperature ionic liquids,
etc.);

(5) Covalent bonds (e.g., silica and borate melts, etc.).

Most liquids involve elements of more than one type of
chemical bond. For instance, van der Waals forces are
present in all liquids; the first class consists merely of those
liquids that only have van der Waals forces. Another bor-
derline example is a dipolar organic liquid like di-butyl-
phthalate, where van der Waals as well as Coulomb forces
are present; the hydrogen-bonded liquid glycerol also has

strong dipolar interactions, i.e., an element of the ionic
bonds, etc.
Based on computer simulations and known properties of

liquids, we believe that most or all van der Waals and
metallic liquids are strongly correlating [14,16,18], i.e.,
simple. Liquids that are not simple are the hydrogen, ioni-
cally, and covalently bonding liquids. In these cases, the
virial potential-energy correlations are weakened by the
existence of competing interactions, either with different r
dependences (the ionically bonding liquids) or because
angular and radial forces have different r scaling
(the hydrogen and covalently bonded liquids).
Metals play a special role as simple liquids, because

their interatomic forces derive from collective interactions
between ion cores and free electrons [8]. The resulting
interaction is a nondirectional interaction between sym-
metric ion cores, i.e., these systems are simple in the
traditional sense. Preliminary computer simulations show
that metals are strongly correlating [17], so metals are also
simple in the sense of the present paper. However, not all
isomorph invariants are expected to apply for metals. For
instance, the electron gas can influence the collective
dynamics without any structural and relaxational counter-
part [74,75], so isomorph invariance most likely breaks
down for these (fast) collective degrees of freedom.
It should be emphasized that the above considerations

refer to ambient or moderate pressure conditions. It was
recently suggested that all liquids become strongly corre-
lating at high pressure [76]. Thus, e.g., the molten silicates
of the Earth’s upper mantle are predicted to be simpler than
molten silicates at ambient pressure.

E. Liquids near interfaces

It is interesting to consider liquids under more general
circumstances, for instance under confinement or generally
near interfaces. Liquids near interfaces show rich and
complicated behavior. For instance, a liquid confined to
the nanoscale may change its dynamic properties several
orders of magnitude compared to the bulk system.
Predicting these changes is an important challenge relevant
for biological systems, engineered devices, etc. Recently, it
was shown that some liquids retain bulk liquid behavior in
confinement [77–80]. More specifically, it was shown that
Rosenfeld’s excess entropy scaling in the bulk persists in
confinement and is, to a good approximation, independent
of the wall-fluid interaction strength. This was shown for
LJ and hard-sphere liquids, suggesting the possibility of
extending the concept of a simple liquid beyond bulk
systems. More work is needed, however, to clarify the
relevance and consequences of the present definition of
liquid simplicity near interfaces [81,82].

F. A note on complex liquid behavior

Here we give a brief example showing that liquids,
which are not simple in the above defined sense, often
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have complex properties [65,83–86]. Water with its corre-
lation coefficient close to zero at ambient conditions is a
prime example of a complex liquid. It is well known for
water that a certain region of state points in the density-
temperature phase diagram exhibits anomalous thermody-
namic behavior in the sense that isobaric heating implies
densification. Numerical evidence indicates that these state
points lie within a larger region with a diffusion anomaly,
i.e., an increased diffusivity upon isothermal compression
[65], a region that, in turn, lies within a larger region of a
structural anomaly characterized by decreasing order upon
isothermal compression [65].

Different order parameters exist for characterizing the
structural order of liquids, some of which relate purely to
an integral over the RDF [83–85]. In this way, it is possible
to calculate the contribution to structural anomalies from
the different coordination shells [83–85]. It has been shown
[84,85] that the structural anomaly of water and waterlike
liquids is not a ‘‘first-shell effect. Rather, they reflect how
structuring in second and more distant coordination shells
responds to changes in thermodynamic or system parame-
ters’’ [84,85]. Thus, the anomalous behavior of water
derives from interactions beyond the FCS [83,85]. This is
consistent with the results presented in this paper—water is
not simple—since the structure and dynamics of strongly
correlating liquids are given exclusively by the interactions
within the FCS.

G. To which extent do the assumptions
of standard pertubation theory hold?

The finding that the FCS plays a crucial role for a
large class of systems may be taken as a modern dem-
onstration of the classic van der Waals picture of liquids,
in the sense that such liquids can be understood in terms
of packing effects [87]. On the other hand, our results
call into question the basis of traditional perturbation
theory, which is conceptually also usually traced back
to van der Waals [88]. Perturbation theory is based on
the assumption of entirely different roles being played by
the repulsive and the attractive forces [7,30,81,87–90]:
The repulsive forces largely determine the structure and
reduce the entropy compared to that of an ideal gas at
same density and temperature; the attractive forces re-
duce the pressure and energy compared to that of an
ideal gas. From the findings of this and a previous paper
[32] it is clear, however, that this picture applies only at
such low pressures that the FCS coincides with the
region around the pair-potential minimum. At high pres-
sure, the entire FCS is within the range of the repulsive
forces; here, the attractive forces play little role for
simple liquids. In general, what is important for a
strongly correlating liquid is to take into account prop-
erly all forces from particles within the FCS—and only
these. Thus, the well-known WCA reference system,
which ignores the attractions, is a good reference only

at such high pressure that all forces from particles within
the FCS are repulsive [26,27,32].
The dominance of the FCS for simple liquids reflects the

fundamental physics that the characteristic length defining
the pair-potential minimum (e.g., � of the LJ potential) is
much less important than generally believed: � determines
the density of the low-pressure-condensed phase, but for
simple liquids that is all. The physically relevant length for
these liquids is the one given by the macroscopic density:

��1=3. At low pressure, this length is roughly that of the
potential-energy minimum, thus explaining why the latter
has been generally assumed to be important.
The above considerations apply only for simple liquids;

in general, both lengths play important roles for the phys-
ics. The irrelevance of any length defined by the micro-
scopic potential emphasizes that the class of strongly
correlating liquids is at the one end of the ‘‘complexity
scale’’ where, at the other end, one finds systems like
macromolecules, electrolytes, interfaces, micelles, or en-
zymes, for which multiple length scales are important [91].

V. CONCLUDING REMARKS

If you ask a chemist what is a simple liquid, he or she
may likely answer that nonassociated liquids are simple,
whereas associated liquids are generally much more com-
plex. These two concepts are defined as follows in
Chandler’s textbook [13]. The intermolecular structure of
a nonassociated liquid ‘‘can be understood in terms of
packing. There are no highly specific interactions in these
systems.’’ In contrast, water is an example of an associated
liquid, and its ‘‘linear hydrogen bonding tends to produce a
local tetrahedral ordering that is distinct from what would
be predicted by only considering the size and shape of the
molecule’’ [13].
Packing usually refers to purely entropic, hard-sphere-

like behavior. Given that no realistic potentials are infi-
nitely repulsive, it makes good sense to interpret packing
more generally as all short-ranged effects of the intermo-
lecular interactions. If one accepts this interpretation, the
crucial role of the FCS for strongly correlating liquids is
consistent with the understanding that the properties of
nonassociated liquids can be interpreted in terms of pack-
ing: Once the forces from particles within the FCS are
known, basically everything is known.
In other words, for a simple liquid there are no important

long-range interactions, and ‘‘considering the size and
shape of the molecule’’ [13] is enough to account for the
liquid’s physical properties. This applies even for the r�4

IPL fluid, which one would a priori regard as systems with
fairly long-ranged interactions.
The present definition of the class of simple liquids is

thus consistent with the chemists’ general picture of simple
liquids. The new definition goes further, however, by
quantifying simplicity via the virial potential-energy cor-
relation coefficient R of Eq. (2). In particular, simplicity is
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not an on/off property of the potential, but varies continu-
ously with the state point. Thus, even a complex liquid like
water is expected to approach simple behavior under suffi-
ciently high pressure [76] and, conversely, the prototype
strongly correlating LJ liquid becomes gradually more
complex as density is lowered and the critical region and
the gas phase are approached. Is this a problem, given that
everyone agrees that the gas phase is simple? We do not
think so. In fact, the gas phase is simple for an entirely
different reason, namely, that molecules move freely most
of the time, only interrupted by occasional fast and violent
collisions with other molecules. It would be strange if a
system exhibiting one form of simplicity could be trans-
formed continuously in the phase diagram, maintaining its
simplicity, into a system of an entirely different form of
simplicity; one would expect the intermediate phase to be
complex.

Liquid simplicity is characterized by the correlation
coefficient R of Eq. (2) being close to unity, i.e., that
1� R is a small number. This situation is typical in phys-
ics, where simplifying features always appear when some
dimensionless number is small. The obvious question
arises whether a statistical-mechanical perturbation theory
may be constructed around simple liquids, embracing the
more complex ones. Only time will tell whether this is
possible, but it presents a challenge because the properties
of IPL fluids (R ¼ 1) cannot be worked out analytically.

A potentially annoying feature of defining liquid sim-
plicity from the existence of strong correlations of the
virial potential-energy fluctuations is that one cannot
determine whether or not a given liquid is simple di-
rectly from the potential. We believe one should accept
this as an acceptable cost for precisely defining the class
of simple liquids. With the power of today’s computers,
this is much less of a problem than previously. For most
systems, a brief simulation will determine whether or not
the liquid is strongly correlating at the state point in
question. Nevertheless, it would be nice to have an
analytical criterion for liquid simplicity, i.e., for estimat-
ing whether R> 0:9.

Except for IPL fluids, no system is simple in the entire
fluid phase. This paper focused on the condensed liquid
phase, not too far from the solid-liquid-coexistence line,
but far from the critical point and the gas phase—it is here
that some liquids are simple. The present focus on liquids
is not meant to imply a limitation to the liquid phase,
however. Simulations show that when a strongly correlat-
ing liquid crystallizes, the crystal is at least as strongly
correlating [18]. A theory has been developed for (classi-
cal) strongly correlating crystals, showing that the property
of strong virial potential-energy equilibrium fluctuations in
the NVT ensemble is an anharmonic effect that survives as
T ! 0 [18]. Of course, low-temperature crystals are not
classical systems, and for both liquids and crystals an

interesting topic for future work is the implication of the
proposed simplicity definition for the quantum description.
Section IVA summarized the several nominal essences

of simple liquids. What is the real essence of liquid
simplicity? Given that three fundamental characterizations
of strongly correlating liquids are equivalent—the
mathematical, the physical, and the new chemical (FCS)
characterizations—this question cannot be answered
unequivocally. At the end of the day, it is a matter of taste
whether one defines liquid simplicity from the existence of
strong virial potential-energy correlations, from the exis-
tence of isomorphs, from the existence of invariance curves
in the phase diagram of constant-potential-energy hyper-
surfaces, or from the property that interactions beyond the
FCS play little role.
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APPENDIX A: MODEL DETAILS

The model systems investigated are listed below.
Quantities are given in rationalized units defined by putting
� ¼ � ¼ 1. Masses that are not specified are unity.
Single-component inverse-power-law (IPL) fluids.—

N ¼ 1024 particles interacting via vðrÞ ¼ �ð�=rÞn.
Three different fluids were studied (n ¼ 18; 6; 4).
Single-component Lennard-Jones liquid.—N ¼ 1024

particles interacting via Eq. (4).
Generalized Kob-Andersen binary mixture [28,29].—A

binary mixture of 820 A particles and 204 B particles
interacting via vðrÞ ¼ ���=ð12� nÞ½nð���=rÞ12 �
12ð���=rÞn�. Binary mixtures with n ¼ 4; 10 were

studied. The parameters used are �AA ¼ 1, �AB ¼ 1:5,

�BB ¼ 0:5,�AA¼21=6,�AB ¼ 0:8 � 21=6,�BB¼0:88 �21=6.
Wahnstrom binary LJ mixture.—An equimolar binary

mixture of A and B particles (N ¼ 1024) interacting via
the LJ potential. The parameters are �AA ¼ �AB ¼ �BB ¼
1, �AA ¼ 1, �BB ¼ 1=1:2, �AB ¼ ð�AA þ �BBÞ=2, mA ¼
2, mB ¼ 1.
Buckingham liquid.—N ¼ 1000 particles interacting

via vðrÞ ¼ �f6=ð�� 6Þexp½�ð1� r=rmÞ� ��=ð�� 6Þ�
ðrm=rÞ6g. The parameters used are � ¼ 1, � ¼ 14:5,

rm ¼ 21=6.
Dzugutov liquid [51].—N ¼ 1024 particles interacting

via vðrÞ ¼ v1 þ v2 where v1¼fAðr�n�BÞexp½c=ðr�aÞ�g
and v2 ¼ B exp½d=ðr� bÞ� and r � a ) v1 ¼ 0, r �
b ) v2 ¼ 0 (a < b). The parameters used are a ¼ 1:87,
b ¼ 1:94, c ¼ 1:1, d ¼ 0:27, A ¼ 5:82, B ¼ 1:28,
n ¼ 16.
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Lennard-Jones Gaussian liquid [52].—N ¼ 1024
particles interacting via vðrÞ ¼ �fð�=rÞ12 � 2ð�=rÞ6 �
�0 exp½�ðr� r0Þ2=2�2

0�g. The parameters used are �2
0 ¼

0:02, �0 ¼ 1:50, r0 ¼ 1:47.
Gaussian core model [52].—N ¼ 1024 particles inter-

acting via vðrÞ ¼ � exp½�ðr=�Þ2�.
The Hansen-McDonald molten salt model [57].—N ¼

2744 particles forming an equimolar binary mixture of
singly charged cations and anions. The potential between
two particles of charge q� and q� is given by vðrÞ ¼
ð1=9Þr�9 þ q�q�=r, where qþ ¼ 1, q� ¼ �1.

Lewis-Wahnstrom OTP [58,59].—The Lewis-
Wahnstrom OTP model consists of three identical LJ par-
ticles rigidly bonded in an isosceles triangle with unity
sides and a top angle of 75	 (number of molecules studied:
N ¼ 320).

The asymmetric dumbbell model [19].—This molecular
model consists of a large (A) and a small (B) LJ particle,
rigidly bonded with a bond distance of 0:29=0:4963
(number of molecules studied: 500). This model has
�BB ¼ 0:391=0:4963, �BB ¼ 0:669 44=5:726, and mB ¼
15:035=77:106. The AB interaction between different
molecules is determined by the Lorentz-Berthelot mixing
rule.

Rigid SPC/E water [60].—This water model is an isos-
celes triangle with sides 1=3:166 and base line 0.52 (num-
ber of molecules studied: 1000). The oxygen-oxygen
intermolecular interactions are given by the LJ pair poten-
tial (�OO ¼ 1, �OO ¼ 1, and mO ¼ 16). There are no
intermolecular LJ interactions for H-H or H-O. The three
particles are charged with qO ¼ �22:0 and qH ¼ 11:0.

APPENDIX B: HOW TO DELIMIT THE FIRST
COORDINATION SHELL?

In all simulations, the FCS cutoff was defined by placing
the cutoff at the first minimum of the RDF, which is the
standard definition of the FCS for liquids [13]. An alter-
native definition goes back to van der Waals [87]. The FCS
is here identified with a sphere of radius determined by
requiring that the average density �integrated within the FCS

equals the overall average density �mean. For the single-
component LJ liquid, this leads to virtually the same
FCS [31]. Some change occurs for the standard KABLJ
mixture, however. This is clear from Fig. 20 in which
the integrated local density of A particles calculated from
the RDF (including the particle at the center) is shown as a
function of the distance to the origin. The van der Waals
distance is slightly larger than the first minimum of the
RDF.

We applied this alternative definition of a FCS cutoff in
Fig. 21, which shows the A-particle ISF for the (12, 6)-
KABLJ mixture of Fig. 20 simulated with, respectively,
a cutoff at the first minimum of the RDF [Fig. 21(a)]
and a van der Waals cutoff [Fig. 21(b)]. Although the
difference is merely 0.05, the van der Waals cutoff approx-
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(a) FCS identified from the minimum beyond the first peak of the
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equals the mean density of the system. The van der Waals
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as defining the FCS-cutoff radius gives a better representation of
the dynamics.
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imates the reference ISF better than does the RDF mini-
mum cutoff. Thus, it is possible that the van der Waals
distance may serve as a better definition of the FCS than
the standard FCS definition.

Identifying the exact size of the FCS for molecular
systems is less straightforward, especially when different
intermolecular interactions are involved. It is noteworthy
how well the simple cutoff scheme in Fig. 18 represents the
dynamics of the asymmetric dumbbell model. The slight
deviations observed for the OTP model [Fig. 17(b)] dis-
appear when the cutoff is increased from rc ¼ 1:47 to rc ¼
1:56 (Fig. 22). This distance is close, but not identical, to
the van der Waals distance calculated from the particle
RDF (approximately 1.53). More work is needed to clarify
the best way to delimit the FCS and define the FCS
cutoff.

[1] Plato, Statesman (Dialogue), in Plato: Complete Works,
edited by J.M. Cooper and D. S. Hutchinson (Hackett
Publishing Co. Inc., Indianapolis, 1997).

[2] Aristotle, Categories (http://www.classicallibrary.org/
aristotle/categories/index.htm, 2001).

[3] J. Locke, An Essay Concerning Human Understanding,
Book III (http://etext.lib.virginia.edu/modeng/modengL
.browse.html, 2002).

[4] http://en.wikipedia.org/wiki/classification.
[5] J. L. Barrat and J. P. Hansen, Basic Concepts for Simple

and Complex Liquids (Cambridge University Press,
Cambridge, 2003).

[6] B. Kirchner, Theory of Complicated Liquids: Investigation
of Liquids, Solvents and Solvent Effects with Modern
Theoretical Methods, Phys. Rep. 440, 1 (2007).

[7] J. P. Hansen and J. R. McDonald, Theory of Simple Liquids
(Academic, New York, 2005), 3rd ed.

[8] I. Z. Fisher, Statistical Theory of Liquids (University of
Chicago, Chicago, 1964).

[9] S. A. Rice and P. Gray, The Statistical Mechanics of
Simple Liquids (Interscience, New York, 1965).

[10] H. N.V. Temperley, J. S. Rowlinson, and G. S.
Rushbrooke, Physics of Simple Liquids (Wiley, New
York, 1968).

[11] N. K. Ailawadi, Equilibrium Theories of Classical Fluids,
Phys. Rep. 57, 241 (1980).

[12] C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids
(Oxford University, New York 1984).

[13] D. Chandler, Introduction to Modern Statistical
Mechanics (Oxford University, New York, 1987).

[14] U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C.
Dyre, Strong Pressure-Energy Correlations in van der
Waals Liquids, Phys. Rev. Lett. 100, 015701 (2008).

[15] U. R. Pedersen, T. Christensen, T. B. Schrøder, and J. C.
Dyre, Feasibility of a Single-Parameter Description of
Equilibrium Viscous Liquid Dynamics, Phys. Rev. E 77,
011201 (2008).

[16] N. P. Bailey, T. Christensen, B. Jakobsen, K. Niss, N. B.
Olsen, U. R. Pedersen, T. B. Schrøder, and J. C. Dyre,
Glass-Forming Liquids: One or More ’’Order’’
Parameters?, J. Phys. Condens. Matter 20, 244113 (2008).

[17] N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and
J. C. Dyre, Pressure-Energy Correlations in Liquids. I.
Results from Computer Simulations, J. Chem. Phys. 129,
184507 (2008).

[18] N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and
J. C. Dyre, Pressure-Energy Correlations in Liquids. II.
Analysis and Consequences, J. Chem. Phys. 129, 184508
(2008).

[19] T. B. Schrøder, U. R. Pedersen, N. P. Bailey, S. Toxvaerd,
and J. C. Dyre, Hidden Scale Invariance in Molecular van
der Waals Liquids: A Simulation Study, Phys. Rev. E 80,
041502 (2009).

[20] T. B. Schrøder, N. P. Bailey, U. R. Pedersen, N. Gnan, and
J. C. Dyre, Pressure-Energy Correlations in Liquids. III.
Statistical Mechanics and Thermodynamics of Liquids
with Hidden Scale Invariance, J. Chem. Phys. 131,
234503 (2009).

[21] N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and
J. C. Dyre, Pressure-Energy Correlations in Liquids. IV.
‘‘Isomorphs’’ in Liquid Phase Diagrams, J. Chem. Phys.
131, 234504 (2009).

[22] N. Gnan, C. Maggi, T. B. Schrøder, and J. C. Dyre,
Predicting the Effective Temperature of a Glass, Phys.
Rev. Lett. 104, 125902 (2010).

[23] U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, Repulsive
Reference Potential Reproducing the Dynamics of a
Liquid with Attractions, Phys. Rev. Lett. 105, 157801
(2010).

[24] T. B. Schrøder, N. Gnan, U. R. Pedersen, N. P. Bailey, and
J. C. Dyre, Pressure-Energy Correlations in Liquids. V.
Isomorphs in Generalized Lennard-Jones Systems, J.
Chem. Phys. 134, 164505 (2011).

[25] U. R. Pedersen, N. Gnan, N. P. Bailey, T. B. Schrøder, and
J. C. Dyre, Strongly Correlating Liquids and their
Isomorphs, J. Non-Cryst. Solids 357, 320 (2011).

[26] L. Berthier and G. Tarjus, Nonperturbative Effect of
Attractive Forces in Viscous Liquids, Phys. Rev. Lett.
103, 170601 (2009).

[27] L. Berthier and G. Tarjus, The Role of Attractive
Forces in Viscous Liquids, J. Chem. Phys. 134, 214503
(2011).

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

t

0.0

0.2

0.4

0.6

0.8

1.0

F
s( 

q 
=

 7
.0

6,
 t 

)

rc = 4.500
rc = 1.560

Lewis-Wahnström OTP

(ρ = 0.33, T = 0.70)

cut-off at distance:
~ ρ

integrated
 = ρ

mean

FIG. 22. Results for the incoherent ISF of the Wahnstrom OTP
model with a cutoff at rc ¼ 1:56 (red), and a large reference
cutoff (black). The deviations of Fig. 17(b), in which rc ¼ 1:47,
disappear by choosing this slightly larger cutoff, not far from the
van der Waals cutoff (1.53).

INGEBRIGTSEN et al. PHYS. REV. X 2, 011011 (2012)

011011-18



[28] W. Kob and H. C. Andersen, Testing Mode-Coupling
Theory for a Supercooled Binary Lennard-Jones Mixture
I: The van Hove Correlation Function, Phys. Rev. E 51,
4626 (1995).

[29] W. Kob and H. C. Andersen, Testing Mode-Coupling
Theory for a Supercooled Binary Lennard-Jones
Mixture. II. Intermediate Scattering Function and
Dynamic Susceptibility, Phys. Rev. E 52, 4134 (1995).

[30] D. Weeks, D. Chandler, and H. C. Andersen, Role of
Repulsive Forces in Determining the Equilibrium
Structure of Simple Liquids, J. Chem. Phys. 54, 5237
(1971).

[31] S. Toxvaerd and J. C. Dyre, Communication: Shifted
Forces in Molecular Dynamics, J. Chem. Phys. 134,
081102 (2011).

[32] S. Toxvaerd and J. C. Dyre, Role of the First Coordination
Shell in Determining the Equilibrium Structure and
Dynamics of Simple Liquids, J. Chem. Phys. 135,
134501 (2011).

[33] A. Paliwal, D. Asthagir, L. R. Pratt, H. S. Ashbaugh, and
M. E. Paulaitis, An Analysis of Molecular Packing and
Chemical Association in Liquid Water Using
Quasichemical Theory, J. Chem. Phys. 124, 224502
(2006).

[34] M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids (Oxford Science Publications, New York, 1987).

[35] T. Ree, H. S. Kang, C. S. Lee, and F. H. Ree, A
Perturbation Theory of Classical Equilibrium Fluids, J.
Chem. Phys. 82, 414 (1985).

[36] R.W. Hall and P.G. Wolynes, Intermolecular Forces
and the Glass Transition, J. Phys. Chem. B 112, 301
(2008).

[37] C. J. Fennell and J. D. Gezelter, Is the Ewald Summation
Still Necessary? Pairwise Alternatives to the Accepted
Standard for Long-Range Electrostatics, J. Chem. Phys.
124, 234104 (2006).

[38] J. S. Hansen, T. B. Schrøder, and J. C. Dyre, Simplistic
Coulomb Forces in Molecular Dynamics: Comparing the
Wolf and Shifted-Force Approximations, arXiv:1108.5267.
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Abstract
According to standard liquid-state theory repulsive and attractive pair forces play distinct roles
for the physics of liquids. This paradigm is put into perspective here by demonstrating a
continuous series of pair potentials that have virtually the same structure and dynamics,
although only some of them have attractive forces of significance. Our findings reflect the fact
that the motion of a given particle is determined by the total force on it, whereas the quantity
usually discussed in liquid-state theory is the individual pair force.

(Some figures may appear in colour only in the online journal)

A liquid is held together by attractions between its molecules.
At the same time, it is very difficult to compress a liquid
because the molecules strongly resist closely approaching
each other. These facts have been known for a long time,
and today it is conventional wisdom that the repulsive and
the attractive forces play distinct roles for the physics of
liquids. The repulsive forces, which ultimately derive from
the Fermi statistics of electrons, are harsh and short ranged.
According to standard theory these forces are responsible for
the structure and, in particular, for reducing considerably the
liquid’s entropy compared to that of an ideal gas at the same
density and temperature. The attractive forces, on the other
hand, are long ranged and weaker. These forces, which derive
from induced dipolar interactions, reduce the pressure and
energy compared to that of an ideal gas at the same density
and temperature. We argue below that this physical picture,
though quite appealing, overemphasizes the individual pair
forces and does not provide a full understanding because it
does not relate directly to the total force on a given particle.

The traditional understanding of the liquid state is
based on pioneering works by Frenkel, Longuet-Higgins and

Widom, Barker and Henderson, and Weeks, Chandler, and
Andersen (WCA), and many others [1, 2]. The basic idea
is that the attractions may be regarded as a perturbation of
a Hamiltonian based on the repulsive forces, the physics of
which is usually well represented by a hard-sphere reference
system [3]. Perturbation theories based on this picture [1–4]
are standard for calculating simple liquids’ thermodynamics
and structure as quantified, e.g., by the radial distribution
function. We do not question the usefulness of perturbation
theories, but will argue from theory and simulations that the
repulsive and the attractive pair forces do not always play
clearly distinguishable roles for the structure and dynamics
of simple liquids.

This point is illustrated in the simplest possible way by
studying systems of Lennard-Jones (LJ) particles. The LJ pair
potential is given by vLJ(r) = 4ε[(r/σ)−12

− (r/σ)−6
]. This

function is plotted in figure 1 for a number of different choices
of the parameters ε and σ . In the following we adopt the
unit system in which ε0 = σ0 = 1 and kB = 1. We use the
same unit system for all the potentials. Consider a simulation
of the potential with (ε, σ ) = (1.25, 0.947) at the state point
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Figure 1. Lennard-Jones pair potentials vLJ(r) = 4ε [(r/σ)−12

− (r/σ)−6
] predicted to give virtually the same physics at the state

point (ρ,T) = (1, 1) using the unit system defined by ε0 = σ0 = 1
and kB = 1. Visually, these potentials have little in common; in
particular, they have very different contributions from attractive
forces. These pair potentials were constructed analytically using the
isomorph theory, as detailed in the text after figure 2.

(ρ ≡ N/V,T) = (1, 1). Clearly, it would lead to exactly the
same structure and dynamics (after appropriate rescaling)
doing a simulation of the potential with (ε, σ ) = (8.73 ×
10−5, 2.0) at the temperature T = 8.73 × 10−5/1.25 and
the density ρ = (0.947/2.00)3—this simply reflects the fact
that the physics is determined by the two dimensionless
parameters T/ε and σ 3ρ. We show below however that, in
addition to this trivial fact, the two potentials also give (to a
good approximation) the same structure and dynamics when
both potentials are investigated at the state point (ρ,T) =
(1, 1). In fact, all the potentials in figure 1 were chosen to
give virtually the same structure and dynamics at the state
point (ρ,T) = (1, 1). The paper mainly focuses on this state
point, but results for a few other state points are also given,
confirming the findings at (ρ,T) = (1, 1).

The potentials of figure 1 all have attractive forces, but
for some of the potentials the attractive forces are entirely
insignificant. To show that these potentials nevertheless have
virtually the same structure and dynamics, NVT computer
simulations of systems of 1000 particles were performed
using the RUMD software that runs on graphics processing
units [5].

Figure 2(a) shows the radial distribution function g(r)
for the seven LJ pair potentials of figure 1 at the state point
(ρ,T) = (1, 1). For comparison, simulations at the same
state point are shown in figure 2(b) for seven potentials
with the same ε variation, but fixed σ = 0.947. Figure 2(c)
shows the radial distribution functions at the state point (1, 1)
for the pair potentials of figure 1 cut off according to the
Weeks–Chandler–Andersen (WCA) recipe, i.e., by cutting the
potentials at their minima and shifting them to zero there.

Figure 3 shows results for the dynamics, with (a) giving
the mean-square displacement for the seven potentials of
figure 1. Figure 3(b) compares the results for the diffusion
constants with those of WCA simulations.

By the Henderson uniqueness theorem [6] the pair
potentials of figure 1 cannot have exactly the same pair

Figure 2. Radial distribution functions at the state point
(ρ,T) = (1, 1) for different sets of potentials: (a) the LJ pair
potentials of figure 1; (b) a series of LJ pair potentials with fixed σ
parameter and the ε-values listed in figure 1; (c) results for the
series of Weeks–Chandler–Andersen (WCA) potentials
corresponding to the LJ potentials of figure 1.

distribution functions. Based on figures 2 and 3 we see that,
nevertheless, the potentials lead to very similar structure and
very similar dynamics. In fact, both structure and dynamics
among the potentials of figure 1 are closer to each other than
to the WCA versions of the same potentials.

How were the pair potentials of figure 1 determined and
why do they have almost the same structure and dynamics?
The starting point is the existence of isomorphs in the phase
diagram of liquids with strong correlations between NVT
virial and potential-energy equilibrium fluctuations [7, 8]
(which we recently argued provides a useful definition of a
simple liquid [9]). Two state points with density and tempera-
ture (ρ1,T1) and (ρ2,T2) are termed isomorphic [7] if all pairs
of physically relevant microconfigurations of the two state
points, which trivially scale into one another, i.e., ρ1/3

1 r(1)i =

ρ
1/3
2 r(2)i for all particles i, have proportional configura-

tional Boltzmann factors: exp[−U(r(1)1 , . . . , r(1)N )/kBT1] =

C12 exp[−U(r(2)1 , . . . , r(2)N )/kBT2] in which the constant of
proportionality is independent of the microconfiguration.
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Figure 3. (a) The mean-square displacement for the LJ pair
potentials of figure 1 at the state point (ρ,T) = (1, 1). (b) Diffusion
constants as functions of σ for the full potentials of figure 1 (red)
and for the WCA versions of the potentials (black). At high σ the
WCA results are accurate because these potentials are almost purely
repulsive.

LJ systems are strongly correlating and thus have isomorphs
to a good approximation [8]. The invariance of the canonical
probabilities of scaled configurations along an isomorph
has several implications [7]. Excess entropy and isochoric
specific heat are both isomorph invariant, the dynamics in
reduced units are invariant for both Newtonian and Brownian
equations of motion, reduced-unit static density correlation
functions are invariant, a jump between two isomorphic state
points takes the system instantaneously to equilibrium, etc.
For Newtonian dynamics, using reduced units corresponds
to measuring length in units of ρ−1/3, time in units of
ρ−1/3√m/kBT where m is the particle mass, and energy in
units of kBT . Thus the reduced particle coordinates are defined
by r̃i = ρ

1/3ri.
An isomorph was generated using the recently derived

result [10] that liquids with good isomorphs have simple
thermodynamics in the sense that the temperature is a product
of a function of excess entropy per particle s and a function of
density,

T = f (s)h(ρ). (1)

The function h(ρ) inherits the analytical structure of the
pair potential in the sense that, if the latter is given by
the expression v(r) =

∑
nvnr−n, then h(ρ) =

∑
nCnρ

n/3,
in which each term corresponds to a term in the pair
potential [10]. Since h(ρ) is only defined within an overall

Figure 4. (a) The AA particle radial distribution function of the
Kob–Andersen binary Lennard-Jones (KABLJ) mixture for a family
of isomorphic pair potentials similar to those of figure 1. (b) The
AA particle radial distribution function of the KABLJ mixture with
the corresponding WCA potentials. (c) The A particle incoherent
intermediate scattering function for the same family of potentials as
a function of time at the wavevector defined from the maximum of
g(r) (full curves). The full dotted curves show the WCA
predictions [12]. (d) The function χ4(t) for the A particles for the
same pair potentials (full curves) and the WCA predictions (dashed
curves).

multiplicative constant, one can write for the LJ pair potential

h(ρ) = αρ4
+ (1− α)ρ2. (2)

The constant α was determined from simulations at the state
point (ρ,T) = (1, 1) for ε = 1.25 and σ = 0.947, which is
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a typical liquid state point of the LJ system. This was done
by proceeding as follows [11]. We have previously [7, 10]
derived the identities

γ ≡

(
∂ ln T
∂ ln ρ

)
Sex

=
d ln h
d ln ρ

=
〈1W1U〉
〈(1U)2〉

, (3)

in which W is the virial, U the potential energy, and the
angular brackets denote NVT equilibrium ensemble averages.
Combining equations (2) and (3) with the simulation results
for the fluctuations of W and U leads to α = γ /2− 1 = 1.85.

An isomorph is a set of state points with almost
the same structure and dynamics in reduced units [7].
Via appropriate rescaling, however, an isomorph can be
interpreted differently: as defining a set of different LJ
pair potentials that give invariant properties at the same
state point. These are simply two different ways of
looking at an invariant Boltzmann factor: equation (1)
implies that exp

(
−U(ρ−1/3r̃1, . . . , ρ

−1/3r̃N)/[f (s)h(ρ)]
)
=

exp(−[1/f (s)]
∑

i<jvLJ(ρ
−1/3r̃ij)/h(ρ)), where rij is the

distance between particles i and j. Along an isomorph f (s)
is a constant; if we consider the isomorph which includes
the state point ρ = T = 1, then given the normalization of
equation (2) we have f (s) = 1. The shift in interpretation
now comes by noticing that the same Boltzmann factor is
obtained by considering a configuration at unit density and
unit temperature and a family of isomorphic pair potentials
vd

LJ(r) ≡ vLJ
(
d−1/3r

)
/h(d), where we have dropped the tilde

from positions and replaced ρ with d to emphasize the shift
in perspective. These pair potentials are still LJ potentials,
but with different energy and length parameters; the potentials
plotted in figure 1 were arrived at in this way.

The single-component LJ system does not have a broad
dynamic range because it cannot be deeply supercooled. To
test the robustness of the predicted invariance of the physics
for families of ‘isomorphic’ pair potentials, we simulated also
the Kob–Andersen binary LJ (KABLJ) mixture [13], which
is easily supercooled into a highly viscous state. For this
system the constant α = 1.29 was identified from simulations
of 1000 particles at the state point (ρ,T) = (1.60, 2.00),
using again equation (3). From the function h(ρ) a family of
isomorphic equivalent pair potentials was generated that looks
much like those of figure 1; in particular, some of them have
a vanishingly small attraction.

Figure 4(a) shows the AA particle radial distribution
functions for these different pair potentials and figure 4(b)
shows the same quantity for the WCA version of the
potentials. Figure 4(c) shows the A particle incoherent
intermediate scattering function and, with dashed lines,
simulations of the corresponding WCA systems. Even though
the WCA approximation has the correct repulsive forces,
its physics differs considerably from the isomorphic pair
potentials, as noted already by Berthier and Tarjus [12]. We
also calculated χ4(t), a measure of dynamic heterogeneities.
The results shown in figure 4(d) are more noisy, but confirm
the predicted invariance of the dynamics for the different pair
potentials. The corresponding WCA results are shown with
dashed lines.

Figure 5. (a) Probability distribution of x-components of the total
forces on individual particles, p(Fx), for the different
single-component LJ potentials of figure 1 at the state point
(ρ,T) = (1, 1). (b) Snapshot of the x-component of the force Fx on
one particle as a function of time. The system simulated is defined
by ε = 1.25 and σ = 0.947, and Fx was subsequently evaluated for
the same series of configurations for the six other potentials. These
figures show that, even though the pair potentials are quite different,
the forces are virtually identical except at the extrema.

It would require extraordinary abilities to know from in-
spection of figure 1 that these pair potentials have virtually the
same structure and dynamics. The potentials have neither the
repulsive nor the attractive terms in common, so why is it that
they have such similar behavior? The answer is that they result
in virtually the same forces (figure 5). The force on a given
particle is the sum of contributions from (primarily) its nearest
neighbors, and plotting merely the pair potential can be mis-
leading. We conclude that, by reference to the pair potential
alone, one cannot identify separate roles for the repulsive and
the attractive forces in a many-particle system. There simply
are no ‘repulsive’ and ‘attractive’ forces as such.

The above reported simulations focused for each system
on one particular state point. If the potentials in figure 1 are
to be regarded as equivalent with respect to structure and
dynamics, however, one should also test other state points. We
have done this briefly, and the results are shown in figure 6.
Clearly, the degree of similarity observed at the state point
(ρ,T) = (1, 1) is also maintained for the other state points
(for comparison, figure 6(c) reproduces the (ρ,T) = (1, 1)
results from figure 2(a)).

4
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Figure 6. Radial distribution functions for the potentials of figure 1
at other state points than the state point (ρ,T) = (1, 1) studied
above. For reference we give in each subfigure the value of γ
defined in equation (3). (a) (ρ,T) = (1, 2); (b) (ρ,T) = (1, 4);
(c) (ρ,T) = (1, 8)—the γ -values reported in this subfigure are
those of the state point (ρ,T) = (1, 1).

What are the implications of the above results? For
liquid-state perturbation theory the WCA theory is rightfully
renowned for its ability to make semi-analytic predictions
for thermodynamic properties of simple liquids. The focus of
liquid-state theory has moved on, however, in part because

modern computers make it straightforward to simulate the
kinds of liquid for which WCA theory can make accurate
predictions. We do not claim to have a better way to do
perturbation theory in the sense of WCA. While WCA
theory is based upon an assumed equivalence between two
potentials differing by the removal of attractions, the present
work describes a predicted and observed equivalence between
apparently quite different potentials. This observation will
not facilitate perturbation theory, but it could potentially be
useful as a check on perturbation theories and other theories
of the liquid state, for example density functional theory; such
theories should be consistent with the observed invariance as
the parameters of the potential are changed.

The center for viscous liquid dynamics ‘Glass and Time’
is sponsored by the Danish National Research Foundation
(DNRF).
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I. INTRODUCTION

For supercooled liquids near the glass transition changing
slightly the density F or temperature T the structural relaxation
time τα may change several orders of magnitude. In the study of
these liquids1�3 it is often found that τα does not change when
Fγ/T is kept constant, where γ is a material-specific exponent.
This phenomenon is called density scaling (or thermodynamic
scaling) and has been established for many liquids, excluding
associative liquids such as water.3 A related observation is
isochronal superposition,3�5 i.e., that supercooled state points
with identical τα have the same dielectric spectrum. A
different and at first sight unrelated concept is Rosenfeld’s
excess entropy scaling.6,7 In this procedure a relation is es-
tablished between hard-to-predict dynamic properties and
easier-to-predict thermodynamic quantities, here the excess
entropy, via a scaling of the dynamics to so-called reduced
units. Initially, this was observed for model atomic liquids,6,7

but later it was extended to model molecular liquids8�10 and
experimental liquids.11�14 The importance of using reduced
units with regards to density scaling of experimental data has
recently been pointed out.15,16

In a recent series of papers17�21 a new class of liquids was
identified. These liquids are characterized by having strong
correlation in the NVT ensemble between the equilibrium
fluctuations of the potential energy U and the virialW. Recall
that the instantaneous energy E and pressure p can be written
as a sum of a kinetic part and a configurational part: E = K + U
and pV = NkBT + W, respectively. The correlation between
U and W is quantified via the linear correlation coefficient

R defined as

R ¼ ÆΔWΔUæffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆðΔWÞ2æ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆðΔUÞ2æ

q ð1Þ

The class of strongly correlating liquids is defined by R g
0.90.17 An inverse power-law (IPL) system r�n has correla-
tion coefficient R = 1, because for all microconfigurationsW =
(n/3)U, and only IPL systems are perfectly correlating. In the
study of strongly correlating liquids it was discovered that
they obey Rosenfeld’s excess entropy scaling, isochronal
superposition, as well as density scaling.20�23 These types
of scalings can be explained in the framework of so-called
isomorphs (definition follows later).

Model systems that have been identified17,18,22,24�26 to belong
to this class of liquids include the standard single-component
Lennard-Jones liquid (SCLJ), the Kob�Andersen binary LJ
mixture27,28 (KABLJ), the asymmetric dumbbell model,22 the
Lewis�Wahnstr€om o-terphenyl model29,30 (OTP), and others.
Strong WU correlation has been experimentally verified for a
molecular van der Waals liquid31 and for supercritical argon.24

The class of strongly correlating liquids includes most or all van der
Waals and metallic liquids, whereas covalently, hydrogen-bonding,
or ionic liquids are generally not strongly correlating.17 The latter
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ABSTRACT: Isomorphs are curves in the phase diagram along which a
number of static and dynamic quantities are invariant in reduced units (Gnan,
N.; et al. J. Chem. Phys. 2009, 131, 234504). A liquid has good isomorphs if and
only if it is strongly correlating, i.e., if the equilibrium virial/potential energy
fluctuations are more than 90% correlated in the NVT ensemble. Isomorphs
were previously discussed with a focus on atomic systems. This paper
generalizes isomorphs to liquids composed of rigid molecules and study the
isomorphs of systems of small rigid molecules: the asymmetric dumbbell
model, a symmetric inverse power-law dumbbell, and the Lewis�Wahnstr€om
o-terphenyl (OTP) model. For all model systems, the following quantities are
found to a good approximation to be invariant along an isomorph: the
isochoric heat capacity, the excess entropy, the reduced molecular center-of-
mass self-part of the intermediate scattering function, and the reduced
molecular center-of-mass radial distribution function. In agreement with theory, we also find that an instantaneous change of
temperature and density from an equilibrated state point to an isomorphic state point leads to no relaxation. The isomorphs of the
Lewis�Wahnstr€om OTP model were found to be more approximative than those of the asymmetric dumbbell model; this is
consistent with the OTP model being less strongly correlating. The asymmetric dumbbell and Lewis�Wahnstr€om OTP models
each have a “master isomorph”; i.e., the isomorphs have identical shape in the virial/potential energy phase diagram.
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reflects the fact that competing interactions tend to destroy the
strong correlation.

An example of strong WU correlation is given in Figure 1 for
the asymmetric dumbbell model22 (details of this model are
provided in section III). Figure 1a shows the time evolution of
the equilibrium fluctuations ofU andW normalized to zero mean
and unity standard deviation; Figure 1b shows a scatter plot of
the corresponding values of U and W. U and W are clearly
strongly correlated in their equilibrium fluctuations.

References 17 and 18 identified the cause of strong WU
correlation in the SCLJ liquid. The LJ pair potential can be well
approximated from r = 0.95σ to r = 1.5σ (Pedersen et al.23) by a
sum of an IPL, a linear term, and a constant via the so-called
“extended IPL potential”:18 vLJ(r)≈ Ar�n + B + Cr. At moderate
pressures this covers the entire first peak of the radial distribution
function, i.e., the first coordination shell. The constraint of
constant volume in the NVT ensemble has the effect that when
one nearest neighbor distance increases, another one decreases;
upon summation the contribution from the linear term to U and
W is almost constant. The latter observation has the consequence
that some of the scaling properties of pure IPL systems are
inherited in the LJ system in the form of isomorphs.

Reference 20 introduced a new concept referring to a strongly
correlating atomic liquid’s phase diagram, namely isomorphic
curves or more briefly: isomorphs. Two state points with density
and temperature (F1, T1) and (F2, T2) are defined to be
isomorphic32 if the following holds: Whenever a configuration
of state point (1) and one of state point (2) have the same
reduced coordinates (F11/3ri(1) = F21/3ri(2) for all particles i), these
two configurations have proportional Boltzmann factors, i.e.,

e�Uðrð1Þ1 , :::, rð1ÞN Þ=kBT1 ¼ C12e
�Uðrð2Þ1 , :::, rð2ÞN Þ=kBT2 ð2Þ

Here C12 is a constant that depends only on the state points (1)
and (2). An isomorph is defined as a continuous curve of state
points that are all pairwise isomorphic. In other words, eq 2
defines an equivalence relation with the equivalence classes being
the isomorphs. Only IPL systems have exact isomorphs; these
are characterized by having Fγ/T = const where γ = n/3.
Reference 20 argued analytically and demonstrated by simula-
tions that strongly correlating atomic liquids have isomorphs to
a good approximation.

From the defining property of an isomorph (eq 2) it follows
that the structure in reduced units (~ri� F1/3ri) is invariant along
an isomorph, because the proportionality constant C12 dis-
appears when the configurational canonical probabilities are
normalized.20 Thus the reduced unit radial distribution function
and the excess entropy Sex = S � Sid are isomorph invariants,
where Sid is the ideal gas contribution to the entropy at the same
temperature and density. Isomorph invariance is, however, not
limited to static quantites; also the mean-square displacement,
time autocorrelation functions, and higher-order correlation func-
tions are invariant in reduced units along an isomorph. The reader is
referred to ref 20 for a detailed description of isomorph invariants, as
well as the proof that a liquid is strongly correlating if and only if it has
good isomorphs. A brief overview of strongly correlating liquids and
their isomorphs can be found in Pedersen et al.23

Reference 21 studied isomorphs of atomic single-component
and multi-component LJ liquids with generalized exponents m
and n. It was found that for given exponents (m, n) all isomorphs
have the same shape in the WU phase diagram; i.e., a so-called
master isomorph exists from which all isomorphs can be generated

via a simple scaling of theWU coordinates. For instance, the shape of
isomorphs in the WU phase diagram of the SCLJ liquid and the
KABLJ liquid are the same.

References 17�21 focused on understanding strong WU
correlation and its implication for atomic systems. Schrøder
et al.22 in 2008 studied two rigid molecular liquids that are
strongly correlating: the asymmetric dumbbell model and the
Lewis�Wahnstr€om OTP model (section III). At that time the
isomorph concept had not yet been developed, and state points
with the same Fγ/T, as inspired from the IPL system, were tested
for collapse of, for instance, the reduced unit radial distribution
function (note that in refs 17, 18, and 22 γ is defined slightly
different from subsequent papers). The dynamics in reduced
units was also found to be a function of Fγ/T, to a good
approximation, as is the case for IPL systems.19 Chopra et al.10

found that the Sex can be written (approximately) as a function of
Fγ/T for rigid symmetric LJ dumbbells with different bond
lengths. They also found that the reduced unit diffusion constant
and relaxation time are functions of Sex. These results suggest that
the isomorph concept is relevant also for rigidmolecular systems.
In this paper we expand on earlier results by studying in detail the
same systems as Schrøder et al.22

Figure 1. Two different ways of visualizing the strong virial/potential
energy correlation for the asymmetric dumbbell model at F = 0.932
and T = 0.465 (see section III for details of the model and the units used).
(a) Time evolution ofU (black) andW (red) per particle normalized to zero
mean and unity standard deviation. (b) Scatter plot of the instantaneous
values ofW and U per particle. The correlation coefficient R is 0.96.
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The isomorph definition eq 2 must be modified for rigid
molecules, because the bond lengths are fixed and cannot follow
the overall scaling. A simple modification of eq 2, which is
consistent with the atomic definition, is to define the map-
ping among configurations in terms of the molecular center-
of-masses, instead of the atomic positions. We thus define two
state points in the phase diagram of a liquid composed of rigid
molecules to be isomorphic if the following holds:Whenever two
configurations of the state points have identical reduced center-
of-mass coordinates for all molecules,

F1
1=3rð1ÞCM, i ¼ F2

1=3rð2ÞCM, i ð3Þ
as well as identical Eulerian angles33

ϕ
ð1Þ
i ¼ ϕ

ð2Þ
i θð1Þi ¼ θð2Þi χð1Þi ¼ χð2Þi ð4Þ

these two configurations have proportional Boltzmann factors,
i.e., [where R � (rCM,1, ϕ1, θ1, χ1, ..., rCM,N, ϕN, θN, χN)]

e�UðRð1ÞÞ=kBT1 ¼ C12e
�UðRð2ÞÞ=kBT2 ð5Þ

Again, C12 is a constant that depends only on the state points 1
and 2. An isomorph is defined as a set of state points that are
pairwise isomorphic. It should be noted that, in contrast to what
is the case for atomic systems, because the bonds do not follow
the overall scaling of the system, this definition does not imply
the existence of exact isomorphs for rigid molecules with IPL
interactions between atoms of different molecules.

Taking the logarithm of eq 5 implies

UðRð2ÞÞ ¼ T2=T1 3UðRð1ÞÞ þ kBT2 ln C12 ð6Þ
Equation 6 provides a convenient way of testing to what extent
eq 5 is obeyed for a given system: A simulation is performed at
one state point (1) and the obtained configurations are scaled to
a different density F2, where the potential energy is evaluated.
The respective potential energies of the two state points are
then plotted against each other. In the resulting plot a near
straight-line indicates, because a liquid is usually not perfectly
strongly correlating, that there exists an isomorphic state point
with density F2. The temperature T2 of the isomorphic state
point can be found from the slope of a linear regression fit. This
procedure is termed the “direct isomorph check”.20 If this test is
performed for an atomic IPL system, a correlation coefficient ofR=1
is obtained, consistent with these systems having exact isomorphs.

As an example, we perform a direct isomorph check for the
asymmetric dumbbell model in Figure 2. A correlation coefficient
of R = 0.97 is observed for a 15% density increase. Calculating the
temperature of the isomorphic state point from the linear
regression slope the result differs only 1% from the prediction
by requiring constant excess entropy (see section IV).

In the present paper we show that three model liquids
composed of simple rigid molecules have good isomorphs in
their phase diagram as defined in eqs 3�5. Section II derives
several isomorph invariants in molecular systems composed of
rigid molecules. Section III describes the simulation setup and
the investigated model systems. Section IV investigates the
existence of isomorphs for the asymmetric dumbbell, a sym-
metric IPL dumbbell, and the Lewis�Wahnstr€om OTP models.
Section V investigates the existence of a master isomorph21 for
the asymmetric dumbbell and Lewis�Wahnstr€om OTP models.
Section VI summarizes the results and presents an outlook.

II. ISOMORPH INVARIANTS IN LIQUIDS COMPOSED OF
RIGID MOLECULES

From the single assumption of curves of isomorphic state points
in an atomic liquid’s phase diagram, ref 20 derived several invariants
along an isomorph. Because we have extended this definition in
eqs 3�5 to molecular systems composed of rigid molecules, it is
natural to wonder which of these invariants can be extended to
molecular systems. The molecular isomorph concept is different
from the atomic case in that there is no “ideal” reference system (the
IPL system). Our simulations, however, show that isomorphs can
nevertheless be a useful tool for understanding such liquids.

In the following we derive several invariants from exact
isomorphs. We start by noting that the generalization of iso-
morphs to molecular systems define a bijective map among
configurations of state points (1) and (2). The NVT configura-
tional probability density for a system of N rigid molecules is
given by33 (where dR� drCM,1 dτ1 ... drCM,N dτNwith τ� (ϕ, θ,
χ) and dτ = sin θ dθ dϕ dχ33)

P̂ðRÞ ¼ e�UðRÞ=kBTZ
e�UðRÞ=kBT dR

ð7Þ

In combination with eq 5 it follows that all mapped configurations of
state points (1) and (2) have identical Boltzmann probabilities, i.e.,

P̂ðRð1ÞÞ dRð1Þ ¼ P̂ðRð2ÞÞ dRð2Þ ð8Þ
For convenience we introduce two configurational distribution
functions20,33

PðRÞ ¼ ðVΩÞNP̂ðRÞ ð9Þ

~Pð~rNCM, τNÞ ¼ e�UðF�1=3~rNCM, τ
N Þ=kBTZ

e�UðF�1=3~rNCM, τ
NÞ=kBT d~rNCM dτN

ð10Þ

Figure 2. “Direct isomorph check”20 for the asymmetric dumbbell
model. During a simulation at state point (F1, T1) = (0.868, 0.309)
the center-of-mass of each dumbbell is scaled to density F2 = 0.999,
keeping the Eulerian angles fixed. The potential energy is then evaluated
from the scaled configurations and plotted against the potential energy
of the unscaled configurations. The temperature T2(slope) of the
isomorphic state point at density F2 is calculated by multiplying the
linear regression slope with T1 (eq 6). T2(Sex) is the temperature of the
isomorphic state point calculated by keeping the excess entropy constant
(see section IV). It should be noted that the nonzero constant in the
linear regression fit reflects the fact thatC12 in general is not unity (eq 6).
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where Ω is the integral over the Eulerian angles for one molecule
(Ω =

R
dτ = 8π2 for a non-linear molecule). P has been introduced

to make P̂ dimensionless. ~P(~rCM
N ,τN) d~rCM

N dτN is the probability to
observe the system represented by a point in the volume-element
d~rCM

N dτN located at {~rCM
N ,τN}� ~R. ~P is invariant along an isomorph

and is related to P via ~P(~rCM
N ,τN) = (NΩ)�N P(R) = F�NP̂(R). We

note that the excess entropy Sex = �(∂Fex/∂T)N,V, where Fex is the
excess free energy, can be written as20

Sex ¼ � kB

Z
ðVΩÞ�N ln PðRÞ PðRÞ dR ð11Þ

Sex ¼ � kB

Z
ln ~P ~P d~rNCM dτN � kBN lnðNΩÞ ð12Þ

From the above observations we now derive a number of
isomorph invariants in liquids composed of rigid molecules.
1. The molecular center-of-mass structure in reduced units. For a

given configuration of the molecular center-of-mass struc-
ture in reduced units, all orientations of the molecules of
state points (1) and (2) by eq 8 have identical probabilities.
The reduced center-of-mass structure is thus invariant
along an isomorph.

2. Any normalized distribution function describing the (relative)
orientations of molecules with respect to the reduced center-
of-mass structure. This follows by analogy to statement 1
since all mapped configurations of state points (1) and (2)
have identical probabilities.

3. The isochoric heat capacity CV. The excess heat capacity in
the NVT ensemble is given by CV

ex = Æ(ΔU)2æ/kBT2.
Defining X = U/kBT we may write CV

ex = kBÆ(ΔX)2æ. By
eqs 6 and 8 it follows that CV

ex is invariant along an
isomorph, because the constant kBT2 ln C12 disappears
when the mean is subtracted. The ideal gas contribution to
CV is independent of state point (CV

id = 6NkB/2 for non-
linear molecule).

4. The translational two-body entropy10,34,35 St/N = �FkB/
2
R
[gCM(r) ln gCM(r)� gCM(r) + 1] dr, where gCM(r) is the

radial distribution function for the center-of-mass of the
molecules. The density dependence disappears when
switching to reduced units, and by statement 1 the molec-
ular center-of-mass structure in reduced units is invariant
along an isomorph, and thus also the radial distribution
function (in reduced units).

5. The orientational two-body entropy10,34,35 So/N = �FkB/
(2Ω2)

R
gCM(r) g(ω2|r) ln g(ω2|r) dω2 dr, where ω2

denotes a set of angles used to describe the relative
orientation of twomolecules, and g(ω2|r) is the conditional
distribution function for the relative orientation of two
molecules separated by a distance r. Applying reduced units
this invariant follows from statements 1 and 2.

6. All N-body entropy terms.34,35 The excess entropy can
be expanded as Sex = Σi=2

∞ Si. The two-body expression
S2 = St + So is given above, whereas the higher-order
terms are more involved.

7. The excess entropy Sex. The excess entropy is given by eq 12,
and because ~P is invariant along the isomorph, so is the
excess entropy. The latter also follows from statement 6,
because each term is invariant.

8. The molecular center-of-mass NVE and Nos�e�Hoover NVT
dynamics in reduced units. The reduced dynamics of the
individual atomic positions on account of the constraints is

not invariant along an isomorph. Considering instead the
molecular center-of-mass motion the constraint force dis-
appears and these equations of motion are invariant along
an isomorph in reduced units. The proof is given in
Appendix B (a brief summary of constrained dynamics is
given in Appendix A).

9. Any average molecular center-of-mass dynamic quantity
in reduced units. This follows immediately from statement
8, because the molecular center-of-mass equations of mo-
tion in reduced units are invariant along an isomorph.
In particular, this would include the reduced relaxation
time τ~α.

As detailed above, it is necessary to consider the center-of-mass
motion and the motion relative to the center-of-mass separately.
Nevertheless, during the investigation of isomorphs we will
also consider the reduced atomic quantities to examine their
“invariance”.

An additional consequence of isomorphs is that, because
by eq 8 scaled microconfigurations have identical canonical
probabilities, an instantaneous change of temperature and
density from an equilibrated state point to an isomorphic state
point does not lead to any relaxation. This is called an
isomorphic jump.20

III. SIMULATION DETAILS

We studied three model systems of rigid molecules (Figure 3):
the asymmetric dumbbell (N = 500), a symmetric IPL dumbbell
(N = 500), and the Lewis�Wahnstr€om OTP models (N = 320).
The asymmetric dumbbell and Lewis�Wahnstr€om OTP models
are composed of LJ atoms, while the symmetric IPL dumbbell
model is composed of IPL atoms.

For the LJ models the potential energy U and the virialW are
given by (equivalent expressions apply for the symmetric dumb-
bell model)

U ¼ ULJ ð13Þ

W ¼ WLJ þ WCON ð14Þ
The first term in the virial is the LJ virialWLJ, the second term is
the contribution to the virial due to the constraints (fixed bond
lengths), WCON. ULJ is a sum over intermolecular pair interac-
tions given by the (12,6)-LJ potential

uðrijÞ ¼ 4εαβ
σαβ

rij

 !12

� σαβ

rij

 !6
2
4

3
5 ð15Þ

The potential energy has no contribution from the fixed bonds.
A force smoothing procedure37 was applied from rs = 2.45σαβ to
rc = 2.50σαβ, where rc is the cut-off distance after which pair
interactions are ignored.

The bond lengths were held fixed using the Time Symmetrical
Central Difference algorithm,38,39 which is a central difference
time-discretization of the constrained equations of motion pre-
serving time-reversibility. Appendix A gives a brief summary
of constrained dynamics and the effect on the virial (see also
refs 38, 40, and 41). The simulations were performed in
the NVT ensemble applying the Nos�e�Hoover (NH)
algorithm42�44 using RUMD,45 a molecular dynamics package
optimized for state-of-the-art GPU computing.
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The NVT simulations were performed without adjusting the
time constant of theNH algorithm (see Appendix B). This choice
is not expected to influence the results over the observed density
and temperature range, because the dynamics is not particularly
sensitive to the absolute value of the NH time constant.46 The
specific details of the investigated models follow below.
A. The Asymmetric Dumbbell. The asymmetric dumbbell

model consists of a large (A) and small (B) LJ particle, rigidly
bondedwith a bonddistance of rij=0.584 (here and henceforth units
are given in LJ units referring to the A particle, σAA = 1, εAA = 1, and
mA = 1). The parameters were chosen to roughly mimic
toluene.22 The asymmetric dumbbell model can be cooled
to a highly viscous state without crystallizing, making it
feasible to study slow dynamics. The asymmetric dumbbell
model has σAB = 0.894, σBB = 0.788, εAB = 0.342, and εBB =
0.117 with mB = 0.195.
B. Symmetric IPL Dumbbell. The symmetric IPL dumbbell

model consists of two identical particles, rigidly bonded with
bond distance of rij = 0.584. The atoms in different molecules
interact via an IPL potential with exponent n = 18. The masses
and IPL parameters are set to unity and a cut-and-shifted
potential at rc = 2.50 is applied.
C. Lewis�Wahnstr€om OTP. The Lewis�Wahnstr€om OTP

model29,30 consists of three identical LJ particles rigidly bonded
together in an isosceles triangle with sides of rij = 1.000 and top-
angle of 75�, i.e., different from the 60� of the real 1,2-diphe-
nylbenzene molecule.36 All LJ parameters (including the masses)
are unity for the OTP model.

IV. NUMERICAL STUDY OF ISOMORPHS FOR THE
THREE MODEL SYSTEMS

To investigate whether the three model systems have good
isomorphs, we first describe how to generate an isomorph in a
simulation. The excess entropy Sex is invariant along an iso-
morph, and themethod for generating an isomorph is to generate
a curve of constant Sex (see section II and also refs 20 and 21). A
curve of constant excess entropy can be found by using the exact
NVT ensemble relation20

ÆΔUΔWæ
ÆðΔUÞ2æ ¼ ∂ ln T

∂ ln F

� �
Sex

� γ ð16Þ

In simulations an isomorph is generated as follows: (1) The
left-hand side is calculated from the fluctuations at a
given state point. (2) A new state point is identified by a
discretization of eq 16 changing the density by 1%, and the new

temperature is calculated from Δ ln T = γΔ ln F. (3) The
procedure is repeated and in this way an isomorph is generated in
the phase diagram.
A. Isomorphs of the Asymmetric Dumbbell Model. This

section investigates the asymmetric dumbbell model. Isomorphs were
mapped out following the procedure described above. Figure 4 shows
the AA radial distribution functions along an isomorph with 19%
density increase before (a) and after (b) scaling the distance r into

Figure 3. Sketch of the three model systems studied: The asymmetric
dumbbell, a symmetric IPL dumbbell, and the Lewis�Wahnstr€omOTP
models. The asymmetric dumbbell is a simplistic model of toluene with
the methyl side group tightly bonded to the benzene molecule. The
symmetric IPL dumbbell has the same bond length as the asymmetric
dumbbell model. The Lewis�Wahnstr€om OTP model is an isosceles
triangle with an angle of 75�, different from the 60� of the real 1,
2-diphenylbenzene molecule.36

Figure 4. Radial distribution functions for the asymmetric dumbbellmodel.
(a) AA pair-correlation function along an isomorph with 19% density
increase before scaling the distance r into reduced units. (b) AA pair-
correlation function along the same isomorph after scaling the distance r into
reduced units. (c) AA pair-correlation function along an isotherm with 12%
density increase after scaling of the distance into reduced units.
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reduced units via

~r ¼ F1=3r ð17Þ

Also shown for reference in Figure 4c is the AA radial distribution
functions along an isotherm with 12% density increase. Although
the reduced structure of the atomic positions, due to the fixed
bonds, is predicted not to be invariant along an isomorph, Figure 4
shows that it nevertheless is so to a reasonable approximation. The

reduced structure of the atomic positions is less invariant along the
isotherm. Figure 5 considers the AB radial distribution functions,
where the constrained bond distance shows up as a sharp peak.
The analogous conclusion as with the AA distribution functions is
reached, and likewise for the BB distribution functions (not shown).
Next, we consider in Figure 6 the molecular center-of-mass

radial distribution functions along the isomorph and isotherm of
Figures 4 and 5. This quantity is predicted to be invariant along

Figure 5. Radial distribution functions for the asymmetric dumbbell
model. (a) AB pair-correlation function along the isomorph of Figure 4
before scaling the distance r into reduced units. (b) AB pair-correlation
function along the same isomorph after scaling the distance r into
reduced units. (c) AB pair-correlation function along the isotherm of
Figure 4 after scaling of the distance into reduced units.

Figure 6. Molecular center-of-mass radial distribution functions for the
asymmetric dumbbell model. (a) Pair-correlation function along the
isomorph of Figures 4 and 5 before scaling the distance r into reduced units
~r = F1/3r. (b) Pair-correlation function along the same isomorph after scaling
the distance r into reduced units. (c) Pair-correlation function along the
isotherm of Figures 4 and 5 after scaling of the distance into reduced units.
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an isomorph (see section II). The molecular center-of-mass
structure is to a good approximation invariant in reduced units
along the isomorph, but this is less so along the isotherm, as can
be seen from the first and second peaks. It should, however, be
noted that beyond r ≈ 2.3 the isotherm appears more invariant
than the isomorph.
We consider in Figure 7 the dynamics in terms of the reduced

A-particle incoherent intermediate scattering function. The re-
duced dynamics of the atoms is not predicted to be invariant
along an isomorph (see Appendix B); however, the figure shows
that it is a good approximation. The same conclusion is reached
for the B-particle (not shown). In Figure 8 we consider the
reduced molecular center-of-mass self-part of the intermediate
scattering function. This quantity is predicted to be invariant
along an isomorph (see Appendix B), and Figure 8 clearly shows
this. The dynamics is not invariant along the isotherm.
We show the variation of γ, calculated from the NVT fluctua-

tions via eq 16, in Figure 9 along an isochore and along the
isomorph of Figures 4�8 in two different versions. The crosses
show γ calculated from the total virialW, and the asterisks show
γ calculated after subtracting the constraint contribution to virial,
i.e., replacing W with WLJ = W � WCON. The inset shows the
corresponding correlation coefficients R. Reference 20 predicts
that γ should be a function of density only γ = γ(F). This is seen

in Figure 9 to be a good approximation for both versions of γ,
where the crosses are the γ used to keep the excess entropy
constant. The γ calculated from the LJ virial is seen to be lower
than the γ calculated from the total virial. The γ derived from the
LJ virial is related to an effective IPL exponent that reproduces
the structure and the dynamics of the molecular liquid (see ref 47
for more details).
As mentioned in the Introduction, density scaling1�3 is the

empirical observation that the reduced relaxation time τ~α for
many viscous liquids can be written as some function τ~α =
f(Fγscale/T) where γscale in experiments is a fitting exponent. If we
assume that γ is constant along an isomorph, eq 16 implies that
Fγ/T = const describes the isomorph. In this case density scaling
will hold to a good approximation because the reduced relaxa-
tion time is an isomorph invariant; for the dumbbell system
γ changes only moderately along an isomorph and thus density
scaling is a fair approximation for this system.22 That γ for
systems with isomorphs can be identified with the density
scaling exponent γscale has very recently been verified experi-
mentially for a silicone oil.31

Starting from an equilibrated sample at some state point,
changing either temperature or density alters the equilibrium
Boltzmann distribution of states. Two isomorphic state points have
identical canonical probabilities of scaled microconfigurations

Figure 7. Reduced A-particle incoherent intermediate scattering func-
tions for the asymmetric dumbbell model keeping the reduced wave-
vector q constant. (a) Along the isotherm of Figures 4�6 with 12%
density increase. (b) Along the isomorph of Figures 4�6 with 19%
density increase.

Figure 8. Reducedmolecular center-of-mass incoherent intermediate
scattering functions for the asymmetric dumbbell model keeping the
reduced wavevector q constant. (a) Along the isotherm of Figures 4�7
with 12% density increase. (b) Along the isomorph of Figures 4�7
with 19% density increase.
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(eq 8). A sudden change of state from an equilibrated state point
to an isomorphic state point should thus not lead to any
relaxation. This is called an isomorphic jump, and the prediction
of no relaxation was shown in ref 20 to work well for the KABLJ
liquid.
A similar numerical experiment is carried out for the

asymmetric dumbbell model in Figure 10. Considering three
equilibrated, isochoric state points (1), (2), and (3), density and
temperature are instantaneously changed to a state point (4).
State point (4) is isomorphic to state point (2). The isomorph
prediction is that jumps from state points (1) and (3) show
relaxation, whereas jumps from state point (2) do not. This is
indeed the case (Figure 10a). State point (1) ages from below
because the aging scheme (1)f (4) can be described as first an
instantaneous isomorphic jump to the correct density, but a
lower temperature, and subsequently relaxation from this state
point along the isochore of state point (4).
We finally consider the excess isochoric heat capacity per

particle CV
ex/N in Figure 11 along the isomorph and isotherm of

Figures 4�8. The excess heat capacity increases less than 2%
along the isomorph, whereas the 12% density increase on the
isotherm results in a 25% increase in the excess heat capacity.
This is consistent with the prediction in section II that CV

ex/N is
an isomorph invariant.
The previous figures show that isomorphs exists to a good

approximation for the asymmetric dumbbell model. An impor-
tant question is whether the specific molecular geometry deter-
mines whether or not a particular LJ model has good isomorphs.
In Figure 12 the correlation coefficient R is given as a function
of the bond length. The correlation coefficient decreases to
R ≈ 0.65 at unity bond length, and one might be tempted to
conclude that LJ models with large bonds lengths in general do
not have good isomorphs. In section IV,C we investigate the
Lewis�Wahnstr€om OTP model that have unity bond lengths
and show that this model actually has good isomorphs. A theory
relating the variation of R to the molecular geometry and/or
bond lengths remains to be developed.

B. Isomorphs of a Symmetric IPL Dumbbell Model. In this
section we briefly consider a symmetric IPL dumbbell model
(see section III,B). In Figures 13a,b we show the particle radial
distribution functions along an isomorph before and after
scaling the distance r into reduced units. Also shown is the
reduced particle incoherent intermediate scattering function in
Figure 13c. The corresponding molecular center-of-mass quan-
tities are shown in Figure 14. The atomic dynamics of Figure 13c
appear slightly more invariant than the reduced molecular
center-of-mass dynamics of Figure 14c, and the difference seems
to be larger than what can be contributed to statistics. The latter
is predicted to be invariant along an isomorph whereas the
former is not. However, we have not tried to quantify this
observation any further.
Atomic systems with IPL interactions have exact isomorphs.

This reflects the scale invariance of the IPL potential, i.e., that it

Figure 10. Four state points (1), (2), (3), and (4) corresponding
to, respectively, (F, T) = (0.932, 0.400), (0.932, 0.465), (0.932, 2.000),
and (0.851, 0.274) are given where the first three state points are on the
same isochore. State points (2) and (4) are isomorphic, whereas (1) and
(3) are not isomorphic to (4). After equilibrating at state points (1), (2),
and (3), respectively, temperature and density are instantaneously
changed to that of state point (4) via a scaling of the center-of-
mass coordinates keeping the Eulerian angles of the molecules
fixed. An average has been performed over 100 samples. (a) Relaxational
behavior of all state points quantified by the potential energy U. The
isomorph jump (2) f (4) shows no relaxation whereas the other state
points do. (b) Close up of the potential energy of state point (2) before and
after the jump, where the jump takes place at t≈ 60.

Figure 9. Variation of γ (eq 16) and the correlation coefficient R (eq 1)
for the asymmetric dumbbell model in two different versions along an
isochore (red, F= 0.932) and along the isomorph (black) of Figures 4�8.
The crosses show γ calculated from the total virial W, and the asterisks
show γ calculated after subtracting the constraint contribution to virial,
i.e., WLJ = W � WCON. The corresponding R’s are shown in the inset.
γ is predicted in ref 20 to be a function only of density, which is seen to
apply to a good approximation for both versions.
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preserves its shape under a scaling of the argument. Because
molecules by their fixed geometry define a length scale in the
system, isomorphs will always be approximate. However, the
previous figures show that rigid molecules with IPL intermole-
cular interactions can also have good isomorphs.
In Figure 15 we consider the variation of γ and R along the

investigated isomorph, which shows that R decreases slightly
with increasing temperature (and density). The variation of γ
along the isomorph is less than for the asymmetric dumbbell, and
γ is to a good approximation constant. As for the asymmetric
dumbbell model (Figure 9), the effect of the constraints is to
increase γ and decrease R (these are, respectively, 6 and 1 for the
atomic IPL potential used).

C. Isomorphs of the Lewis�Wahnstr€om OTP Model. We
proceed to investigate the Lewis�Wahnstr€om OTP model.29,30

Figure 16 shows the particle radial distribution functions along an
isomorph with 21% density increase before and after scaling the
distance r into reduced units. We treat the particles as identical in
the quantities probed in simulations (i.e., the radial distribution
function, etc.) even though the OTP model is an isosceles
triangle. Also shown for reference is an isotherm with 11%

Figure 13. Structure and dynamics along an isomorph with 19% density
increase for the symmetric IPL dumbbell model (n = 18). (a) Particle
pair-correlation functions before scaling the distance r into reduced
units. (b) Particle pair-correlation functions after scaling the distance r
into reduced units. (c) The reduced particle incoherent intermediate
scattering functions at constant reduced wavevector q.

Figure 11. Excess isochoric heat capacity per particle CV
ex/N for the

asymmetric dumbbell model as a function of density along the isomorph
(black) and isotherm (red, T = 0.465) of Figures 4�8. The density
increase is 19% and 12%, respectively. Consistent with the predicted
isomorph invariance, the excess isochoric heat capacity increases less than
2% along the isomorph, whereas the isotherm shows a 25% increase. For
the isotherm the dynamics becomes very slow for densities higher than
F = 0.950 and the system becomes difficult to equilibrate properly.

Figure 12. Correlation coefficient R as a function of the bond length in
the asymmetric dumbbell model at (F, T) = (0.932, 0.465). The investi-
gated model has bond length 0.584 with a correlation coefficient R≈ 0.97;
however, as the bond length increases, the correlation coefficient decreases
to R≈ 0.65 at unity bond length. The inset shows the corresponding values
of γ as defined in eq 16. As the bond length increases, the system becomes
very viscous and the statistics is poor at high bond lengths.



1027 dx.doi.org/10.1021/jp2077402 |J. Phys. Chem. B 2012, 116, 1018–1034

The Journal of Physical Chemistry B ARTICLE

density increase in Figure 16c. Figure 17 shows the correspond-
ing reduced molecular center-of-mass radial distribution func-
tions. The reduced molecular center-of-mass structure is less
invariant along the isomorph than for the asymmetric dumbbell
(Figure 6), consistent with the OTP model being less strongly
correlating (R ≈ 0.90). However, comparing with the isotherm
in Figure 17c, the OTP model, here, crystallizes at the highest
density probed,36 even though the density increase is just 11%
compared with the 21% density increase along the isomorph.

Comparing now with the particle quantities of Figure 16, the
latter seems to be more invariant along the isomorph, even
though the reduced molecular center-of-mass structure is pre-
dicted in section II to be invariant. The isomorph invariants
presented in section II are exact in the case of exact isomorphs;
however, the OTP model has a correlation coefficient of 0.90,
and we expect this to be the cause of disagreement. This,
however, does not explain why the reduced structure should be
more invariant, and we currently have no explanation for this.
Figure 18 shows the reduced particle incoherent intermedi-

ate scattering functions along the isotherm and isomorph of
Figures 16 and 17, while Figure 19 shows the reduced molecular
center-of-mass incoherent intermediate scattering functions.
For the molecular quantities, the dynamics is roughly invariant
along the isomorph but not on the isotherm, even though the
density increase is 21% for the isomorph and only 11% for the
isotherm. In contrast to the reduced molecular center-of-mass
structure; the molecular dynamics (Figure 19b) is just as
invariant as the particle dynamics (Figure 18b), consistent with
the prediction of section II.
We consider in Figure 20 the variation of γ as defined by eq 16.

The large variation in γ indicates that density scaling may show a
breakdown sooner (for a given change in density) for the Lewis�
Wahnstr€omOTPmodel than for the asymmetric dumbbell where γ
changes less along an isomorph. The isomorphs of the OTP model
are, however, more approximative than for the asymmetric dumbbell,
which is consistent with OTP model being less strongly correlating.
Next, we consider isomorph jumps for the OTP model. The

setup is analogous to that of the asymmetric dumbbell model
described in section IV,A. It is seen from Figure 21 that an
isomorph jump shows no relaxation. The apparent larger fluctua-
tions in the potential energy (Figure 21b) than for the asymmetric
dumbbell (Figure 10b) are due to a change of scale in the figure.
We close the investigation of theOTPmodel by considering in

Figure 22 the isochoric excess heat capacity per particle CV
ex/N.

This quantity increases 7% over the 21% density increase along
the isomorph, whereas the 11% density increase on the isotherm
results in a 34% increase in the isochoric excess heat capacity
before crystallizing. These results are consistent with the predic-
tion that CV

ex is an isomorph invariant (see section II), although
less so than for the asymmetric dumbbell model.

Figure 14. Structure and dynamics along the isomorph of Figure 13 for the
symmetric IPL dumbbell model (n = 18). (a) Molecular center-of-mass pair-
correlation functions before scaling the distance r into reduced units~r = F1/3r.
(b) Molecular center-of-mass pair-correlation functions after scaling the
distance r into reduced units. (c) Reduced molecular center-of-mass in-
coherent intermediate scattering functions at constant reduced wavevector q.

Figure 15. Variation of γ and R (inset) along the isomorph of Figures 13
and 14 with a 19% density increase for the symmetric IPL dumbbell model
(n=18).γ increases slightly along the isomorph. Excluding the constraints in
the virial the correlation coefficient and γ are respectively R = 1 and γ = 6.
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V. MASTER ISOMORPHS

The previous section detailed the existence of isomorphs in
the phase diagram of liquids of small rigid molecules. We now
investigate whether the generated isomorphs for the LJ systems
have the same shape in theWU phase diagram, i.e., whether a so-
called master isomorph exists, as has been shown for generalized
LJ atomic systems.21 It is also interesting to compare the
isomorphs of the asymmetric dumbbell andOTPmodels, because

both systems have intermolecular (12,6)-LJ interactions, but
different constraint contributions to the virial (one versus three
constrained distances per molecule).

Figure 23a shows three different isomorphs in the WU phase
diagram for the asymmetric dumbbell model, in two different
versions: one for the total virialW and one for the ”LJ” virial, i.e.,
replacing W by WLJ = W � WCON. To investigate whether a
master isomorph exists, Figure 23b shows the same isomorphs

Figure 16. Particle radial distribution functions for the OTP model.
(a) Along an isomorph with 21% density increase, shown prior to scaling
thedistance r into reducedunits. (b) Along the same isomorphafter scaling the
distance r into reduced units. (c) Along an isothermwith 11%density increase.
At the highest density probed the OTP model crystallizes36 (magenta).

Figure 17. Molecular center-of-mass radial distribution functions for
the OTP model. (a) Along the isomorph of Figure 16 with 21% density
increase, shown prior to scaling the distance r into reduced units. (b)
Along the same isomorph after scaling the distance r into reduced units.
(c) Along the isotherm of Figure 16 with 11% density increase. At the
highest density probed the OTP model crystallizes (magenta).
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after scaling of the potential energy and the virial with the same
factor (depending on the isomorph). The best scaling factor was
identified by trial and error. Corresponding figures for the OTP
model are given in Figure 24. The figures show that for both
models a master isomorph exists to a good approximation both
with and without the constraint contribution to the virial.

Reference 21 derived predictions concerning the shape of
isomorphs for atomic systems with pair potential given by a sum
of two IPLs (the generalized LJ potential). The question arises
whether WLJU follows that shape? This is studied in Figure 25a
where the WLJU isomorphs for the asymmetric dumbbell and
OTP models are scaled using the previously mentioned proce-
dure. The two dashed curves are the isomorph prediction for an
atomic (12,6)-LJ system21 (where ~F = F/F* and F* is the density
of a chosen reference state point)

U ¼ U�
m~F

4 þ U�
n~F

2 ð18Þ

WLJ¼4U�
m~F

4 þ 2U�
n~F

2 ð19Þ
where the reference coefficients (Um

/ , Un
/) have been calculated

from two different state points along “Isomorph 1” of the
asymmetric dumbbell.21 The only assumption used in ref 21 to

Figure 18. The reduced particle incoherent intermediate scattering
functions for the OTP model keeping the reduced wavevector q
constant. (a) Along the isotherm of Figures 16 and 17 with 11% density
increase. (b) Along the isomorph of Figures 16 and 17 with 21% density
increase and almost a factor of 4 increase in temperature. The dynamics
is roughly invariant along the isomorph, but not along the isotherm.

Figure 19. Reduced molecular center-of-mass incoherent intermediate
scattering functions for the OTP model keeping the reduced avevector q
constant. (a) Along the isotherm of Figures 16�18 with 11% density
increase. (b) Along the isomorph of Figures 16�18 with 21% density
increase and almost a factor of 4 increase in temperature. The dynamics is
roughly invariant along the isomorph, but not along the isotherm.

Figure 20. Variation of γ (eq 16) and the correlation coefficient R
(inset, eq 1) for the OTP model in two different versions along an
isochore (red, F = 0.329) and the isomorph (black) of Figures 16�19.
The crosses show γ calculated from the total virialW, the asterisks show
γ calculated after subtracting the constraint contribution to virial, i.e.,
replacing W by WLJ = W � WCON. γ is predicted in ref 20 to be a
function only of density as is seen to be the case for both versions,
although the variation is larger than for the asymmetric dumbbell.
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derive these formulas is the invariance of the reduced atomic
structure along an isomorph; however, this is not predicted to be
the case for molecular systems with isomorphs (see section II).

It is clear that the atomic isomorph shape is not followed
exactly. Nevertheless, there seems to exist not only a master
isomorph in the LJ and total virial for the individual systems, but
also for the LJ virial between these two different model systems.
The same does not hold for the total virial, as can been seen in
Figure 25b, because the constraint contributions are different.

To examine the extent of “deviation” from eqs 18 and 19,
we show in Figure 26 for the asymmetric dumbbell U/ ~F2 and
WLJ/ ~F2 as functions of the reduced density ~F2 (F* = 1). The
reference coefficients can be calculated from a linear regression fit
of the potential energy and the estimated coefficients can be used
to plot a straight line in the LJ virial plot. This is performed in
Figure 26 where it is clear that even though both plots follow a

Figure 21. Four state points (1), (2), (3), and (4) corresponding to,
respectively, (F, T) = (0.329, 0.650), (0.329, 0.700), (0.329, 1.000),
and (0.303, 0.383) are given where the first three state points are on
the same isochore. State points (2) and (4) are isomorphic whereas
(1) and (3) are not isomorphic to (4). After equilibrating at state
points (1), (2), and (3), respectively, the temperature and density are
instantaneously changed to that of state point (4) via a scaling of
the center-of-mass coordinates keeping the Eulerian angles of the
molecules fixed. An average has been performed over 100 samples.
(a) Relaxational behavior of all state points quantified by the potential
energy U. The isomorph jump (2) f (4) shows no relaxation whereas
the other jumps do. (b) Close up of the potential energy of state
point (2) before and after the jump, where the jump takes place at
t ≈ 60.

Figure 22. Isochoric excess heat capacity per particle CV
ex/N for the

OTP model as a function of density along the isomorph (black) and
isotherm (red) of Figures 16�19. The density increase is 21% and 11%,
respectively. At high densities for the isotherm the OTP model crystallizes.
The isochoric excess heat capacity is to a good approximation invariant
along the isomorph, whereas this is not the case for the isotherm.

Figure 23. (a) Three different isomorphs for the asymmetric dumb-
bell model in two different versions with 19%, 21%, and 22% density
increase, respectively (black, magenta, and green). The crosses give the
total virial W, the asterisks give WLJ = W � WCON. τ~α is the reduced
relaxation time of the isomorph extracted from the self-part of
the intermediate scattering function. (b) The same isomorphs as in
(a) whereWU andWLJU are scaled to superpose with a factor identified
by trial and error. The black points have unity scaling factor.
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near straight line, the coefficients are not given by eqs 18 and 19.
It is worth mentioning again that the prediction of ref 21 is for an
atomic system and is as such not excepted to hold for rigid
molecular systems.

Finally, we consider in Figure 27 for the asymmetric dumbbell
how the instantaneous fluctuations of WCON correlate with WLJ

and W, respectively. The constraint contribution to the virial at
this state point does not correlate well with the contribution to the
virial coming from the LJ interactions (R = 0.31). The correlation
is higher when the total virial is considered (R = 0.61). The main
contribution to the virial for the asymmetric dumbbell model
comes from the LJ interactions; however, the LJ virial does not
correlate well with the constraint virial. The latter observation
may indicate a breakdown of master isomorph scaling (for the
total virial) at high pressures, but this remains to be confirmed.

VI. SUMMARY AND OUTLOOK

Isomorphs are curves in the phase diagram of a strongly
correlating liquid along which a number of static and dynamic
quantities are invariant in reduced units. References 20 and 21
focused on understanding isomorphs in atomic systems. In this

paper we generalized the isomorph concept to deal with systems
of rigid molecules (eq 5) and investigated several predicted
isomorph invariants for the asymmetric dumbbell, a symmetric
IPL dumbbell, and the Lewis�Wahnstr€om OTP models. We
find that these rigid molecular systems also have isomorphs to a
good approximation; however, the isomorphs of the OTPmodel
were more approximative than those of the asymmetric dumb-
bell, which is consistent with the OTP model being less
strongly correlating. Moreover, it was found that the asymmetric
dumbbell and Lewis�Wahnstr€om OTP models to a good
approximation have master isomorphs, i.e., that all isomorphs
have the same shape in the virial/potential energy phase diagram.
This applies for the total virial, but also after subtracting the
constraint contribution. A general master isomorph was identi-
fied between these two model systems after this subtraction.

A full theoretical understanding of the implications of rigid
bonds remains to be arrived at. For instance, the shape of
molecular isomorphs is different from the shape of ref 21
for atomic LJ systems. The rigid bonds seem in general to
increase γ and decrease the correlation coefficient R with res-
pect to the unconstrained system. More specifically, R

Figure 25. (a) Scaled WLJU isomorphs for the asymmetric dumbbell
and OTP models. The black points have unity scaling factor. Both
systems have intermolecular (12,6)-LJ interactions, and the dashed
curves are the isomorph prediction from ref 21 for an atomic system,
where the LJ reference coefficients have been calculated from the
dumbbell state points (F, T) = (0.932, 0.465) and (0.851, 0.274),
respectively. (b) ScaledWU isomorphs for the systems in (a). The total
virial does not show exact scaling between the asymmetric dumbbell and
OTP models.

Figure 24. (a) Two different isomorphs for the OTP model in two
different versions with 21% and 14% density increase (black and
magenta). The crosses give the total virialW, the asterisks giveWLJ =
W � WCON. τ~α is the reduced relaxation time of the isomorph
extracted from the self-part of the intermediate scattering function.
(b) The same isomorphs as in (a) whereWU andWLJU are scaled to
superpose with a factor identified by trial and error. The black points
have unity scaling factor.
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decreases significantly with increasing asymmetric dumbbell
bond length (R ≈ 0.65 around unity bond length; see section

IV,A). This is consistent with the results of Chopra et al.,10

who noted a worse scaling of the reduced relaxation time
and diffusion constant with excess entropy when the bond
length of a rigid symmetric LJ dumbbell model is increased.
On the other hand, it is noteworthy that strong correlation is
observed for the OTP model even though it has unity bond
lengths. The molecular center-of-mass structure in reduced
units is predicted to be invariant along an isomorph; however, for
theOTPmodel the reduced particle structure seemsmore invariant
along an isomorph than the reduced molecular center-of-mass
structure. The former is not predicted to be invariant along an
isomorph, and the difference should be investigated in more detail
to clarify this issue.

For real molecular liquids the concept of isomorphs is
approximate. Thus it is natural to wonder to which extent the
predicted scalings hold as the virial/potential energy correla-
tion becomes worse. Consider for instance the supercooled
regime. Here the transition states become increasingly more
important as the temperature is lowered, and one might
expect scalings involving dynamical quantities to be more
sensitive to a decrease in the correlation coefficient than
scalings based on the structure. Likewise, one could consider
the breakdown of density scaling, indicated here by the study
of the OTP model, as an effect of the correlation coefficient
moving away from unity, because power-law density scaling is
not solely based on Boltzmann factors. Quantifying how the
scalings depend on the correlation coefficient is a topic that
deserves more attention in future publications in connection
with molecular liquids.

’APPENDIX A: CONSTRAINED DYNAMICS AND THE
VIRIAL EXPRESSION

Constrained dynamics is discussed in many different places,
for instance refs 38, 40, and 41. We give here a brief introduction
to constrained dynamics and the connection to the virial expres-
sion used in this article.

Gauss’ principle of least constraint48 states that a classic
mechanical system of N particles with constraints deviates
instantaneously in a least possible sense from Newton’s second
law, i.e., that

∑
N

i¼ 1
mi €ri � Fi

mi

� �2
ðA1Þ

is a minimum. Here ri and Fi are the position and interaction
force of particle i. In the case of no constraints, setting the
partial derivative ∂/∂€ri to zero implies €ri � Fi/mi = 0, i.e.,
Newtons’s second law.

In the case of holonomic constraintsψα(rN) = 0 where α = 1, ...,
G, the variation can be carried out by introducing Lagrangian multi-
pliers, i.e.,

∑
N

i¼ 1
mi €ri � Fi

mi

� �2
� ∑

G

α¼ 1
λαψ€α ðA2Þ

should be stationary. Setting the partial derivative ∂/∂€ri to zero
implies (where a factor of 1/2 has been absorbed in the Lagrangian
multiplier)

mi 3€ri ¼ Fi þ ∑
G

α¼ 1
λα∇riψ

α ¼ Fi þ Gi ðA3Þ

Figure 26. Potential energy and LJ virial as a function of ~F2 for
“Isomorph 1” of the asymmetric dumbbell. (a) A linear regression fit
of the potential energy has been performed to calculate the reference
coefficients (Um

/ ,Un
/). (b) These coefficients are then used to plot the red

straight line, which according to the atomic prediction (eqs 18 and 19)
should coincide with the black data points. The green line is a linear
regression fit to the same data points.

Figure 27. (a) Correlation of the instantaneous fluctuations of WLJ and
WCON. The correlation coefficient R is 0.31. (b) Correlation of the instanta-
neous fluctuations ofW andWCON. The correlation coefficient R is 0.61.
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Newton’s second law thus remains valid if an additional force is
added (called the constraint force Gi). At this point λ

α is unde-
termined; however, an explicit expression40 for λα can be deter-
mined fromdifferentiating twice with respect to time the holonomic
constraint. In molecular dynamics simulations it is imperative to
calculate λα correctly to achieve a stable numerical algorithm. The
reader is referred to refs 38 and 39 for details concerning this aspect.

The virial W is defined by W = 1/3Σi=1
N ri 3 Fi. In an atomic

system with LJ pair potential interactions the virial is given by
W =WLJ = �1/3Σi<j

N riju0(rij). If the system has bond constraints
ψα = (rα,i � rα,j)

2/2 = rα,ij
2/2 = cα,ij

2/2, it follows from eq A3
that the constraint force contributes to the virial as WCON =
1/3Σi=1

N ri 3Gi = 1/3Σα=1
G λαrα,ij

2.

’APPENDIX B: CONSTRAINED NVE AND NOSE��
HOOVER NVT DYNAMICS IN REDUCED UNITS
ALONG AN ISOMORPH

We start our considerations from the constrained equations of
motion, eq A3:

mi 3€ri ¼ Fi þ ∑
G

α¼ 1
λα∇riψ

α ¼ Fi þ Gi ðB1Þ

Here ri and Fi are, respectively, the position and interaction force
of particle i, and λα is the Lagrangian multiplier for the α-th
constraint ψα. For simulating rigid molecules49 the constraints
are in general a combination of constrained bond lengths ψα =
(rα,i � rα,j)

2/2 = rα,ij
2/2 = cα,ij

2/2 and linear constraints ψβ =
Σi=1
nb Cβiri � rβ = 0, where Cβi is a factor that depends on the

geometry of the molecule (see ref 49 for more details). For
simplicity we consider only bond constraints in the following.

The general expression for the Lagrangian multiplier λα is
given by40,50

λα ¼ � ∑
G

β¼ 1

ðZ�1Þαβ ∑
N

i, j¼ 1
∇ri∇rjψ

β _rj _ri þ ∑
N

i¼ 1

∇riψ
β
3 Fi

mi

" #

ðB2Þ

Zαβ ¼ ∑
N

i¼ 1

∇riψ
α
3∇riψ

β

mi
ðB3Þ

Defining reduced units for length, energy, and mass as follows

~ri ¼ F1=3ri ðB4Þ

~U ¼ U=kBT ðB5Þ

~mi ¼ mi=Æmæ ðB6Þ
reduced units for time and force follow as

~t ¼ t=ðF�1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æmæ=kBT

p
Þ ðB7Þ

~Fi ¼ F�1=3Fi=kBT ¼ �∇~ri
~U ðB8Þ

Inserting the above definitions in eqs B1�B3 and usingrriψ
α =

rα,ij, we arrive at the constrained NVE equations of motion in
reduced units

~mi 3~r€i ¼ ~Fi þ ∑
G

α¼ 1
λ~α~rα, ij ¼ ~Fi þ ~Gi ðB9Þ

where

λ~α ¼ � ∑
G

β¼ 1

ð~Z�1Þαβ ∑
N

i, j¼ 1
~r_j~r_i þ ∑

N

i¼ 1

~rβ, ij 3 ~Fi
~mi

" #
ðB10Þ

~Zαβ ¼ ∑
N

i¼ 1

~rα, ij~rβ, ij
~mi

ðB11Þ

Because, in general, ~rα,ij
2 = F2/3cα,ij2, the reduced constrained

equations of motion are not invariant along an isomorph.
Considering instead the molecular center-of-mass motion in

reduced units

~Mi 3~r€CM, i ¼ ~FCM, i ðB12Þ
where ~FCM,i and ~Mi are respectively the reduced force on and
mass of molecule i. Because the reduced force ~FCM,i is invariant
along an isomorph, it follows that the molecular NVE equations
of motion are invariant along an isomorph. The invariance of
~FCM,i can be seen as follows. The isomorph definition eq 5
implies for a fixed state point (1) and arbitrary state point (x),
both along the same isomorph [where ~R � (F�1/3~rCM,1, ϕ1, θ1,
χ1, ..., F

�1/3~rCM,N, ϕN, θN, χN)], that

�Uð~RðxÞÞ=kBTx ¼ �Uð~Rð1ÞÞ=kBT1 � ln C1x ðB13Þ
Taking the gradient r~rCM,i

it follows that

~FðxÞCM, i ¼ ~Fð1ÞCM, i ðB14Þ
This concludes the proof of the isomorph invariance of the
reduced molecular center-of-massNVE equations of motion. For
the molecular center-of-mass NVT equations of motion the
proof is analogous to the above and shown for atomic systems
in ref 20. In this case the time constant of the Nos�e�Hoover
algorithm needs to be adjusted along the isomorph; otherwise,
the dynamics is not invariant.20
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An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hy-
persurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is
derived by discretizing the geodesic stationarity condition and implementing the constant-potential-
energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-
precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained
if the force cutoff is smoothed and the two initial configurations have identical potential energy within
machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs
in order to compensate for the accumulation of numerical errors that eventually lead to “entropic
drift” of the potential energy towards higher values. A modification of the basic NVU algorithm is
introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also
eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU al-
gorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the
standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones
liquid. © 2011 American Institute of Physics. [doi:10.1063/1.3623585]

I. INTRODUCTION

This paper and its companion Paper II1 study NVU dy-
namics, i.e., dynamics that conserves the potential energy U

for a system of N classical particles at constant volume V .
NVU dynamics is deterministic and involves only the system’s
configurational degrees of freedom. NVU dynamics is charac-
terized by the system moving along a so-called geodesic curve
on the constant-potential-energy hypersurface � defined by

� = {(r1, . . . , rN ) ∈ R3N |U (r1, . . . , rN ) = U0} . (1)

Mathematically, � is a (3N − 1)-dimensional differentiable
manifold. Since it is imbedded in R3N , � has a natu-
ral Euclidean metric and it is thus a so-called Riemannian
manifold.2 The differential geometry of hypersurfaces is dis-
cussed in, for instance, Ref. 3.

A geodesic curve on a Riemannian manifold minimizes
the distance between any two of its points that are sufficiently
close to each other (the curve is characterized by realizing
the “locally shortest distance” between points). A geodesic is
defined by the property that for any curve variation keeping
the two end points RA and RB fixed, to lowest order the curve
length does not change, i.e.,

δ

∫ RB

RA

dl = 0 . (2)

Here, dl denotes the line element of the metric.
From a physical point of view, it is sometimes useful to

regard a geodesic as a curve on a given surface along which

a)Electronic mail: dyre@ruc.dk.

the system moves at constant velocity with zero friction. Such
motion means that at any time the force is perpendicular to the
surface, and because the force performs no work, the kinetic
energy is conserved. In this way, geodesic motion general-
izes Newton’s first law, the law of inertia, to curved surfaces.
The concept of geodesic motion is central in general relativ-
ity, where motion in a gravitational field follows a geodesic
curve in the four-dimensional curved space-time.4

A general motivation for studying NVU dynamics is the
following. Since basically all relevant information about a
system is encoded in the potential-energy function, it is in-
teresting from a philosophical point of view to study and
compare different dynamics relating to U (r1, . . . , rN ). The
“purest” of these dynamics does not involve momenta and
relates only to configuration space. NVU dynamics provides
such a dynamics. In contrast to Brownian dynamics, which
also relates exclusively to the configurational degrees of free-
dom, NVU dynamics is deterministic. NVU dynamics may be
viewed as an attempt to understand the dynamic implications
of the potential energy landscape’s geometry along the lines
of recent papers by Stratt and co-workers.5, 6

Our interest in NVU dynamics originated in recent results
concerning strongly correlating liquids and their isomorphs.
A liquid is termed strongly correlating if there is more than
90% correlation between its virial and potential energy ther-
mal equilibrium fluctuations in the NVT ensemble.7 The class
of strongly correlating liquids includes most or all van der
Waals and metallic liquids, whereas hydrogen-bonding, co-
valently bonded liquids, and ionic liquids are generally not
strongly correlating because competing interactions tend to
weaken the correlation. A liquid is strongly correlating if and

0021-9606/2011/135(10)/104101/9/$30.00 © 2011 American Institute of Physics135, 104101-1
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only if it to a good approximation has “isomorphs” in its phase
diagram.8, 9 By definition two state points are isomorphic8 if
any two microconfigurations of the state points, which can
be trivially scaled into one another, have identical canoni-
cal probabilities; an isomorph is a curve in the phase dia-
gram for which any two pairs of state points are isomor-
phic. Only inverse-power-law liquids have exact isomorphs,
but simulations show that Lennard-Jones type liquids have
isomorphs to a good approximation.8 This is consistent with
these liquids being strongly correlating.7 Many properties are
invariant along an isomorph, for instance, the excess entropy,
the isochoric heat capacity, scaled radial distribution func-
tions, dynamic properties in reduced units, etc;8, 9 the reduced-
unit constant-potential-energy hypersurface �̃ is also invari-
ant along an isomorph.8 Given that several properties are in-
variant along a strongly correlating liquid’s isomorphs and
that �̃ is invariant as well, an obvious idea is that �̃’s invari-
ance is the fundamental fact from which all other isomorph
invariants follow. For instance, the excess entropy is the log-
arithm of the area of �̃, so the excess entropy’s isomorph in-
variance follows directly from that of �̃. In order to under-
stand the dynamic isomorph invariants from the �̃ perspec-
tive a dynamics is required that refers exclusively to �̃. One
possibility is diffusive dynamics, but a mathematically even
more elegant dynamics on a differentiable manifold is that
of geodesics. Although these considerations were our origi-
nal motivation, it should be emphasized that the concept of
geodesic motion on �̃ (or �) is general and can be applied to
any classical mechanical system, strongly correlating or not.

We are not the first to consider dynamics on the
constant-potential-energy hypersurface. In papers dating back
to 1986,10 Cotterill and Madsen proposed a deterministic
constant-potential-energy algorithm that is similar, but not
identical, to the basic NVU algorithm derived below. Their al-
gorithm was not discussed in relation to geodesic curves, but
aimed at providing an alternative way to understand vacancy
diffusion in crystals and, in particular, to make easier the
identification of energy barriers than via ordinary MD sim-
ulations. The latter property is not confirmed in the present
papers, however – in contrast, we find that NVU dynamics
in the thermodynamic limit becomes equivalent to standard
NVE dynamics (Paper II). Later, Scala et al. studied diffu-
sive dynamics on the constant-potential-energy hypersurface
�,11 focusing on the entropic nature of barriers by regarding
these as “bottlenecks.” This point was also made by Cotterill
and Madsen who viewed � as consisting of “pockets” con-
nected by thin paths, referred to as “tubes,” acting as entropy
barriers. Reasoning along similar lines, Stratt and co-workers
published in 2007 and 2010 three papers,5, 6 which considered
paths in the so-called potential-energy-landscape ensemble.
This novel ensemble is defined by including all configurations
with potential energy less than or equal to some potential en-
ergy U0. A geodesic in the potential-energy-landscape ensem-
ble consists of a curve that is partly geodesic on the constant-
potential-energy surface �, partly a straight line in the
space defined by U < U0.5 Wang and Stratt’s picture shifts
“perspective from finding stationary points on the potential
energy landscape to finding and characterizing the accessi-
ble pathways through the landscape. Within this perspective

pathways would be slow, not because they have to climb over
high barriers, but because they have to take a long and tortu-
ous route to avoid such barriers. . . .”5 Thus, the more “con-
voluted and labyrinthine” the geodesics are, the slower is the
dynamics.5- Apart from these three sources of inspiration to
the present work, we note that geodesic motion on differen-
tiable manifolds has been studied in several other contexts
outside of pure mathematics, see, e.g., Ref. 12.

The present paper derives and documents an algorithm
for NVU dynamics. In Sec. II, we derive the basic NVU al-
gorithm. By construction this algorithm is time reversible,
a feature that ensures a number of important properties.13, 14

Section III discusses how to implement the NVU algorithm
and tests improvements of the basic NVU algorithm designed
for ensuring stability; this is done by single-precision simu-
lations. This section arrives at the final NVU algorithm and
demonstrates that it conserves potential energy, step length,
and center-of-mass position in arbitrarily long simulations.
Section IV briefly investigates the sampling properties of the
NVU algorithm, showing that it gives results for the Lennard-
Jones liquid that are equivalent to those of standard NVE dy-
namics. Finally, Sec. V gives a few concluding comments. Pa-
per II compares NVU simulations to results for four other dy-
namics, concluding that NVU dynamics is a fully valid molec-
ular dynamics.

II. THE BASIC NVU ALGORITHM

For simplicity of notation, we consider in this paper only
systems of particles of identical masses (the Appendix of Pa-
per II generalizes the algorithm to systems of varying particle
masses). The full set of positions in the 3N -dimensional con-
figuration space is collectively denoted by R, i.e.,

R ≡ (r1, . . . , rN ) . (3)

Likewise, the full 3N -dimensional force vector is denoted by
F. This section derives the basic NVU algorithm for geodesic
motion on the constant-potential-energy hypersurface � de-
fined in Eq. (1), an algorithm that allows one to compute the
positions in step i + 1, Ri+1, from Ri−1 and Ri . Although a
mathematical geodesic on a differentiable manifold is usually
parameterized by its curve length,2 it is useful to think of a
geodesic curve on � as parameterized by time and we shall
refer to the steps of the algorithm as “time steps.”

Locally, a geodesic is the shortest path between any two
of its points. More precisely: (1) For any two points on a
Riemannian manifold the shortest path between them is a
geodesic; (2) the property of a curve being geodesic is locally
defined; (3) a geodesic curve has the property that for any
two of its points, which are sufficiently close to each other,
the curve gives the shortest path between them. A geodesic
may, in fact, be the longest distance between two of its points.
For instance, the shortest and the longest flight between two
cities on our globe both follow great circles – these are both
geodesics. In any case, the property of being geodesic is al-
ways defined by the curve length being stationary in the fol-
lowing sense: Small curve variations, which do not move the
curve’s end points, to lowest order do not change the curve
length (Eq. (2)).
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For motion on �, the constraint of constant poten-
tial energy is taken into account by introducing Lagrangian
multipliers. For each time step j the constraint U (Rj ) = U0

gives rise to a corresponding Lagrangian multiplier λj . Thus,
the stationarity condition Eq. (2) for the discretized curve
length

∑
j |Rj − Rj−1| subject to the constraint of constant

potential energy is

δ

⎛
⎝∑

j

|Rj − Rj−1| −
∑

j

λjU (Rj )

⎞
⎠ = 0 . (4)

Since |Rj − Rj−1| = √
(Rj − Rj−1)2 and the 3N -

dimensional force is given by Fj = −∂U/∂Rj , putting
to zero the variation of Eq. (4) with respect to Ri (i.e., the
partial derivative ∂/∂Ri) leads to

Ri − Ri−1

|Ri − Ri−1| − Ri+1 − Ri

|Ri+1 − Ri | + λiFi = 0 . (5)

To solve these equations we make the ansatz of constant dis-
placement length for each time step,

|Rj − Rj−1| ≡ l0 (all j ) . (6)

If the path discretization is thought of as defined by constant
time increments, Eq. (6) corresponds to constant velocity in
the geodesic motion. With this ansatz, Eq. (5) becomes

(Ri − Ri−1) + (Ri − Ri+1) + l0λiFi = 0 . (7)

If ai ≡ Ri − Ri−1 and bi ≡ Ri − Ri+1, Eq. (6) implies a2
i

= b2
i , i.e., 0 = a2

i − b2
i = (ai + bi) · (ai − bi). Since Eq. (7)

expresses that ai + bi is parallel to Fi , one concludes that Fi

is perpendicular to ai − bi = Ri+1 − Ri−1. This implies

Fi · Ri−1 = Fi · Ri+1 . (8)

Taking the dot product of each side of Eq. (7) with Fi one gets

Fi · (Ri − Ri−1) + Fi · (Ri − Ri+1) + l0λiF2
i = 0 , (9)

which via Eq. (8) implies

l0λi = −2
Fi · (Ri − Ri−1)

F2
i

. (10)

Substituting this into Eq. (7) and isolating Ri+1, we finally
arrive at

Ri+1 = 2Ri − Ri−1 − 2[Fi · (Ri − Ri−1)]Fi

F2
i

. (11)

This equation determines a sequence of positions; it will be
referred to as “the basic NVU algorithm.”

The derivation of the basic NVU algorithm is
completed by checking its consistency with the con-
stant step length ansatz Eq. (6): Rewriting Eq. (11) as
(Ri+1 − Ri) = (Ri − Ri−1) − 2[Fi · (Ri − Ri−1)]Fi/F2

i , we
get by squaring each side (Ri+1 − Ri)2 = (Ri − Ri−1)2

+ 4[Fi · (Ri − Ri−1)]2/F2
i − 4[Fi · (Ri − Ri−1)]2/F2

i = (Ri

− Ri−1)2. Thus, the solution is consistent with the ansatz.
Time reversibility of the basic NVU algorithm is checked

by rewriting Eq. (11) as follows:

Ri−1 = 2Ri − Ri+1 − 2[Fi · (Ri − Ri−1)]Fi

F2
i

, (12)

which via Eq. (8) implies

Ri−1 = 2Ri − Ri+1 − 2[Fi · (Ri − Ri+1)]Fi

F2
i

. (13)

Comparing to Eq. (11) shows that any sequence of configu-
rations generated by Eq. (11) . . . , Ri−1, Ri , Ri+1, . . . obeys
Eq. (11) in the time-reversed version . . . , Ri+1, Ri , Ri−1, . . ..
A more direct way to show that the basic NVU algorithm is
time-reversal invariant is to note that Eq. (5) is itself mani-
festly invariant if the indices i − 1 and i + 1 are interchanged.

The Appendix shows that the basic NVU algorithm is
symplectic, i.e., that it conserves the configuration-space vol-
ume element in the same way as NVE dynamics does. We fi-
nally consider potential-energy conservation in the basic NVU
algorithm. A Taylor expansion implies via Eq. (8) that

Ui+1 − Ui−1 = −Fi · (Ri+1 − Ri−1) + O
(
l3
0

) = O
(
l3
0

)
.

(14)
This ensures potential-energy conservation to a good approx-
imation if the discretization step is sufficiently small.

The “potential energy contour tracing” (PECT) algo-
rithm of Cotterill and Madsen10 is the following: Ri+1 = 2Ri

− Ri−1 − [Fi · (Ri − Ri−1)]Fi/F2
i . Except for a factor of 2

this is identical to the basic NVU algorithm. The importance
of this difference is apparent when it is realized that the PECT
algorithm implies Fi · (Ri+1 − Ri) = 0, whereas it does not
imply the time-reversed identity Fi · (Ri−1 − Ri) = 0. Thus,
the PECT algorithm is not time reversible.

We end this section by reflecting on what is the relation
between the NVU algorithm and continuous geodesic curves
on �. Can one expect that if the step length is decreased to-
wards zero, the discrete sequence of points traced out by the
algorithm converges to a continuous geodesic curve? The an-
swer is yes, as is clear from the current applied mathematics
literature.15 The literature deals with the analogous problem
of classical mechanics where, as is well known, Newton’s
second law of motion can be derived from the principle of
least action (Hamilton’s principle). This is a variational prin-
ciple. In the traditional approach, one first derives continuous
equations of motion from the variational principle, then dis-
cretizes these equations to allow for computer simulations.
Here, we first discretized the quantity subject to the varia-
tional principle (Eq. (4)) and only thereafter applied varia-
tional calculus. Euler himself first described discretization of
time in the action integral, thus obtaining discretized versions
of the Euler-Lagrange equations. There is now a large liter-
ature on this subject.15 During the last decade, in particular,
variational calculations applied after discretization have come
into focus in connection with, for instance, the development
of algorithms for the control of robots. The general consensus
is the following (we quote below from Ref. 16 that provides
an excellent summary of the situation): “The driving idea
behind this discrete geometric mechanics is to leverage the
variational nature of mechanics and to preserve this varia-
tional structure in the discrete setting . . . That is, if one de-
signs a discrete equivalent of the Lagrangian, then discrete
equations of motion can be easily derived from it by parallel-
ing the derivations followed in continuous case. In essence,
good numerical methods will come from discrete analogs to
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FIG. 1. (a) Evolution of the potential energy U according to the basic NVU algorithm (Eq. (17)) started from two consecutive configurations of an NVE
simulation. The inset shows a snapshot of the first ten integration steps where lines connect the data points; clearly, the system jumps distinctly between
two potential-energy hypersurfaces. (b) Evolution of U started from two configurations with a very small potential energy difference. The algorithm still
jumps between two potential-energy hypersurfaces. (c) Probability distribution of the Lagrangian multiplier times the length l0, l0λ of Eq. (10), obtained from
simulations over 2.5 × 106 steps. The green distribution corresponds to (a), the blue distribution to (b).

the Euler-Lagrange equations – equations that truly derive
from a variational principle . . . Results have been shown to
be equal or superior to all other types of integrators for sim-
ulations of a large range of physical phenomena, making this
discrete geometric framework both versatile and powerful.”

III. TESTING AND IMPROVING THE BASIC
NVU ALGORITHM

This section discusses the numerical implementation of
the basic NVU algorithm and how to deal with accumulat-
ing round-off errors that arise for very long simulations. The
model system studied is the standard Lennard-Jones (LJ) liq-
uid with N = 1024 particles. Recall that the LJ pair potential
v(r) is given by

v(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

. (15)

Here, ε sets the energy scale and σ sets the length scale;
henceforth, the unit system is adopted in which these quanti-
ties are both unity. All simulations except those of Fig. 5 refer
to the state point with density 0.85 and temperature 0.7. Ini-
tial configurations were taken from NVE simulations of this

state point. Unless otherwise specified the forces and their
derivative were adjusted to be continuous via smoothing from
a value just below the cutoff distance rc to rc. We refer to
this as a “smoothed force potential.” The cutoff distance was
chosen as the standard LJ cutoff rc = 2.5σ . The simulations
were performed using periodic boundary conditions. In order
to easier test the numerical stability of the NVU algorithm,
simulations were performed in single precision.17

A. Implementing the basic NVU algorithm

We rewrite Eq. (11) into a leap-frog version by introduc-
ing new variables defined by

�i+1/2 ≡ Ri+1 − Ri . (16)

In terms of these variables the basic NVU algorithm is

�i+1/2 = �i−1/2 − 2(Fi · �i−1/2)Fi

F2
i

Ri+1 = Ri + �i+1/2 . (17)

Equations (17) are formally equivalent to Eq. (11). Numer-
ically, however, they are not equivalent and – as is also the
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FIG. 2. Evolution of |(U − U (0))/U (0)| for a simulation using the basic
NVU algorithm. The red curve gives results from a simulation where the
potential is cut and shifted at r = 2.5σ , the black curve gives results for a
smoothed force potential.

case for standard NVE dynamics – the leap-frog version is
preferable because it deals with position changes.18

Figure 1(a) shows the potential energy as a function
of time-step number when the two initial configurations are
taken from consecutive configurations of an NVE simulation.
The system’s potential energy jumps every second step, jump-
ing between two distinct values (inset). This is also reflected
in the distribution of the quantity l0λi shown in green in Fig.
1(c). A priori one would expect a Gaussian single-peak distri-
bution of l0λi , but the distribution has two peaks. What causes
the potential energy to zig-zag in an algorithm constructed to
conserve the potential energy? The answer is hinted at in Eq.
(14) according to which the NVU algorithm implies energy
conservation to a good accuracy, but only every second step.
Thus, if the two initial configurations do not have identical po-
tential energy, the potential energy will zig-zag between two
values. Figure 1(b) shows that even if a simulation is initi-
ated from two configurations with very close potential ener-
gies, the zig-zag phenomenon persists, though now on a much
smaller scale.

There are further numerical issues that affect the stabil-
ity of the basic NVU algorithm. In Fig. 2, the evolution of
the potential energy is given for a long simulation, which
also includes data from simulations using a non-smoothed
force potential. Better numerical stability is clearly obtained
for the smoothed force potential (black curve), but smooth-
ing does not ensure constant potential energy and absolute
stability.

B. Improving the algorithm to conserve potential
energy and step length indefinitely

Subsection III A showed that using a smoothed force po-
tential and ensuring that the two starting configurations have
identical potential energy within machine precision, a fairly
stable algorithm is arrived at. Nevertheless, absolute stability
is not obtained. This is illustrated in Fig. 3(a), which shows
that the potential energy for a system with a smoothed force
potential over five million time steps still exhibits a slight
“entropic drift” (red curve). By entropic drift, we mean the
drift due to round-off errors, a drift that unavoidably takes
the system to higher energies because there are many more
such states – an entropic effect. Figure 3(b) shows that also
the step length is not conserved. Both problems are caused by
the accumulation of round-off errors. These problems are less
severe if one switches to double precision, of course, but for
long simulations entropic drift eventually sets in (for billions
of time steps).

We would like to have an algorithm that is absolutely sta-
ble, i.e., one that does not allow for any long-time drift of the
quantities which the basic NVU algorithm was constructed to
conserve: the potential energy, the step length, and the center
of mass (CM) position (just as in standard NVE dynamics the
CM position is exactly conserved in the basic NVU algorithm
Eq. (11) because the forces sum to zero due to the transla-
tional invariance of the potential energy: U (r1 + r0, . . . , rN

+ r0) = U (r1, . . . , rN )).
Drift of the CM position is trivially eliminated by ad-

justing the particle displacements according to �rn = �rn

− ∑
m �rm/N , e.g., every 100th time step. This correction
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FIG. 3. (a) Evolution of U with and without the numerical stabilization (Eq. (20)): The red curve gives results using the basic NVU algorithm Eq. (17) with
two identical initial potential energies and smoothed force potential. The black curve gives simulation results under the same conditions using the final NVU
algorithm (Eq. (20)). (b) Evolution of the step length for the same simulations.
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(b) Evolution of the quantity δi defined by l0/Di ≡ 1 + δi ; as expected this quantity is small and averages to zero.

corresponds to setting to zero the total momentum of the sys-
tem in an NVE simulation.

Robust potential energy conservation is obtained by
adding a term that is zero if the potential energy equals the tar-
get potential energy U (this quantity was previously denoted
by U0, but to avoid confusion with the time step index we drop
the subscript zero),

�i+1/2 = �i−1/2 +
(

− 2Fi · �i−1/2 + Ui−1 − U
)

Fi

F2
i

.

(18)
To show that this modification of the NVU algo-
rithm prevents drift of the potential energy we take
the dot product of each side of Eq. (18) with Fi ,
leading to Fi · �i+1/2 = −Fi · �i−1/2 + Ui−1 − U or
Fi · (�i+1/2 + �i−1/2) = Ui−1 − U. Since Fi · (�i+1/2

+ �i−1/2) = Fi · (Ri+1 − Ri−1) = −(Ui+1 − Ui−1) + O(l3
0),

this implies

Ui+1 = U + O
(
l3
0

)
. (19)

Thus, entropic drift has been eliminated and the potential en-
ergy is conserved indefinitely except for small fluctuations.

We next address the problem of conserving step length.
This is ensured by the following modification of the algo-
rithm:

�i+1/2 = l0
�i−1/2 + (−2Fi · �i−1/2 + Ui−1 − U)Fi/F2

i∣∣�i−1/2 + (−2Fi · �i−1/2 + Ui−1 − U)Fi/F2
i

∣∣ .
(20)

Equation (20) gives the final NVU algorithm (occasionally for
brevity: “the NVU algorithm,” in contrast to Eq. (11) that is
referred to as “the basic NVU algorithm”).

In simulations, the NVU algorithm is implemented as fol-
lows. The target potential energy U is chosen from an NVE
or an NVT simulation at the relevant state point. The step
length l0 is chosen according to the accuracy aimed for. Sup-
pose the quantities Ri , �i−1/2, and Ui−1 are given. From
Ri the forces Fi are calculated. From �i−1/2, Fi , and Ui−1

the quantity �i+1/2 is calculated via Eq. (20). Finally, the

positions are updated via Ri+1 = Ri + �i+1/2, and the poten-
tial energy is updated via Ui = U (Ri).

By construction the NVU algorithm Eq. (20) ensures con-
stant step length,

|�i+1/2| = l0, (21)

but is the potential energy still conserved for arbitrarily
long runs? If the denominator of Eq. (20) is denoted by
Di , taking the dot product of each side of this equation
with Fi leads to Fi · �i+1/2 = (l0/Di)[−Fi · �i−1/2 + Ui−1

− U]. Writing l0/Di ≡ 1 + δi in which δi = O(lp0 ) with p

≥ 1, we get Fi · (�i+1/2 + �i−1/2) = δi[−Fi · �i−1/2]
+ (1 + δi)[Ui−1 − U]. Thus, since Fi · (�i+1/2 + �i−1/2)
= Ui−1 − Ui+1 + O(l3

0) and Fi · �i−1/2 = Ui−1 − Ui

+ O(l2
0), we get U − Ui+1 + O(l3

0) = δi[Ui − U + O(l2
0)].

This implies again

Ui+1 = U + O
(
l3
0

)
. (22)

In summary, for simulations of indefinite length the NVU
algorithm Eq. (20) ensures constant step length and avoids en-
tropic drift of the potential energy. Figure 3(a) shows the evo-
lution of the potential energy using the basic NVU algorithm
(red) and the final NVU algorithm (black), Fig. 3(b) shows the
analogous step length evolution. Figure 4(a) shows that the
distribution of the Lagrangian multiplier is only slightly af-
fected by going from the basic (red) to the final (black) NVU
algorithm. Figure 4(b) shows the evolution of δi in the final
NVU algorithm, which as expected is close to zero.

We remind the reader that the modifications of the algo-
rithm were introduced to compensate for the effects of ac-
cumulating random numerical errors for very long runs, and
that the modifications introduced in the final NVU algorithm
Eq. (20) vanish numerically in the mean. The prize paid for
stabilizing the basic NVU algorithm is that the final NVU al-
gorithm is not rigorously time reversible. In view of the fact
that the improvements introduced to ensure stability lead to
very small corrections, the (regrettable) fact that the correc-
tions violate time reversibility is probably not important.
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FIG. 5. Radial distribution functions g(r) for a single-component Lennard-Jones system at the following state points: (a) T = 2.32 and ρ = 0.85; (b) T = 1.1
and ρ = 0.427; (c) the crystal at T = 0.28 and ρ = 0.85. The black curves show results from NVE simulations, the red dots show results from NVU simulations
(Eq. (20)).

IV. SAMPLING PROPERTIES OF
THE NVU ALGORITHM

In order to investigate whether the NVU algorithm gives
physically reasonable results we compare results from NVU
and NVE simulations for the average of a quantity that de-
pends only on configurational degrees of freedom. This is
done in Fig. 5, which shows the radial distribution function
g(r) at three state points. The red dots give NVU simula-
tion results, the black curve gives NVE simulation. Clearly,
the two algorithms give the same results. This finding is con-
sistent with the conjecture that the NVU algorithm probes
all points on � with equal probability. Note that this is not
mathematically equivalent to conjecturing that the NVU algo-
rithm probes the configuration space microcanonical ensem-
ble, which has equal probability density everywhere in a thin
energy shell between a pair of close-by constant-potential-
energy manifolds. The latter distribution would imply an en-
semble density of points on � inversely proportional to the
length of the gradient of U (R) (the force), but this distribution
cannot be the correct equilibrium distribution because the ba-
sic NVU algorithm Eq. (11) is invariant to local scaling of the
force. In the thermodynamic limit, however, the length of the
force vector becomes almost constant and the difference be-

tween the configuration-space microcanonical ensemble and
the � equal-measure ensemble becomes insignificant.

Paper II details a comparison of NVU dynamics to four
other dynamics, including two stochastic dynamics. Here,
simulation and theory lead to the conclusion that NVU and
NVE dynamics are equivalent in the thermodynamic limit.

V. CONCLUDING REMARKS

An algorithm for geodesic motion on the constant-
potential-energy hypersurface has been developed (Eq. (20)).
Analytical arguments and single-precision simulations show
that this algorithm, in conjunction with compensation for
center-of-mass drift, is absolutely stable in the sense that po-
tential energy, step length, and center-of-mass position are
conserved for indefinitely long runs. The algorithm repro-
duces the NVE radial distribution function of the LJ liquid,
strongly indicating that correct configuration-space averages
are arrived at in NVU dynamics.

Although NVU dynamics has no kinetic energy provid-
ing a heat bath, it does allow for a realistic description of
processes that are unlikely because they are thermally acti-
vated with energy barriers that are large compared to kBT

(Paper II). In NVU dynamics, whenever a molecular
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rearrangement requires excess energy to accumulate locally,
this extra energy is provided by the surrounding configura-
tional degrees of freedom. These provide a heat bath in much
the same way as the kinetic energy provides a heat bath for
standard Newtonian NVE dynamics.

Paper II compares the dynamics of the Kob-Andersen
binary Lennard-Jones liquid simulated by the NVU al-
gorithm and four other algorithms (NVE, NVT, diffusion
on �, Monte Carlo dynamics), concluding that results
are equivalent for the slow degrees of freedom. Paper II
further argues from simulations and analytical arguments
that NVU dynamics becomes equivalent to NVE dynamics
as N → ∞.
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APPENDIX: PROOF THAT THE BASIC NVU
ALGORITHM IS SYMPLECTIC

This Appendix proves that the basic NVU algorithm con-
serves the configuration-space volume element on the hyper-
surface � in the same sense as the NVE algorithm conserves
the configuration-space volume element. We view the basic
NVU algorithm (Eq. (11)),

Ri+1 = 2Ri − Ri−1 − 2Fi · (Ri − Ri−1)

F2
i

Fi , (A1)

as a mapping of R6N into itself. In the 6N -dimensional
configuration space of subsequent time-step pairs Si

≡ {Ri , Ri−1}, the NVU algorithm is

Si → Si+1 = {Ri+1, Ri}

= {2Ri − Ri−1 − 2Fi · (Ri − Ri−1)

F2
i

Fi , Ri}.

(A2)

The Jacobian of this map J(Si → Si+1) is given by

|J| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 − 2
∂

Fi (Ri−Ri−1)

F2
i

Fx1,i

∂x1,i
−2

∂
Fi (Ri−Ri−1)

F2
i

Fx1 ,i

∂x2,i
. . . −1 + 2

∂
Fi Ri−1

F2
i

Fx1 ,i

∂x1,i−1
2

∂
Fi Ri−1

F2
i

Fx1 ,i

∂x2,i−1
. . .

−2
∂

Fi (Ri−Ri−1)

F2
i

Fx2,i

∂x1,i
2 − 2

∂
Fi (Ri−Ri−1)

F2
i

Fx2 ,i

∂x2,i
. . . 2

∂
Fi Ri−1

F2
i

Fx2 ,i

∂x1,i−1
−1 + 2

∂
Fi Ri−1

F2
i

Fx2 ,i

∂x2,i−1
. . .

...
...

...
...

1 0 . . . 0 0 . . .

0 1 . . . 0 0 . . .

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A3)

This may be regarded as a two-by-two block matrix consisting of blocks A, B, C, D. The determinant of this block matrix is
|J| = |AD − BC| = | − BC| = (−1)M |B|, giving (where the index i is dropped for brevity and M = 3N )

|J| = (−1)M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 + 2
F 2

x1
F2 2

Fx2 Fx1
F2 2

Fx3 Fx1
F2 2

Fx4 Fx1
F2 . . .

2
Fx1 Fx2

F2 −1 + 2
F 2

x2
F2 2

Fx3 Fx2
F2 2

Fx4 Fx2
F2 . . .

2
Fx1 Fx3

F2 2
Fx2 Fx3

F2 −1 + 2
F 2

x3
F2 2

Fx4 Fx3
F2 . . .

2
Fx1 Fx4

F2 2
Fx2 Fx4

F2 2
Fx3 Fx4

F2 −1 + 2
F 2

x4
F2 . . .

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)M (±1). (A4)
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Defining the unit-length vector along the direction of the
force vector n, the last equality of Eq. (A4) follows
from B = −1 + 2n · nT ⇒ B2 = 1 + 4n · nT − 4n · nT = 1.
Since |B|2 = |B2| = 1, one has |B| = ±1. Thus, the volume
element transforms as

dRidRi−1 = dRi+1dRi . (A5)

This means that the basic NVU algorithm conserves the vol-
ume element in the 6N -dimensional configuration space, i.e.,
that the algorithm is symplectic just as the NVE algorithm is.
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In the companion paper [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J.
C. Dyre, “NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface,” J.
Chem. Phys. (in press)] an algorithm was developed for tracing out a geodesic curve on the constant-
potential-energy hypersurface. Here, simulations of NVU dynamics are compared to results for four
other dynamics, both deterministic and stochastic. First, NVU dynamics is compared to the standard
energy-conserving Newtonian NVE dynamics by simulations of the Kob-Andersen binary Lennard-
Jones liquid, its WCA version (i.e., with cut-off’s at the pair potential minima), and the Lennard-Jones
Gaussian liquid. We find identical results for all quantities probed: radial distribution functions, in-
coherent intermediate scattering functions, and mean-square displacement as function of time. Argu-
ments are presented for the equivalence of NVU and NVE dynamics in the thermodynamic limit; in
particular, to leading order in 1/N these two dynamics give identical time-autocorrelation functions.
In the final part of the paper, NVU dynamics is compared to Monte Carlo dynamics, to a diffusive
dynamics of small-step random walks on the constant-potential-energy hypersurface, and to Nosé-
Hoover NV T dynamics. If time is scaled for the two stochastic dynamics to make single-particle
diffusion constants identical to that of NVE dynamics, the simulations show that all five dynam-
ics are equivalent at low temperatures except at short times. © 2011 American Institute of Physics.
[doi:10.1063/1.3623586]

I. INTRODUCTION

In the companion paper (Paper I1), we developed a sta-
ble numerical algorithm for tracing out a geodesic curve on
the constant-potential-energy hypersurface � of a system of
N classical particles. If U (r1, . . . , rN ) is the potential energy
as a function of the particle coordinates, for a given value
U0 of the potential energy � is the (3N − 1)-dimensional
Riemannian differentiable manifold defined by (where R
≡ (r1, . . . , rN ) is the position in the 3N -dimensional config-
uration space)

� = {R ∈ R3N | U (R) = U0} . (1)

Geodesic motion on � is termed NVU dynamics in analogy
with standard Newtonian NVE dynamics, which conserves
the total energy E. Motivations for studying NVU dynam-
ics were given in Paper I. The present paper compares NVU
dynamics to four other dynamics, two deterministic and two
stochastic, concluding that NVU dynamics is a fully valid
molecular dynamics.

The path of shortest distance between two points on a
Riemannian manifold is a so-called geodesic curve. By defi-
nition a geodesic is a curve of stationary length, i.e., one for
which small curve variations keeping the two end points RA

and RB fixed, to lowest order do not change the curve length,

δ

∫ RB

RA

dl = 0 . (2)

a)Electronic mail: dyre@ruc.dk.

By discretizing this condition and carrying out the variation,
keeping the potential energy fixed by introducing Lagrangian
multipliers, the following “basic NVU algorithm” was de-
rived in Paper I (F is the 3N -dimensional force vector and
i is the time-step index):

Ri+1 = 2Ri − Ri−1 − 2
Fi · (Ri − Ri−1)

F2
i

Fi . (3)

This algorithm works well, but for very long simulations nu-
merical errors accumulate and U drifts to higher values (“en-
tropic drift,” see Paper I). This problem is also encountered
for the total energy in NVE algorithms,2 and it is not more se-
vere for NVU than for NVE dynamics. A fully stable NVU
algorithm was developed in Paper I, which may be summa-
rized as follows. If one switches to the leap-frog representa-
tion and defines the position changes by �i+1/2 = Ri+1 − Ri ,
the stable NVU algorithm is: �i+1/2 = l0 Ai+1/2/|Ai+1/2|
where l0 is the step length and Ai+1/2 = �i−1/2 + (−2Fi ·
�i−1/2 + Ui−1 − U0)Fi/F2

i . Just as for standard NVE dy-
namics a final stabilization introduced is to adjust the position
changes slightly, e.g., every 100th step, in order to eliminate
numerical drift of the center of mass coordinate. In the sim-
ulations reported below, we used the fully stable NVU algo-
rithm. However, since the stabilization is merely a technical-
ity, the basic NVU algorithm Eq. (3) is used for theoretical
considerations.

Constant-potential-energy algorithms were previously
considered in papers dating back to 1986 by Cotterill and
Madsen et al.3 and in 2002 by Scala et al.4 In the same spirit,
but in a slightly different context, Stratt and co-workers in
2007 and 2010 considered geodesic motion in the space of

0021-9606/2011/135(10)/104102/7/$30.00 © 2011 American Institute of Physics135, 104102-1
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points with potential energy less than or equal to U0.5 In the
thermodynamic limit these points are almost all of potential
energy very close to U0. We refer to Paper I for further dis-
cussion of how NVU dynamics relates to these earlier works.

NVU dynamics invites to an alternative view of
molecular motion. Instead of focusing on the standard
potential-energy landscape in 3N + 1 dimensions,6 NVU
dynamics adopts the configuration-space microcanonical
viewpoint and focuses on the (3N − 1)-dimensional Rie-
mannian hypersurface �. The classical potential-energy
landscape picture draws attention to the stationary points of
the potential-energy function, in particular its minima, the
so-called inherent states.6 In contrast, all points on � have
the same probability in NVU dynamics and there are no
energy barriers – all barriers are of entropic nature defining
unlikely parts of � that must be passed.3–5 Despite the
absence of energy barriers in the ordinary sense of this term,
NVU dynamics is fully able to describe locally activated
events (hopping processes between local potential-energy
minima). The NVU “heat bath” is provided by the multitude
of configurational degrees of freedom.3–5

The present paper compares NVU dynamics to other
molecular dynamics, including stochastic ones. We first com-
pare to NVE dynamics, which is also deterministic, and con-
clude that for large systems the two dynamics are basically
equivalent. We proceed to compare to other kinds of dynam-
ics, inspired by previous works: The first investigation pro-
viding long-time simulations that compared different dynam-
ics (Newtonian versus Langevin) was presented by Gleim
et al.7 They studied the Kob-Andersen binary Lennard-Jones
(KABLJ) mixture8 at different temperatures and found that
below a certain temperature (T < 0.8), the temperature de-
pendence of the diffusion constant and of the structural re-
laxation time was identical for the two dynamics. This type
of investigation was extended by Szamel et al.9 to Brownian
dynamics, i.e., stochastic dynamics without the momentum
degrees of freedom. They found power-law fitting exponents
for the temperature dependence of the diffusion constant and
relaxation time very close to those of NVE dynamics. Subse-
quently, Berthier et al.10 investigated Monte Carlo dynamics
for which agreement with Newtonian dynamics was also es-
tablished, both for a strong and a fragile model glass former
(an SiO2 model and the KABLJ model). This, however, did
not apply for higher-order time-correlation functions, a fact
contributed to the presence of different conservation laws.10

We compare below NVU dynamics to the following four
other dynamics: Newtonian dynamics (NVE ), Nosé-Hoover
NVT dynamics,11 Monte Carlo dynamics (MC),12 and a dif-
fusive small-step random-walk dynamics on the constant-
potential-energy hypersurface (RW ). Section II compares
NVU dynamics with the “true” (NVE ) time evolution de-
fined by Newton’s second law. This is done by simulations
of the KABLJ liquid, as well as of the Weeks-Chandler-
Andersen (WCA) approximation13 to the KABLJ liquid
(KABWCA) and the Lennard-Jones Gaussian liquid. Section
III gives arguments for the equivalence of NVU and NVE
dynamics in the thermodynamic limit. Section IV compares
NVU dynamics with NVT, MC, and RW dynamics. Section
V gives a brief summary and outlook.

II. SIMULATIONS COMPARING NVU DYNAMICS TO
NVE DYNAMICS

In NVU dynamics a geodesic is traced out in configura-
tion space. Physically, this curve may be traversed with any
velocity; comparing however to NVE dynamics suggests an
obvious time measure for NVU dynamics, as we shall see
now. Limiting ourselves for simplicity to systems of particles
with identical masses m, the Verlet algorithm for NVE dy-
namics with time step �tNV E is2, 14

Ri+1 = 2 Ri − Ri−1 + (�tNV E)2

m
Fi . (4)

Comparing to Eq. (3) suggests the following identification of
a NVU time step �ti,NV U

(�ti,NV U )2

m
= −2

Fi · (Ri − Ri−1)

F2
i

. (5)

This quantity is identical to l0λi of Paper I. Our simula-
tions show that the average of the right-hand side is always
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FIG. 1. (a) Probability density of (�ti,NV U )2 given by Eq. (5) for the Kob-
Andersen binary Lennard-Jones (KABLJ) liquid at ρ = 1.2 and T = 0.44;
(b) Probability density for (�ti,NV U )2 − 〈(�ti,NV U )2〉 for 256, 1024, and
8192 particles of the single-component LJ liquid (T = 0.70, ρ = 0.85),
showing a narrowing as the particle number increases.
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positive for small l0. We have no proof of this, but presum-
ably it applies rigorously in the thermodynamic limit.

Data are given below in terms of the natural units
for the Lennard-Jones pair potential; for the KABLJ and
KABWCA system length and energy are given in units of
the large-particle parameters σAA and εAA, respectively. The
system sizes are N = 1024, 1000, and 1024 for KABLJ,
KABWCA, and Lennard-Jones Gaussian, respectively.

The probability distribution of (�ti,NV U )2 is given in
Fig. 1(a) for an N = 1024 KABLJ liquid at ρ = 1.2 and
T = 0.44.15 The simulations behind this, as well as all
below figures, were initiated by choosing the two initial
configurations from a well-equilibrated NVE simulation.
The target potential energy U0 in the NVU simulation was
chosen as U0 = 〈U 〉NV E at the relevant state points. The
probability distribution of Fig. 1 is a Gaussian, which is
consistent with the fact that (�ti,NV U )2 is a sum of many
terms that are uncorrelated for large spatial separations.

In view of the above, for comparing NVU and NVE gen-
erated sequences we define the NVU time step length �tNV U
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FIG. 2. Radial distribution functions for the KABLJ system at ρ = 1.2. The
black lines give results from NVE simulations, colored circles from NVU
simulation where green, red, and blue denote, respectively, AB, AA, and BB
pairs for: (a) T = 2.0 and (b) T = 0.405.
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FIG. 3. (a) Mean-square displacement and (b) incoherent intermedi-
ate scattering function at the wave vector of the first peak of the AA
structure factor. Both simulations were performed at ρ = 1.2 for T

= 2.0, 0.80, 0.60, 0.50, 0.44, 0.42, and 0.405 (left to right) for the
KABLJ liquid (1024 particles). NVE dynamics is given by the filled black
circles connected by straight lines, NVU dynamics by the red crosses.

as the average of Eq. (5), i.e.,

(�tNV U )2

m
≡ −2

〈
Fi · (Ri − Ri−1)

F2
i

〉
. (6)

First, we compare static averages of NVU and NVE
simulations. Figure 2 shows the three radial distribution func-
tions for the KABLJ liquid at two different state points.
Clearly, the two algorithms give identical results. Next, Fig. 3
shows NVU and NVE results for the mean-square displace-
ment and the incoherent intermediate scattering function of
the KABLJ liquid at density ρ = 1.2 over a range of tem-
peratures. The mean-square displacement and the incoherent
scattering function are both identical for NVU and NVE dy-
namics.

Corresponding figures are shown in Fig. 4 for the Weeks-
Chandler-Andersen (WCA) approximation, which cuts off in-
teractions beyond the energy minima, i.e., keep only the re-
pulsive part of the potential. The WCA version of the system
has a similar structure, but a much faster dynamics in the su-
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FIG. 4. (a) Mean-square displacement and (b) incoherent intermediate scat-
tering function at the same wave vector as in Fig. 3. Both simulations were
performed at ρ = 1.2 for T = 2.0, 0.80, 0.60, 0.50, 0.44, and 0.40 (left to
right) for the WCA approximation to the KABLJ liquid. NVE dynamics is
given by the filled black circles connected by straight lines, NVU dynamics
by the red crosses.

percooled regime.16, 17 Again, NVU and NVE dynamics give
identical results.

We also studied the so-called Lennard-Jones Gaussian
system defined by a pair potential that adds a Gaussian to
a LJ potential,18 a liquid that is not strongly correlating.16

Figure 5 shows that for this model the incoherent interme-
diate scattering function is also the same for NVU and NVE
dynamics. In summary, for all systems simulated, we found
NV U = NV E. This applies even for N = 65 particles of the
KABLJ liquid (T = 0.8, ρ = 1.2).

III. ARGUMENTS FOR THE EQUIVALENCE OF NVU
AND NVE DYNAMICS AS N → ∞

The above results raise the question: Are NVU
and NVE dynamics mathematically equivalent in some
well-defined sense? The two algorithms are not identical,
of course; that would require no variation in the quan-
tity �ti,NV U (Fig. 1). On the other hand, the �ti,NV U
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FIG. 5. The incoherent intermediate scattering function at ρ = 0.8 and
T = 1.4 for the Lennard-Jones Gaussian system.18 The black circles
represent a NVE simulation, the red symbols represent a NVU simulation.

distribution narrows as the particle number increases
[Fig. 1 (b)]. From this NVU and NVE dynamics are
expected to become equivalent for N → ∞ in the following
sense: For any configurational quantity A with zero average,
to leading order in 1/N there is identity of dynamic quantities
such as the time-autocorrelation function 〈A(0)A(t)〉 or the
mean-square change 〈�2A(t)〉 (i.e., the relative deviations
go to zero as N → ∞). Consider the time-autocorrelation
function of an extensive quantity A with zero average. In
this case, the time-autocorrelation function scales in both
ensembles as N , and the proposed equivalence of the dy-
namics means that |〈A(0)A(t)〉NV U − 〈A(0)A(t)〉NV E| ∝ N0

as N → ∞. Intuitively, what happens is that since in NVE
dynamics the relative potential-energy fluctuations go to zero
as N → ∞, it becomes a better and better approximation to
regard the potential energy as conserved.5

There exists in analytical mechanics a variational princi-
ple that does not involve time. This is the Maupertuis prin-
ciple from 1746,20, 21 a variational principle that is originally
due to Jacobi and for this reason is sometimes referred to as
“Jacobi’s form of the least action principle.”19, 21 This states
that a classical-mechanical system of fixed energy E follows
a curve in configuration space obeying (with fixed end points)

δ

∫ RB

RA

√
2m(E − U ) dl = 0 . (7)

One may argue that the relative variations of the integrand go
to zero as N → ∞. Thus, the integrand in this limit becomes
effectively constant and can be taken outside the variation, im-
plying Eq. (2) for motion which in the same limit effectively
takes place on the constant-potential-energy hypersurface.5

If l is the path length parametrizing the path, Eq. (7)
implies19, 20 d2R/dl2 = [F − (F · t)t]/2(E − U (R)) where
t = dR/dl is the unit vector tangential to the path. The term
F − (F · t)t is the (vector) component of the force normal to
the path. In the thermodynamic limit the path as mentioned
approaches more and more the constant-potential-energy
hypersurface �, i.e., F · t = 0. In this limit, one has also
dl ∝ dt because the relative kinetic energy fluctuations go to
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FIG. 6. (a) The dynamical fluctuations quantified by χ4(t) for the A parti-
cles at ρ = 1.2 for a KABLJ liquid with 1024 particles. The black circles
give results for an NVE simulation, the red, green, and blue symbols repre-
sent NVU simulations at, respectively, T = 0.44, 0.42, 0.405. (b) The dy-
namical fluctuations quantified by χ4(t) for the A particles at ρ = 1.2 for the
KABLJ system with 2048 particles. The black circles give results for a NVE
simulation, the violet, red, and green symbols represent NVU simulations
of, respectively, T = 0.50, 0.44, and 0.42. Increasing the number of parti-
cles does not appear to decrease the deviation between the two dynamics.

zero. In this way, in the thermodynamic limit the Maupertuis
principle is equivalent to both the geodesic equation Eq. (2)
and to Newton’s second law R̈ = F/m.

The equivalence of NVU and NVE dynamics in the
thermodynamic limit relates to static averages as well as to
time-autocorrelation functions of extensive quantities with
zero average. Just as one must be careful when comparing
fluctuations between different ensembles, fluctuations relat-
ing to the dynamics need not be the same for NVU and NVE
dynamics. As an example, Fig. 6 shows the quantity χ4(t)
defined by χ4(t) = NA [ 〈F 2

sA(k, t)〉 − 〈FsA(k, t)〉2 ] for the
KABLJ system at three temperatures and two values of N .
χ4 quantifies the incoherent intermediate scattering function
fluctuations.22 For χ4(t), NVU and NVE dynamics do not
appear to give identical results. A related observation was
made by Berthier et al., who showed that χ4(t) is not the
same in NVE and NV T dynamics.10

IV. COMPARING NVU DYNAMICS TO NVT, MONTE
CARLO, AND DIFFUSIVE DYNAMICS ON �

This section compares simulations using NVU dynamics
to results for three other dynamics, two of which are standard.
We focus on the viscous regime. One dynamics is the Nosé-
Hoover NVT dynamics, a deterministic sampling of the NV T

canonical ensemble that may be derived from a “virtual”
Hamiltonian.11, 23 The second standard dynamics considered
is the Metropolis Monte Carlo (MC) algorithm, which
generates a stochastic sequence of states giving the correct
NV T canonical ensemble distribution. The third dynamics
employed below is also stochastic; it simulates diffusion
on the constant-potential-energy hypersurface � by a small
step-length random walk (RW) on �. This was discussed by
Scala et al.,4 who proposed the following equation of motion:

dRi

dt
= �ηi − �ηi · Fi

F2
i

Fi , (8)

where �ηi is a 3N -dimensional random vector (see be-
low). Equation (8) implies Fi · Ṙi = 0, which ensures the
potential-energy conservation required for staying on �.

The RW algorithm was discretized and implemented as a
“predictor-corrector” algorithm in the following way. A vec-
tor �ηi was chosen from a cube with length L = 0.01σ . This
is small enough to ensure that the dynamics generates the cor-
rect NVE radial distribution function and at the same time has
no effect on the average dynamical quantities. Positions were
updated via

Ri+1 = Ri + �t�ηi − �t�ηi · Fi

F2
i

Fi . (9)

Finally, Ri+1 was corrected by applying two iterations of
Ri+1 ≡ Ri+1 − Ui+1−U0

F2
i+1

Fi+1 in order to eliminate long-time

entropic drift of the potential energy.
MC and RW dynamics involve no generic measures

of time. We compared their results to NVU dynamics by
proceeding as follows. At any given state point the time-
scaling factor was determined from the long-time behavior
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FIG. 7. The incoherent intermediate scattering function for all
five investigated dynamics for the KABLJ liquid at ρ = 1.2 and
T = 2.0, 0.80, 0.60, 0.50, and 0.44. The black curve is the NVE simu-
lation, red crosses: NVU , green squares: NV T , magenta diamonds: MC,
blue triangles: RW .
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FIG. 8. The incoherent intermediate scattering function for all five
investigated dynamics for the KABWCA system at ρ = 1.2 and
T = 2.0, 0.80, 0.60, 0.50, 0.44, and 0.40. The black curve is the
NVE simulation, red crosses: NVU , green squares: NV T , magenta
diamonds: MC, blue triangles: RW .

of the mean-square displacement by requiring that the single-
particle displacement obeys 〈�x2(t)〉 = 2Dt for t → ∞ with
the NVE diffusion constant D. By construction, this ensures
agreement with the long-time mean-square displacement of
NVE dynamics.

In Fig. 7, we show the incoherent intermediate scattering
function of the KABLJ liquid for all investigated dynamics at
several state points. A corresponding figure for the KABWCA
system is shown in Fig. 8.

NVU and NV T dynamics agree quantitatively for all
investigated state points. This is not surprising given the
results of Secs. II and III and the well-known fact that NVE
and NV T dynamics give the same time-autocorrelation
functions to leading order in 1/N .24 The incoherent inter-
mediate scattering functions of MC and RW agree at all
investigated temperatures. This is consistent with the recent
results of Berthier et al.,10 who compared Langevin to MC
dynamics. For lower temperatures (T < 0.80) quantitative
agreement is found among all five dynamics investigated in
the α-relaxation regime.

V. SUMMARY AND OUTLOOK

NVU dynamics traces out geodesic curves on the
(3N − 1)-dimensional potential-energy hypersurface �. We
have compared NVU dynamics with four other dynamics.
Simulations supplemented by non-rigorous analytical argu-
ments showed that NVU and NVE dynamics are equivalent
in the thermodynamic limit, i.e., typical autocorrelation func-
tions become identical to leading order in 1/N . Furthermore,
NVU dynamics was compared to two stochastic dynamics,
standard Monte Carlo dynamics and a small-step random
walk on the constant-potential-energy hypersurface � rep-
resenting diffusion on �. Agreement was established for all
dynamics, including also NV T dynamics, in the α-relaxation
regime where inertial effects are unimportant. We conclude
that NVU dynamics is a fully valid molecular dynamics.

It is interesting to note that NVU dynamics, like any
geodesic motion on a Riemannian manifold, can be formu-
lated as a Hamiltonian dynamics based on the curved-space
purely kinetic energy Hamiltonian H = 1/2

∑
a.b gab(x)papb

where x is the manifold coordinate, gab is the correspond-
ing metric tensor, and pa are the generalized momenta.25 In-
deed, long ago Hertz argued that one should focus exclusively
on the kinetic energy and describe classical mechanics as a
geodesic motion on a high-dimensional Riemannian manifold
(along the “geradeste Bahn” of this manifold, the straightest
curve).26 Hertz’ idea was to eliminate the force and poten-
tial energy concepts entirely from mechanics and replace par-
ticle interactions by constraints among the coordinates; the
relevant manifold is defined by these constraints. This is not
what we have done here. There is nevertheless the fundamen-
tal similarity between the Hertz and the NVU approaches that
both are built on the conceptual simplification of “replacing
Newton’s second law by Newton’s first law.” Moreover, as
shown in the Appendix, the effect of masses enters into the
metric of the Riemannian manifold in precisely the same way
as we need for NVU dynamics when this is generalized to
deal with systems of varying masses. Thus, NVU dynamics
realizes Hertz’s ideas to a large extent.

From a technical point of view NVU dynamics offers
few advantages because it is not faster than NVE or NV T

dynamics. However, by referring directly to the properties of
a Riemannian differentiable manifold, NVU dynamics leads
to an alternative way of thinking about the classical mechanics
of many-particle systems. Future work should focus on relat-
ing the mathematical properties of � to the physical proper-
ties of the system in question. It is our hope that in this way
new insights into liquid dynamics may be arrived at by adopt-
ing the NVU viewpoint.
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APPENDIX: GENERALIZATION OF THE NVU
ALGORITHM TO DEAL WITH SYSTEMS OF
DIFFERENT PARTICLE MASSES

Papers I and II deal with systems of particles with iden-
tical mass m. The basic NVU algorithm Eq. (3), however,
is well defined and works perfectly well for any classical
mechanical system. The algorithm traces out a geodesic on
� that is independent of the particles’ masses, a geometri-
cal path entirely determined from the function U (r1, . . . , rN ).
Equation (5), which ensures NV U = NV E in the thermody-
namic limit, only works if all particles have mass m. On the
other hand, the question arises if a generalization of Eq. (3)
is possible ensuring that NV U = NV E as N → ∞ also for
systems of particles with different masses.

If the kth particle mass is mk , we seek to modify the basic
NVU algorithm such that it, for the kth particle as N → ∞,
converges to (where r(k) is the coordinate of the kth particle,
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F(k) is the force on it, and the subscript j is the time step
index)

r(k)
j+1 = 2 r(k)

j − r(k)
j−1 + (�t)2

mk

F(k)
j . (A1)

If the average mass is denoted by 〈m〉, we define reduced
masses by

m̃k ≡ mk

〈m〉 . (A2)

A geodesic is defined by giving the shortest distance between
any two of its close-by points. In Paper I and in Eq. (2) of the
present paper the distance measure is given by the standard
Euclidian distance dl2 = ∑

k dr(k) · dr(k). A change of metric
leads to different geodesics. Consider the following metric:

dl2 =
∑

k

m̃k dr(k) · dr(k). (A3)

This is precisely the metric discussed by Hertz in his me-
chanics long ago.26 In the “Hertzian” metric the discretized
path length used in deriving the NVU algorithm is (Paper I)∑

j

√∑
k m̃k(r(k)

j − r(k)
j−1)2 (j is the time step index). Thus,

the variational condition becomes

δ

⎛
⎝∑

j

√∑
k

m̃k

(
r(k)
j − r(k)

j−1

)2
−

∑
j

λjU (Rj )

⎞
⎠ = 0 .

(A4)
From this it follows via the ansatz of constant step length that

r(k)
j+1 = 2r(k)

j − r(k)
j−1 − 2[Fj · (Rj − Rj−1)]F(k)

j

m̃kF2
j

. (A5)

This translates into Eq. (A1) for a suitably chosen �t ;
likewise, the relative fluctuations of the term 2[Fj · (Rj

− Rj−1)]/F2
j go to zero in the thermodynamic limit

(N → ∞) such that NV U = NV E in this limit.
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This is the final paper in a series that introduces geodesic molecular dynamics at constant potential
energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newto-
nian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B.
Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104101 (2011); T. S. Ingebrigtsen, S. Toxvaerd, T. B.
Schrøder, and J. C. Dyre, ibid. 135, 104102 (2011)], a numerical algorithm for simulating geodesic
motion of atomic systems was developed and tested against standard algorithms. The conclusion
was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian
NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU
dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU
algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at
constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm
on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o-terphenyl (OTP)
and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant po-
tential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond
lengths, and step length for indefinitely long runs. The quantities probed in simulations give results
identical to those of Nosé-Hoover NVT dynamics. Since Nosé-Hoover NVT dynamics is known to
give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics be-
comes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4768957]

I. INTRODUCTION

In two recent papers1, 2 (henceforth, Papers I and II),
molecular dynamics at constant potential energy was intro-
duced, tested, and compared to well-known molecular dy-
namics algorithms. This new molecular dynamics is enti-
tled NVU dynamics in analogy to standard energy-conserving
Newtonian NVE dynamics. The conclusion was that NVU dy-
namics is a fully valid molecular dynamics, which for suffi-
ciently large systems can be used interchangeably with NVE
dynamics for calculating most quantities of interest. NVU dy-
namics is not faster than standard NVE or NVT dynamics, but
introduces a new way of thinking about molecular dynam-
ics. Molecular dynamics at constant potential energy was pre-
viously considered by Cotterill and co-workers,3–6 by Scala
et al.,7 and most recently by Stratt and co-workers,8–11 who,
however, allowed also lower potential energy values. Our
motivation for studying NVU dynamics derive from recent
work on strongly correlating liquids and their isomorphs12–19

(see the Introduction of Paper I).
NVU dynamics is defined by geodesic motion on the

constant-potential-energy hypersurface � defined by

� = {R ∈ R3N | U (R) = U0}. (1)

Here, R ≡ {r(1), . . ., r(N)} in which r(k) is the position vector
of the k’te particle (we follow the notation of the Appendix
of Paper II), and U is the potential-energy function of an N-

a)trond@ruc.dk.

particle classical system. A geodesic on � is a curve that sat-
isfies the condition of stationary length for fixed endpoints RA

and RB , i.e.,

δ

∫ RB

RA

dl

∣∣∣∣
�

= 0, (2)

where dl is the line element of the metric. The shortest path
between any two points is a geodesic. On a sphere, geodesics
are great circles, the “straightest lines” of the surface. Travers-
ing a geodesic at constant velocity thus corresponds to a gen-
eralization of Newton’s first law to a curved space (the surface
itself).

In Paper I, the NVU algorithm was developed via
a discretization of Eq. (2), subsequently carrying out the
variation. This technique, which is known as variational
integration,20–23 resulted in a “basic” NVU algorithm that
is similar to the well-known Verlet algorithm Ri+1 = 2Ri

− Ri − 1 + (�t)2Fi/m for Newtonian (NVE) dynamics (m is
the particle mass, which is here the same for all particles, and
Fi ≡ −∇Ri

U is the 3N-dimensional force vector); the index i
refers to step i of the integration sequence. In the Verlet algo-
rithm, �t is a fixed time step length. In comparison, the basic
NVU algorithm is given by (Paper I)

Ri+1 = 2Ri − Ri−1 − 2Fi · (Ri − Ri−1)

F2
i

Fi . (3)

If the number of particles N increases, the relative variation
of the term −2Fi · (Ri − Ri−1)/F2

i decreases, and this is why
equivalence with Newtonian NVE dynamics is established in

0021-9606/2012/137(24)/244101/10/$30.00 © 2012 American Institute of Physics137, 244101-1
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the thermodynamic limit. This equivalence should be under-
stood in the sense that the relative deviations between, for in-
stance, NVE and NVU time auto-correlation functions go to
zero as N → ∞.

Paper I additionally developed a “stabilized” version of
the basic NVU algorithm to prevent the accumulation of nu-
merical errors. This version of the algorithm is given by
(defining the position changes �i+1/2 ≡ Ri+1 − Ri)

�i+1/2 = l0
Ai+1/2

‖Ai+1/2‖ , (4)

Ri+1 = Ri + �i+1/2, (5)

where l0 is the step length and

Ai+1/2 = �i−1/2 + (−2Fi · �i−1/2 + Ui−1 − U0)

F2
i

Fi . (6)

All simulations in Papers I and II were performed with the
stabilized algorithm. The basic algorithm was used, however,
for theoretical considerations. Note that the basic NVU algo-
rithm has the same excellent stability as the Verlet algorithm,
and the accumulation of numerical errors is no more serious.

In this article, we extend the stabilized NVU algorithm to
deal with simulations of molecular systems. Molecular sys-
tems are simulated by introducing rigid and/or flexible bonds
between the atoms in the modelling. Flexible bonds introduce
merely an additional contribution to U, for instance, harmonic
spring potentials. The NVU algorithm conserves the total po-
tential energy and can readily simulate flexible bonds. The
focus in this paper is thus on implementing rigid bonds in the
framework of NVU dynamics.

Section II considers NVU dynamics with rigid bonds. In-
troducing rigid bonds in the simulations lead to Lagrangian
multipliers in addition to those introduced in order to keep
the potential energy constant (Paper I). Section II is fairly
technical and easiest to read after reading Paper I. Section
III gives simulation and model details. Section IV tests the
rigid-bond NVU algorithm, and Sec. V investigates the NVU
sampling properties by comparing the NVU results to Nosé-
Hoover NVT results24, 25 on three different systems: the asym-
metric dumbbell model,26 Lewis-Wahnström OTP,27 and rigid
SPC/E water.28 Nosé-Hoover NVT dynamics is known to give
results equivalent to NVE dynamics in the thermodynamic
limit,29 and we refer to these dynamics interchangeably in the
forthcoming sections. Finally, Sec. VI concludes.

II. RIGID-BOND NVU ALGORITHM

The rigid bonds30, 31 introduce constraints among the par-
ticle coordinates of the system. Each constraint α = 1, . . ., G
is of the form

σα(R) ≡ (r(kα) − r(lα ))2 ≡ (rα)2 = C2
α; (7)

it expresses that the distance between particles kα and lα is a
constant, Cα . In Papers I and II, the integral of Eq. (2) was
merely restricted to the constant-potential-energy hypersur-
face �. Each rigid bond constraint introduces a function σα

to be kept constant, and thus the integral of Eq. (2) is now
further restricted to the sub-manifold ω of � where the bond

constraints are satisfied,

ω = {R ∈ � | σα(R) = C2
α, α = 1, . . .,G}. (8)

If the bond constraints are independent, as assumed through-
out the paper, ω is a (3N - G - 1)-dimensional compact Rie-
mannian manifold. The variational principle defining NVU
dynamics with rigid bonds is given by

δ

∫ RB

RA

dl = 0

∣∣∣∣
ω

. (9)

Most of Papers I and II dealt with the case of identical parti-
cle masses, but we wish here to develop a completely general
molecular NVU algorithm. The line element dl is defined by

dl2 ≡
∑

k

m̃k(dr(k))2, (10)

where m̃k = mk/〈m〉 is the “reduced” mass of particle k. Equa-
tion (10) is not the standard Euclidean line element, but a
mass-weighted line element that goes back to Hertz.32, 33 We
shall refer to this metric as the “Hertzian” metric. This met-
ric ensures equivalence between NVU and NVE dynamics for
systems of atoms and molecules of varying mass. In the Ap-
pendix, we derive the variable-mass atomic NVU algorithm
applying the Hertzian metric (correcting also a typo of the
Appendix of Paper II).

Applying the variational integration technique to Eq. (9)
gives

δ

⎛
⎝∑

i

√∑
k

m̃k

(
r(k)
i − r(k)

i−1

)2 −
∑

i

λiU (Ri)

+
∑
i,α

	αiσα(Ri)

)
= 0 . (11)

In Eq. (11), the path is divided into a number of discrete points
and one Lagrangian multiplier 	αi is introduced for each con-
straint α at every point i. Following standard notation for con-
straint molecular dynamics,30, 31 the Lagrangian multipliers of
the bond constraints are chosen with a positive sign. As in
Papers I and II, we now make the Ansatz of constant step
length l0, i.e., ∑

k

m̃k

(
r(k)
i − r(k)

i−1

)2 ≡ l2
0 . (12)

Carrying out the variation of Eq. (11) using Eq. (12) leads to
(compare the derivation in Paper I)

r(k)
i+1 = 2r(k)

i − r(k)
i−1 + l0

m̃k

λif
(k)
i + l0

m̃k

∇r(k)
i

∑
α

	αiσα, (13)

where f(k)
i = −∇r(k)

i
U is the force on particle k at step i. This

equation constitutes the NVU algorithm with rigid bonds.
It has a close resemblance to the Lagrangian equations of
motion with holonomic constraints,31 i.e., rigid-bond NVE
dynamics.30 Equation (13) contains G + 1 Lagrangian mul-
tipliers for each integration step, which must be determined
to complete the algorithm.
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TABLE I. Definitions and nomenclature of the text.

Symbol Definition

σα(R) The α’th bond constraint between particles kα and lα with α = 1, . . ., G. (σα = (rα)2 = C2
α).

m̃k The mass of particle k divided by the average mass of the system. (m̃k = mk/〈m〉).
3-dimensional vectors

r(k)
i Position of particle k at step i.

δ
(k)
i+1/2 Displacement of the position of particle k between step i and i + 1. (δ(k)

i+1/2 = r(k)
i+1 − r(k)

i ).

f(k)
i Force on particle k at step i. (f(k)

i = −∇
r(k)
i

U ).

g(k)
i Constraint force on particle k at step i. (g(k)

i = ∇
r(k)
i

∑
α 	αiσα).

rα
i Displacement of the positions of particles kα and lα at step i. (rα

i = r(kα )
i − r(lα )

i ).

δα
i−1/2 Displacement of the velocities of particles kα and lα at step i − 1/2. (δα

i−1/2 = δ
(kα )
i−1/2 − δ

(lα )
i−1/2).

sα
i Sum of displacements of positions and velocities of particles kα and lα at, respectively, step i and i − 1/2. (sα

i = rα
i + δα

i−1/2).

f̃
α

i Displacement of the forces on particles kα and lα at step i divided by their reduced particle mass. (f̃
α

i = f(kα )
i /m̃kα − f(lα )

i /m̃lα ).

g̃α
i Displacement of the constraint forces on particles kα and lα at step i divided by their reduced particle mass. ( g̃α

i = g(kα )
i /m̃kα − g(lα )

i /m̃lα ).

3N-dimensional vectors
Ri Position of all particles at step i. (Ri = {r(1)

i , . . ., r(N)
i }).

�i+1/2 Displacement of the positions between step i and i + 1. (�i+1/2 = Ri+1 − Ri ).
Fi Force on all particles at step i. (Fi = −∇Ri

U ).

F̃i Force on all particles at step i divided by the reduced particle mass. (F̃i = {f(1)
i /m̃1, . . ., f(N)

i /m̃N }).
G̃i Constraint force on all particles at step i divided by the reduced particle mass. (G̃i = {g(1)

i /m̃1, . . ., g(N)
i /m̃N }).

A. Determining the NVU Lagrangian multipliers

This section shows how to calculate the Lagrangian
multipliers. Since the algorithm is to be implemented on a
computer (with finite-precision), we shall proceed directly
to a “stabilized” algorithm conserving for indefinitely long
runs potential energy, bond lengths, and step length (in 3N-
dimensions). The resulting algorithm reduces to the stabilized
atomic NVU algorithm of Eqs. (4)–(6) in the case of no bonds
constraints.

Some notation used in the following derivation is now in-
troduced (the nomenclature of text is summarized in Table I).
Defining δ

(k)
i+1/2 ≡ r(k)

i+1 − r(k)
i and g(k)

i ≡ ∇r(k)
i

∑
α 	αiσα the

“Leap-frog”34 version of the rigid-bond NVU algorithm
Eq. (13) reads

δ
(k)
i+1/2 = δ

(k)
i−1/2 + l0

m̃k

λif
(k)
i + l0

m̃k

g(k)
i , (14)

r(k)
i+1 = r(k)

i + δ
(k)
i+1/2. (15)

In analogy to rigid-bond NVE dynamics we call g(k)
i

the “constraint force” on particle k at step i. Intro-
ducing the notation F̃i ≡ {f(1)

i /m̃1, . . ., f(N)
i /m̃N } and G̃i

≡ {g(1)
i /m̃1, . . ., g(N)

i /m̃N }, the NVU algorithm in the full 3N-
dimensional coordinate space reads

�i+1/2 = �i−1/2 + l0λiF̃i + l0G̃i , (16)

Ri+1 = Ri + �i+1/2, (17)

The Lagrangian multipliers are calculated by combining a
result derived in Paper I with the method applied in the
SHAKE algorithm30 for rigid bonds in NVE dynamics.30, 35, 36

The SHAKE algorithm calculates the Lagrangian multipliers
from the equations (rα

i+1)2 = C2
α . In doing so, the target value

of the constraints Cα appears explicitly in the algorithm, mak-
ing the bond lengths insensitive to numerical error. The ex-

pression for rα
i+1 is supplied by the integration algorithm con-

taining herein the Lagrangian multipliers. In our case, this
gives G equations with G + 1 unknowns. The missing equa-
tion is supplied by an expression derived in Paper I, namely
that Ui+1 = Ui−1 − Fi · (Ri+1 − Ri−1) to third order in the
step length. In the discrete sequence of points, Ui+1 is set
equal to U0 (the constant defining �), making the constraint of
constant potential energy also insensitive to numerical errors.
We thus have the following G + 1 equations for calculating
the Lagrangian multipliers

Ui−1 − Fi · (Ri+1 − Ri−1) − U0 = 0, (18)(
rα
i+1

)2 − C2
α = 0, (α = 1, . . . ,G). (19)

By Eqs. (16) and (17); Ri+1 − Ri−1 = �i+1/2 + �i−1/2 =
2�i−1/2 + l0λiF̃i + l0G̃i . Defining δα

i−1/2 ≡ δ
(kα)
i−1/2 − δ

(lα )
i−1/2,

f̃
α

i ≡ f(kα)
i /m̃kα

− f(lα )
i /m̃lα , and g̃α

i ≡ g(kα)
i /m̃kα

− g(lα )
i /m̃lα ,

since by Eqs. (14) and (15); rα
i+1 = r(kα)

i+1 − r(lα )
i+1 = r(kα)

i −
r(lα )
i + δ

(kα)
i+1/2 − δ

(lα )
i+1/2 = rα

i + δα
i−1/2 + l0λi f̃

α

i + l0g̃α
i , it fol-

lows that

Ui−1 − Fi · [2�i−1/2 + l0λiF̃i + l0G̃i] − U0 = 0, (20)[
rα
i + δα

i−1/2 + l0λi f̃
α

i + l0g̃α
i

]2 − C2
α = 0, (α = 1, . . .,G).

(21)

The above coupled quadratic equations for the Lagrangian
multipliers are now solved following the produce of the
MILC-SHAKE algorithm,37 which starts by neglecting the
second order terms in the Lagrangian multipliers and solving
the resulting linear equations. Afterwards, the second order
terms are taken into account in an iterative manner—the de-
tails of which are described below.

For each integration step i, the linearized equations are
given as

Aiλi = bi , (22)
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where Ai is a (G + 1) × (G + 1) matrix, λi

≡ {λi,	1i , . . ., 	Gi}, and bi a G + 1 column vector. We start
by calculating explicitly the first few elements of the matrix
Ai . A11 consists merely of the factor in front of λi in Eq. (20),
i.e., A11 = −l0F̃i · Fi . The second element A12 appears af-
ter expansion of the dot product Fi · G̃i . Noting that ∇r(kα )

i
σα

= 2rα
i , we have Fi · G̃i = f(1)

i · g(1)
i /m̃1 + . . . + f(N)

i · g(N)
i /m̃N

= 2	1i(f̃
1
i · r1

i ) + . . . + 2	Gi(f̃
G

i · rG
i ). The last equation fol-

lows as the Lagrangian multipliers appear in pairs, differing
only by the sign from ∇r(kα )

i
σα and the term f(kα)

i /m̃kα
. We thus

find A12 = −2l0 f̃
1
i · r1

i , A13 = −2l0 f̃
2
i · r2

i , etc. In the second
row of Ai , the short-hand notation sα

i ≡ rα
i + δα

i−1/2 is in-

troduced, making A21 = 2l0(s1
i · f̃

1
i ), i.e., the factor in front

of λi after squaring of the parentheses. The next element
A22 appears after expanding s1

i · g̃1
i = s1

i · ∑
β 	βi( 1

m̃k1
∇r

(k1)
i

σβ

− 1
m̃l1

∇r
(l1)
i

σβ). In this sum, we identify the factor in front of

	1i, giving A22 = 2l0s1
i · ( 1

m̃k1
∇r

(k1)
i

σ1 − 1
m̃l1

∇r
(l1)
i

σ1), and simi-
larly for the remaining elements of the second row.

Altogether, the elements of Ai are thus given by

Ai = 2l0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F̃i · Fi/2 −f̃
1
i · r1

i · · · −f̃
G

i · rG
i

s1
i · f̃

1
i s1

i ·
(

1

m̃k1

∇r
(k1)
i

σ1 − 1

m̃l1

∇r
(l1)
i

σ1

)
· · · s1

i ·
(

1

m̃k1

∇r
(k1)
i

σG − 1

m̃l1

∇r
(l1)
i

σG

)
...

...
. . .

...

sG
i · f̃

G

i sG
i ·

(
1

m̃kG

∇r
(kG)
i

σ1 − 1

m̃lG

∇r
(lG )
i

σ1

)
· · · sG

i ·
(

1

m̃kG

∇r
(kG )
i

σG − 1

m̃lG

∇r
(lG)
i

σG

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

The column vector bi consists of all zeroth-order terms in
Eqs. (20) and (21)

bi =

⎛
⎜⎜⎜⎝

U0 − Ui−1 + 2Fi · �i−1/2

C2
1 − (

s1
i

)2

...

C2
G − (

sG
i

)2

⎞
⎟⎟⎟⎠. (24)

Turning now to the iteration procedure, the second-order
terms in the Lagrangian multipliers (Eq. (21)) are taken into
account by iterating the right-hand side of Eq. (22) via the
scheme (α = 1, . . ., G)

bj+1
α = bj

α + [
C2

α − ((
rα
i+1

)2)j ]
. (25)

The superscript j refers here to iteration j, and ((rα
i+1)2)j are

the positions associated with iteration j. The element b0 is not
updated as it derives from the constraint of constant potential
energy. For each iteration j, the term C2

α − ((rα
i+1)2)j is ex-

pected to become smaller as the bonds are satisfied better and
better, and indeed, convergence was achieved within a few
iterations.37

For each integration step i, the algorithm for determining
the NVU Lagrangian multipliers thus proceeds as follows:

1. The Lagrangian multipliers of iteration j, (λi)j , are cal-
culated from Eq. (22).

2. ((rα
i+1)2)j is calculated via Eqs. (14) and (15) using (λi)j .

3. bi is updated via Eq. (25) from ((rα
i+1)2)j .

4. The above steps are repeated until convergence is estab-
lished (we used a preset number of iterations, typically
3–5).

How is constant step length l0 ensured numerically after de-
termining the Lagrangian multipliers? Generalizing the ap-

proach of Paper I, we introduce a normalizing factor such that

δ
(k)
i+1/2 = l0

χ
(k)
i+1/2√∑

k m̃k

(
χ

(k)
i+1/2

)2
, (26)

r(k)
i+1 = r(k)

i + δ
(k)
i+1/2, (27)

where

χ
(k)
i+1/2 ≡ δ

(k)
i−1/2 + l0

m̃k

λif
(k)
i + l0

m̃k

g(k)
i . (28)

The normalizing factor is close to unity1 and ensures trivially∑
k m̃k(δ(k)

i+1/2)2 = l2
0 , i.e., that the step length is conserved.

The algorithm is now absolutely stable, conserving potential
energy, bond lengths, and step length for indefinitely long
runs. The stability of the NVU algorithm is tested numerically
in Sec. IV.

B. Alternative determination of the NVU
Lagrangian multipliers

Section II A followed the traditional way of calculating
the Lagrangian multipliers. The NVU Lagrangian multipliers
may also be calculated by Taylor expanding the constraints
σα in analogy to the method sketched above for the potential
energy. In this way, the constraints of constant potential en-
ergy and constant bond lengths are treated on equal footing.
The set of equations to be solved is the following (recall that
Ri+1 − Ri−1 = 2�i−1/2 + l0λiF̃i + l0G̃i),

Ui−1 − Fi · (Ri+1 − Ri−1) − U0 = 0, (29)

σα(i−1) + ∇Ri
σαi · (Ri+1 − Ri−1) − C2

α = 0, (α = 1, . . .,G).
(30)
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The equations for the Lagrangian multipliers are now linear
and thus no iterations are needed. The bond constraints σα are
obeyed to the same order O(l3

0) as the constraint of constant
potential energy. The sampling properties of this alternative
determination method is tested briefly in Sec. V. It appears to
be a promising new way of determining the Lagrangian mul-
tipliers in connection with rigid bonds, which might also be
useful for standard bond-constraint NVE or NVT simulations.

III. SIMULATION DETAILS AND MODEL SYSTEMS

We investigated three systems: the asymmetric dumbbell
model, the Lewis-Wahnström OTP model, and rigid SPC/E
water. For all simulated pair potentials, the shifted-force trun-
cation scheme was applied at a cut-off radius rc. If the pair po-
tential is v(r) and the pair force is f (r) = −v′(r), the shifted
force is given by34, 38

fSF(r) =
{

f (r) − f (rc) if r < rc ,

0 if r > rc .
(31)

This corresponds to using the following pair potential be-
low rc: vSF(r) = v(r) − v′(rc)(r − rc) − v(rc). All simula-
tions were performed with the NVT and NVU algorithms. Re-
call that NVE and NVT dynamics give equivalent results;29

for this reason, no simulations are presented for NVE dynam-
ics. The Roskilde University Molecular Dynamics (RUMD)
code39 was used for molecular dynamics simulations (an
optimized open-source GPU code). The NVT ensemble is
generated via the Nosé-Hoover algorithm,24, 25, 40 and the
bonds held fixed using the time-reversible constraint algo-
rithm of Refs. 35 and 36. The NVU algorithm is described in
Sec. II. The starting files for NVU dynamics were taken from
an equilibrated NVT simulation. The positions and veloci-
ties of the NVT configuration do not correspond perfectly to
motion on ω, since the potential energy and step length are
not those of U0 = 〈U〉 and l0, respectively. As all the con-
straints are to be satisfied simultaneously, this results in nu-
merical problems when starting the simulation from the par-
ticular NVT configuration. A more gentle procedure is thus
applied, where the atomic NVU algorithm is used for a couple
of integration steps to ensure the correct values of U0 and l0.
Afterwards, the rigid-bond NVU algorithm is used.

A. NVU iteration procedure

The quadratic equations (Eq. (25)) were iterated with
a fixed number of iterations (between 3 and 5). The lin-
ear systems were solved utilizing Cusp,41 a library for solv-
ing systems of linear equations on the GPU. More specif-
ically, the stabilized biconjugate gradient algorithm with
a Jacobi preconditioner42 was used with the initial value
λi = λi−1 (λ0 = 0 for the start of the simulation). The rela-
tive tolerance τ of the solver for the asymmetric dumbbell
and Lewis-Wahnström OTP models was chosen as τ = 10−7

and for rigid SPC/E water as τ = 3 × 10−7. A larger toler-
ance was chosen for rigid SPC/E water due to convergence
issues in connection with the shifted-force Coulomb interac-
tions (see below).

The maximum number of allowed iterations was 50. A
restart scheme was applied when the solver did not con-
verge within the chosen tolerance. In this case, the solver
(and quadratic iteration) was restarted from the partially es-
timated “solution” adding 2 × 10−7 to the tolerance. It should
be noted that the stabilized biconjugate gradient algorithm
may get trapped, resulting in a break-down of the Cusp lin-
ear solver. If this happens, it is detected by our program, and
the solver and quadratic iteration are restarted with a smaller
number (10) of maximum allowed iterations for the solver.

B. The asymmetric dumbbell

The asymmetric dumbbell model26 consists of a large (A)
and a small (B) Lennard-Jones (LJ) particle, rigidly bonded
with bond distance of rAB = 0.29/0.4963 (here and hence-
forth units are given in LJ units referring to the A particle such
that σ AA = 1, εAA = 1, and mA = 1). The asymmetric dumb-
bell model has σ BB = 0.3910/0.4963, εBB = 0.66944/5.726,
and mB = 15.035/77.106. The AB interaction between differ-
ent molecules is determined by the Lorentz-Berthelot mixing
rule.34 n = 500 molecules (here and henceforth n denotes the
number of molecules and N the number of atoms) were used
in the simulations with a pair-potential cut-off of rc = 2.5. The
step length l0 was fixed in the range 0.125–0.138 depending
on the state point.

Simulations were also performed where the rigid bonds
were replaced by stiff harmonic springs. The spring constant
was k = 3000, while all other model parameters remained
unchanged.

C. Lewis-Wahnström OTP

The Lewis-Wahnström OTP model27 consists of three
identical LJ particles rigidly bonded in an isosceles triangle
with sides of rAA = 1 and top angle of 75◦. All parameters
(including the masses) are unity for the OTP model. n = 320
molecules were simulated and a pair-potential cut-off of rc

= 2.5 was used. The step length was 0.100.

D. SPC/E water

The SPC/E water model28 is an isosceles triangle with
sides rOH = 1/3.166 and top angle 109.47◦. The OO in-
termolecular interactions are given by the LJ pair potential
(εOO = 1, σOO = 1, and mO = 15.9994/1.00794). The three

TABLE II. Potential energy, deviation of bond lengths and step length
as functions of integration step number in the NVU algorithm for Lewis-
Wahnström OTP (ρ = 0.329, T = 0.700). Single-precision floating-point
arithmetic was used for the simulations.

Integration steps U/N (1/G
∑

α(rα − Cα)2)1/2 ∑
k m̃k(δ(k)

i+1/2)2

101 −4.42550 2.81207 × 10−7 0.0999999
102 −4.42552 3.03535 × 10−7 0.1000000
103 −4.42552 2.81128 × 10−7 0.1000000
104 −4.42552 2.95078 × 10−7 0.1000000
105 −4.42550 3.08793 × 10−7 0.1000000
106 −4.42551 2.90477 × 10−7 0.1000000
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FIG. 1. The probability density of the “time step” length (�ti,NV U )2

≡ l0λi〈m〉 of the rigid-bond NVU algorithm for Lewis-Wahnström OTP at
ρ = 0.329 and T = 0.700. n = 320 molecules were simulated.

particles are charged with qO = −22.0 and qH = |qO |/2.
n = 2000 molecules were simulated and a pair-potential cut-
off of rc = 6.28 for both LJ and Coulomb interactions was
applied.43, 44 The step length was fixed in the range 0.06–0.07
depending on the state point. For this system, the numeri-
cal stability is sensitive to the cut-off used in the Coulomb
interactions, but a larger shifted-force cut-off improves this
behavior.44

IV. TESTING THE STABILITY OF THE RIGID-BOND
NVU ALGORITHM

This section tests the conservation properties of the rigid-
bond NVU algorithm. Table II shows the potential energy, the
deviation of bond lengths, and step length as functions of inte-
gration step number for Lewis-Wahnström OTP at ρ = 0.329
and T = 0.700. It is clear that these quantities are conserved
by the algorithm and that no drift occurs. The step length is
conserved to the highest accuracy since it is not prone to nu-
merical error in determining the Lagrangian multipliers.

Figure 1 shows the distribution of the term l0λi〈m〉 in
Eq. (13) (m̃k = mk/〈m〉). In NVU dynamics there is, as
such, no notation of time; a geodesic on the manifold can
be traversed with any velocity. Comparing the NVU algo-
rithm of Eq. (13) to the rigid-bond Verlet algorithm30 r(k)

i+1

= 2r(k)
i − r(k)

i−1 + ((�t)2/mk)[f(k)
i + g(k)

i ], we can define the
term l0λi〈m〉 as a varying “time step” length of the NVU algo-
rithm (see also Paper II), i.e.,

(�ti,NV U )2 ≡ l0λi〈m〉. (32)

The integration steps of the NVU algorithm are thus hence-
forth referred to as “time steps.” The average of Eq. (32) is
used in Sec. V when comparing to NVT dynamics. As was
the case for the atomic NVU algorithm (Paper I), l0λi〈m〉 is
Gaussian distributed for large systems and its relative vari-
ation decreases as the number of particles increases. It thus
becomes a better and better approximation to treat this term
as constant, implying equivalent sampling properties of NVU
and NVE dynamics also when rigid bonds are included in the
simulations.

V. SAMPLING PROPERTIES OF THE RIGID-BOND
NVU ALGORITHM

The NVU algorithm is now compared to NVT dynamics
for the three different models. First, we consider the asymmet-
ric dumbbell model,26 both rigid and flexible. Afterwards, the
Lewis-Wahnström OTP model,27 and finally the rigid SPC/E
water model.28

A. The asymmetric dumbbell model

In Figs. 2(a) and 2(b) are shown, respectively, the molec-
ular center-of-mass (CM) radial distribution functions and the
CM incoherent intermediate scattering functions for the rigid
asymmetric dumbbell model26 for different temperatures at
ρ = 0.932. The black circles and curves give NVT simulation
results while the red crosses give the NVU simulation results.
The two radial distribution functions in Fig. 2(a) agree very
well, and this is also the case for the dynamics in Fig. 2(b).
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FIG. 2. Comparison of structure and dynamics in NVU and NVT simulations of the rigid asymmetric dumbbell model. The black circles and curves give NVT,
the red crosses NVU simulation results. (a) The molecular CM radial distribution functions at ρ = 0.932 and T = 0.500. (b) The molecular CM incoherent
intermediate scattering functions at ρ = 0.932 and T = 0.500, 0.600, 0.700, 0.800, 0.900.
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FIG. 3. Comparison of structure and dynamics in NVU and NVT simulations of the flexible-bond asymmetric dumbbell model. The black circles and curves
give NVT, the red crosses NVU simulation results. The same state points as in Fig. 2 were simulated. (a) The molecular CM radial distribution functions at
ρ = 0.932 and T = 0.500. (b) The molecular CM incoherent intermediate scattering functions at ρ = 0.932 and T = 0.500, 0.600, 0.700, 0.800, 0.900.
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FIG. 4. Comparison of center-of-mass structure and dynamics in NVU and NVT simulations of the Lewis-Wahnström OTP model. The black circles and curves
give NVT, the red crosses NVU simulation results. (a) The molecular CM radial distribution functions at ρ = 0.329 and T = 0.700. (b) The molecular CM
incoherent intermediate scattering functions at ρ = 0.329 and T = 0.700, 0.800, 0.900, 1.000.
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FIG. 5. Comparison of particle structure and dynamics in NVU and NVT simulations for the Lewis-Wahnström OTP model. The black circles and curves give
NVT, the red crosses NVU simulation results. (a) The particle radial distribution functions at ρ = 0.329 and T = 0.700. (b) The particle incoherent intermediate
scattering functions at ρ = 0.329 and T = 0.700, 0.800, 0.900, 1.000.
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FIG. 6. Comparison of structure and dynamics in NVU and NVT simulations of rigid SPC/E water. The black circles and curves give NVT, the red crosses NVU
simulation results. (a) The molecular CM radial distribution functions at ρ = 1.000 and T = 3.800. (b) The molecular CM incoherent intermediate scattering
functions at ρ = 1.000 and T = 3.800, 4.200, 5.000.

For reference, we also simulated (Fig. 3) the correspond-
ing quantities for the flexible-bond asymmetric dumbbell
model at the state points of Fig. 2. Again, there is a very good
agreement between NVU and NVT dynamics.

B. Lewis-Wahnström OTP

We show in Figs. 4(a) and 4(b), respectively, the molecu-
lar CM radial distribution functions and CM incoherent inter-
mediate scattering functions for the Lewis-Wahnström OTP
model.27 The same symbols and meanings as in the preceding
section are used. Again, the NVU and NVT simulations agree
very well for both structure and dynamics.

For comparison, we also show in Fig. 5 the corresponding
particle quantities for the OTP model.

C. SPC/E water

Finally, we consider in Fig. 6 the same quantities as above
for the (not strongly correlating) rigid SPC/E water model.28
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FIG. 7. Comparison of structure in NVU and NVT simulations of rigid SPC/E
water at ρ = 1.000 and T = 3.800 applying the linear method to determine
the Lagrangian multipliers (Eqs. (29) and (30)). The bond lengths are here
conserved to order 10−6 in the standard deviation of the bonds (using single-
precision).

Again, full equivalence between NVU and NVT dynamics is
found.

The linear algorithm for determining the Lagrangian
multipliers presented in Sec. II B (Eqs. (29) and (30)) is tested
in Fig. 7 by probing the molecular CM radial distribution
functions. NVU and NVT dynamics also here give identical
results.

We conclude from the presented results that for suffi-
ciently large molecular systems with flexible and/or rigid
bonds, NVU dynamics is equivalent to Nosé-Hoover NVT dy-
namics (and, by implication, to Newtonian NVE dynamics).

VI. SUMMARY

NVU dynamics is molecular dynamics at constant poten-
tial energy realized by tracing out a geodesic on the constant-
potential-energy hypersurface � (Eq. (1)). In Papers I and
II,1, 2 a “basic” and a “stabilized” atomic NVU algorithm for
simulating geodesics on � were developed. The basic NVU
algorithm has excellent stability and it is time-reversible and
symplectic; the stabilized algorithm was developed only to
prevent accumulation of numerical error as also happens for
NVE dynamics. It was found that atomic NVU dynamics be-
comes equivalent to atomic NVE dynamics in the thermody-
namic limit.

In this paper, the stabilized NVU algorithm has been ex-
tended to simulate molecules at constant potential energy.
Molecules are generally simulated by introducing rigid and/or
flexible bonds in the models. The atomic NVU algorithm
keeps the potential energy constant and can thus right away
simulate flexible bonds. The focus here was on incorporating
rigid bonds in the framework of NVU dynamics, which leads
to the introduction of additional Lagrangian multipliers be-
yond those of the constraint of constant potential energy. This
is completely analogous to the approach for simulating rigid
bonds in standard Newtonian NVE dynamics.30, 35, 36 In the
NVU algorithm, a set of coupled quadratic equations was con-
structed for calculating the Lagrangian multipliers and solved
in an iterative manner as a linear system, a procedure de-
veloped for rigid-bond NVE dynamics in the MILC-SHAKE
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algorithm.37 In addition, a set of linear equations was pre-
sented for calculating the Lagrangian multipliers, which ap-
pears to be a promising new way of simulating rigid bonds.

The rigid-bond NVU algorithm reduces to the atomic
NVU algorithm when there are no rigid bonds. The algorithm
was tested on three different model systems: the asymmet-
ric dumbbell model, Lewis-Wahnström OTP, and rigid SPC/E
water. The probed quantities in the simulation gave identi-
cal results to those of Nosé-Hoover NVT dynamics. We con-
clude that also for molecular systems, NVU dynamics be-
comes equivalent to NVE dynamics in the thermodynamic
limit (since NVE and NVT dynamics are known to give equiv-
alent results29).
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APPENDIX: DERIVATION OF THE ATOMIC NVU
ALGORITHM FOR THE HERTZIAN METRIC

According to Newtonian dynamics, heavy particles move
slower than light particles in thermal equilibrium. The stan-
dard Euclidean metric does not involve the particle masses,
and thus applying this metric to geodesic motion for systems
of varying masses will not produce dynamics equivalent to
Newtonian dynamics in a thermal system. The mass-weighted
metric of Hertz,32 however, ensures that NVU dynamics be-
comes equivalent to NVE dynamics in the thermodynamic
limit, as is clear from the derivation below. The Hertzian met-
ric is given by (where m̃k = mk/〈m〉)

dl2 ≡
∑

k

m̃k(dr(k))2. (A1)

We here derive the discrete NVU algorithm applying this met-
ric (this appendix also corrects a typo in Eq. (A5) of Paper II).
The discretized variational condition for geodesic motion on
� is

δ

⎛
⎝∑

i

√∑
k

m̃k

(
r(k)
i − r(k)

i−1

)2 −
∑

i

λiU (Ri)

⎞
⎠ = 0 . (A2)

Assuming a constant step length l0, i.e.,∑
k

m̃k

(
r(k)
i − r(k)

i−1

)2 ≡ l2
0 , (A3)

it follows by differentiation with respect to r(k)
i from Eq. (A2)

that

m̃k

(
r(k)
i − r(k)

i−1

) + m̃k

(
r(k)
i − r(k)

i+1

) + l0λif
(k)
i = 0. (A4)

Defining a(k)
i ≡ (r(k)

i − r(k)
i−1) and b(k)

i ≡ (r(k)
i − r(k)

i+1),

Eq. (A3) expresses that
∑

k m̃k((a(k)
i )2 − (b(k)

i )2)
= ∑

k m̃k(a(k)
i + b(k)

i ) · (a(k)
i − b(k)

i ) = 0, and thus via

Eq. (A4)∑
k

m̃k

(− l0/m̃kλif
(k)
i

) · (
r(k)
i+1 − r(k)

i−1

) = 0. (A5)

Equivalently, ∑
k

f(k)
i · r(k)

i+1 =
∑

k

f(k)
i · r(k)

i−1. (A6)

Combining Eq. (A6) with the discrete NVU algorithm
(Eq. (A4)) gives the following result

l0λi = −2
∑

k f(k)
i · (r(k)

i − r(k)
i−1)∑

k

(f(k)
i )2

m̃k

. (A7)

The atomic NVU algorithm with varying masses is thus given
by

r(k)
i+1 = 2r(k)

i − r(k)
i−1 + l0

m̃k

λif
(k)
i , (A8)

l0λi = −2
∑

k f(k)
i · (r(k)

i − r(k)
i−1)∑

k

(f(k)
i )2

m̃k

. (A9)

Equation (A9) fluctuates relatively less and less as the number
of particles increases, and equivalence with NVE dynamics is
established in the thermodynamic limit.
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