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Abstract in English

The present PhD thesis dissertation is a report on two main projects: (1) A study of
thermoviscoelastic phenomena, and (2) a pilot experiment to test if relaxation of highly
viscous liquids can be described by a single internal parameter.

The first part is a study of a peculiar thermoelastic effect - cooling by heating: If a
solid sphere is heated at the surface, temperature will drop in the middle of the sphere.
The study gives a theoretical explanation in terms of an analysis of the full thermovis-
coelastic problem in spherical geometry. The effect is shown to be the consequence of a
non-trivial thermomechanical coupling which exist if there is a difference between the
longitudinal and the isobaric specific heat. Through extensive mathematical modeling
I derive a formula that predicts the size of the cooling by heating effect when a finite
amount of heat is added at the surface of a thermoelastic solid. Numerical simulations
prove that the effect also exists in the thermoviscoelastic case, and it is shown that the
effect is present in the liquid, even in the case where the effect is non-present in the
solid. The modeling also shows that the effect is not limited to the center of the sphere
and thus a detection of the phenomenon is not dependent on a very precise central
placement of a thermometer. Besides the theoretical work I have done molecular dy-
namics simulations of a nano-sized droplet proving that cooling by heating is present
also on the molecular level. Finally, I have performed measurements in the lab on a
sphere of glucose. The experiments show that the effect is present also in real systems.

The second part is a pilot experiment. I explore the possibility of measuring a com-
plete set of thermoviscoelastic response functions on the same sample under identical
conditions, by combining two devices used and developed in the Glass & Time group
at Roskilde University. The motive for this is the scientific question whether one or
more internal parameters are needed to describe the relaxation dynamics of highly
viscous liquids. This question is a part of the long term research plan of the group.
The first device is the Piezoelectric Bulk modulus Gauge (PBG), which is a spherical
piezoelectric shell coated with electrodes on both sides. Applying an oscillation elec-
tric field to the liquid filled PBG one measures the mechanical auto response function
KS(ω) - the adiabatic bulk modulus. The second device is a thermistor. Employing the
3ω-method one measures the thermal auto response function cl(ω) - the longitudinal
specific heat. Placing the thermistor in the center of the PBG, one can perform the
third experiment: The measurement of the cross response function βS(ω) ≡

(
∂V
∂S

)
p

(ω)

- the adiabatic pressure coefficient. Here a heat current is generated in the center with
the thermistor while the resulting deformation of the PBG as the liquid expands is
measured as a piezoelectric voltage. This is a novel measurement never done before,
and in order to deduce βS one first need to measure the two auto response functions.
This part of the thesis briefly presents the measurements of KS and cl. Also I show
how to model the third combined experiment, and perform a first pilot measurement
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ii Abstract in English

of the cross response function. The measurement gives a good signal to noise ratio, but
the deduced spectrum found for βs have peculiar characteristics. The absolute value
of the measured property is in the correct range, but the temperature dependence of
the dispersion is not understood. It is suggested that the model used is to simple and
that the thermal structure of the thermistor bead needs to be included in the model.
A test of “single parameterness” of relaxation in an equilibrium liquids is not possible
due to the quality of the data.



Abstract in Danish

Denne philosophiæ doctor afhandling består af to dele: (1) Den første del omhandler
termoelastiske fænomener, og (2) omhandler et pilot forsøg til måling af en komplet
tripel af termoviskoelastiske respons funktioner.

Den første del undersøger en pudsig effekt- cooling by heating: Hvis man varmer på
overfladen af en kugle falder temperaturen i dens midte. Dette studie giver den teo-
retiske forklaring på effekten i termer af det fulde termoviskoelastiske problem i sfærisk
geometri. Effekten viser sig at skyldes en ikke-triviel termoelastisk kobling som kun er
til stede når den longitudinale og isobare varmefylde adskiller sig. Omfattende matem-
atisk modellering leder frem til en formel der forudsiger størrelsen af effekten når en
endelig varmemængde appliceres på overfladen af en fast kugle. Numeriske beregninger
viser at effekten også er til stede i det viskoelastiske tilfælde. Det viser sig at effekten
er til stede i væsken, selv om den ikke er det i den faste tilstand. Modelleringerne viser
også at effekten er til stede ikke bare i midten af kuglen, men i alle afstande fra centrum.
Udover det teoretisk arbejde har jeg udført MD-simuleringer der viser at effekten også
er til stede i en dråbe af nano-størrelse. Ydermere giver jeg et eksperimentelt bevis for
fænomenet ved målinger på en kugle støbt af glukose.

Den anden del er et eksperimentelt pilotprojekt. Formålet er at måle et komplet set af
termoviskoelastiske respons funktioner - med sådan en metode vil man kunne under-
søge en central videnskabelig problemstilling, nemlig hvorvidt relaksations fænomener
i viskøse væsker skal beskrives med en eller flere ordens parametre. For at undersøge
dette kombinerer jeg to tekniker der bruges flittigt i Glas og Tid ved Roskilde Univer-
sitet. Den første metode bruges til at måle det frekvensafhængige bulk modul KS(ω).
Til det bruges den piezoelektriske bulk transducer (PBG) som er en sfærisk keramisk
skal pålagt elektroder. Ved at pålægge en oscillerende spænding på den væske-fyldte
PBG kan bulk modulet bestemmes. Den anden metode udnytter 3ω-signalet i en tem-
peratur afhængig modstand til at måle den frekvensafhængige longitudinale varme-
fylde cl(ω). Hvis man placerer termistoren i midten af PBG kan man udføre det tredje
eksperiment: Måling af den adiabatiske tryk stignings koefficient βS(ω) ≡

(
∂V
∂S

)
p

(ω).
I dette forsøg genererer man en varmestrøm med termistoren. Den resulterende de-
formation af PBG’en når væsken ekspanderer måles som en piezoelektrisk spænding.
Dette er en ny metode og for at udføre den skal man først kende de to andre respons
funktioner. I denne afhandling gøres der rede for modelleringen af forsøget og et første
pilot forsøg udføres. Målingerne giver et fint signal men det udledte spektrum for βS
udviser mærkelige træk. Størrelsesorden af trykstignings koefficienten er dog rigtig,
men dispersionens temperatur afhængighed er ikke helt forstået. Det skønnes at den
anvendte model er for simpel og at modellen bør udvides til at omfatte termistorens
termiske struktur. De opnåede data er ikke gode nok til at teste spørgsmålet om
antallet af nødvendige ordens-parametre i beskrivelsen af viskøse væskers dynamik.
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1 Introduction

When cooling a liquid through the glass transition range, the properties of the su-
percooled melt change to those of the corresponding glass. One such property is the
specific heat. A way to obtain the temperature dependence of the specific heat is to
do Differential Scanning Calorimetry (DSC). DSC is based on quite a basic idea. It
is done by placing a sample that you wish to study in a pan that rests on top of a
heater. But there is also an other pan sitting on another heater, the reference pan,
which is empty but otherwise identical to the pan containing the sample. Then the
two heaters are turned on, and continue to heat at a specific rate, that stay exactly
the same throughout the experiment. This is regulated with the aid of a computer,
which also makes sure, that the two separate pans, with their two separate heaters,
heat at exactly the same rate. Now, since one pan contains the sample, and the other
is empty, more heat has to be transferred to the pan with the sample in order to keep
the temperature of the sample pan increasing at the same rate as the reference pan.
The quantity that is measured in a DSC experiment is thus the difference in the heat
that the two heaters have to put out. Plotting the difference in heat output of the two
heaters against temperature, one obtains a graph that tells how much heat is put in
to the sample at any given temperature. Since the heating rate is constant, the heat
capacity is obtained by the ratio of heat flow and temperature rate cp(T ) =

dQ
dt/dT

dt
.

So, if a sample has been brought down in temperature below Tg without crystalliz-
ing, one can perform a DSC scan going up in temperature. Such a scan is depicted
in Figure 1.1. The data shown here was obtained in the late twenties by Simon and
Lange [1]. Their data shows how the property changes differently depending on the
starting configuration. Bringing the crystal up in temperature a discontinuous change
will occur at the melting point, whereas coming from a glassy state the change occurs
below the melting temperature, smoothly from one plateau to another. Below Tg the
heat capacity of the glass follows (almost) that of the crystal, reflecting a loss of the
configurational contribution to the free energy going from the liquid to the glassy state.

The behavior described is a general characteristic of substances that can form a glass.
In all cases there is a temperature range where relaxation phenomena can be observed
and quantities such as the specific heat changes quite much over a small temperature
range. Attempts to find a microscopic explanation has been made [2, 3]. One such
attempt was given by Simon [1] in 1931. The idea was to associate a degree of order to
each state of a substance, represented by some parameter that depends on temperature
(and pressure). As energy is added to, or removed from the system, the parameter
changes, thus representing the changing potential energy that follows with a changing
configuration. Simons idea was, that as a liquid substance is cooled through its glass
transition region, the mobility of the constituent molecules is lowered. This would mean
that any structural change that is appropriate with respect to the changing conditions is
being increasingly hindered and finally brought to a halt. At this point the parameter
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Figure 1.1 Typical Cp = Cp(T ) curves for crystalline, liquid and glassy Glycerol [1].

descriptive of the order is fixed and the part of the specific heat corresponding to
changes in potential energy vanishes. This is manifested as a jump in isobaric specific
heat per unit volume ∆cp. That fingerprint would also be seen in other quantities,
with jumps in isobaric expansion coefficient, ∆αp, and isothermal compressibility, ∆κT
around Tg.

Taking the view of Simon [1] of glass formation as being a freezing-in process, several
authors, beginning with [4–6] in the Fifties, and later [7–9], used the concept of struc-
tural internal parameters [10] in order to treat the glass transition as a genuine phase
transition. The internal parameters were included as extra terms in the free energy of
the system, which in the liquid are functions of temperature and pressure, whereas in
the glass they are frozen in. From this approach it was possible to correlate the jumps
of the different quantities in the so called Prigogine-Defay (PD) ratio, Π, defined as
follows.

Π =
1

T

∆cp∆κT

(∆αp)
2

∣∣∣∣
T=Tg

(1.1)

Despite the debate in the Seventies [9, 11–15], consensus was reached, that the original
prediction made by [5, 6] was correct: In a homogeneous system , Π = 1 if there is just
a single internal parameter, whereas if more than one internal parameter determines
the structural relaxation, then Π > 1.

In most cases values of Π > 1 are found experimentally [5, 6, 9, 16–18] making it con-
ventional wisdom that generally there is a need for more than one internal parameter.
However, Gupta [19] showed that in a system with inhomogeneities, assuming a single



4 Introduction

internal parameter gives a PD-ratio greater than unity, i.e., the inhomogeneities be-
have like additional internal parameters. Since almost all systems are inhomogeneous
to some extent, there is no reason to expect that a PD-ratio equal to unity should be
obtained experimentally. Another point to be made, also due to Gupta [19], is that
glass formation is not a sharp transition in an instantaneously quenched system, but
rather occurs at finite rates of cooling, with a gradual falling out of (metastable) equi-
librium. Schmelzer [20] pointed out this weakness of the classical approach (Simon’s
picture) where the glass transition is regarded as a freezing in process, and showed that,
assuming a single internal parameter in a framework of thermodynamics of irreversible
processes, a PD-ratio greater than unity is obtained.

In addition to the above critique, the authors of [21] pointed out that the classical
PD-ratio, as defined in Eq. 1.1, is conceptually ill defined. First of all, the changes in
the different responses in the PD-ratio are experimentally obtained by extrapolating
the properties from glass and liquid values respectively, to a temperature, Tg, which is
not rigorously defined. Second, the glass phase is not well defined either - it is aging,
in principal making the glass properties time dependent. These two points, led the
authors to the conclusion that instead of the classical PD-ratio, in order to make the
problem well defined, one should consider a version of Π suggested by [22, 23], which
refers to the linear responses in the equilibrium viscous liquid phase. The constitutive
parameters are in general complex frequency dependent functions, and using the low-
(ω → 0) and high- (ω →∞) frequency limits of the response, the linear PD-ratio, Πlin

Tp

can be calculated:

Πlin
Tp =

[cp (ω → 0)− cp (ω →∞)] [κT (ω → 0)− κT (ω →∞)]

T [αp (ω → 0)− αp (ω →∞)]
2 . (1.2)

The indecis in the PD-ratio given by Eq. 1.2 refers to a situation where you control
temperature T and pressure P . The linear PD-ratio is unity if there is just a single
internal parameter controlling the relaxation, while greater otherwise. Even though
the linear PD-ratio constitutes a rigorously well defined quantity, the experimental de-
termination of the involved constitutive parameters is difficult. First of all it requires
measurements over a wide frequency range, and to my knowledge, a complete set of
the three required frequency-dependent thermoviscoelastic linear-response functions,
has not yet been measured. Furthermore, as pointed out in [25, 26], even the isobaric
specific heat, cp(ω) has not yet been measured reliably. Instead conventional methods
measure another quantity, the longitudinal specific heat cl(ω). In fact, Part I of this
thesis, presents a new phenomenon which is a direct consequence of the difference be-
tween the longitudinal and isobaric specific heats.

In order to find a way to test “single parameterness“, [24] suggested a “one-frequency“
test, where the values of the imaginary parts from a complete set of frequency-dependent
thermoviscoelastic linear-response functions, can be combined into a dynamic PD-ratio,
ΛXY (ω), where the indecis denotes the two variables one is controlling in experiment.
If for example, the control variables are entropy (heat) and pressure, at a given tem-
perature T , the dynamic PD-ratio reads [24]
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Λsp (ω) = − (T/cp (ω))
′′
κ
′′

s (ω)
[
(1/βs (ω))

′′
]2 , (1.3)

where c′′p (ω), κ′′s (ω) and β′′s (ω) are the imaginary parts of isobaric specific heat, adi-
abatic compressibility and adiabatic pressure coefficient respectively. Ellegard et. al.
[24] show that if a single internal parameter contols the structural relaxation, then the
dynamic PD-ratio is unity:

Consider the case of a thermovicoelastic experiment where you perturb a system with
periodically varying input of heat (per unit volume) δs and pressure δp. Assuming the
structural relaxation is given by a single internal parameter δε, the response matrix
relating the complex amplitudes of temperature δT and volume response per unit
volume δv to the input variables is given by

δT = γ1δε+ J∞11 δs− J∞12 δp (1.4)
−δv = γ2δε+ J∞21 δs− J∞22 δp. (1.5)

where the J∞ij are real numbers giving the instantaneous response to the input fields.
If pressure does not vary, δp = 0, then

T

cp
≡
(
δT

δs

)

p

= γ1

(
δε

δs

)

p

+ J∞11 , (1.6)

and likewise

− 1

βS
≡
(−δV

δs

)

p

= γ2

(
δε

δs

)

p

+ J∞21 . (1.7)

Since the J∞ij ’s are real numbers we get

γ1

γ2
=

(T0/cp)
′′

(1/βS)
′′ . (1.8)

On the other hand, if δs = 0, we have

1

βS
=

(
δT

δp

)

S

= γ1

(
δε

δp

)

S

− J∞21 , (1.9)

and

κS ≡
(−δV

δp

)

S

= γ2

(
δε

δp

)

S

− J∞22 , (1.10)

Again, the glass response is a given by real numbers and we get
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γ2

γ1
=

(κS)
′′

(1/βS)
′′ . (1.11)

Multiplying Eq. 1.8 with Eq. 1.11 we get the dynamic PD-ratio equal to unity.

1.0.1 Strongly Correlating Liquids (SCL) - approximately single internal
parameter liquids

An example of a liquids where the dynamic PD-ratio is close to unity is given by the
class of liquids discussed in a number of papers published by members of the Glass and
Time group, at Roskilde liquid University (see for example [27] or companion Paper
C.2 ). These liquids are termed “strongly correlating liquids”, a term refering to the
strong correlations exhibited between their constant-volume equilibrium fluctuations
of the potential energy U and virial W ≡ −1/3

∑
i ri ·∇riU (r1, . . . , rN ), where ri is

the position of particle i. Recall that, if p is the pressure, V the volume, N the number
of particles, and T the temperature, the average virial 〈W 〉 gives the configurational
contribution to the pressure [28]:

pV = NkBT + 〈W 〉. (1.12)

If ∆ denotes the instantaneous deviations from equilibrium mean values, the WU cor-
relation is quantified by the correlation coefficient R defined by

R ≡ 〈∆W∆U〉√
〈(∆W )

2〉〈(∆U)
2〉

(1.13)

Perfect correlation gives R = 1; strongly correlating liquids are defined [27] by R ≥
0.9 for fluctuations monitored in the NV T ensemble, i.e., at constant volume and
temperature. In the Ph.D. thesis of Ulf R. Pedersen [29] and in [24] it was shown
that a perfectly correlating liquid is described by a single internal parameter. If the
correlations are “just“ strong, the correlation coefficient R is, to a good approximation
given by the (VT) version of the PD-ratio (see for example [29]), i.e.,

RWU '
1√
Πlin
V T

. (1.14)

The simulations of Reference 1 in companion Paper C.2 showed that van der Waals
type liquids and metallic liquids are generally strongly correlating, whereas in con-
trast, liquids composed of molecules whose interactions have competing or directional
interactions are generally not strongly correlating. The latter classes of liquids include
the hydrogen-bonded liquids, the covalently bonded liquids, and the (strongly) ionic
liquids. With these findings in mind, and the relation suggested by Eq. 1.14, you
thus have an indication of which kind of liquids that are good candidates for being
approximate single internal parameter liquids. The choise of liquid in Part II of this
thesis was guided by the above observations, and the fact that it is a van der Waals
type liquid.
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Figure 1.2 The correlation coefficient R plotted against the volume decrease relative
to the volume V0 at the lowest pressure of the given isotherm. Data were taken
from 10 ns of simulations of each liquid. The higher density isotherm (450 K) of
TIP5P water shows stronger correlation than its less dense counterpart (475 K) at
the same pressure.

A final remark to be made on the strongly correlating liquids is the following. The
range of papers refered to in Reference 1 of companion Paper C.2 indicated that the
correlation coefficient R tends to increase at increasing pressure, but no systematic
studies had been carried out of the effect of pressure on the correlation. The question
whether all liquids become strongly correlating at sufficiently large pressure was stud-
ied in companion Paper C.2.

Figure 1.2 shows the the correlation coefficient as a function of volume decrease relative
to the volume V0 at the lowest pressure of a given isotherm. Given the relation between
the correlation coefficient and the linear PD-ratio, that figure indicates an increasing
number of constraints on the internal parameters [30]. Extrapolated to even higher
pressures (if crystallization is avoided) one could then speculate that a single internal
parameter description becomes valid, in all types of systems, regardless of competing
interactions or directional bonding.
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Part I

Cooling by heating
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2 Introduction

This part of the thesis concerns a little known and until now poorly understood phe-
nomenon of thermoelasticity; as you transfer heat from the surroundings into a spher-
ical system through its boundary, the temperature initially decreases in its interior
- I call it cooling by heating (or heating by cooling). In my view it constitutes an
amazing example of how theories, as well established as the theory of thermoelasticity,
can reveal new interesting phenomena. Historically, thermoviscoelasticity is an im-
portant engineering subject, as it is of paramount importance in the design of knew
products, that one is able to model and predict the thermoelastic behavior of the
product, before investing huge amounts of money to build the first prototype. In fact
there is even a specialized journal called “Journal of thermal stresses“ whose empha-
sis ”is placed on new developments in thermoelasticity, thermoplasticity, and theory
and applications of thermal stresses.“ [1]. In this light it might seem strange that a
counter-intuitive phenomenon like cooling by heating has not been exposed to much
attention. The reason for this is probably related to the fact that it is a signature of a
subtle thermo(visco)elastic coupling that is highly suppressed, except for in the highly
viscous state of a liquid close to the glass transition.

Until now I have only encountered two works dealing with phenomena that could be
related to the effect discussed here. The first is a publication [2] whose authors are
heating one end (50mm) of a 310mm long copper bar with a cross section of 5mm×5mm
by placing it into an oven raising the temperature to 150℃. To measure the temper-
ature of the cold end they use a chromel-alumel thermocouple, of diameter 0.1mm.
When steady state is achieved the cold end of the bar has a temperature of 75℃, after
which they remove the hot end from the oven and shortly hereafter submerge it in
room temperature water of depth 70mm. The transient temperature distribution in
the cold end was recorded using a chart recorder, and temperature measurement error
was estimated to be about ±0.5℃. What they found is shown in figure 2.1. As the hot
end of the bar is submerged in the room temperature water (indicated by the arrow)
the temperature of the cold end initially (at about 1sec) decreases about 1℃, after
which the temperature increases with about 4℃.

The authors offer the following explanation:

”The sudden cooling of the hot end causes it to contract rapidly. This contraction
produces an elastic wave which propagates towards the cold end. This wave, under cer-
tain conditions, may trigger the sequence of events described in [Aleshin, G.Ya., Int.
Comm. Heat and Mass Transfer, v.24, No 4, pp.497-505 (1997)], which are responsible
for the release of energy in the media. Consequently, the reported experimental results
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Figure 2.1 Transient temperature response of a copper bar’s cold end as its hot
end is rapidly cooled. The arrow indicates the point in time when the hot end is
submerged in room temperature water. Data taken from [2].

corroborate the working hypothesis of a “steam explosion”.”.

The reference they invoke in [2] concerns a hypothesis regarding an explanation of a
process called a “steam explosion“ in an ionic liquid. In essence, it suggests that the
interaction of a water jet with a melt inside a cylindrical vessel produces elastic waves
which propagates within the melt. This triggers phase transitions (crystallization) and
energy redistribution (uptake of heat from the vessel) with the final stage being a sud-
den release of energy (explosion) after the elastic wave is reflects at the end of the
vessel and moving back with a phase shift, causing violent cooling [3].
The aim in [2] is then to examine if a release of energy, similar to that described in [3]
can be observed in other states of matter, such as a solid rod (of copper), if an elastic
wave could be generated within the solid media - thus indicating a structural phase
transition in the solid body.

The second encounter with a phenomenon like cooling by heating was in my master’s
thesis [4]. The aim was to use in-house equipment - the piezoelectric bulk modulus
gauge (PBG), which is described in chapter 7, in a new way. The PBG is basically a
piezoelectric spherical shell polarized in the radial direction and coated on both sides
with electrodes thus acting as a capacitor. Normally an alternating electric field is ap-
plied resulting in deformation of the ceramic, thus changing the volume inside the shell.
A liquid is introduced inside the shell, and opposes the deformation of the ceramic,
thus changing the measured capacitance. Comparing to the capacitance measured on
the empty shell, you can deduce the adiabatic bulk modulus of the liquid. A very nice
and exhaustive documentation of this use of the PBG is given in the Ph.D-thesis [5] of
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Tina Hecksher.
The novelty in the approach of my master’s thesis was to use the pyroelectric nature of
the ceramic in the PBG. Instead of applying an alternating electric field to the liquid
filled PBG shell, a temperature step was made with the cryostat in which the PBG
is inserted. The capacitance was then measured and the data was analyzed with the
objective to deduce the pressure coefficient. In the process of modeling the thermo-
viscoelastic behavior of the liquid and the interaction with the ceramic, we solved the
coupled thermoviscoelastic equations numerically. The resulting temperature profile
we obtained is shown in figure 2.2.
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Figure 2.2 The temperature evolution of the shell and different regions of the liquid
after a temperature rise from 248 K to 249 K.

In my thesis we made the following comment to figure 2.2:
”In that figure it is illustrated how the very low diffusivity of the liquid will inhibit heat
to even reach the center of the sphere in the time frame of the measurement, instead
temperature changes according to the mechanical pressure changes that travel much
faster than the heat.“

The comment is referring to the last curve in 2.2 showing the temperature evolution
close to the center of the sphere. Our only explanation was that as heat is added at
the surface of the PBG the temperature drops in the center of the sphere due to a
thermoelastic effect. At that point we did not explore this further, as it was not possi-
ble for us to actually measure the temperature inside the PBG. In fact, at that time,
we did ascribe the effect to numerical artifacts, and it was only later that Nils Boye
Olsen pointed out that there might be more to it than just numerical problems. Tage
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Christensen, presented to this finding, suggested that the effect might even be present
in the absence of the PBG. This is the actual topic of this part of the thesis.

Before I go into the details of the phenomenon, I will make a last detour to literature.
It concerns the work of my supervisor in the two papers [6, 7] in which he and his
coauthors, Jeppe Dyre and Niels Boye Olsen, investigate the implications of thermoe-
lastic coupling in the determination of the frequency dependent specific heat in thermal
effusion methods. Their conclusion is:

By solving the full one-dimensional thermoviscoelastic problem analytically it is shown
that, because of thermal expansion and the fact that mechanical stresses relax on the
same time scale as the enthalpy relaxes, the plane thermal-wave method does not mea-
sure the isobaric frequency-dependent specific heat cp(ω). This method rather measures
a ”longitudinal“ frequency-dependent specific heat, a quantity defined and detailed here
that is in between cp(ω) and cV (ω). This result means that no reliable wide-frequency
measurements of cp(ω) on liquids approaching the calorimetric glass transition exist[6].

In the second paper [7] they deduce the solution to the full thermoviscoelastic spheri-
cally symmetric problem in terms of the transfer matrix formalism [8]. My modeling
is based on this solution, and in fact the modeling described in part II of this thesis,
where I measure a complete set of thermoviscoelastc constitutive quantities, is also
based on the the work done in [7].

The conclusion in [6, 7] is clear: Measuring the isobaric frequency-dependent specific
heat over a large frequency range of a liquid approaching its calorimetric glass transition
is not that easy, in fact what is measured is another quantity - the longitudinal specific
heat (defined in next chapter), which may differ dynamically from the isobaric specific
heat. For now I will just point out that the longitudinal specific heat reflects the
fact that the experimental conditions restricts the thermal expansion to take place in
one direction only (e.g. the radial direction). What is not clear from the analysis in
[6, 7] is: To what extent do the isobaric- and longitudinal specific heats differ? In the
following I show that the phenomenon of cooling by heating is a direct consequence of
the difference between the two specific heats, as it can only be present when the two
specific heats differ.



3 Theoretical investigation of a
thermoviscoelastic effect

Studying our problem basically comes down to accounting for the coupling of scalar
quantities; pressure, volume, entropy and temperature, as well as the coupling between
the traceless parts of stress and strain with temperature through some constitutive
relation. In appendix A I have derived the equations that describe the time evolution
of the displacement field and temperature. The result is stated in Eq. 3.1 which
basically is newtons second law applied on an infinitesimal volume, and Eq. 3.2 which
describes the diffusion of heat.

MT∇(∇ · u)−G∇× (∇× u)− βV∇δT = ρ0
∂2u
∂t2

, (3.1)

cV
∂δT

∂t
+ T0βV

∂

∂t
(∇ · u) = λ∇2δT. (3.2)

Here ρ0 denotes the average mass density, while the deviations from equilibrium are
given by the displacement field u(r, t) and temperature δT (r, t) = T (r, t) − T0. The
longitudinal modulus is given by MT = KT + 4

3G, where G is the shearmodulus and
KT ≡ −V

(
∂p
∂V

)
T

is the isothermal bulk modulus. The coupling between the two
equations is given by the isochoric pressure coefficient βV = αpKT with αp ≡ 1

V

(
∂V
∂T

)
p

being the isobaric expansion coefficient coefficient. λ is the heat conductivity as defined
by Fourier’s law and cV ≡ T

V

(
∂S
∂T

)
V

is the isochoric specific heat per volume .

In the rest of this chapter I will only be concerned with the limit where I ignore acoustic
waves - the inertia-free limit, where accelerations are so small they can be ignored, i.e.,
when the wavelength, 1/ω is much larger than the size of the sample (at the frequencies
of interest). Taking the speed of sound to be 3 · 103m/s, then for a spherical sample
of diameter of 10−2m, the typical acoustic frequency will be situated in the kilohertz
regime. For lower frequencies it is therefor safe to assume that only thermal waves are
present and quasi-static elastic conditions to apply. Eq’s 3.1 and 3.2 are then reduced
to

MT∇(∇ · u)−G∇× (∇× u)− βV∇δT = 0, (3.3)

cV
∂δT

∂t
+ T0βV

∂

∂t
(∇ · u) = λ∇2δT. (3.4)

18



3.1 Some general observations 19

3.1 Some general observations

What kind of information can be extracted by looking at Eq’s. 3.3 and 3.4. First of
all, as mentioned above, the two equations couple whenever the expansion coefficient
is non-zero, i.e. the temperature distribution depends on the state of deformation. For
example, if the expansion coefficient is zero, αp = 0, Eq. 3.1 reduces to the ordinary
elastic equation and Eq. 3.2 reduces to the isochoric version of the heat equation. On
the other hand, if for some reason, pressure is constant, (trace of stress tensor equal to
zero), Eq. A.23, which relates the relative volume change δV

V0
= ∇ · u to pressure and

temperature,

∇ · u = − 1

KT
δp+ αpδT. (3.5)

is simplified since now the first term on the right hand side vanishes. Combining this
with a thermodynamic identity T0βV αp = (cp − cV ), Eq. 3.4 reduces to the heat
equation under isobaric conditions

∂δT

∂t
=

λ

cp
∇2δT. (3.6)

Now you might ask: When is it the case that isobaric conditions apply, or, how does
the mechanical boundary conditions come into play? To answer this we consider the
case where the shear modulus is zero, G = 0, as in a liquid at zero frequency (or
high temperature). The Duhamel-Neumanns relation, Eq. A.30 reads, where δij is the
Kronecker delta,

σij = KT∇ · uδij + 2G

(
εij −

1

3
∇ · uδij

)
− βV δTδij . (3.7)

If G = 0 and you impose a stress-free boundary condition,
∑
j σijnj = 0 where nj

is a unit normal vector, then Eq. 3.7 gives, on the boundary, that 0 =
∑
j σijnj =

(KT∇ · u− βV δT )ni. Since this is valid for all ni, you have that on the boundary

∇ · u− αpδT = 0. (3.8)

This is then used to determine the (time dependent) integrationconstant b(t) that
comes out of integration of Eq. 3.3 (with G = 0):

b(t) = ∇ · u− αpδT = 0. (3.9)

This is valid for all r. Substituting ∇ · u = αpδT into Eq. 3.4 you again obtain Eq.
3.6. This is a result valid in general, that is, if the shear modulus is zero, then for
a mechanically non-clamped boundary, isobaric (and of course hydrostatic) conditions
apply. This means you can use the “isobaric“ version of the heat diffusion equation
in the description of temperature. This is not the case when the shear modulus is
non-zero, as discussed in [6, 7], and we will see, exotic phenomena may follow due to
the subtle thermomechanical coupling that arise with a non-zero shear modulus.
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3.2 The spherically symmetric case

The spherically symmetric case, which constitutes a simple case, both computationally
and experimentally, is obtained when you perturb a spherical system uniformly at the
boundary. In this case the displacement field becomes a function of radius and time
only: u = u(r, t)r. This means that the curl of the displacement field becomes zero,
∇× u = 0, and Eq. 3.3 reduces to

∇ (MT∇ · u− βV δT ) = 0. (3.10)

This can again be integrated to give

MT∇ · u− βV δT = b(t). (3.11)

Expressing the rr-component of stress in terms of Duhamel-Neumanns relation, Eq.
3.7 (now G 6= 0), you get, after some rearranging, that

σrr = MT∇ · u−
4G

3

u

r
− βV δT. (3.12)

If the boundary of the sphere is mechanically non-clamped, i.e. at radius R, σrr(R, t) =
0, then, combining the boundary condition with Eq. 3.12 you find that the unknown
constant b(t) is given by

b(t) =
4

3
G
u(R, t)

R
. (3.13)

That is, the relative volume change is given by

∇ · u(r, t) =
βV
MT

δT (r, t) +
4

3

G

MT

u(R, t)

R
. (3.14)

The change in volume of an infinitesimal region in the sphere thus depends on the
temperature, locally, and the amount of displacement of the surface of the sphere.

Likewise, the component of stress, σrr(r, t) is easily found to be given by the difference
of the local displacement and the displacement of the surface:

σrr(r, t) =
4

3
G

(
u(R, t)

R
− u(r, t)

r

)
. (3.15)

That is, if the shear modulus is non-zero, the “radial” component of pressure, σrr may
vary, even when the surface of the sphere is mechanically non-clamped. This means
that the thermodynamic pressure may also vary, and isobaric conditions could be vi-
olated. If on the other hand, G = 0, then the pressure doesn’t change, and isobaric
conditions apply, as argued above in section 3.1. So, mechanically, the shear modulus
determines the local state of deformation, but if you turn to thermal quantities, a more
subtle relation appears.
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The change in entropy in an infinitesimal region, which is given by

δS =
cV
T0
δT + βV∇ · u, (3.16)

can also be expressed in terms of b(t). Substituting 3.14 in Eq. 3.16 gives

δS(r, t) =
cl
T0
δT (r, t) +

4

3

G

MT

u(R, t)

R
βV . (3.17)

Here a knew quantity enters: the longitudinal specific heat, defined as

cl = cV + T0
β2
V

MT
. (3.18)

Two conclusions can be drawn. First of all, if the expansion coefficient is zero, i.e.
βV = αpKT = 0, then isochoric conditions apply, as argued in the section above (3.1).
Second, if the expansion coefficient is non-zero, then it is the vanishing (or not) of the
shear modulus that becomes decisive. So if the expansion coefficient is non-zero but the
shear modulus vanishes, then, through the thermodynamic relation T0βV αp = cp− cV ,
isobaric conditions apply. If both expansion coefficient and shear modulus is non-
vanishing, Eq. 3.17 tells us that if the surface of the sphere is displaced outwards
(due to thermal expansion) and at the same time no heat is transported into a region,
i.e., δS = 0, then temperature of that region decreases adiabatically. This provides the
physical understanding of the phenomenon cooling by heating. When the mechanically
non-clamped surface of a sphere is heated, it expands, causing an adiabatic cooling of
the interior of the sphere.

The fact that the longitudinal specific heat enters, represents the longitudinal character
of expansion that is imposed by the geometry of the problem. Finally this is carried
on to the description of temperature; substituting Eq. 3.11 into Eq. 3.4 gives the
following heat diffusion equation, which involves the longitudinal specific heat.

cl
∂δT

∂t
+ T0βV

∂

∂t
(b(t)) = λ∇2δT. (3.19)

In terms of the adiabatic and isothermal longitudinal moduli MS = KS + 4/3G and
MT = KT + 4/3G, the longitudinal specific heat may be expressed by [7]

cl =
MS

MT
cV (3.20)

This should be compared to the well known relation

cp =
KS

KT
cV (3.21)

A difference between cl and cp only occurs when two conditions are met simultaneously.
First, shear modulus should be non-vanishing compared to bulk modulus and second,
the adiabatic and isothermal bulk moduli should differ significantly. The effect may be
dynamic since shear modulus near the glass transition increases with frequency.
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As argued above the difference between the cp and cl expresses a subtle thermomechan-
ical coupling as compared to the coupling that is trivially present when the expansion
coefficient differs from zero. The relative difference between cp and cv is given by the
identity

a ≡ cp − cV
cp

=
T0α

2
pKT

cp
. (3.22)

Combining Eq’s. (3.20) and (3.21) gives the longitudinal coupling constant al defined
as

al ≡
cp − cl
cp

=
4

3
· G
MT
· a (3.23)
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Figure 3.1 Sketch of the two factors in the definition of cl. The curves show the
absolute values.

It follows from Eq. (3.23) that |al| ≤ 1. Also, note that even if the trivial coupling
is present (a 6= 0) one can still have an al = 0 if the ratio between the moduli in
Eq. (3.23) is vanishing. In the glass transition region where upon increasing frequency
the first factor [G/MT ] increases while the second [(cp − cv)/cp] decreases. As I will
show later (section 3.4) modeling suggests that exactly in the glass transition region
the coupling constant becomes large. Still, it is in general not clear how the different
quantities compare, a situation that is illustrated in the sketch in Figure 3.1. To set the
levels I used Glucose data for the isobaric specific heat, isothermal compressibility, and
isobaric expansion coefficient taken from Davies and Jones [9] and Shear modulus data
from [10]. Davies and Jones however notes that the data, being sparse, is collected from
the work of different groups, and are probably encumbered with large error. In [7] the
authors estimate the size of the coupling constant in Glycerol and they reach an upper
bound on al of as much as 0.15. That is the isobaric and longitudinal specific heat
may differ up to 15%. In any case, experimental data to produce a plot like the one
in Figure 3.1, would require the measurement of a complete set of thermoviscoelastic
response functions, as well as the shear modulus. This is not a simple task at all (see
Part II of this thesis), and it would be preferable to have another method to asses the
difference between the two specific heats. To investigate this further I will model a
simple (ideal) experimental situation. This is done in the following section.
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3.3 Thermoelastic problem illustrating the difference between cl and
cp: Heat supplied at mechanically free boundary

Consider the case when a periodically varying heat δQ(t) = Re
{
δQeiωt

}
is supplied at

the surface of a massive sphere of radius R. The surface is assumed to be mechanically
non-clamped, i.e., the sphere is free to expand. This translates into the boundary
condition that the rr-component of the stress tensor is zero at the surface at all times,
σrr(R, t) = 0. We wish to calculate how temperature and displacement fields vary
throughout the sphere, i.e., to calculate the complex amplitudes of temperature δT (r)
and radial displacement field u(r), from which the stress components σrr, etc, may be
calculated.

Denote the cyclic angular frequency by ω, and assume a heat conductivity λ that is not
dependent on frequency. Denote the complex frequency-dependent isothermal bulk and
shear moduli by KT (ω) and G(ω), the complex frequency-dependent isobaric thermal
expansion coefficient and isochoric specific heat by αp(ω) and cV (ω). Then Eq.’s 3.3
and 3.4 become the fundamental coupled thermoviscoelastic equations to be solved are
in the inertia-free limit [7].

∇
((

KT (ω) +
4

3
G(ω)

)
∇ · u− αp(ω)KT (ω)δT

)
= 0 (3.24)

(iω)cV (ω)δT + (iω)T0αp(ω)KT (ω)∇ · u− λ∇2δT = 0 . (3.25)

Here δT and u are the complex frequency- and radius-dependent amplitudes of the
periodic variations of temperature and displacement field, respectively. The boundary
conditions of the problem are:

1. No displacement at the center: u(0) = 0

2. No temperature gradient at the center: ∂δT
∂r (0) = 0

3. No radial stresses at the surface: σrr(R) = 0

4. The heat supply boundary condition at the surface: λ∂δT∂r (R) = iω δQ
4πR2

Dropping for simplicity the explicit indication of frequency dependence, the solutions
to Eq.’s. (3.24) and (3.25) can be found by using the transfer matrix formulation [7]
of the general solution of the thermoviscoelastic problem in a spherically symmetric
case. Including the radial stress field and the time-integrated heat-current density
that are related to the temperature and displacement fields, the authors of [7] end up
with an inhomogeneous system of four ordinary differential equations to solve. The
solution is summarized in the general form of a transfer matrix T(rj , ri) that links the
dimensionless complex amplitudes of the fields at the boundaries ri with those at rj :




δpr
δT
δV
δS



j

= T(j, i)




δpr
δT
δV
δS



i

Here δS, δV , δT , and δpr are the complex amplitudes of entropy, volume, temperature
and radial component of pressure (δpr = −σrr) respectively. The elements of the
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transfer matrix are given in reference [7]. From this general solution one can work out
different cases pertaining to different combinations of boundary conditions, like the one
we handle here. The boundary condition on r1 = 0, giving net flux of heat through
the center of the sphere, is set equal to zero, δS1 = 0, since heat is supplied uniformly
across the surface r3 giving a spherically symmetric case. For the same reason, δV1 = 0
and at the mechanically free outer boundary r3 the heat supplied, δS3, is given and
δpr,3 = 0. Letting r = r2 be an intermediate radius between r1 and r3 one has




δpr
δT
δV
δS




2

= T(2, 1)




δpr
δT
0
0




1

. (3.26)

Writing out the components of the matrix T(2, 1), using the boundary conditions at
radii 1 and 2, Eq. 3.26 is reduced to



δpr
δT
δV




2

=




T11(2, 1) T12(2, 1)
T21(2, 1) T22(2, 1)
T31(2, 1) T32(2, 1)



(
δpr
δT

)

1

. (3.27)

Likewise the transfer matrix connecting the quantities at radii 3 and 1 is reduced to




0
δT
δV
δS




3

= T(3, 1)




δpr
δT
0
0




1

. (3.28)

From Eq. 3.28 one has that δpr,1 = −T12(3,1)
T11(3,1)δT1, or δT1 = −T11(3,1)

T12(3,1)δpr,1, whereby
δS3 = (T42(3, 1)− T41(3,1)T12(3,1)

T11(3,1) )δT1 = (T41(3, 1)− T42(3,1)T11(3,1)
T12(3,1) )δpr,1.

Solving for temperature and pressure at radius 1 one obtains

δT1 =
T11(3, 1)

T42(3, 1)T11(3, 1)− T41(3, 1)T12(3, 1)
)δS3 (3.29)

δpr,1 =
T12(3, 1)

T41(3, 1)T12(3, 1)− T42(3, 1)T11(3, 1)
)δS3 (3.30)

Inserting this into Eq. (3.27) one finally arrives at

δpr,2 =
T11(2, 1)T12(3, 1)− T12(2, 1)T11(3, 1)

T41(3, 1)T12(3, 1)− T42(3, 1)T11(3, 1)
)δS3 (3.31)

δT2 =
T21(2, 1)T12(3, 1)− T22(2, 1)T11(3, 1)

T41(3, 1)T12(3, 1)− T42(3, 1)T11(3, 1)
)δS3 (3.32)
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δV2 =
T31(2, 1)T12(3, 1)− T32(2, 1)T11(3, 1)

T41(3, 1)T12(3, 1)− T42(3, 1)T11(3, 1)
)δS3 (3.33)

These equations is to be evaluated in the limit of r1 → 0. The displacement field u is
found as u(r2) = 1

r22
δV2 and finally the difference between the stress components are

found using

σrr − σθθ =
3

2
(δp− δpr) = G

(
2r−2 ∂δV

∂r
− 6r−3δV

)
(3.34)

Inserting the elements of the transfer matrix found in [7] into Eq.’s 3.31 to 3.34 one ob-
tains the following solutions for temperature, displacement field and stress in a sphere.

δT (r)

δQ
=

1

cpV0
×

{
al

al − 1
+

1

1− al
(kR)3

kR cosh(kR)− sinh(kR)

sinh(kr)

kr

}
(3.35)

u(r)

δQ
=

iωαs
4πλ

×
{(

cl
cV
− 1

)
(kR) cosh(kr)− sinh(kr)

(kR) cosh(kR)− sinh(kR)
+ al

( r
R

)3
}

(3.36)

σrr(r)

δQ
=

1

αpT0V0

al
1− al

×
{

1−
(
R

r

)3
kr cosh(kr)− sinh(kr)

kR cosh(kR)− sinh(kR)

}
(3.37)

σθθ(r)

δQ
=

1

αpT0V0

al
1− al

×
{

1 +
1

2

(
R

r

)3
kr cosh(kr)− (1 + (kr)2) sinh(kr)

kR cosh(kR)− sinh(kR)

}
(3.38)

Here V0 is the sphere volume, k the complex frequency-dependent thermal wave vector
k =

√
iωcl(ω)/λ, while αs is short-hand notation for αs =

cp
T0αpKS

. If one evaluates
Eq. 3.35 for r = 0 and set the value of the coupling constant to al = 0.091 the response
cpV0

δT (r=0)
δQ will look like the plot in Figure 3.2. It illustrates why (compare [6, 7]) the

measurement of the high-frequency isobaric specific heat is problematic. At zero (low)
frequency, the ratio between complex amplitudes of temperature at the center and heat
supplied at the surface, gives the isobaric specific heat while at high frequencies one
measures 1

cpV0

al
al−1 and not 1

cpV0
.

In principal we can understand the effect of cooling by heating in terms of Eq.’s 3.14,
3.15, 3.17, as an example of adiabatic cooling. But in order to gain more insight into the
cooling by heating effect and show the relevance of the longitudinal coupling constant al
in controlling the effect I have solved Eq.’s 3.35, 3.37 and 3.38 in the thermoelastic case,
i.e. for a solid where the constitutive properties are frequency independent. If a delta
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function heat flux is applied at t = 0, the heat supplied at the surface is a Heaviside
step-function, δQ(R, t) = δQH(t); in this case calculating the inverse Laplace (Stieltje)
transform by the standard residue calculus leads to the following expressions for the
temperature, stresses, and pressure as functions of time after t = 0. These calculations
are not shown here and the reason for this is two-fold. First of all they are really
lengthy and a check can be done by inspection. Secondly it would risk boring the
reader, while a truly interested reader would be able to do the calculations on their
own. I advise you to do that, it is almost like magic how this mathematical tool can
be used to solve such involved problems analytically. Nevertheless, the results are as
follows:

δT (r, t) =
δQ

cpV0
×

{
1 +

1

1− al
2

3

∞∑

n=1

R

r

sin( rRxn)

sin(xn)
e−x

2
nt/τ

}
, (3.39)

σrr(r, t) =
−2δQ

αpT0V0

al
1− al

(
R

r

)3

×
∞∑

n=1

sin( rRxn)− r
Rxn cos( rRxn)

x2
n sin(xn)

e−x
2
nt/τ , (3.40)

σθθ(r, t) =
δQ

αpT0V0

al
1− al

(
R

r

)3

×
∞∑

n=1

[1− ( rRxn)2] sin( rRxn)− r
Rxn cos( rRxn)

x2
n sin(xn)

e−x
2
nt/τ , (3.41)

δp(r, t) =
2δQ

3αpT0V0

al
1− al

×
∞∑

n=1

R

r

sin( rRxn)

sin(xn)
e−x

2
nt/τ . (3.42)

Here τ = R2cl/λ is the characteristic heat diffusion time, and x1 < x2 < ... are the pos-
itive roots of the transcendental equation x = tan(x) given by xn =

√
(nπ + π

2 )2 − 2.
Clearly, when al = 0 there are no induced stresses, but how can we see that there is
no cooling-by-heating effect in this case? In the limit where r → 0 the terms inside
the sum in Eq. 3.39 becomes

∑∞
n=1

xn)
sin(xn)e

−x2
nt/τ . This is an alternating sum, where

the sequence of numerical values of the terms in the sum converge to zero as n goes
to infinity. This makes the sum convergent. For t >> τ the sum converges to zero,
while for t << 0 it converges to − 3

2 . Therefor, for t → 0 the temperature will drop
instantaneously to a value given by 1

cpV0

(
1− 1

1−al

)
= 1

cpV0

(
al
al−1

)
. Using the liquid

value of the specific heat around Tg of Glucose, cp = 2.13 · 106J/m3K [9], and assuming
a value of the coupling constant al = 0.091, then for a sphere of radius 9mm the drop
in temperature would be 16mK/J · δQ. In Figure 3.3 we plot the scaled temperature
change cpV0

δT/δQ for several radii r/R as given by Eq. (3.39). Time is given in units
of the characteristic heat diffusion time τ , and the coupling constant is here fixed to
al = 0.091
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Figure 3.2 At zero frequency, you measure the isobaric specific heat, while at high
frequencies one measures a combination of cp and cl, namely 1

cpV0

al
al−1

.

Figure 3.3 clearly shows the cooling-by-heating effect. Since a finite amount of heat
was added at the surface at t = 0, the surface temperature initially diverges (it is
infinitely thin). The interior of the sphere, independent of radius, even close to the
surface, instantaneously cools to a common temperature determined by the value of
the coupling constant al

al−1 . The expansion of the surface is immediately felt in the
interior, and since no heat has yet arrived by diffusion, it cools adiabatically. This
initial response is followed by a complicated evolution in time where the temperatures
of the different parts of the sphere finally converge to a temperature determined by the
volume and specific heat of the sphere cpV0, and eventually equilibrate .

Consider the components of stress given by Eqs. 3.40 and 3.41, respectively. In Fig.
3.4 the σrr component of the stress tensor is plotted. As the surface receives heat and
expands, an immediate traction is felt in the interior of the sphere giving a negative
contribution to pressure that persists until equilibrium is reached.

The other stress component σθθ(r, t), is shown in Fig. 3.5. For all the radii shown
one notices an immediate, uniform increase of σθθ(r, t) throughout the sphere. This is
then followed by a transient where initially σθθ is positive contributing negatively to
the pressure. At some point it shifts sign and oppose the expansion, giving a positive
contribution to pressure that persist until the systenm is equilibrated. The resulting
pressure δp(r) = − 1

3 (σrr + 2σθθ) is shown in Fig. 3.6. Comparing with temperature
in Fig. 3.3 we see that the temporal evolution of temperature basically follows that of
the pressure. In fact, multiplying Eq. 3.42 with the inverse of the adiabatic pressure
coefficient times the coupling constant al , (alβs)

−1 = T0αp/cp, and adding a factor
δQ/(cpV0), one arrives at Eq. 3.39.

3.4 Thermoviscoelastic case of cooling by heating

This section considers a case that is more likely to be found in an experimental situation
where temperature instead of heat current is controlled at the surface. The surface
is still free to move and otherwise the boundary conditions are the same as in the
preceding sections. Also we restrict ourselves to find the temperature at the center of
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Figure 3.3 The temperature response
of the sphere as function of time scaled
by the volume and specific heat cpV0.
After addition of heat at the surface,
the temperature drops instantaneously
throughout the sphere to a temperature
given by al

al−1
, thus showing adiabatic

cooling. The time scale is given by
the characteristic heat diffusion time,
τ = R2cl/λ and the coupling constant
was here chosen to be al = 0.091.
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Figure 3.4 The rr-component of stress
tensor throughout the sphere as a function
of time. After the addition of heat at the
surface, σrr(t/τ ; r/R) throughout the
sphere immediately increases, giving a
negative contribution to the pressure that
persists until equilibrium is eventually
reached.
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Figure 3.5 The θθ-component of stress
in the sphere as a function of time. After
an adiabatic step up in σθθ(t/τ ; r/R)
in the interior of the sphere follows a
complicated evolution in time.
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Figure 3.6 The pressure in the sphere as
a function of time. Scaling and shifting
the pressure with (alβs)

−1 =
T0αp
cp

and
δQ
V0cp

one gets the temperature shown in
Fig. 3.3.

the sphere and set r = 0. In this case, if x ≡
√
iωτ , where τ = R2cl/λ, the solution in

the frequency domain is given by:

δT(0, s) = Φ(s)δT(R, s)

=

(
1− x3 − x2 sinh(x)

3al[x cosh(x)− sinh(x)]− x2 sinh(x)

)
· δT(R, s) (3.43)

One could go on and find an analytical solution in the time domain, but here we wish to
study the response of a thermoviscoelastic sphere instead of a solid sphere. According
to the discussion in section 3.2 (see for example Figure 3.1), around the glass transition
region, the coupling constant may be dynamically larger than otherwise expected. In
order to examine this possibility one has to take into account that the constitutive
parameters become complex frequency-dependent quantities. Thus it is no longer pos-
sible to find an analytical solution of the problem and one must resort to numerical
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methods. To do that we need to make a model that can express the constitutive pa-
rameters of the linear thermoviscoelastic response of a differential volume element V0,
that is, the elements of the compliance matrix, J:

(
δS
δV

)
= V0

(
1
T0
cp(ω) αp(ω)

αp(ω) κT (ω)

)(
δT
−δp

)
= J

(
δT
−δp

)
(3.44)

Here δS, δV , δT and δP denotes the complex amplitudes of harmonically varying
perturbations of entropy, volume, temperature and pressure. Note that the products of
conjugated variables gives the energy transferred into the system from the surroundings
thus expressing the First law of thermodynamics of a differential volume.

3.4.1 Linear network model

D

CphδT

δS

CISO

J

−δP

δV

Figure 3.7 Electrical equivalent diagram of the interaction of a volume element with
the surroundings through two ports. The thermal side where entropy displacement and
temperature (corresponding to charge displacement and voltage) can be controlled, and the
mechanical port where volume displacement and negative pressure can be controlled. Cph
represents the instantaneously stored vibrational energy as temperature is increased and Ciso
represents the potential energy stored as the average distance between the molecules change
with an instantaneous volume response. Displacement and Voltage is transformed in the
transducer D connecting the two ports. J represents the structural deformation and it is the
only frequency dependent element in the model.

In order to make it simple I have chosen to use a model where the relaxing part of all the
constitutive parameters are the same. The model is reticulated in the electrical equiva-
lent diagram shown in figure 3.7. The interaction with the small volume takes place at
the two ports. The thermal energy bond consists of temperature as the effort variable
and entropy as the displacement variable. The arrow indicates in which direction the
generalized displacement is taken as positive. The mechanical bond consists of the neg-
ative pressure and volume and the two ports are connected by the transformer ratio D
with units J/m3K. On each side of the transformer there are some elements representing
physical properties. The capacitances on each side models the instantaneous response
to variations in the different fields; CISO gives the instantaneous elastic change in vol-
ume and Cph gives the instantaneous change in temperature. Both elements represent
ways to store energy - by isostructural deformation or increasing vibrational energy.
The last element, J is not specified yet, but it will contain the dissipative elements of
the model and represents the structural part of the thermoviscoelastic response. The
aim now is to express the elements of the compliance matrix in terms of the elements
of the model. When this is done we can express the two parameters that goes into Eq.
3.43, al and τ in terms of the model. A final comment about the model is in place
as it is a very simple model. Consider the placement of the elements and assume the
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mechanical port is short-circuited (δp = 0). Imposing a temperature variation in the
thermal port in this case leads to the displacement of volume:

−δV = J ·DδT ⇔ V0αp = J21 = −JD (3.45)

It is clear that if we then use a model for the relaxing function J which goes to zero
at high frequencies, the model predicts an isobaric expansion coefficient that is zero in
that limit. This is not quite true to the known phenomenology of viscous liquids but
it actually serves a purpose, as I will show below.

Element J11 of the compliance matrix is found by short-circuiting the mechanical port.
Imposing a temperature variation δT the displacement of entropy δS is

δS =
(
Cph +D2J

)
δT ⇔ V0ξp = J11 = Cph +D2J (3.46)

where ξp = cp/T0. If the thermal port is short-cicuited δT = 0 and a pressure is
imposed, the volume displacement will be

δV = (CISO + J) (−δp)⇔ V0κT = J22 = CISO + J (3.47)

Finally J12 can be found by imposing a pressure variation when the thermal port is
short-circuited.

−δS = D · J(−δp)⇔ J12 = J21 = −DJ (3.48)

Note that this linear network (energy bond) model obeys Onsager’s reciprocity principle
making the compliance matrix symmetric. The five other parameters are also given in
terms of the elements in the model.

βV =
αp
κT

=
−D · J
CISO + J

(3.49)

βS =
ξp
αp

= −Cph +D2J

DJ
(3.50)

V0κS = CISO +
CphJ

Cph +D2J
(3.51)

V0αS = −CphCISO + CphJ + CISOD
2J

DJ
(3.52)

V0ξV = V0
cV
T0

= Cph +D2 CISOJ

CISO + J
(3.53)

(3.54)

We wish to ascribe a numerical value to the elements of the model based on data
that can be found in the literature. Denote the difference in a parameter between two
frequencies as ∆x = x(ω2)− x(ω1). Then the transformer ratio is given by
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∆αp
∆ξp

= − 1

D
=

∆κT
∆αp

= γTp (3.55)

The indecis indicate that the transformer ratio is found by combining constitutive
parameters obtained in an experiment where you control temperature and pressure.
Also the fact that the model operates with only one relaxing function makes it a
model of a single internal parameter liquid; pairs of constitutive parameters become
proportional, and the linear Prigogine-Defay ratio becomes unity:

ΠTP =
∆cp∆κT

T0 (∆αp)
2 = 1. (3.56)

There is no explicit reference to the glassy state, any two frequencies can do, and also,
the relaxing function need not be exponential for the above to apply.

The other elements are given by

−∆1/αS
∆1/ξV

= − Cph
DCISO

= −∆1/κS
∆1/αS

= γSV

−∆1/βS
∆1/ξp

= − 1

V

Cph
D

=
∆κS
∆1/βS

= γSp

−∆βV
∆ξV

=
V

DCISO
=

∆1/κT
∆βV

= −γTV (3.57)

It follows that certain relations between the γXY ’s apply, namely

γSpγTV = γTpγSV (3.58)

and the parameters of the model are given by

−1

D
= γTp

Cph = V
γSp
γTp

(3.59)

CIS0 = V
γTp
γTV

Now we can express the longitudinal specific heat cl that goes into the characteristic
time τ in Eq. 3.43:

cl = (1− al) cp =
T

V
(1− al)

(
Cph +D2J

)

= (1− al) (γSp + jb)
T

γTp
(3.60)

where jb = J
V γTp

. The coupling constant is given by al = 4
3

G
KT+4/3G

cp−cV
cp

. Using the
relation ξp − ξV = α2

p/κT we can write the coupling constant as
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al =
κT

κT +
3γTp

4 jsh

α2
p

κT
(3.61)

where jsh = Jsh/γTp is the scaled shear compliance. Combining Eq. 3.58 and Eq. 3.59
and inserting into Eq. 3.61 the coupling constant becomes

al =
j2
b

(γSp + jb)
(

1
γTV

+ 3
4jsh + jb

) (3.62)

3.4.2 Parametrizing the model

The only thing that is missing is to put in a model for the two functions jsh and jb. The
shear compliance I choose to model by a Maxwell element (capacitor and resistance in
parallel): γTpjsh = 1

G∞
+ 1

iωηsh
, where G∞ is the infinite shear modulus and ηsh is the

shear viscosity. For the bulk compliance jb I will use two different models. The first
model is a Voigt element (capacitor and resistance in series):

Model 1 : γTpV jb = 1
K0+iωηb

(3.63)

Taking the limit of ω → 0 and combining Eq.’s 3.47 and 3.59 we have for the inverse
capacitance K0 = 1

κT (ω→0)− γSp
γSV

. Note that Model 1 forces the coupling constant to be

zero in the glass (ω →∞) as αp = J
γTp

goes to zero in this limit.

The other model, Model 2, allows the isobaric expansion coefficient to be non-zero
also in the glass. It is constructed by putting a capacitance in series with a Maxwell
element. The two models are listed together with the parameters in Table 3.4.2

γTpV jb = K0 K∞
Model 1 1

K0+iωηb
1

κT (ω→0)− γSp
γSV

NaN

Model 2 1

K0+(K∞−K0)

iωηb
(K∞−K0)

1+
iωηb

(K∞−K0)

1

κT (ω→0)− γSp
γSV

1

κT (ω→∞)− γSp
γSV

Table 3.1 The two models used to create Figure 3.9 and Figure 3.8.

The final assumption is that the bulk viscosity equals the shear viscosity, i.e. η = ηb =
ηsh. To parametrize the two models I chose to use Glycerol data. In reference [11, p.
165] my supervisor fits viscosity data on Glycerol from reference [12] with the fitting
function ln η = a+ b

T 3 proposed by [13]. The data by Meissner [12] were taken over 4
decades from 233K to 333K. The fitted parameters were found to be a = −6.32 and
b = 2.26 · 108K3. Extrapolated to 184K the viscosity becomes η = 1012Pa · s. The
data for isobaric specific heat, cp, isobaric expansion coefficient, αp and isothermal
compressibility κT are taken from Davies and Jones [9], while the infinite shear modulus
G∞ is found in reference [14]. The thermal conductivity is assumed to be independent
of frequency and the data used is found in reference [15].
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Now that the parametrization of the model is in place equation 3.43 is inverted numer-
ically. The algorithm for the inverse Laplace transform is an improved version of de
Hoog’s quotient difference method [16] developed and implemented in Matlab by [17].

3.4.3 Numerical results

Figure 3.8 shows the results based on Model 2 and Figure 3.9 shows the result based
on Model 1. In both cases a step up in temperature of size ∆T = 1K has been applied
at the free surface of the sphere. The radius of the sphere is set to r = 10mm. This is
done for a range of temperatures below and above Tg ≈ 184K, from 150K deep in the
glass, up to 210K in the liquid.

Figure 3.8 shows that the effect of the thermomechanical coupling is non-present at
high temperature. But as temperature is decreased and the liquid gets more and more
viscous, a dip in temperature emerges. Going further down in temperature the effect
of cooling by heating reaches a maximum slightly above Tg. Even further down in
temperature, in the glassy state, the effect dies away.
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Figure 3.8 The change in temperature, δT as function of time scaled by the characteristic
diffusion time τ , at the center of a sphere, after a temperature step of ∆T = 1K has been
applied at the surface. Radius is set to r = 10mm and parameters are determined by glycerol
data. The result is based on Model 2 where we allow cp 6= cV , corresponding to a more
realistic case where the expansion coefficient is non zero in the solid. The maximum occurs
just above Tg (presumably around 184K in glycerol. Close to Tg a detectable change in
temperature at the center of the sphere is on the order of 10mK The maxima occurs after
0.03τ , which in this case is approximately 30 seconds.

Figure 3.9 shows the result based on Model 2, which is the case where we force the
coupling constant to be zero in the glass. Even in this case is the phenomenon present,
thus showing that cooling by heating is an effect that is characteristic of liquids close
to the glass transition.

These two results strengthens the conjecture that the phenomenon is a fingerprint of
the glass transition, as suggested in section 3.2. Also, based on Figure 3.8, there is a
(presumably) measurable change around 10mK with a time window of approximately
0.03τ , which in the case of a sphere with radius r = 10mm is around 30 seconds using
a typical value of the characteristic diffusion time of a viscous liquid.
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Figure 3.9 The change in temperature, δT as function of time scaled by the characteristic
diffusion time τ , at the center of a sphere, after a temperature step of ∆T = 1 has been
applied at the surface. The parameters are the same as used in Figure 3.8 except that here
we force al = 0 for ω → ∞ (Model 1); This figure shows that effect of cooling by heating is
expected to be present even in the case when the volume expansion of the solid is negligible.
The maximum occurs just above Tg (presumably around 184K in glycerol).

The lesson to be learned from all this is the following. The phenomenon of cooling
by heating is a fingerprint of a liquid being close to the glass transition. It establishes
the difference between the longitudinal and isobaric specific heats as it can only be
present when the two differ. The reason for this is that in this temperature range, the
shear modulus is non-vanishing compared to the bulk modulus, simultaneously with
the isothermal and adiabatic bulk moduli being significantly different. The question
is, how large is the effect, and can it be measured? This is the topic of next chapter.
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4 Cooling by heating - experimental proof
of concept

This chapter gives a brief account on the experiment and choice of liquid as well as the
modeling done to guide us in the setup of the experiment. The results are presented
in the end, while the procedure to mold the samples is described in Appendix B.

The prediction of the phenomenon of cooling by heating was based on analytical and
numerical results pertaining to the spherically symmetric case. To prove the existence
of the phenomenon we thus set out to do measurements on a spherical sample. The idea
was to use existing in-house equipment - a cryostat to make temperature steps, and a
multimeter to measure the change in temperature using a semiconductor, which has a
temperature dependent resistance, as a thermometer. This should be done without the
need to construct new machinery or indulging in other time-consuming preparations.
The following criteria were chosen.

• The liquid should have a calorimetric glass transition around room temperature.
The reason for this is that in our lab, the molding of the sphere has to be done
outside the cryostat that is used to perform the experiment. That is, if a liquid
with a calorimetric glass transition temperature much below room temperature
was to be used, a number of problems would occur. First of all, since the strat-
egy was to mold a sphere, we needed a liquid that could retain it’s shape long
enough to have time to move it from the molding device to the cryostat where the
measurement is performed. If not, since we cannot do the experiment on a space
station, molding would have to be done in a cold environment, something which
would give rise to new problems; the process of transporting the sample from
the molding environment, mounting on the pre-cooled holder of the measuring
cell, and insertion into the pre-cooled thermostat, would need to be done fast,
in order to prevent the sample from warming up and deform. Also, it would be
very difficult to avoid formation of ice which would make it impossible to fit the
holder back into the cryostat.

• The liquid should not crack upon cooling
• The liquid should have a large expansion coefficient. Eq. 3.23 tells us that the

coupling constant al goes as α2
p, that is, the higher an expansion coefficient, the

greater the chances of seeing the effect we are looking for.
• The liquid should be inexpensive. Since we wanted to mold a sphere with a

radius of approximately 10mm (roughly the size of the cryostat chamber) and
we expected to need many attempts to mold a sphere before finding the best
method, the price of the substance should not be to large.

The obvious choice was to look into the naturally occurring sugars. They are not that
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expensive, and they all have a relatively large expansion coefficient around 4.5·10−4. We
experimented with Fructose, Saccharose, Glucose, Maltose, and binary mixtures here
of. The final choice fell on Glucose, or to be more precise, α-D-Glucose, bought from
Sigma. When melted, this liquid has a calorimetric glass transition around 38℃[18–21],
it doesn’t crack unless you cool it too fast, it’s cheap, and it turns out to be easy to
work with, with respect to avoiding caramellization and formation of air-bubbles.

4.1 Experimental setup and calibration of NTC-thermistor bead

The basic procedure of the experiment was the following. Place a spherical sample of
Glucose inside a cryostat, make a temperature step with the cryostat, and measure the
change in temperature in the center of the sphere. This is illustrated in figure 4.1.

Cryostat

Liquid

Thermistor

0.4mm

19mm

Figure 4.1 A sketch of the experimental setup. The liquid is molded into a sphere, in
which a small NTC-thermistor bead is placed in the center, connected to wires that lead
to a multimeter that performs resistance measurements. The sphere is inserted into the
cylindrical chamber of a cryostat.

4.1.1 NTC-thermistor bead

The Negative-Temperature-Coefficient thermistor bead (NTC) is a semi conductor with
temperature dependent electrical resistance. Contrary to normal its resistance increases
when temperature decreases. Measuring the resistance thus provides a way to measure
temperature. The NTC is used heavily in Part II later in this thesis, so for now I will
restrict myself to the most simple use of it - to measure temperature.

The resistance measurement is done with an HP3458A Multimeter, which passes a
known current through the NTC and measures the voltage over it to determine the
resistance. The measured value is given as the mean over 4 power-line cycles corre-
sponding to a measuring time of 80 milliseconds for a 50Hz power-line. The current
I choose to put through the NTC is 50µA giving a resolution of about 10mΩ. This
corresponds to a temperature change of 0.2mK.

The temperature dependence of the NTC is due to the fact that in a semiconductor
the number of charge carriers in the conduction-band depends on temperature. This
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is assumed to be an activated process so the resistance is written in the following
exponential form:

RNTC = R∞e
Ea
kbT = R∞e

kbTA
kbT = R∞e

TA
T , (4.1)

where TA is the thermal activation temperature, T is the actual temperature of the
NTC and R∞ is the limiting high temperature resistance of the NTC. Taking the
logarithm of Eq. 4.1 we get a linear relation that can be fitted to resistance data
collected on the NTC in a range of temperatures

ln(RNTC) = ln(R∞) +
TA
T
. (4.2)

The result of such a fitting procedure is shown in Figure 4.2. For this specific bead
the change in resistance with temperature is around 50mΩ/mK. This means that a
temperature change of 2mK will give a change in resistance of about 100mΩ - the error
would then be around 10% given the resolution when a current of 50µA is used.
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Figure 4.2 The log of the resistance of the NTC plotted against inverse temperature.
The line is a fit to Eq. 4.2. The values of the fitted parameters are R∞ = 0.1234 and
TA = 2846.6

4.1.2 The cryostat - Critically damped temperature “step“

In next section (4.2) I model how the temperature changes inside a sphere as the re-
sponse to a Heaviside step in temperature at the walls of a cavity in which the sphere
resides. This is to mimic the experimental setup (sphere inside cryostat) that I am
using. In reality, the cryostat is not capable of doing such an instantaneous step in
temperature. Also, since one of the possible developments of this experiment is to
Laplace transform the data, the knowledge of the functional form of the temperature
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of the cryostat makes it possible to isolate the response function using the convolu-
tion theorem for Laplace transforms. This way one could in principle analyze the
transformed data in the frequency domain using Eq. 4.9 to determine the frequency
dependent coupling constant al =

cl−cp
cp

.

The temperature function of the cryostat, δTC(t), is a complicated function. The
cryostat will approach the new temperature level via a PID method (proportional,
integral, and derivative control) with the purpose of finding the fastest change between
two temperature levels.

The cryostat is made from a cold liquid nitrogen fueled bath and a heater. The PID
method controls the temperature in the experimental stage by means of balancing the
heat outflow to the cold bath, wout(t), with the heat effect of the heater, w(t), measured
in W, such that the heat load on the experimental stage, wL(t), will approach or be
kept at an almost constant level:

w̄(t) + w̄L(t) = w̄out(t), (4.3)

where w̄(t) represents the time average of w(t). In the standard PID method the heater
output, w(t), is determined by [22]

w(t) = I
1

∆t

∫ t

t−∆t

w(t′)dt′ − P (T (t)− Taim)−DdT
dt
, (4.4)

where Taim is the temperature level to approach or maintain, and P , I, D, ∆t are
constant parameters of the method.

However, it is not necessary to use the complicated equations above to describe/model
the temperature in the cryostat, as long as the temperature steps are small. For small
steps the cryostat temperature can be well approximated by the following function:

δT (t) = ∆T −∆T
(
Ae−k1t + (1−A)e−k2t

)
, (4.5)

where A is a number larger than one, k1 and k2 are time-constants, and ∆T is the
difference between the end temperature, Tend, and the starting temperature T0. Note
that constants in this equation can be chosen in a way that makes the resulting graph
resemble that of a damped system; a quick look at the temperature of the cryostat
plotted against time makes this approximation reasonable. If one ask the cryostat to
perform a 2K jump in temperature, one would get something that looks the way it
does in figure 4.3.

As seen from figure 4.3 it is fairly easy to get a good fit to the function given in equation
4.5.

4.2 Modeling of experiment - heating through a heat resistance

The analysis in the preceding sections was concerned with a number of examples, but
only one of them investigated the spatial dependence of temperature in the sphere. In
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Figure 4.3 The temperature of the cryostat walls after it is asked to make a step of about
2K. Shown is also a fit to a function that normally describes a damped oscillation (4.5).

that case we considered the problem where a varying complex heat amplitude is given
as the boundary condition on the surface of the sphere, whereas in the experiment we
wanted to perform, we control temperature. So the prior results, showing that there
is an instantaneous drop in temperature, common for the whole interior of the sphere,
may in fact not be the case. As shown below, when you control temperature instead
of heat current, the magnitude of cooling by heating depends on the distance from
the center of the sphere. The first aim of this modeling was therefore to find out how
precise you need to be in placing the “thermometer“ in the center of the sphere.

Moreover, the fact that we are controlling the temperature of the walls of a cryostat,
and heat then has to be transferred through air on its way to the sphere, leads to the
question of how temperature in the sphere is affected by the heat resistance of the
medium between the sphere and the walls of the cryostat.

To investigate this I consider the same case as the one in section 3.3, where a periodi-
cally varying heat δQ(t) = Re

{
δQeiωt

}
is supplied at the surface of a massive sphere

of radius R. The boundary conditions used there were:

1. No displacement at the center: u(0) = 0

2. No temperature gradient at the center: ∂δT
∂r (0) = 0

3. No radial stresses at the surface: σrr(R) = 0

4. The heat supply boundary condition at the surface: λ∂δT∂r (R) = iω δQ
4πR2
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The solution was found to be given by

δT (r)

δQ
=

1

cpV0

{
al

al − 1
+

1

1− al
(kR)3

kR cosh(kR)− sinh(kR)

sinh(kr)

kr

}
(4.6)

Here V0 is the sphere volume, k the complex frequency-dependent thermal wave vector
k =

√
iωcl(ω)/λ and al is the complex frequency-dependent dimensionless “longitudi-

nal” coupling constant defined in Eq. 3.23.

To model the experimental conditions in our experiment, I will change boundary con-
dition number 4 in the above list. I consider a case where we change the temperature
of a spherical cavity (representing the walls of the cryostat) at a given distance from
the surface of the sphere, and heat is then transferred through a heat resistance (air)
into the surface of the sphere. Fouriers law of heat conduction in spherical geometry
is given by

δQ

r2
=
λs4π

iω

∂δT

∂r
, (4.7)

where λs is the thermal conductivity of the surroundings. Integrating from the radius
of the sphere, R to the walls of the cavity, RC , the heat supply boundary condition
above can be changed to

δQ(R) =
λs
iω

3V0

R2

b

b− 1
(δTC − δT (R)) , (4.8)

where b = RC
R is the ratio of cavity to sphere radii, and δTC is the temperature variation

of the cavity. Substituting this into the solution given by Eq. 4.6, one obtains, after
some algebra,

δT (r)

δTC
=

(kR)3

kR cosh(kR)−sinh(kR)
sinh(kr)
kr − 3al

B(kR)2 + (kR)3

kR cosh(kR)−sinh(kR)
sinh(kR)
kR − 3al

, (4.9)

where B = λ
λs

b−1
b . From this it is possible to study the radial dependence of tem-

perature, the influence of the coupling constant, al, and the effect of a varying heat
resistance of the surrounding medium parametrized by B. Since I wanted to model
a sphere of glucose I chose to fix the ratio of thermal conductivities, λ/λs in B, and
instead vary b to investigate the B-dependence of the effect. For λs I used the thermal
conductivity of air; the larger a thermal conductivity of the surrounding medium the
better - a large heating rate at the surface induces a larger expansion rate. Likewise
the smaller a thermal conductivity of the sphere, the longer time it takes the heat to
reach the center of the sphere, and cancel the phenomenon we are looking for.

Restricting myself to the thermoelastic case (solid, where the constitutive properties
are frequency independent), I calculate the temperature in the sphere as a response to
a Heaviside step in temperature at the walls of the cavity, δTC(t) = ∆TH(t). Note that
this is not the actual case. The temperature changes in the cryostat is shown in Figure
4.3. This can of course be incorporated in the model, but for now I assume a Heaviside
type step in temperature at the walls of the cavity. Making an inverse Laplace(-Stieltje)
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transform by the standard residue calculus, the solution in the time-domain is found
to be

δT (r, t) = ∆T

(
1 +

∞∑

n=1

Rne
−xn tτ

)
, (4.10)

where τ = R2cl/λ is the characteristic diffusion time, Rn = 2
R
r

sin( rRxn)
sin(xn) (Bx2

n+3al)−3al

(B−1)x2
n+9al−(Bx2

n+3al)
2

are the residues and the xn’s are the roots of the transcendental equation given by
x cot(x) = (B−1)x2+3al

Bx2+3al
.

4.2.1 Results of the modeling

Here I present the results of the modeling pertaining to the questions asked above. Since
the choice of Glucose as the system to study, we fix the ratio of thermal conductivities
based on literature values; for glucose - λ = 8.23cal/cm/s/K [23], and for air - λs =
0.60cal/cm/s/K. In all the figures below, I use a value of the coupling constant al =
0.05. That is, the relative difference between the longitudinal specific heat and the
isobaric ditto is 5%. As the size of the temperature step I use ∆T = 5K

Distance from sphere to cryostat walls

Regarding the distance from the surface of the sphere to the walls of the cryostat,
we a priori expect the best result if they are closely spaced, which would make the
parameter B smaller. In figure 4.4 we plot the minimum temperature reached (cooling
by heating) at the center of the sphere as a function of time scaled by the characteristic
diffusion time τ , which for a sphere of radius 1cm is about 1000 seconds.

To parameterize the curves I used the relative difference in radii, Bb = RC−R
RC

= b−1
b .

The figure shows that the dependence on Bb is not trivial, but as expected, it shows
that the closer the surface of the sphere is to the walls of the cryostat, the larger
the temperature dip due to cooling by heating. In the end we chose a diameter of
the sphere of Glucose to be 19.1mm, corresponding to a Bb = 0.045. This was the
largest sphere we could use without risking electrical contact between the wires and
the walls of the cryostat. With this choice of Bb the minima in temperature occurs
about 0.038τ ≈ 38sec after the temperature step has been applied, giving enough time
to do the measurement.

Centering the thermometer

In Figure 4.5 I have plotted the change in temperature, δT as a function of time in
units of the characteristic diffusion time, τ , and again the coupling constant is set to
al = 0.05, Bb = 0.045 and the temperature step is of size ∆T = 5K. The different
curves represent the temperature at different distances from the center of the sphere.
The figure shows that there is room for placing the NTC-bead a bit off-center. When
molding the sphere of glucose, we can place the NTC-bead within 1.5mm from the
center of the sphere, which more or less corresponds to the red curve with cruxes with
r = 0.2R in Figure 4.5. For the parameter values chosen to make the plot in this figure,
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Figure 4.4 Figure showing the magnitude and position (in time) of the dip in
temperature due to cooling by heating as Bb = RC−R

RC
is varied. The coupling

constant was chosen to be al = 0.05 and the temperature step was taken to be
∆T = 5K. The figure shows that the larger the distance from the spere to the
walls of the cryostat (larger Bb), the smaller an effect of cooling by heating (in the
thermoelastic case) in the center of the sphere as expected.

misplacing the NTC by that amount would mean measuring a temperature dip 15%
smaller than the largest possible dip.

4.3 The measurements

Going through the steps in the molding scheme described in Appendix B, you end up
with a sphere of Glucose in the glassy state, like the one shown in Figure 4.6. Even
though you cannot see the NTC inside the sphere (since the sphere is partially crystal-
lized), the photo shows clearly the wires that leads into the sphere, connecting the NTC
to the terminals in the peek-plate shown in the photo. When mounted on a holder,
the terminals get connected to the Multimeter that will do the resistance measurements.

Measuring scheme

Before doing a measurement, I followed the following procedure:

1. Bring down the temperature to the desired starting level.
2. Wait for the temperature to equilibrate. This is monitored by measuring the

resistance every 5’th minute. The typical waiting time for my samples are 18
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Figure 4.5 Temperature change as a function of time scaled by the characteristic
diffusion time for different positions in the sphere. Here Bb = 0.045 is used together
with a al = 0.05 and a temperature step of size ∆T = 5K. The figure tells us that
there is room for not being perfectly exact placing the NTC-bead. The red curve,
r = 0.2R, would in our case (R = 9.5mm) correspond to the temperature 1.9mm
from the center of the sphere.

Figure 4.6 A photo of one of the spheres used in the measurements. At the time
of the photo shoot (1 month after molding) the sample is no longer transparent - it
has crystallized.

hours.
3. After the initial waiting time, I increase the sampling rate of the Multimeter to

about 5 data points per minute. This is done for 1 hour to get a baseline like the
one in Figure 4.7.
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4. Make a temperature step of size 5K and continue the sampling of data for another
10 minutes with a sampling rate of 15 data points per minute..

Limitations and reproducibility

Below I present the results of the measurements. To be frank, the results are not en-
tirely what I had hoped for. This is due to an annoying reproduction-problem. The
first measurement on a newly molded sphere was always done at room temperature,
giving a result like the one presented below. But after going through the steps 2-4
listed above, in order to do a measurement at the final temperature of the preceding
jump, the phenomenon would either be reduced to almost within the noise level of the
baseline, or not be detected at all. Even if I went back in temperature to do the mea-
surement that just succeeded, did the situation not change. Only with a fresh sample
could the phenomenon be reproduced. This leads me to the following hypothesis of
what ruins the signal.

As described in Appendix B the spheres are made by “gluing“ to half-spheres together.
This could lead to the following problems:

• Air bubbles: When the two half-spheres are joined to produce the sphere, air
is trapped forming small bubbles of air in the region where the two half sphere
meet. If the bubbles accumulate on the NTC under the temperature jump, then
the thermal contact to the sample is ruined. This I detected using a microscope,
after one successful measurement that could not be reproduced with the same
sample.

• Cracks: After one successful measurement that could not be reproduced, I regis-
tered a crack in the plane where the to halves of the sphere are “glued” together.

4.3.1 The results

In Figure 4.7 you see the temeprature measured by the NTC during a measurement
with a step from 298K to 303K. You see the baseline that extends for 1 hour and then
you see the characteristic dip in temperature. The size of the dip is 7.3 ± 0.2mK and
is reached 36 seconds after the step is made.

I repeated the experiment on three different samples. The first measurement done
on each sample, at the same temperature is summarized in Figure 4.8. Each marker
represents lowest temperature reached in one measurement. They are plotted against
time after the step is initiated with the cryostat.

4.4 Summary

Given the results of the measurements I conclude the following. There is a huge prob-
lem of reproducibility in the sense that the phenomenon of cooling by heating can
only be detected measuring on a fresh sample. Above I suggested two causes for the
vanishing of the signal: Formation of air bubbles and cracks. An other possibility
could be that the sample starts to crystallize; even though it is a bit more speculative
reason the phenomenon of cooling by heating itself points out a plausible explanation.
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The phenomenon is the result of a decreasing pressure (density), which in principle
increases the mobility of the molecules. In turn an increasing mobility could facilitate
crystallization, starting in the center of the sphere.

Given the unfortunate situation I have to seek comfort in the systematic nature of the
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problems reproducing the measurements, and attempt to analyze the results anyway.
The measurements done on the fresh samples seem to give a drop in temperature
with a magnitude about the same size in the three samples that all had the same
thermal history, see Figure 4.8. The difference between them can be accounted for
if you compare with the finding in the modeling section, i.e. Figure 4.5. That is, if
the NTC was placed at different distances from the center in the three samples, the
measured change in temperature would not be the same. The position of the minima
also indicates that this could be the case.

A comparison with the modeling section should also be made, and two points of critique
can be made: The first is that I model a solid sphere of glucose, placed in a spherical
cryostat. This is certainly not the case - it is cylindrical. The second point is that I
assume a Heaviside step in temperature at the walls of the cryostat. This is also not
the case - it is more like a critically damped oscillation like in Figure 4.3. Therefor it
would not make sense to fit the measured curves to Eq. 4.10 in order to extract a value
of the coupling constant.

If I were to include the real temperature profile on the walls of the cryostat it would
give a smaller temperature drop in the sphere. Likewise the cylindrical geometry of the
cryostat cavity, can as a first approximation be modeled by setting the radius of the
spherical cavity in the model a bit larger than the radius of the cylindrical cryostat.
This would reduce the temperature drop further. Therefore, the value chosen for the
coupling constant in the modeling section, al = 0.05 might not be to far off after all.

Regardless of the reproducibility question, the following conclusion can be made. The
experiments shows, that there is a non-negligible difference between the longitudinal
specific heat and isobaric specific heat in glassy Glucose, as the existence of the phe-
nomenon of cooling by heating is not possible otherwise.



5 Cooling by heating - a molecular
dynamics study

The motivation for this work is the following. The experimental results presented in the
preceeding Chapter 4 were the result of measurements on a glassy sphere of glucose. A
Molecular Dynamics (MD) study of the phenomenon would complement the preceding
results proving the existence of the phenomenon of cooling by heating, also in the liquid
state. Also, this gives the opportunity to investigate how the phenomenon of cooling
by heating is affected when you shrink your system. When going down in size, letting
the characteristic length of your system approach the molecular scale, the length of
acoustic and thermal wave vectors become comparable. The acoustic wave vector is
given by q2 = s2

cs
where s is the Laplace frequency (s = iω) and cs the speed of sound.

The thermal wave vector is given by k2 = s
D , where D is the heat diffusion constant.

Inserting values typical for the two quantities - cs ∼ 3 · 103m/sec and D = 10−7m2
/sec,

you get the following estimate for the ratio of the squared length of the wave vectors

q2

k2
= 10−14 · 2πf ≈ 10−13 · f, (5.1)

where f = ω/2π. Taking the system to be a sphere with a radius r = 10−8m, its
characteristic acoustic frequency, f = cs

πr ≈ 1011Hz, gives a ratio q2

k2 ≈ 10−2. This
means that for a system this size, only a factor 10 separates the lengths of the thermal
and acoustic wave vectors.This separation could easily be reduced with a slight change
in the values used for the speed of sound and heat diffusivity. So for a nano sized object,
one is moving close to a situation where the distinction between acoustic and thermal
waves starts to become blurred. Further more, for nano-sized objects, the assumption
that acoustic waves propagate adiabatically begins to break down. The upper bound
on the frequency that will assure adiabatic propagation is found by comparing the
distance heat can travel (given by the diffusivity) during half a period of the acoustic
wave. Doing this, using the above values of the speed of sound and diffusivity, you find
that the adiabatic assumption reads

f � c2s
2π2D

≈ 1012Hz. (5.2)

This corresponds to a bound on the timescale in the picosecond range, τ � 1ps - the
typical time scale studied in MD simulations. The above observations should also be
compared to the fact that the assumption used in the two preceding chapters - the
assumption of being in the inertia-free limit, begins to break down. Therefor it is
interesting to see if the phenomenon of cooling by heating is also present in a very

48
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small object, like the ones you can study with MD simulations. Also such a study
could give yet another proof of concept of the phenomenon, which is not clouded by
problems of reproducibility. The following gives a brief presentation of what you find
when simulating the heating of a spherical nano sized droplet on its mechanically non-
clamped surface.

5.1 Preparing the simulations

Almost all MD-simulations 1 of supercooled systems are performed with the Kob-
Andersen binary mixture of Lennard-Jones particles (KABLJ) [25]. This system consist
of 80% A-particles and 20% smaller B-particles in a strong exothermic mixture, which
makes it very resistant against crystallization [26]. The glas transition temperature,
Tg is estimated to be Tg = 0.438 [25] for a uniform system of N = NA + NB = 1000
Lennard-Jones (LJ) particles at a density, ρ = 1.2. A droplet of only one thousand
particles is, however, much too small to establish the effect. For this reason we cre-
ated a droplet of N=500.000 particles. The reason for choosing such a big number
is to make sure that there is time enough to measure an effect of thermomechanical
coupling before everything is washed out by the diffusion of heat, and to secure the
separation of acoustic and thermal waves.
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Figure 5.1 Density profile, ρ(r), averaged over a short equilibrium run. Shows the density
as a function of the distance r from the center in the droplet before the thermal wave
was created. The KABLJ droplet consists of solvent A-particles and solute B-particles.
The droplet is later heated up in the surface shell at r ≈ 50, marked by the vertical lines

A droplet of N = 500.000 KABLJ particles was created in the following way: A KABLJ

1 For MD details see [24]. Unit length, energy and time is σAA, εAA and σAA
√
mA/εAA, where

σAA and εAA is the length and the energy parameters in the Lennard-Jones (LJ) potential uAA =
4εAA[(σAA/r)

−12 − (σAA /r)−6).
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system of N = 1000 particles was calibrated at a density of ρ = 1.2 and temperature
T = 0.40. A number of copies of the system were then fused into a huge system, from
which a spherical droplet consisting of 500.000 particles was cut out. The droplet was
then placed in a container with a box-side length 10 times larger than the radius of the
droplet [27]. Droplets were then equilibrated at 3 temperatures: T = 0.38, 0.40, 0.42,
all below the glass-temperature.

Figure 5.1 shows the density profile of a droplet at the temperature T = 0.40 where the
density of the bulk is approximately ρ = 1.07. I took the relaxation time, τα of the sys-
tems to be given by the time when the AA incoherent intermediate scattering function
in a KABLJ is equal to 1/e (at wave vector q = 7.25(ρ/1.2)1/3 [28]). Then simulations
were run at the three state points, dumping configurations separated by 2τα, creating
an ensemble consisting of 300 droplets with uncorrelated start configurations at each
state point.

5.2 Simulation details

In the production runs I thermostated the particles in a concentric shell containing
the surface of the droplet, keeping track of all the particles during the whole run. The
particles in the shell were defined as those that are situated in an interval of radii from
the center shown by vertical lines in figure 5.1. These particles were thermostated by
a Nose-Hoover thermostat (NHT) [24]. The NHT thermostat consists of a "friction
therm" in the classical equations of motion and the thermostat has a relaxation pa-
rameter τT which controls the heat flow into and out of the system. A big value of τT
results in big and slow oscillations of the temperature T around the target tempera-
ture whereas a small value of τT results in small and quick oscillations 2. The NHT
thermostated particles are not accelerated (heated) or damped (cooled) by particle
collisions, but by the dynamic friction parameter in the equations of motion, by which
you in general can avoid thermal waves in the system if all particles are coupled to the
thermostat. In the present simulations however, I wanted to create a thermal wave by
heating only the particles at the surface.

The thermal wave was started by increasing the thermostate temperature with δT =
0.04, for particles in the surface shell. This was done in the following way. First I used
a big value of τT for a short time creating “Heaviside-like” step change in temperature.
At the time where the temperature reached the desired value, I switched to a smaller
value of τT which immediately stabilized the temperature at the new target tempera-
ture (T + δT ) in the surface shell. The NHT thermostating with the small value of τT
then continued for the rest of the production run, lasting in all 12000 time steps. The
temperature evolution in the surface shell of one droplet is shown in figure 5.2 for the
step done from T = 0.40 to T = 0.44.

In order to calculate the local quantities, like density and temperature I divided the
system into concentric shells, with some given thickness. In all the figures shown in

2 A natural time unit for a MD thermostat is the mean collision time τc of the thermostated particles.
A small value of the thermostats relaxation time, τT , corresponds to τT ≈ τc
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Figure 5.2 Temperature evolution in the thermostatted shell (surface) indicated by the
vertical dashed lines in Figure 5.1. After a short heating of 390 time steps with a big
value of τT , the shell was calibrated the rest of the production run with a τT ≈ τc, at
T = 0.44

this work I chose to divide the droplets into 10 shells. This number is based on a
compromise to secure good enough statistics, especially in the innermost shells, but
still get a good enough resolution in order to study the evolution of the temperature
in the shells.

5.3 Results

The evolution of temperature and displacement fields were analyzed in the preceding
chapter. The analysis included the evolution of stresses and pressure after a spherical
system had been perturbed thermally at its surface. However, only addition of heat,
or jumps up in temperature at the surface of the sphere were considered, while the
effect of a removal of heat, or jump down in temperature was not. In the thermoelastic
case (solid) where one can ignore memory effects and the influence of temperature on
relaxation properties of the system, one would expect the phenomenon to be symmetric
with respect to the direction of heat transfer.

Figure 5.3 shows the temperature of two sections, r6 and r7 > r6, of the droplet. They
are located about half-ways in to the droplet after a step up, ∆T > 0, and a step
down, ∆T < 0, in temperature has been applied at the surface of the droplet, on the
same starting configuration, at a temperature T = 0.42. The plot is quite busy, but
shows the following. During the first 500 time steps or so, the evolution is identical for
the two temperature steps. The next 1000 time steps show a change in temperature
due to an acoustic wave that is induced by the temperature step at the surface. After
this the evolution in temperature differs in the two shells. In the outermost shell, r7,
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the diffusion of heat kicks in immediately, while in r6, cooling by heating is seen; the
thermal expansion of the surface causes an adiabatic cooling/heating of the interior
of the droplet. Eventually, after yet another 2500 time steps or so, diffusion of heat
gives an increase/decrease in this region as well. The figure also shows, that clearly,
the phenomenon of cooling by heating exists in a nano-sized object, and that it is
symmetric with respect to the sign of the applied temperature step.
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Figure 5.3 Temperature change, δT as function of time steps in two shells at radii r6
and r7 > r6 after steps up, ∆T > 0, and down ∆T < 0, in temperature on the surface
of the droplet at time t = 0, starting at temperature T = 0.42. The error-bars, giving
the error on the ensemble mean, is shown for the innermost shell, r6, which has worse
statistics than in r7. An interpretation of this busy figure is given in the text, but besides
that, this figure shows that the evolution in temperature is symmetric with respect to
the sign of the temperature step applied on the surface.

Figure 5.4 shows the temperature as a function of time for a number of concentric shells
in the droplet. When the temperature at the surface is increased from T = 0.40 to
T = 0.44, it induces an acoustic wave which travels in towards the center of the sphere
and results in an increase in temperature due to the thermomechanical coupling. In
the outermost shells this is followed by an increase in temperature due to heat diffusing
in to these regions. In regions closer to the center, this is not the case. Instead you
see a decrease in temperature due to cooling by heating, an effect which becomes more
pronounced the closer you get to the center of the sphere. This was anticipated by the
modeling done in Chapter 4. In Figure 5.4 I have left out the innermost shell. The
reason for this is twofold. First of all, since the number of particles in the shells - they
all have the same thickness, decreases as one gets closer to the center of the droplet,
the noise increases as there are fewer particles to average over, resulting in large error
bars. An other interesting thing that takes place is the focusing of the acoustic wave
in the center of the droplet. The figure shows how the energy of the acoustic wave,
when distributed in smaller and smaller regions, results in larger temperature changes.
Curves r2 and r3 shows how the reflected acoustic wave (phase shifted) is giving an
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additional decrease in temperature overlapping the effect of cooling by heating. The
reflected wave propagates outwards giving the complicated evolution in temperature
shown. For example the curves representing the innermost parts of the sphere seem to
cross in a systematic manner at approximately 3500 time steps.
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Figure 5.4 The temperature change as a function of time for a number of radii after
a temperature step from T = 0.40 to T = 0.44 has been applied at the surface of the
droplet. The uppermost curve represents the temperature of the thermostated surface.
The curve below refers to a radius a bit closer to the center of the droplet, and so on.
For all radii one first sees the elastic wave that is induced by the step in temperature on
the surface of the droplet. In the outermost parts of the droplet, this is followed by an
increasing temperature due to the diffusion of heat. However, for the innermost parts
of the droplet the elastic wave is followed by the phenomenon of cooling by heating.
The figure shows that the size of the effect increases the closer you get to the center
of the droplet, as anticipated in Chapter 4. The error bars represent the error of the
mean taken over an ensemble consisting of 300 droplets. On the other curves, the error
is much smaller, since the number of particles increases with increasing radius giving
better statistics as radius is increased.

This crossing of the curves is difficult to explain, but I have found more than one
member of the ensemble which crystallizes from the center and outwards. A plausi-
ble explanation could be that the drop in density that accompanies the temperature
drop, which is the largest in the center, increases the mobility of the particles, thus
facilitating crystallization. I have not looked into this yet, since it requires many hours
of looking at an enormous number of huge configurations to make proper statistics.
However, it would be interesting to calculate a crystallization rate and compare with
the crystallization rate found in equilibrium simulations of the same type of system
(but smaller) at corresponding temperatures and densities.
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5.4 Summary

In this chapter I have shown that the phenomenon of cooling by heating exists also
in a nano-sized object, which is not fully described by the set of equations used to
model the phenomenon in the preceding chapters. The results complement the previous
results where experimental difficulties made it impossible to (re)produce a whole set
of measurements on one sample.
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6 Introduction

In the Roskilde Glass and Time group there has been a long tradition of measuring
thermoviscoelastic response functions [1–8]. Among these the most well established
technique, along side the measurement of the frequency dependent shear modulus, is
the method to determine the adiabatic bulk modulus. The measuring cell used to
do these measurements is the piezoelectric bulk modulus gauge (PBG) [2]. The PBG
is basically a piezoelectric spherical shell polarized in the radial direction and coated
on both sides with electrodes. Applying an alternating electric field to it results in
deformation of the ceramic, thus changing the volume inside the shell. If a liquid is
introduced in the interior of the shell, it will oppose the deformation of the ceramic,
thus changing the measured capacitance. Comparing the capacitance measured on the
liquid filled PBG to the capacitance measured of the empty shell, one deduces the
frequency dependent adiabatic bulk modulus of the liquid. This technique covers up
to 6 decades in frequency in the range 10mHz− 10kHz.

Another method which has been documented just recently [8] is the measurement of
the frequency dependent longitudinal specific heat in spherical geometry. The method
employs thermal waves that effuse radially out from the surface of a spherical thermistor
bead that acts both as a heat generator and thermometer. A nice thing with this
method compared to other effusivity measurements is that the spherical geometry of
the setup introduces an extra characteristic length scale (radius of the thermistor)
besides that of the heat diffusion length. This makes it possible to extract both the
thermal conductivity and specific heat from the measured signal independently. On
the other hand the frequency range of the method becomes limited to cover only 2− 3
decades between 10mHz− 10Hz.

The introduction of this thesis presented the concept of internal parameters and the
consequence of having a single internal parameter that determines the structural re-
laxation of a liquid. In [9] members of the Glass and Time group gave a rigorous
reformulation of the classical PD-ratio test of “single parameterness“ for equilibrium
liquids in terms of (four) dynamic PD-ratios. The one most easily accessible from an
experimental viewpoint is Λsp defined by:

Λsp (ω) = − (T/cp (ω))
′′
κ
′′

s (ω)
[
(1/βs (ω))

′′
]2 , (6.1)

It contains the complex frequency-dependent specific heat cp(ω), adiabatic compress-
ibility κs(ω) and the adiabatic pressure coefficient βS(ω) ≡ (δp(ω)/δT (ω))S . As men-
tioned above we can measure κs(ω) = 1/KS(ω) with the PBG. Mounting a thermistor
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bead in the center of the PBG we can measure cl(ω) under identical conditions on the
very same sample. The setup is illustrated in Figure 6.1.

Figure 6.1 Thermistor bead inside the PBG - the setup of the triplet experiment.

This part of the thesis explores the possibility of combining the two censors in order
to measure the third quantity that goes in to the dynamic PD-ratio, namely βS(ω).
In companion paper C.1 in the appendix of this thesis we deduce how the expansion
of the liquid upon heating in the center affects the measured capacitance of the PBG.
The rest of this chapter concerns the theoretical basis of these experiments.

Before exploring this a final note should be made in relation to the PD-ratio. As
mentioned we do not measure the isobaric specific heat needed to calculate the PD-
ratio given by Eq. 6.1. Instead we measure the longitudinal specific heat cl, which was
defined in Part I of this thesis. There we discussed the consequences of the longitudinal
specific heat not being equal to the isobaric specific heat. However, the results obtained
by measurements on Glucose in Chapter 4 indicate that the two specific heats differ
only by a small amount. In any case, lets say that a series of measurements produce
the set of complex frequency-dependent parameters cl, κs and βs. Then using the
definition of the longitudinal specific heat:

cl =
1
κs

+ 4
3G

1
κT

+ 4
3G

cV , (6.2)

where G is the shear modulus, together with the identities [10]

cp
cV

=
κT
κS

and κT − κS =
cp
T0β2

S

, (6.3)

the deviation between the longitudinal and isobaric specific heat may be expressed by

1

cp
=

1

cl
− 1

T0β2
S

4
3G

1 + 4
3GκS

. (6.4)
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This gives cp in terms of the three quantities measured in the triplet experiment.
One only has to supplement with a measurement of the shear modulus G, which is
experimentally accessible by the Piezoelectric Shear modulus Gauge (PSG) developed
by Tage Christensen and Niels Boye Olsen in the Glass and Time group [5].

To sum up we have an experimental setup that in principle can be used to measure a
complete set of thermoviscoelastic response functions. The force of this approach is the
fact that the measurements are done on the same sample, in the same cryostat under
the same conditions. If the measurement of the pressure coefficient can be developed to
a fully operational method, an unprecedented determination of the dynamic PD-ratio
will be possible. This would constitute a reliable test of “single parameterness“ of real
liquids not seen so far. The following section gives the theoretical basis for the triplet
experiment.

6.1 The transfer matrix of a spherical system

Figure 6.2 Depiction of the four thermal and mechanical interactions at the
boundaries r1 and r2 of a spherical system.

The interaction of a spherical system with its surroundings is depicted in Figure 6.2
in terms of four thermal and mechanical bonds at the boundaries r1 and r2. In the
experiments we will do the thermistor interacts with the liquid through the bonds at
r1, while the interaction of the liquid with the PBG takes place at the bonds at r2.
The different measurements in the triplet experiment is realized by combining different
inputs and outputs. The situation can be simplified a bit by assuming that the volume
of the thermistor bead is constant during the measurement. This is a reasonable
assumption corresponding to no displacement of volume in the mechanical bond at r1.
In the measurement of the bulk modulus, the lowest frequency of operation is roughly
10mHz. The corresponding heat diffusion length is given by |lD| = |

√
D
iω | and using a

value of D = 0.1mm2
/s, typical of liquids, the heat diffusion length is around 1.3mm.

This should be compared to the inner radius of the transducer which is r2 = 9mm,
meaning that the bulk modulus is measured under adiabatic conditions. Likewise,
when generating a heat current at r1 by joule heating, the thermal wave created at the
lowest frequency is damped out after |lD| = 4mm. So in all three experiments of the
triplet we can neglect the thermal boundary condition at r2.
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The combined response to the thermal stimuli at r1 and mechanical stimuli at r2 has
been solved in [10] and is given in terms of the transfer matrix

(
δT
iωδS

)

1

=

(
iωT0ZthV2κSβS T0ZthβS
iωV2κSβS βS

)
·
(
δpr
iωδV

)

2

(6.5)

Here V2 = 4π
3 r

3
2 and Zth is the thermal impedance

Zth(ω) =
1

4πr1

(
1 +

√
iωr2

1cl(ω)/λ
) . (6.6)

Besides the thermal conductivity λ we see that the cl enters the thermal impedance.
The determinant of 6.5 is zero although a transfer matrix relating proper conjugated
variables should have determinant 1. The reason for this is that we are studying a
limiting case |iωZthT0V2κSβ

2
S | � 1. The simplified transfer matrix can be represented

by the equivalent diagram shown in Figure 6.3. The equivalent diagram is a more
correct description since it leads to a transfer matrix deviating from Eq. 6.5 only with
a negligible term 1/βS in the 11-component of the matrix. However, the equivalent
diagram has a determinant of 1 and is used later in the modeling of the combined
experiment leading to βS .

Figure 6.3 Equivalent diagram of the liquid representing Eq. 6.5.

The solution given by Eq. 6.5 infers three results. The normal stress response to
compression at r2 becomes

−V2

(
δpr
δV

)
(r2) = KS , (6.7)

the adiabatic bulk modulus. The temperature response on the inner surface to a
thermal current of amplitude Pth = iωT0δS becomes

(
δT

Pth

)
(r1) = Zth. (6.8)

Finally one has
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Pth(r1) = iωT0V2κSβSδpr(r2) + iωT0βSδV (r2). (6.9)

This means that the relation between thermal current at r1 and volume displacement
and negative normal stress at r2 is not affected by any kind of thermal diffusion.

In order to measure κS , cl and βS we need to model the two devices in the setup, i.e. we
need the corresponding transfer matrices - or equivalent diagrams, for the thermistor
bead and PBG respectively.The two auto response functions (connecting conjugated
variables of the same bond), κS and cl, constitute a prerequisite for the measurement
of the cross response function (connecting conjugated variables of different bonds), βS .
As mentioned above the methods to measure the auto responses are well established
techniques, that I will only cover briefly in the next chapter (Chapter 7).
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7 Bulk modulus and specific heat

The PBG with thermistor mounted in the center of the cavity is sketched in Figure
7.1. The liquid to be measured on is inserted in the cavity using a syringe. The pipe
on top of the hole is there to contain excess liquid that can be sucked in to the cavity
as temperature is lowered and the liquid contracts.

Figure 7.1 Thermistor bead inside the PBG - the setup of the triplet experiment.

Going down in temperature to reach the relaxation region, one has to be careful.
If cooling to much the sample may crack and destroy the PBG. The liquid I have
studied here is a vacuum diffusion pump oil called DC705 (1,3,5-trimethyl-1,1,3,5,5-
pentaphenyltrisiloxane). It never crystallize and the Glass and Time group has gained
quite a lot of experience measuring on this liquid. Its glass transition temperature has
been determined by dielectric measurements using the temperature where the dielectric
loss peak is at 1mHz - this gives a Tg = 230K.

7.1 Bulk modulus

In Figure 7.2 I have shown the real part of the measured capacitance of the empty
transducer (full lines) and the liquid filled transducer (dots) for temperatures ranging
from 300K − 237K. The spectrum of the empty transducer shows a resonance at the
high end of the spectrum (around 100kHz. In the liquid-filled spectrum there is a
resonance at lower frequencies. This is due to the liquid flowing in the hole and as
the liquid gets more viscous lowering the temperature, the resonance moves to lower
frequencies.
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Figure 7.2 The measured capacitance of the empty and liquid filled PBG. The
lines are the measured capacitance of the empty PBG. The dots are the measured
capacitance of the liquid filled PBG. The two sets give a reasonable match at low
frequencies where the curves should overlap.

Modeling the PBG

When the bulk transducer is supplied with an electrical potential it acts like a com-
plicated capacitor. The electric field of the capacitor will deform the ceramic via the
piezoelectric effect. Under this deformation the ceramic shell responds in several ways.
Firstly it will create an opposing force by means of Hooke’s law; when a material is
deformed it creates an opposing force proportional to the deformation. Secondly the
deformed material has mass and will respond with inertia. Finally some energy is
dissipated during the deformation.

Figure 7.3 An electric network analogue of the bulk transducer. An electric potential input
is supplied through the gates at the left and is stored in the capacitor, C1, or transformed
to a force through the transformer, Tf . The right side of the transformer is the so called
mechanical side, the force deforms the piezo-ceramic that reacts with a Hooke’s opposing
force, C2, inertia, L, and dissipation, R. The capacitance Cmech describes inverse stiffness
from the inner cavity and changes if it is empty or filled with liquid.
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Typically this is illustrated with an electric network analogue as shown in figure 7.3.
The model has an electrical side to the left and the mechanical properties to the right.
The transducer Tf models the conversion of electric charge and potential, to displace-
ment of volume and pressure. The capacitor on the mechanical side, C2, represent the
elastic properties of the ceramic. The inertia and friction in the ceramics are modeled
by an inductance, L and a resistor, R. The two sides are connected in parallel as seen
from the electrical side; at high frequencies the ceramic becomes mechanically clamped
but charge can still accumulate at the electrodes, meaning that placing the electric
capacitance in series with the mechanical side would not make sense. The elements
on the mechanical side (including the mechanical stiffness of the liquid, 1/Cmech) are
placed in series as they are all subject to the same displacement of volume.

The model signified by the network in figure 7.3 can be described with a response
function of charge to electric potential - the electric compliance J :

J(ω) = C1 +
T 2
f

1
C2
− ω2L− iωR+ 1

Cmech

. (7.1)

At high frequencies the transducer becomes mechanically clamped and Eq. 7.1 is
reduced to

Ccl = J∞ = C1 (7.2)

while at low frequencies the “free“ compliance becomes

Cfr = J0 = C1 + T 2
fC2. (7.3)

The main resonance shown in Figure 7.2 stems from the RCL part of the network, and
defines the resonance frequency ω0 =

√
1

LC2
. This together with the quality factor

Q = 1
R

√
L
C2

makes it possible to rewrite Eq. 7.1:

Cmech
m = Cc1 +

Cfr − Ccl
1 + i ωω0

1
Q −

(
ω
ω0

)2

+ C2

Cmech

(7.4)

where the superscript ”mech” will change depending on the mechanical stiffness 1/Cmech
of whatever is inside the cavity of the transducer. If the transducer is empty we have

Cemp
m = Cc1 +

Cfr − Ccl
1 + i ωω0

1
Q −

(
ω
ω0

)2 (7.5)

A fit of Eq. 7.5 to the data obtained with the empty PBG determines the parameters
of the model. An example of such a fit is shown in Figure 7.4.

In Eq. 7.4 the stiffness of the liquid 1/Cmech is normalized by the stiffness of the PBG,
1/C2. This parameter is given by the 1/C2 = Lω2

0 , so in order to fix this parameter we
have to determine the inertance, L of the PBG. The inertance is taken as a temperature
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Figure 7.4 Fit to to the empty transducer

independent quantity that relates generalized potential (pressure variation δp) to the
derivative of generalized current (volume acceleration δV̈ ). By Newtons Second law
the pressure is given by δp = mür/A. For small displacements the volume change is
approximated by δV ≈ Aur. The inertance is then given by

L =
δp

δV̈
≈ mür
A2ür

=
m

A2
. (7.6)

The transducer has been weighed and measured giving an inertance of

L = (3.8± 0.2) · 103 kg
m4

. (7.7)

Now the stiffness of the liquid can be expressed in terms of the fitted parameters and
C2:

Sliq(ω) =
1

Cliq(ω)
=

1

C2

{
1

F
− 1− i ω

ω0

1

Q
+

(
ω

ω0

)2
}
, (7.8)

where F =
Cliq
m (ω)−Ccl
Cfr−Ccl .

Dispersion in the ceramics

Looking closer at the measured capacitance in Figure 7.2 one will see that at low
frequencies the free capacitance increases. In order to get around the problem of this
dispersion we assume that the frequency dependence of Cfr and Ccl is the same:

Cfr(ω)

Ccl(ω)
=
C∗fr
C∗cl

(7.9)
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Then we can write

F =
C liq
m (ω)/Cfr(ω)− C∗cl/C∗fr

1− C∗cl/C∗fr
(7.10)

Now, if the capacitance of the empty PBG and the capacitance of the liquid filled PBG
overlap at low frequencies, we can assume that the frequency dependence of Cfr is
the same in both measurements. Figure 7.2 indicate that this is indeed the case. The
stiffness of the liquid is then given by

Sliq(ω) =
1

C2

{
1− Ccl/Cfr

C liq
m (ω)/Cemp

m (ω)− Ccl/Cfr
− 1− i ω

ω0

1

Q
+

(
ω

ω0

)2
}
, (7.11)

where the superscript (∗) has been omitted.

The bulk modulus
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Figure 7.5 Real and imaginary part of bulk modulus at low temperatures. The broken
lines are the data found based on Eq. 7.11, while the full lines are found by modeling of
the (Poiseuille) flow of liquid in the hole of the PBG.

The bulk modulus is related to the stiffness by [2]:

S(ω) =
1

V

{
KS −MS

(
1 +

1

3

(klr)
2 sin(klr)

klr cos(klr)− sin(klr)

)}
, (7.12)
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where KS and MS are the adiabatic bulk and longitudinal moduli respectively. kl =√
ρ
MS

ω is the longitudinal wave vector and ρ the density. At high frequencies the
stiffness depends both on KS and MS where longitudinal waves are excited, but at low
frequencies it is simply given by:

S(ω) =
1

V
KS (7.13)

Combining this with Eq. 7.11 we deduce the measured bulk modulus. It is shown
in Figure 7.5. The broken lines are the data found based on Eq. 7.11, while the full
lines are found by modeling of the (Poiseuille) flow of liquid in the hole of the PBG. In
practice this is done by placing a resistance in parallel with the stiffness of the liquid in
the model. The details of this is straight forward, but will be skipped here. However,
the interested reader can consult an excellent account of how to do it in the Ph.D.
thesis of Tina Hecksher [11].

In next chapter we will use the inverse of the bulk modulus, the compressibility κs(ω)
and the fitted parameters of the network model in order to get the pressure coefficient
βS(ω).

7.2 Longitudinal specific heat

Detecting the glass transition of a liquid is often done by performing a measurement of
the specific heat. An example of such a measurement was shown in Figure 1.1 in the
introduction of this thesis. It shows that the specific heat is lower in the glass than in
the liquid phase. This being the case, one would suspect that the specific heat becomes
frequency dependent when approaching the glass transition. In 1985 Birge and Nagel
[12] and Christensen [13] confirmed this measuring the frequency dependent specific
heat of Glycerol independently, and in 1996, Nielsen and Dyre derived a fluctuation-
dissipation theorem for the specific heat.

The method of Birge and Nagel, which covered a larger frequency range than that of
Christensen, is based on the 3ωe-technique and measures the so-called thermal effusion
of a liquid. A thin metal film is deposited on a plane slab of glass and is immersed
in a liquid. The metal film has a resistance and an applied electric current of angular
frequency ωe generates Joule heating at double frequency ω = 2ωe. The generated
heat current “effuses“ as thermal waves into the liquid and the glass plate support-
ing the metal film. As a result the temperature changes, depending on the specific
heat and thermal conductivity (the effusivity

√
cλ) of the liquid . Since the electrical

resistance of the metal film is temperature dependent, the resistance varies with the
changing temperature at a frequency 2ωe. By Ohms law the measured voltage (given
by the product of current and resistance) thus contains a 3ωe component. By solving
the heat-diffusion equation Birge and Nagel found the following formula to relate the
complex amplitudes of temperature, δT (ω) and heat current, j(ω) through the thermal
impedance Z:

Z ≡ δT (ω)

j(ω)
=
√
iωcλ. (7.14)
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If the thermal conductivity is frequency independent (this was confirmed by [14]), the
method gives the frequency dependent specific heat. However, in 2007 Christensen et.
al. [15] showed that the plane-plate experiment does not measure the isobaric specific
heat, but the longitudinal ditto. The temperature perturbation induces stresses and
the high shear modulus makes the relaxation of the deviatoric part of the stress tensor
slow down, causing non-isobaric conditions. However, the results in Part I of this thesis
indicate that the deviation from isobaric conditions is not that large.

It is not only the plane-plate experiment that gives the longitudinal specific heat; also
the method used in this thesis measures the longitudinal specific heat. It is also based
on the 3ωe-technique, but compared to the plane-plate experiment, it covers a narrower
frequency range. The method is, like that of Birge and Nagel, an effusion method and
it was documented by Jakobsen and Christensen in 2010 [8]. Instead of using a thin
metal film, the thermal power, P is generated in a small thermistor bead, just like the
one used in the measurement of the cooling by heating effect described in Part I of this
thesis.

The details of how to measure the thermal impedance is given in reference [8]. Once
the measured impedance Z is found one can use it to deduce the thermal impedance
of the liquid, Zliq.

Thermal impedance of the liquid

To this end we consider a liquid confined between two radii r1 and r2. In a spherical
geometry, if the outer radius is much larger than the thermal diffusion length, |lD(ω)| �
r2 the liquid thermal impedance Zliq, at the inner radius r1 is given by [8]:

Zliq =
δT (r1)

P (r1)
=

1

4πλr1(1 +
√
iωr2

1cl/λ)
. (7.15)

Note that being in the ”thermally thick” limit in spherical geometry ensures that the
thermal impedance is independent of mechanical boundary conditions (see Eq. 6.8 in
previous chapter or [10]). However, it turns out not to be enough to use the simple
expression for the impedance of spherical effusion given by Eq. 7.15. Instead one
need to model the thermal interaction of the thermistor bead and the liquid. The
bead consists of a core of semiconducting material with radius r0 at which the actual
temperature δT is measured, and the heat current P is generated. This core is covered
by a glass capsule of outer radius r1, at which the thermal contact with the liquid is
established. This is depicted in Figure 7.6

The heat flow P (r1) out through the surface at r1 is in general different from the heat
flow P (r0) at the surface r0. Also the temperatures may differ. The thermal impedance
of the liquid,

Zliq =
δT (r1)

P (r1)
(7.16)

is in general not equal to the measured impedance
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δT (r0)

P (r1)

δT (r1)

Thermistor Liquid

Glass capsule
Heat generator

Figure 7.6 Schematic picture of the thermal interaction between thermistor and
liquid. The actual measured impedance Z = δT (r0)

P (r0)
is found at the radius r0 while

the impedance of the liquid is given by Zliq = δT (r1)
P (r1)

.

Z =
δT (r0)

P (r0)
. (7.17)

The glass capsule has a thermal conductivity λb and a specific heat cb. The bead
is a solid, so we assume the difference between isochoric and isobaric specific heat is
negligible, i.e we ignore any thermomechanical coupling in thermistor. In that case the
heat diffusion is well described by a thermal transfer matrix whose elements are given
in reference [10]:

(
δT(r1)
P (r1)/iω

)
= Tth(λb, cb, r1, r0) ·

(
δT(r0)
P (r0)/iω

)
(7.18)

This implies that the thermal impedance Zlic = Zr1 is transformed to the thermal
impedance Zr0 via

Zr0 =
1

iω

T th12 − T th22 iωZliq
T th11 − T th21 iωZliq

. (7.19)

Some of the power generated at r0 is used to raise the temperature of the core of the
bead, whose heat capacity is taken to be C0 = 4/3πr3

0cb. The thermal impedance is
thus given by

1

Z
=

1

iωC0
+

1

Zr0
. (7.20)

The longitudinal specific heat

The combined model - Eq.’s 7.15, 7.19 and 7.20, is fitted to the measured impedance
Z. The full model involves six frequency independent parameters if the fit is done at
high temperature where cl can be considered frequency independent: r1, r2, λb, λ, cb
and cl. It turns out that only five parameters can be determined independently from
the fit and the last one has to be found by other means. The five parameters used in
the fit here are:

τl = r2
1

cl
λ
, τb = r2

1

cb
λb
, r̃ =

r0

r1
, c̃ =

cl
cb
, Zliq,0 =

1

4πλr1
. (7.21)
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Note that only c̃ = cl
cb

mix bead and liquid properties. The parameters found in a
least-squares fit to the measured thermal impedance is shown in Figures 7.7 to 7.12.
The red symbols are the temperatures used to extrapolate the values of the parameters
to lower temperatures.
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Figure 7.12 Relative error from least
squares fit.

One thing to be noted is the temperature dependence of the parameter r̃ = r0/r1

in Figure 7.7. It turns out that the fitted value of this parameter depends strongly
on the frequency range used in the fit. The wider the range of frequency, the larger
(and unphysical) a temperature dependence one finds. I have not explored this, but it
deserves to be investigated further. Figure 7.13 shows the real and imaginary part of
the measured impedance Z as blue and red dots respectively. Also the fit of the model
is shown in full lines. The temperature used is 285K and it is seen that the model fits
the data fairly well.
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Figure 7.13 The measured impedance at 285K together with prediction of the full
model for Z (Eq.’s 7.15, 7.19 and 7.20).

From the thermal impedance we can find the thermal conductivity of the liquid by
noting that the admittance Yliq is the reciprocal quantity of the impedance. At low fre-
quency, where cl reaches it’s non-complex equilibrium value, we can cancel the square-
root term by taking the difference between Y ′liq and Y ′′liq:

λ =
Y ′liq − Y ′′liq

4πr1
. (7.22)

The values found for λ can then be used to find the frequency dependent specific heat
from Eq. 7.15. In order to find the absolute value of λ and cl one needs to specify one
of the two radii r0 and r1. We have measured r1 and the value found is

r1 = 0.195mm. (7.23)

Unfortunately I have not been able to find a value of the specific heat of DC705 in the
literature in order to see if the measured r1 gives the right value to cl. Still, based on
that value of r1 we find the thermal conductivity and longitudinal specific heat. These
are shown for temperatures in the range 241K-235K in Figure 7.14 and Figure 7.15
respectively. For some of the temperatures there are two curves; one going down in
temperature, and one going up.

Even though the absolute value of the specific heat may be a bit wrong, it turns out
that it does not affect the measured value of the pressure coefficient. In next chapter
we show that the pressure coefficient βS is determined by the thermal impedance of
the liquid, and not the specific heat itself. Likewise, it will be the normalized stiffness
that enters from the measurement of the bulk modulus. Of course, in the end, if one
wants to calculate the PD-ratio, the absolute values become important.
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Figure 7.14 The thermal conductivity λ for the temperatures 235K, 236K, 237K, 238K,
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−2 −1.5 −1 −0.5 0

1.5

2

x 10
6

log
10

(frequency/Hz)

c
l’ 

[1
0

6
 J

/(
m

3
K

)]

−2 −1.5 −1 −0.5 0
0

1

2

x 10
5

log
10

(frequency/Hz)

c
l’’ 

[1
06

 J
/(

m
3
K

)]

Figure 7.15 The longitudinal specific heat cl found for the temperatures 235K, 236K, 237K,
238K, 239K, 240K and 241K



79



8 The cross response function βS

The combined experiment can in principle be done in two ways. Either one applies
an oscillating voltage to the PBG while measuring the change in temperature at the
center with the thermistor, or one generates an oscillating heat current with amplitude
Pth by Joule heating in the thermistor and measure the voltage generated in the PBG
as the liquid attempts to expand. The equivalent diagram model of the whole system
is shown in Figure 8.1. In this pilot test we have chosen to model the thermistor as an
ideal heat generator in parallel with its heat capacity C0. The value used for C0 is the
one found in the preceding chapter by fitting the full model of the thermal impedance
to the measured impedance. To model the thermistor in this way is in some respect to
simple; in the measurement of the specific heat one had to take the thermal structure
of the thermistor into account [8]. In the equivalence diagram in Figure 8.1 we have
stitched together the three models developed so far. These are, from the left, the heat
capacity of the thermistor, in the middle, the equivalent diagram of the transfer matrix
given by Eq. 6.5, and to the right, the model of the PBG used to measure the adiabatic
bulk modulus. However, in this combined experiment we are working at frequencies far
below the resonance frequency of the PBG. We therefor ignore the inertia of the shell
and only include the stiffness of the PBG, Cm on the mechanical side of the model.

Figure 8.1 Equivalent diagram of the liquid in contact with the thermistor and the
piezoelectric shell.

The voltage Upz generated in the PBG carries information on the inverse of the pressure
coefficient 1/βS =

(
∂V
∂S

)
p
. To relate the voltage amplitude measured by a voltmeter of

high impedance (Ipz = 0) in response to a heat current Pth generated in the thermistor
we multiply the transfer matrices of the three models that are combined in Figure 8.1:

(
δT
Pth

)
=

(
1 0

iωC0

T0
1

)(
iωT0ZthV2κSβS T0ZthβS
iωV2κSβS βS

)
×

(
1
Tpz

+ Ce
Cm

Tpz
Tpz
iωCm

iωCeTpz Tpz

)
·
(
δUpz
Ipz

)
(8.1)
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Multiplying these together gives a very large matrix which is omitted here, but in the
case of Ipz = 0 the voltage to power response becomes

(
Upz
Pth

)

Ipz=0

=
Tpz
Ceiω

1

(1 + C0iωZth(ω))
(

1 +
(

1 + T 2
pz
Cm
Ce

)
V2κS(ω)
Cm

)

1

T0βS(ω)
(8.2)

8.0.1 Estimating the measured piezoelectric voltage

In table 8.0.1 we list the parameters that is used to estimate measured piezoelectric volt-
age Upz. From the measurement of the bulk modulus we have Tpz/Ce = 1011Vm−3. At
1Hz the factor C0Zth = 10−1 while V2κS(1Hz)/Cm = 1. From the values of the specific
heat and the estimated expansion coefficient we get 1

T0βS
≈ αp

cl
= 3×10−10m3J−1. From

this we find that Tpz
Ce

1
βS

= 30V/J . Using a power amplitude of roughly Pth = 0.3mW
in order to keep the temperature in the center below 1K, we estimate the measured
voltage to Upz ≈ 3mV. The absolute value of the measured voltage at 240K is shown
in Figure 8.2 and it seems like our estimate is in the right range.
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Figure 8.2 Absolute value of the measured piezoelectric voltage Upz at 240K.

To get a feel for the system we consider Figure 8.3. It shows the measured ratio of the
complex amplitudes of piezoelectric voltage and power Upz

Pth
at three temperatures. One

low temperature (blue curve), one intermediate (green) and a high temperature (red).
At intermediate and high temperature one can see the hole resonance. Inspecting the
figure closely one also see that there is a “bump” in the low-frequency end of the spec-
trum. It is seen both at low and high temperature, suggesting that it is a phenomenon
that is not affected by the glass transition, and gives an additive contribution to the
response. A first guess could be that we see the pyro-electric effect. This should be
present at frequencies matching the characteristic time of heat diffusion in a sphere the
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Cm 7.5× 10−16 m3

Pa
Tpz 2.4× 103 C

m3

Ce 15× 10−9F
T0 240K
cl(1Hz) 1.6× 106 J

Km3

C0 1× 10−4 J
K

αp(1Hz) 5× 10−4K−1

Zth(1Hz) 103 K
W

V2κS(1Hz)/Cm ∼ 1

Table 8.1 Parameters used to estimate the signal in the cross response experiment at 240K.
The parameters were found in Chapter 7.
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Figure 8.3 Measured ratio of the complex amplitudes of piezoelectric voltage and power Upz
Pth

at three temperatures. At intermediate and high temperature we see the hole resonance.

size of our system. Using the values of thermal conductivity and specific heat found
in the preceding chapter, one finds that for a sphere with radius r = 9mm (like our
sphere) the characteristic frequency is around 1mHz. The process we see here is a little
faster than that. In any case it is difficult to say what cases the shape of the curves
unless you have a model to put into Eq. 8.2 in place of 1/βS . The model used in
Chapter 3 in order to simulate the cooling by heating effect is one possibility.

Figure 8.4 is a zoom in on the real part of the measured response in the region where
the thermal impedance is peaking (compare with Figure 7.13). There seems to be sign
of relaxation.

8.0.2 The pressure coefficient

In order to find the pressure coefficient, or rather 1
T0βS

we invert Eq. 8.2, but with
a small adjustment: Three more components are added to the model. Two of them
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Figure 8.4 Zoom in on the real part of the ratio of piezoelectric voltage and power amplitude
Upz/Pth at the lowest temperatures.

are part of the electrical setup and is located outside the cryostat. The elements are a
capacitance Cp = 10nF and a resistance Rp = 100MΩ which is placed in parallel with
the electrical capacitance of the PBG, Ce. The third element included is a resistance
Rh in parallel with the normalized mechanical capacitance of the liquid V2κS/CM .
This models the Poiseuille flow in the hole of the PBG, but the results turn out not to
be very sensitive to the inclusion of that element. The result of the inversion is seen in
Figure 8.5 and Figure 8.6. In the two figures the axes are not the same. This is done
to make it easier to see what happens in the figures. In any case, it is clear that we
have not gotten all information out of the measured response. It immediately strikes
you that there is something fishy about the way the curves separate (or not) when
temperature is changed. It is as if all the curves in the real part are forced to meet in
a single point around f = 10Hz. It is not clear to me how to interpret these curves.
There is one aspect of the result that seems promising though: The actual numerical
value of the measured quantity fits with the estimated value based on the numbers in
table 8.0.1. Also it is clear that there is a signal without to much noise, so it seems
that one does not have to increase the power delivered at the center of the sphere in
order to see a signal.

8.1 Possible developments of the measurement

There are three things that need to be done:

1. Make a simulation of the problem, using a model for the pressure coefficient to
put into Eq. 8.2. This way one would get a better idea of what to expect from
the measured response.

2. Try the opposite experiment, where one measures the temperature response in the
center to an oscillating piezoelectric voltage over the PBG. Unpublished results
produced by a group of students at Glass and Time have observed the same
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.

spurious behavior as we do here in the opposite experiment. The students used
the same model to invert the data as we do here. This leads to the following
suggestion:

3. The model used to invert the data, is probably to simple, that is, the model of
the thermistor. In the previous chapter, we saw that in order to get a good fit to
the measured thermal impedance, one needed to include the thermal structure of
the bead, as given by Eq. 7.18. It would just be a matter of inverting that matrix
and then put it into the equivalent network model depicted in Figure 8.1. This is
a plausible solution to the problem as the thermal structure becomes important
exactly in the range of frequencies where we expect to see the structural relaxation
in the response functions.
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A Balance equations of momentum and
energy

A.1 Temperature of the liquid filled shell

I will model the temperature of the liquid as a continuous function of t and r. For this
we need to look further into heat diffusion in spherical symmetry.

Figure A.1 The heat flow in a differential volume. The heat change in the volume
over time must be the difference between the heat inflow and the heat outflow (if
we assume no heat is produced in the volume).

We specify a differential volume element in spherical coordinates r2 sinφdrdφdθ in the
distance r from the center and assume that heat only flows in the radial direction from
the outside to the center. Notice that the heat flow by definition follows the positive
r-direction, so in our case we let −4πr2J(r) be the flow of heat inward through the
surface of a sphere with radius r, see figure A.1. If we assume that no heat is produced
inside the volume then the change in heat over time must be the difference between
heat inflow and heat outflow,

δQ = −
(
(r + dr)2J(r + dr)− r2J(r)

)
4π · δt, (A.1)

extend the equation with the factor r2dr,
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δQ = − (r + dr)2J(r + dr)− r2J(r)

r2dr
4πr2dr · δt

= −
(
J(r + dr)− J(r)

dr
+

(
2

r
+
dr

r2

)
J(r + dr)

)
4πr2dr · δt, (A.2)

and let dr go to zero (notice that this will make 4πr2dr approach the volume of a
spherical shell with infinitesimal thickness, we call this V0),

δQ = −
(
dJ(r)

dr
+

2

r
J(r)

)
V0 · δt. (A.3)

When we consider small changes in heat in a differential volume element with no heat
production it is fair to assume this as a thermodynamically reversible process, and
so the heat δQ is described by T0δS, and furthermore we apply the thermodynamic
expansion of δS:

T0δS = T0

(
∂S

∂T

)

V

δT + T0

(
∂S

∂V

)

T

δV = cV δT + T0KTαpδV, (A.4)

with cV ≡ T0

(
∂S
∂T

)
V
, KT ≡ V0

(
∂p
∂V

)
T
, and αp ≡ 1

V0

(
∂V
∂T

)
p
, we get

cV δT + T0KTαpδV = −
(
dJ(r)

dr
+

2

r
J(r)

)
V0 · δt. (A.5)

T0 should be interpreted as a constant, in our calculations we will assume it to be the
starting temperature for our measurement, literally T0.

Divide equation A.5 with V0 and let CV define the volume specific heat capacity,
CV = T0

V0

(
∂S
∂T

)
V
,

CV δT + T0KTαp
δV

V0
= −

(
dJ(r)

dr
+

2

r
J(r)

)
δt. (A.6)

Now divide the equation with δt and let it go to zero to obtain the differential expres-
sion,

CV
∂δT

∂t
+ T0KTαp

∂

∂t

δV

V0
= −

(
dJ(r)

dr
+

2

r
J(r)

)
. (A.7)

Insert Fourier’s Law of heat conduction, J(r) = −λ∂δT∂r ,

CV
∂δT

∂t
+ T0KTαp

∂

∂t

δV

V0
= λ

(
∂2δT

∂r2
+

2

r

∂δT

∂r

)

Recognize equation A.8 as a second order partial differential equation. We will be
able to solve this if we can find expressions for the divergence of the displacement field
∇ • ū ≡ δV

V0
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A.2 Mechanical displacement and stress field of the liquid

Specify a differential volume element in spherical coordinates r2 sinφdrdφdθ in the
distance r from the center, see figure A.2. If ū(r, φ, θ, t) is the displacement field of the
liquid we write the force on the differential volume by Newton’s second law,

dF̄ = dm · ∂
2ū

∂t2
= ρdV · ∂

2ū

∂t2
, (A.8)

with ρ of course being the density of the liquid.

Invoking the theory of stress and strain tensors we assume that all force on the differ-
ential volume is supplied by the stress tensor, σ̄(r, φ, θ, t), according to the definition
that stress times the normal vector to an area of a surface constitutes a force on the
area, σ̄ · n̄AA = F̄A.

In this way we get forces acting on all six sides of the differential volume as shown i
figure A.3, and assuming that the spherical coordinates diagonalize the stress tensor
we have no skew forces on any surface.

Therefore we get a radial force balance on dV from the difference between stress on
the inner and outer surface of the volume,

Fr = dA(r + dr) · σrr(r + dr)− dA(r) · σrr(r)
= sinφdφdθ ·

(
(r + dr)2σrr(r + dr)− r2σrr(r)

)
, (A.9)

but the forces in the tangential directions will also have small effect on this balance
since they have a small component in the radial direction,

Fφ = 2 · dA(φ) · σφφ(r) · sin
(

1

2
dφ

)

= 2(r sinφdrdθ)σφφ(r) sin

(
1

2
dφ

)
, (A.10)

Fθ = 2 · dA(θ) · σθθ(r) · sin
(

1

2
sinφdθ

)

= 2(r drdφ)σθθ(r) sin

(
1

2
sinφdθ

)
. (A.11)

The resulting force balance will then be the difference between radial forces plus the
radial component of the tangential forces

ρr2dr
∂2ū

∂t2
= (r + dr)2σrr(r + dr)− r2σrr(r)

− 2r dr

(
σφφ(r)

sin( 1
2dφ)

dφ
+ σθθ(r)

sin( 1
2 sinφdθ)

sinφdθ

)
, (A.12)
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rearrange the equation and we have

ρ
∂2ū

∂t2
=

σrr(r + dr)− σrr(r)
dr

+

(
2

r
+
dr

r2

)
σrr(r + dr)

− 2

r

(
σφφ(r)

sin( 1
2dφ)

dφ
+ σθθ(r)

sin( 1
2 sinφdθ)

sinφdθ

)
. (A.13)

Now letting the infinitesimal quantities dr, dφ, and dθ go to zero we get the result

ρ
∂2ū

∂t2
=
∂σrr
∂r

+
2

r
σrr −

1

r
σφφ −

1

r
σθθ. (A.14)

Next step is to find expressions for the stress tensor, σ̄(r, φ, θ, t). We have already
assumed that in the spherical symmetry the stress tensor is described only by the
diagonal elements, σrr, σφφ, and σθθ, now we define pressure to be the average of these
stresses

−p =
1

3
(σrr + σφφ + σθθ) . (A.15)

The pressure changes according to the thermodynamic derivatives

δp =

(
∂p

∂V

)

T

δV +

(
∂p

∂T

)

V

δT, (A.16)

by the Maxwell relations

δp =

(
∂p

∂V

)

T

δV +

(
∂V

∂T

)

p

(
∂p

∂V

)

T

δT. (A.17)

Insert the definition of the isothermal bulk modulus, KT = −V0

(
∂p
∂V

)
T
, and the

isobaric expansion coefficient, αp = 1
V0

(
∂V
∂T

)
p
, and write the pressure

1

3
(σrr + σφφ + σθθ) = KT

δV

V0
+KTαpδT. (A.18)

The relative change in volume, δV/V0, can be described in terms of the strain tensor,
ε̄(r, φ, θ, t). Assuming that the liquid in the cavity is an isotropic material, the strain
tensor will be diagonalized in the same spherical coordinate system as the stress tensor,
ε̄ is described with the diagonal elements, εrr, εφφ, and εθθ, so we get

δV

V0
=
δVr + δVφ + δVθ

V0
=
δr

r0
+
δφ

φ0
+
δθ

θ0
= εrr + εφφ + εθθ. (A.19)

As seen from this equation the diagonal elements of ε̄ are expressed by the relative
change in length in each coordinate direction as part of a relative volume change. In
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figure A.4 the volume dV is displaced to dV ′ by ū(r, φ, θ, t), from this figure we get the
three expressions

εrr =
((r + dr + ū(r + dr))− (r + ū(r)))− (r + dr − r)

(r + dr − r) =
∂ū

∂r
, (A.20)

εφφ =
(r + ū(r)) dφ− rdφ

rdφ
=
ū(r)

r
, (A.21)

εθθ =
(r + ū(r)) sinφdθ − r sinφdθ

r sinφdθ
=
ū(r)

r
. (A.22)

Hooke’s Law defines a linear relation between stress, σ̄, and strain, ε̄, and since we
assume that both tensors are diagonalized in the same coordinate system this becomes
a set of relations between σrr - εrr, σφφ - εφφ, and σθθ - εθθ. In this relation we have
both the bulk modulus, KT , that describes a volume changing but shape maintaining
deformation, and the shear modulus, G, that describes a shape changing but volume
maintaining deformation.

The first relation we simply get from equation A.18,

1

3
(σrr + σφφ + σθθ) = KT (εrr + εφφ + εθθ) +KTαpδT. (A.23)

The other three relations we get from the shear modulus and we are able to write one
relation for each general direction [1, p.13]

σrr −
1

3
(σrr + σφφ + σθθ) = 2G

(
εrr −

1

3
(εrr + εφφ + εθθ)

)
, (A.24)

σφφ −
1

3
(σrr + σφφ + σθθ) = 2G

(
εφφ −

1

3
(εrr + εφφ + εθθ)

)
, (A.25)

σθθ −
1

3
(σrr + σφφ + σθθ) = 2G

(
εθθ −

1

3
(εrr + εφφ + εθθ)

)
. (A.26)

By combining these four relations we get

σrr =

(
KT +

4

3
G

)
εrr +

(
2KT −

4

3
G

)
εφφ −KTαpδT, (A.27)

σφφ = σθθ =

(
KT +

2

3
G

)
εrr +

(
2KT −

2

3
G

)
εφφ −KTαpδT. (A.28)

For further reference, by rearranging equation A.27 one has

σrr =

(
KT +

4

3
G

)
∇ • u− 4Gεθθ − βV δT. (A.29)

This is an instance of the Duhamel-Neumann constitutive relation [1] connecting me-
chanical and thermodynamic properties which reads
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σij = KT∇ • uδij + 2G

(
εij −

1

3
∇ • uδij

)
− βV δTδij . (A.30)

By putting equations A.27 and A.28 into equation A.14 we get the following beautiful
relation

ρ
∂2ū

∂t2
=

(
KT +

4

3
G

)
∂2ū

∂r2
+

(
2KT −

4

3
G

)(
1

r

∂ū

∂r
− ū

r2

)
−KTαp

∂δT

∂r

+
2

r

((
KT +

4

3
G

)
∂ū

∂r
+

(
2KT −

4

3
G

)
ū

r
−KTαpδT

)

− 2

r

((
KT +

2

3
G

)
∂ū

∂r
+

(
2KT −

2

3
G

)
ū

r
−KTαpδT

)

ρ
∂2ū

∂t2
=

(
KT +

4

3
G

)(
∂2ū

∂r2
+

2

r

∂ū

∂r
− 2ū

r2

)
−KTαp

∂δT

∂r
, (A.31)

knowing that ū is displaced only in the radial direction we can write this equation as

ρ
∂2ū

∂t2
=

(
KT +

4

3
G

)
∇ (∇ · ū)−KTαp∇δT, (A.32)

and thus we conclude this section having found the equation that governs the displace-
ment field in the sphere.



96 Balance equations of momentum and energy

Figure A.2 The infinitesimal differential volume can be viewed as simple box and as
such the volume can be calculated as the product of three sides, dV = r2 sinφdrdφdθ.

Figure A.3 The force on the differential volume is supplied from the stress tensor
which specifies the drag in the volume surfaces in all possible directions.
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Figure A.4 The diagonal elements of the strain tensor are found by considering the
displacement of the volume dV into dV ′ by the displacement field ū(r, φ, θ, t).



B The moulding device and moulding
scheme

The moulding device is shown in Figure B.1. It is made of teflon to make it easy to
remove the sphere after moulding. There are two main parts of the moulding device.
They consist of two cylindrical blocks, with half spheres cut out in each block having
the same base radii, 9.55mm. These two parts are the two smallest pieces shown in
Figure B.1; The one in front of the photo, and the one to the right. Lets call them
piece A and B respectively.

In piece B there are two tracks where wires are embedded and on the face of the half-
sphere in piece B you can see the small NTC-bead connected to the wires. In piece
A, there is a hole in the bottom of the cavity. This is to allow liquid to flow in and
out in the moulding proces. When filling piece A with the melt in step 3, there is a
teflon-plug inserted into the hole. This is removed in step 4.

There is also a hollow cylinder, piece C, with a hight equal to the hight of the two
moulding parts put on top of each other. Its inner radius fits with the outer radius of
pieces A and B, and its purpose is to make sure that when piece A and B meet face to
face, the two half-spheres meet in an exact sphere when put together.

step 1 in moulding proces

First glucose is grinded in a bowl of aluminum, and then put into a exicator which
sucks water out of the sample for 24 hours.

step 2 in moulding proces

Then the bowl is put into an oven which melts the Glucose at 158℃(the melting
temperature of Glucose). The melt is kept at this temperature for 5 minutes, short
enough to avoid charamelization.

step 3 in moulding proces

The melt is quickly poured into piece A (with the plug put into the hole) and B. The
two parts then cool in an oven preset to 60℃. Now the flow is slow, so that turned
up-side down for a few seconds, the content does not lew the cavities of pieces A and
B. The reason for this is that the next step in the moulding proces is to put piece
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B inside piece C, and on top of that, turned up-side down, we put piece A, with its
content facing downwards.

step 4 in moulding proces

The two halfspheres are joined by placin piece A and B inside piece C, the plug in piece
A is removed. This way the NTC-bead is trapped in the center of the resulting sphere.
Then the molding device is put in to an oven at temperature preset to 100℃. Here the
sample sits for 1 hour so that the two half-spheres melt together forming one sphere.

step 5 in moulding proces

Now the temperature of the oven is slowly ramped down to 40℃( a bit above the
caloroverimetric glass transition temperature). The final temperature is reached after
24 hours. This way the liquid have time to contract sucking in exceeding liquid from
the hole in piece A, avoiding large tensions that risk cracking of the sphere.

step 6 in moulding proces

The temperature is lowered to 25℃, and waits there for 2 hours, the sample now being
a solid glass. The sphere is then removed from the moulding device, in three steps.
First the piece A and B is pushed out of piece C. Then by tightening the screew in
piece A, shown in the photo in Figure B.1, piece A is pushed away from the sample.
Finally the sample is loosened from piece B by pulling it out by the wires.

step 7 in moulding proces

Now the sphere is coated with a very thin layer of clear cellulose varnish in order to
prevent the uptake of water from the atmosphere. The resulting sphere of glucose is
seen sitting in piece B in Figure B.2. In this particular case you can see som bubbles
of air trapped inside the sample. This constitutes the biggest problem in the proces,
since a bubble of air on the NTC-bead destroys the thermal contact to the glucose.
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Figure B.1 Photo of the three parts constituting the mould-
ing device. See the text above for an explanation.
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Figure B.2 The resulting sphere of glucose, with some
bubbles of air trapped in it.
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In order to describe relaxation the thermodynamic coefficient 1
βS

= ∂V
∂S

� �
p
can be generalized into a complex

frequency-dependent cross response function. We explore theoretically the possibility of measuring 1
βS

ωð Þ for a
supercooled liquid near the glass transition. This is done by placing a thermistor in themiddle of the liquidwhich
itself is contained in a spherical piezoelectric shell. The piezoelectric voltage response to a thermal power
generated in the thermistor is found to be proportional to 1

βS
ωð Þ but factors pertaining to heat diffusion

and adiabatic compressibility κS(ω) do also intervene.We estimate ameasurable piezoelectric voltage of 1 mV to
be generated at 1 Hz for a heating power of 0.3 mW. Togetherwith κS(ω) and the longitudinal specific heat cl(ω)
which may also be found in the same setup a complete triple of thermoviscoelastic response functions may be
determined when supplemented with shear modulus data.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The recent finding [1] that a class of liquids — the strongly
correlating liquids — may be described by a single “order” parameter
makes it urgent to devise methods that measure thermal and
mechanical relaxation and their interconnection. It would be an
advantage if they can be measured in the same setup on the same
sample. The classical Prigogine–Defay test of a one “order” parameter
description has recently been rigorously reformulated for the equilib-
rium liquid in terms of (four) Dynamic Prigogine–Defay ratios [2]. One
of these, ΛSp=−(T0/cp)″(κS)″ /((1/βS)″)2 is from an experimental
viewpoint the easiest to access. It contains the complex frequency-
dependent specific heat cp(ω), adiabatic compressibility κS(ω) and
adiabatic pressure coefficient βS(ω)≡(δp(ω)/δT(ω))S. We can mea-
sure κS(ω) by the so-called piezoelectric bulkmodulus gauge (PBG) [3].
The PBG is a hollow sphere with a thin wall of a piezoelectric ceramic
material. Pressure/volume changes of a contained liquid are detectable
due to the piezoelectric effect. In the middle of the PBG we have now
added a thermistor by which we can measure the longitudinal heat
capacity cl(ω) via the effusivity [4,5]. In this paper we study
theoretically what can be deduced by combining the two sensors, i.e.
how does the expansion of the liquid upon heating in the centre affect
the piezoelectric shell.

2. Thermomechanical response of a differential volume element

The thermal interaction with matter is described in terms of the
conjugated variables temperature, T and entropy, S. We name the

interaction as an energy bond. It is a scalar bond since the variables are
scalars. The mechanical interaction is described in terms of the strain
and stress tensors but this interaction can be separated in a pure scalar
part by the trace of these tensors and the deviatoric traceless part of
these tensors. The conjugated variables of the scalar mechanical
energy bondmay then be taken as volume, V andminus pressure,−p.
The deviatoric parts of the strain and stress tensors describe shear
deformations and are not coupled to the scalar parts for symmetry
reasons (The Curie–Prigogine principle [6–8]) but the scalar bonds
however are coupled. The response δS and δV to perturbations δT and
−δp defines the constitutive properties of matter:

dV = V0 = −κTdp + αpdT ð1Þ

dS= V0 = −αpdp +
1
T0

cpdT ð2Þ

Since the perturbations excite thermal and acoustical waves the
constitutive equations are defined for a differential volume element,
V0 of a linear dimension, R much smaller than the characteristic
thermal diffusion length and acoustical wave length associated with
the time scale of the perturbations (Figs. 1 and 2).

Eqs. (1) and (2) are valid in equilibrium thermodynamics. When it
comes to describing the relaxation of supercooled liquids they are
replaced with corresponding equations of linear irreversible thermo-
dynamics

dV tð Þ= V0 = −∫t
−∞κT t−t′ð Þdp t′ð Þ + ∫t

−∞αp t−t′ð ÞdT t′ð Þ ð3Þ
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dS tð Þ= V0 = −∫t
−∞αp t−t′ð Þdp t′ð Þ + ∫t

−∞
1
T0

cp t−t′ð ÞdT t′ð Þ ð4Þ

The thermodynamic coefficients are now replaced by response
functions. These relaxing response functions may be consider in the
frequency domain instead by defining e.g. the complex frequency-
dependent compressibility as:

κT ωð Þ = iω∫∞
0 κT tð Þe−iωtdt: ð5Þ

Now dV,dS,dp and dT should be interpreted as the complex
amplitudes of harmonically varying perturbations and the constitutive
equations of linear irreversible thermodynamics (3) and (4) becomes

dV = V0 = −κT ωð Þdp + αp ωð ÞdT ð6Þ

dS= V0 = −αp ωð Þdp +
1
T0

cp ωð ÞdT ð7Þ

They can now be treated exactly like the equilibrium Eqs. (1) and
(2). The response functions like κT(ω) and cp(ω)/T0 pertaining to the
conjugated variables of a single energy bond are auto response
functions. αp(ω) on the other hand is a cross response function
connecting a variable from the thermal bond to a variable from the
mechanical bond. The three functions give a complete description of
the thermomechanical response. For relaxing system they are not
completely independent since the knowledge of the cross response
function and one of the auto response functions for all frequencies
makes it possible to calculate the other auto response function [9,10].
Moreover if the liquid relaxation is described by a single order
parameter the relaxational part of the triple of relaxation functions are
proportional and the dynamic Prigogine–Defay ratio [2]

ΛTp =
c″pκ″T

T0 α″p
� �2 ð8Þ

is equal to 1.

There are three other different possibilities of pairs of independent
controlling variables than (dT,−dp), namely (dS,dV), (dS,−dp), (dT,dV)
leading to other triples of response functions and other variants of the
dynamic Prigogine–Defay ratio. It is thus convenient to introduce the
four auto response functions (connecting conjugated variables of the
same bond),

cV =
T
V

∂S
∂T

� �
V

; cp =
T
V

∂S
∂T

� �
p

κT = − 1
V

∂V
∂p

� �
T

; κS = − 1
V

∂V
∂p

� �
S

and the four cross response functions (connecting variables of
different bonds),

αp =
1
V

∂V
∂T

� �
p
= − 1

V
∂S
∂p

� �
T
;

1
αS

= −V
∂T
∂V

� �
S
= V

∂p
∂S

� �
V
;

βV =
∂p
∂T

� �
V
=

∂S
∂V

� �
T
;

1
βS

=
∂T
∂p

� �
S
=

∂V
∂S

� �
p

Strictly speaking – defining these 8 functions as partial derivatives –
they are at first just constant real thermodynamic coefficients but they
may be generalized into complex functions just like κT(ω), αp(ω) and
cp(ω) and they are thought of in this sense in the following. An extensive
table of relations between these functions is given in the appendix of
reference [4]. Here we just notice that βS is related to αp and cp by

1
T0βS

=
αp

cp
: ð9Þ

All of the response functions can be related to fluctuations of the
thermodynamic variables [11]. For example 1/βS is proportional to
correlations between temperature and volume fluctuations. It was
recently found [1] that a class of liquids — the strongly correlating
liquids — may be described by a single “order” parameter and it was
explicitly shown [12] by computer NVT simulations of the Kob–
Andersen binary Lennard–Jones system that

ΛTV ωð Þ = −
c″V

1
κT

� �
″

T0 β″Vð Þ2 ð10Þ

was 1 within 20%.
As we shall see it will probably be the triple T0/cp(ω),κS(ω),1/βS

that is experimentally easiest accessible and it will be the Sp-variant of
the Prigogine–Defay ratio

ΛSp = −
T0
cp

� �
″
κ″S

1
βS

� �
″

� �2 ð11Þ

that shall test the one-parameter'ness of real liquids.

3. Thermomechanical response of a finite spherical volume element

When considering a real experiment with perturbations varying at a
frequency f=ω/(2π) it is not always possible to be in a situation of
homogeneous fields. The wavelength of sound λsound and the heat
diffusion length, |lD| may be comparable to or smaller than the sample
size R. If we consider frequencies below 1 kHz then roughly λsoundN1m

Fig. 1. The two scalar energetic interactions with a differential volume element.
Differential means that the wavelengths of the thermal and mechanical perturbations
are much longer than the dimensions of the volume element.

Fig. 2. Another response situation. Here entropy and pressure are the input variables
and marked on the energy bond nearest to the system. In Fig. (1) temperature and
pressure were the input variables.
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and for Rb1cm we can neglect mechanical waves i.e. neglect inertia in
the continuum description [4]. However the heat diffusion length,
j lD j = j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D = iωð Þp j of a supercooled liquid with a typical heat diffusion
constant of D=0.1mm2/s varies from 4μm to 4mm when frequency
varies from 1 kHz to 1 mHz and thus heat diffusion cannot be neglected
for a sample size of 1 cm. By the coupling between the temperature field
and the strain field that αp induces, the strain and stress fields also
become inhomogeneous. This implies that even in spherical geometry
the two pressures, the radial δpr=−σrr and the mean (hydrostatic)
δp=−1/3(σrr+σθθ+σφφ) are not equal if shear modulus is compa-
rable to bulk modulus. When interacting mechanically with a sphere
through its surface we don't have access to δp but only to δpr. For this
reason shear modulus enters – via the boundary conditions – the
description of the thermomechanical response of a finite sphere
although it wasn't present in the thermomechanical response of a
differential volume element, Eqs. (6) and (7). Consider generally a finite
amount of liquid lying in between radii r1 and r2 depicted in Fig. 3. In the
inertia-free limit the general problem of the relation between the
variables, radial pressure, δpr, temperature change, δT, volume displace-
ment, δV and entropy displacement, δS at the two radii has been solved
[4] in the frequency domain in terms of a transfer matrix:

δpr
δT
δV
δS

0
BB@

1
CCA

r2

= T r2; r1ð Þ
δpr
δT
δV
δS

0
BB@

1
CCA

r1

ð12Þ

In general T is a complicated object. An interesting result was
found when two conditions hold: 1) frequencies are high enough to
be in the “thermally thick limit” with respect to r2, i.e. |lD|≪r2 and
2) r1≪r2: When studying in this case the combined response to
thermal stimuli at radius r1 and mechanical stimuli at radius r2 one
can neglect the mechanical boundary condition at r1 and the thermal
boundary condition at radius r2 ending up with a reduced transfer
matrix given as

δT
δS

� �
r1

= iωZthT0V2κSβS iωZthT0βS
V2κSβS βS

� �
δpr
δV

� �
r2

; ð13Þ

where V2 = 4π
3
r32 and Zth is the thermal impedance,

Zth ωð Þ = 1

4πλr1 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iωr21cl ωð Þ= λ

q� � ; ð14Þ

λ is the heat conductivity. The specific heat, cl entering the thermal
impedance is the so-called longitudinal specific heat. cl is the amount
of heat absorbed per Kelvin upon a temperature increment if the
associated expansion is forced to be longitudinal. This is in contrast to
the isobaric specific heat for which the expansion is isotropic. The

longitudinal specific heat can be related to the isochoric specific heat,
cV by [4]

cl =

1
κS

+ 4
3
G

1
κT

+ 4
3
G
cV ; ð15Þ

where G is shear modulus. Using the identities [4]

cp
cV

=
κT
κS

and κT−κS =
cp

T0β
2
S

ð16Þ

together with (15) the deviation between the longitudinal specific
heat and isobaric specific heat may be expressed by

1
cp

=
1
cl
− 1

T0β
2
S

4
3
G

1 + 4
3
GκS

: ð17Þ

This expression has the advantage of giving cp(ω) in terms of the
quantities cl(ω),κS(ω),βS(ω) and G(ω) that are possible to access
experimentally by our new device supplemented with the Piezoelec-
tric Shear modulus Gauge [13].

Eq. (13) is equivalent to equation (138) of reference [4]. The
determinant of (13) is zero although a transfer matrix relating proper
conjugated variables should have determinant 1. The reason is thatwe
are studying a limiting case where |iωZthT0V2κSβS

2|≫1. Thus the
inverse relation is

δpr
δV

� �
r2

= βS −iωZthT0βS
−V2κSβS iωZthT0V2κSβS

� �
δT
δS

� �
r1

; ð18Þ

This is equivalent to equation (139) of reference [4], but there was
a typo: the common T0 factor in the matrix of that formula should be
deleted. The simplified transfer matrix can be represented by the
equivalent diagram of Fig. 4. The equivalent diagram is in a sense a
more correct description since it leads to a transfer matrix deviating
from Eq. (13) by a negligible term that however endows it with a
determinant of 1.

4. The combined experiment

The adiabatic compressibility κS(ω) can be measured using the
piezoelectric bulk modulus gauge (PBG) [3]. The PBG is a hollow
sphere of radius 1 cm with a thin wall of a piezoelectric ceramic
material. The thickness t is 0.5 mm. The sphere may be filled by a
liquid at elevated temperature, where it is fluent. The PBG transforms
the mechanical compliance of the liquid into an electric compliance
(the capacitance), that can be simply measured by an LCR-meter or by
other means. In order to make combined thermomechanical experi-
ments we have placed a thermistor in the middle of the PBG (see
Fig. 5). By the thermistor itself we can measure the longitudinal heat
capacity cl(ω) via the effusivity [5]. Combining the two devices makes
it, in principle, possible to get the cross response function 1/βS. That is,
nearly all ingredients of ΛSp can be found for the same sample in the
same device. However if cl(ω) differs significantly from cp(ω) [4] as

Fig. 3. Depiction of the four thermal and mechanical interactions at the boundaries at r1
and r2 in spherical geometry. Fig. 4. Equivalent diagram of the liquid.
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may be judged by Eq. (17) a supplementarymeasurement of the shear
modulus is needed. We may produce an oscillating heat current with
amplitude Pth by Joule heating in the thermistor and measure the
piezoelectric voltage Upz generated in the PBG as the liquid attempts
to expand. This voltage contain information on 1/βS=

∂V
∂S

� �
p
but it is

also dependent of the thermal interaction of the thermistor with the
liquid and the mechanical interaction of the liquid with the PBG. In
order to filter these factors out wemay look at the equivalent diagram,
Fig. 6 of the whole system. For simplicity we model the thermistor as
an ideal heat generator in parallel with its heat capacitance C0 of
approximately 5.5×10−5 J/K. (For a more detailed model of the
thermal structure of the thermistor, see reference [5]). In the
equivalence diagram in Fig. 6 the PBG consist of a mechanical
compliance, Cm, a transducer ratio, Tpz and an electric (clamped)
capacitance Ce. They can be expressed [3] in terms of the dielectric
constant, �33, the elastic compliance, (s11+ s12)/2 and the piezoelec-
tric constant, d13 of the piezoelectric material pz29 together with the
radius, r2 and shell thickness, t (see Table 1).

By the equivalence diagram one finds that the generated
piezoelectric voltage amplitude Upz measured by a voltmeter of high
impedance (Ipz=0) in response to a heat current amplitude Pth
generated in the thermistor becomes

Upz

Pth

� �
Ipz =0

=
Tpz
Ceiω

1

1 + C0iωZth ωð Þð Þ 1 + 1 + T2
pz
Cm

Ce

� �
V2κS ωð Þ

Cm

� �
1

T0βS ωð Þ

ð19Þ

We see that in principle βS may be found by this third cross
experiment with a thermistor in the PBG. However the signal is also
influenced in its frequency dependence by the thermal impedance of
the liquid and the adiabatic compressibility but both of these can be
found by the experiments of the thermistor alone respectively the

PBG alone. The frequency dependence in the thermal impedance has a
characteristic diffusion time constant that is almost independent of
the change of cl at the glass transition whereas the factor containing
the compressibility of course will change the position of its
characteristic time scale as temperature is changed. It is interesting
to estimate this signal. At 1 Hz C0Zth is of the order of 1 and so is the
factor containing the compressibility. From the values in the Table 1
we find Tpz

Ce
= 1011Vm−3. Typical values of the expansion coefficient

and the specific heat of a liquid are αp=5×10−4K−1 and cp=2×
106JK−1m−3 and thus 1

T0βS
= αp

cp
= 2:5 × 10−10m3J−1. From this we

find Tpz
Ce

1
T0βS

= 25V/J. Using a power amplitude Pth of 0.3 mW in order
to keep temperature change in the centre below 1 K we thus expect a
signal of the order of 1 mV at 1 Hz which is readily detectable.

5. Conclusion

Of the four dynamic Prigogine–Defay ratios one special namely,
ΛSp=−(T0/cp)″(κS)″ /((1/βS)″)2 seems from an experimental view-
point to be the most directly accessible. By combining the devices of
the two techniques 1) measurement of the adiabatic compressibility
κS(ω) with the Piezoelectric Bulk modulus Gauge and 2) measure-
ment of the longitudinal specific heat cl(ω) by thermal effusion in
spherical geometry a third cross response function, 1/βS(ω) may be
measured. That is, nearly all ingredients of ΛSp could be found for the
same sample in the same device. However cl(ω) may differ from cp(ω)
[4], in which case a supplementary measurement of the shear
modulus is needed.
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Do all liquids become strongly correlating at high pressure?

Jon J. Papini∗ and Thomas B. Schrøder, and Jeppe C. Dyre†

DNRF Centre “Glass and Time”, IMFUFA, Department of Sciences,
Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark

(Dated: March 25, 2011)

We present molecular dynamics simulations studying the influence of pressure on the correlation
between the thermal equilibrium fluctuations of virial W and potential energy U , focusing on liquids
that are not strongly correlating at low pressure (i.e., do not have a WU correlation coefficient
above 0.9). The systems studied are the two hydrogen-bonded liquids GROMOS methanol and
TIT5P water, the ionic liquid defined by a united-atom model of the 1-butyl-3-methyl-imidazolium
nitrate, and for reference the standard single-component Lennard-Jones liquid. The simulations
were performed for pressures varying from 0 GPa to 10 GPa. For all systems studied we find that
the virial / potential energy correlation increases with increasing pressure. This suggests that if
crystallization is avoided, all liquids become strongly correlating at sufficiently high pressure.

The properties of strongly correlating liquids were re-
cently discussed in several papers [1]. These liquids
by definition exhibit strong correlations between their
constant-volume equilibrium fluctuations of the poten-
tial energy U and the virial [2, 3] W ≡ −1/3

∑
i ri ·

∇riU(r1, ..., rN ), where ri is the position of particle i.
Recall that, if p is the pressure, V the volume, N the
number of particles, and T the temperature, the average
virial 〈W 〉 gives the configurational contribution to the
pressure [2, 3]:

pV = NkBT + 〈W 〉 . (1)

If ∆ denotes the instantaneous deviations from equilib-
rium mean values, the WU correlation is quantified by
the correlation coefficient R defined by

R =
〈∆W∆U〉√

〈(∆W )2〉〈(∆U)2〉
. (2)

Perfect correlation gives R = 1; strongly correlating liq-
uids are defined [1] by R ≥ 0.9 for fluctuations monitored
in the NV T ensemble, i.e., at constant volume and tem-
perature.
The computer simulations of Ref. 1 indicate that the

correlation coefficient R tends to increase at increasing
pressure, but no systematic studies have been carried out
of the effect of pressure on the correlation. The simula-
tions of Ref. 1 showed that van der Waals type liquids
and metallic liquids are generally strongly correlating. In
contrast, liquids composed of molecules whose interac-
tions have competing or directional interactions are gen-
erally not strongly correlating. The latter classes of liq-
uids include the hydrogen-bonded liquids, the covalently
bonded liquids, and the (strongly) ionic liquids. Since
previous works indicated that R increases at increasing
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pressure, the question arises whether all liquids become
strongly correlating at sufficiently large pressure. This is
the guiding question of the present brief report.

Simulations of four different model liquids were per-
formed with NV T molecular dynamics using the Gro-
macs package [4]. For each model samples of different
densities were created and mixed during 1 ps (argon
units) at a high temperature, followed by a ramping down
to the desired isotherm. Here the systems were equili-
brated at constant temperature during 10 - 500 ns. The
data for each state point shown below represent an av-
erage taken over five statistically independent samples,
with a sampling frequency of 0.2 ps and production runs
of length 10 ns. The following systems were studied:
1) The single-component Lennard-Jones liquid defined by
the pair potential vLJ(r) = 4ǫ

[
(σ/r)12 − (σ/r)6

]
. This

system serves as a reference strongly correlating liquid.
The results reported below refer to standard argon units
(σ = 0.34 nm, ǫ = 0.997 kJ/mol). Samples consist-
ing of N = 864 particles were studied. 2) Methanol:
The GROMOS force field was used [5, 6], which is com-
posed of three sites representing respectively the methyl
group, the oxygen atom, and the oxygen-bonded hydro-
gen atom (H). The masses are, respectively, 15.035 u,
15.999 u, 1.008 u; the Coulomb interactions are given
by the following charges: 0.176 e, -0.574 e, and 0.398 e.
The sites interact with sites on other methanol molecules
by additional Lennard-Jones interactions with the con-
stants ǫMM = 0.9444 kJ/mol, ǫOO = 0.8496 kJ/mol,
ǫMO = 0.9770 kJ/mol, σMM = 0.3646 nm, σOO = 0.2955
nm and σMO = 0.3235 nm. The van der Waals interac-
tions are cut off smoothly between 0.9 nm and 1.1 nm.
The M-O distance is fixed at 0.136 nm, the O-H distance
at 0.1 nm, and the M-O-H bond angle at 108.53o. Sam-
ples consisting of N = 1728 molecules were studied. 3)
TIP5P: In this water model [7] each water molecule is
described by five sites: one site represents the oxygen
atom (O), two sites represent the hydrogen atoms, and
two sites locate the centers of negative charge that cor-
respond to the oxygen lone-pair electrons. The potential
parameters and charges used are the same as in Ref. 1.
Sample consisting of N = 512 molecules were studied.
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4) [BMIM]+[NO3]
−: A united-atom model of the ionic

liquid 1-butyl-3-methyl-imidazolium nitrate [8] based on
the GROMOS [5] force field. The same parameters were
used as in Ref. 8.
As an example of WU correlations Fig. 1 shows the

equilibrium fluctuations as a function of time of the
TIP5P water model’s normalized virial and potential en-
ergy. Figure 1(a) gives data from a simulation at zero
pressure at T = 475 K. The fluctuations of W and U
are rather uncorrelated (R = 0.18). At lower tempera-
tures the correlation is even lower; indeed near the den-
sity maximum the correlation is close to zero [1]. Figure
1(b) gives data from a simulation at p = 8 GPa at the
same temperature. Here the correlation is much larger
(R = 0.64).
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FIG. 1: Time series from simulation of 512 molecules of
TIP5P water in the NVT ensemble at two different pressures.
(a) At zero pressure the correlation between normalized fluc-

tuations of the virial, △W (t)/
√

〈(△W )2〉 and that of the po-

tential energy, △U(t)/
√

〈(△U)2〉, is weak, with a correlation
coefficient of R = 0.18. As shown in Ref. 1 this low cor-
relation is related to the existence of a density maximum at
lower temperature where the WU correlation is almost zero.
(b) At the pressure 8 GPa the WU correlation is considerably
stronger (R = 0.64).

To systematically investigate the influence of pressure
on the WU correlation we calculated the correlation co-
efficient as a function of pressure along isotherms for the
four liquids. Figure 2 shows that the correlation increases
with increasing pressure for all systems. The low corre-
lation in the case of the single component Lennard-Jones
(SCLJ) liquid at T=310 K reflects the fact that only the
last three points stem from liquid-state simulations.
In Fig. 3 the correlation coefficient was plotted in-

stead as a function of the relative volume change, △V =
(V0−V )/V0, where V0 is the highest volume at the given
temperature corresponding to the lowest pressure of the
simulation. In three cases the lowest pressure was around
1 bar, but for Methanol the lowest pressure was of order
0.1 GPa. Water crystallizes upon compression before it
reaches the correlation coefficient R > 0.9 that defines a

0.0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k
<p>

NVT
 [bar]

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n 

co
ef

fi
ci

en
t, 

R

TIP5P; 450K
TIP5P; 475K
Methanol; 500K

[BMIM]
+
[NO

3
]
-
; 650K

SCLJ;110K
Ar

SCLJ; 310K
Ar

R=
<∆W∆U>

NVT

(<(∆W)
2
>

NVT
<(∆U)

2
>

NVT
)
1/2

FIG. 2: The WU correlation coefficient R plotted as a func-
tion of pressure along isotherms for the following systems: 1)
The standard, single-component Lennard-Jones liquid (two
isotherms), 2) the ionic liquid [BMIM]+ [NO3]

−, 3) methanol,
and 4) the TIP5P water model (two isotherms; the last point
represents a crystallized sample). In all cases the correlation
increases with pressure.
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FIG. 3: The correlation coefficient R plotted against the vol-
ume decrease relative to the volume V0 at the lowest pressure
of the given isotherm. Data were taken from 10 ns of simu-
lations of each liquid. The higher density isotherm (450 K)
of TIP5P water shows stronger correlation than its less dense
counterpart (475 K) at the same pressure.

strongly correlating liquid.

In summary, all liquids studied show increasing virial /
potential energy correlations as pressure increases. These
simulations indicate that if crystallization is avoided, all
liquids become strongly correlating at sufficiently high
pressure. As a potentially important consequence of this,
note that the major part of planet Earth is molten silica
at extremely high pressure; our simulations suggest that
this liquid is strongly correlating and thus simpler than
it is at ambient pressure.
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