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Abstract

The present thesis deals with the scientific field of glass and viscous liquids,
and in particular the isomorphs theory, through the application of computer
simulations. The thesis is divided into two main contributions.

In the first part, the isomorph theory is applied to classical crystalline
systems, in particular the single component Lennard-Jones fcc crystal, showing
that even though the theory was developed for liquid systems, it works even
better for crystalline systems. This is further confirmed by the investigation
of six other model systems, two of which do not have isomorphs in the liquid
phase; it is shown that systems without isomorphs in the liquid phase do not
have isomorphs in the crystal phase either.

The second part of the thesis introduces the notion of pseudoisomorphs,
characterizing systems without isomorphs but with isomorph-like behavior.
These have been found in model systems with bonded interacts modeled as
harmonic springs. Two methods for identifying pseudoisomorphic state points
are developed and presented. The first relies on the fact that for the models
used in this thesis, the eigenvalues of the potential energy Hessian fall into two
distinct parts, one that corresponds to the harmonic bonds and one that cor-
responds the remaining degrees of freedom. It is shown that the latter of these
scale in accordance with the isomorph theory. The second method is of a more
general nature, equating the reduced free energy of a system at different state
points. Both methods leads to a number of implementations for identifying
pseudoisomorphs. The methods are applied to two specific model systems, a
simple asymmetric dumbbell model and a 10-bead Lennard-Jones chain model.
Pseudoisomorphs are successfully found for both models.
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Resume

Denne afhandling omhandler glasser of viskøse væskers, og i særdeleshed iso-
morfteorien, gennem anvendelse af computersimuleringer. Afhandlingen falder
i to hoved bidrag. I den første del anvendes isomorfteorien p̊a klassiske krys-
tallinske systemer, i særdeleshed en-type Lennard-Jones fcc krystallen, og det
vises, at selv om teorien blev udviklet til væskesystemer virker den endnu bedre
for krystallinske systemer. Dette underbygges yderligere af en undersøgelse af
yderligere seks krystallinske modelsystemer, af hvilke to ikke har isomorfer i
væskefasen. Det bliver vist, at systemer derikke har isomorfer i væskefasen
heller ikke har det i den krystallinske fase.

Den anden del af afhandlingen introducerer ideen om pseudoisomorfer, sys-
temer uden isomorfer men med isomorf-lignende opførsel. Disse er blevet fun-
det for modelsystemer med interaktioner modeleret som harmoniske fjedre. To
metoder udvikles til at identificere pseudoisomorfe tilstandspunkter. Den første
anvender det faktum, at for modellerne anvendt i denne afhandling vil eigen-
værdierne af en potentielenergi Hessian dele sig i to grupper, en der knytter
sig til de harmoniske b̊and i modellen og en der knytter sig til de resterende
frihedsgrader. Det vises, at den anden af disse grupper skalerer i overensstem-
melse med isomorfteorien. Den anden metode er af en mere generel natur. Den
finder tilstandspunkter med den samme reducerede fri energi. Begge metoder
anvendes p̊a to specifikke modelsystemer, en simpel asymmetrisk to-partikel
model og en 10-partikel Lennard-Jones kæde. Der findes pseudoisomorfer for
begge modeller.
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1 Glass and viscous liquids

This chapter gives a very brief introduction to the research of the glass transition
and viscous liquids, since these are the main focus of the “Glass and Time”-group
at Roskilde University and has played an important role in leading to the results in
this thesis. Many excellent overviews of this have been made trough the time, see for
instance [14,15,20,46], so this chapter will aim to introduce the different concepts of
the subjects.

1.1 Glass and the glass transition

Though glass is a common everyday object, it is almost solely associated with the
transparent, solid material used in windows and containers. While this is indeed a
glass it is far from the only one.

In a scientific sense being a glass is a state of matter much like being a liquid or
a gas, but with some striking differences. A glass is defined as an amorphous solid
system meaning that the atoms or molecules of the system are disordered, like in
a liquid, but does not flow on any measurable time scale. A glass can be formed
from many different types of substances, from organic molecules to metallic alloys
and though methods for production of glass dates back at thousands of years, the
glass state and in particular the glass transition are relatively new fields of science,
and it is still with out an explanation.

In general a glass is formed by cooling a liquid with a high cooling rate, where
“high cooling rate” depends on the liquid. Other methods exists for forming glasses,
but this is the most common. When a liquid is cooled it will solidify usually by form-
ing a crystal at a specific temperature Tm where the particles of the liquid forms a
lattice structure of some kind. This is a result of the crystal structure being thermo-
dynamically more stable at temperatures below Tm. If a liquid is cooled too fast, this
crystallization can be avoided and the liquid can be brought to temperatures below
Tm, at which point the liquid is said to be super cooled. The cooling rates needed
for this can for some liquids be so high that they cannot yet be reached, where for
other liquids it is so low, that obtaining crystallization can be problematic.

If the liquids is further cooled at this high cooling rate, the dynamics of the liquid
will start to slow down, due to the lack of kinetic energy. Eventually, the dynamics
will be so slow, that the system is no longer able to equilibrate even partially. After

1



2 1. GLASS AND VISCOUS LIQUIDS

Figure 1.1: Illustration of the liquid to crystal and liquid to glass transition
shown as enthalpy or volume as a function of temperature. The system starts
as liquid in the top right corner of the figure. At low cooling rate the system
will begin to crystallize once it reaches the temperature Tm, characterized
by a isothermal change in enthalpy or volume. Bringing the temperature of
the system further down will only result in a “deeper” crystal phase. If the
liquid is cooled too fast it will not crystallize but instead continue on the
liquid state curve until it reaches a temperature Tg where it can no longer
reach equilibrium and becomes a glass. This glass transition temperature
depends not only on the liquid but also on the cooling rate. The figure is
taken from [14].

this the system is considered a glass and the temperature at which this occurs is called
the glass transition temperature Tg. The figure 1.1 illustrates this process. A liquid
is cooled and as it reached the melting temperature Tm it either starts crystallizing,
resulting in a isothermal change in volume or enthalpy, or it continues on the liquid
curve if the cooling rate is high enough. Once it falls out of equilibrium there is a
change in the enthalpy or volume slope, signifying the glass transition temperature
Tg. Contrary to for instance the melting temperature Tm which for a given liquid is
function only of pressure or density, the glass transition temperature is also a function
of the cooling rate, with higher cooling rate giving higher values of Tg.

1.2 Viscous liquids

In order to understand the glass state and transition, a lot of research have been done
on the super cooled liquids, often referred to as viscous liquids, due to their very slow
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dynamics or high viscosity. Contrary to the glasses themselves, the viscous liquids
are in equilibrium meaning that ordinary thermodynamics can be used in dealing
with these. Further more, the glass transition temperature is not uniquely defined, a
problem that is avoided by working with the viscous liquid.

One of the main focuses of this research has been to understand the large in-
crease in viscosity or slow down of dynamics that happens even for small changes
in temperature as the liquid approaches the glass transition where “Small changes
in thermodynamic conditions can alter the time scale for molecular motions from
nanoseconds to a duration exceeding the human lifespan” [46]. Such a slow down is
often described with a relaxation time τ , a measure of how long it takes the system
to equilibrate. One can imagine perturbing a system somehow, and then measure the
time it takes the system to re-equilibrate. This would give a measure of the relaxation
time.

The problem of understanding the change in relaxation time for viscous liquids
near the glass transition is further complicated by the observation that τ also increases
drastically if the system is compressed under constant temperature, instead of cooled
under constant pressure p or density ρ making the problem two dimensional, τ =
τ(ρ, T ) and that these changes are system dependent.





2 Simulation methods

This chapter is meant to give an introduction to computer simulations of atomistic
and molecular model systems. Several good books have been written to cover this
in great detail, see for instance [2, 22, 42], so this will be a very short introduction
focusing on the aspects and methods used in this thesis.

2.1 Molecular dynamics

Far most of the results presented in this thesis where made using molecular dynamics
simulations where Newton’s equations of motion are solved numerically.

We imagine a set ofN particles represented by their position R(t) = (r1(t), r2(t), . . . , rN (t))
and their velocities V(t) = (v1(t),v2(t), . . . ,vN (t)).

In order to have any interaction between particle, we define a potential energy
U(R). Such an energy can be expressed in many different ways, but commonly and
in this thesis the potential energy is taken as a sum over pair interactions

U(R) ≡
N∑
i=1

N∑
j>i

u(rij) (2.1)

where rij is the distance between particle i and j.
A classic example of such a pair potential is the Lennard-Jones potential [34]

uij(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.2)

where εij is a characteristic energy that gives the relative strength of the interaction
between particles of type i and j and σij is a characteristic length of this interaction.
Specifically the minimum energy of this potential is −ε and the energy is zero at
r = σ. The figure 2.1 shows the potential energy of the Lennard-Jones potential as a
function of pair distance r. The potential is characterized by a short range repulsion
from the r−12-term (Pauli exclusion) and an attraction at longer ranges from the
−r−6-term (van der Waals attraction). These are separated by the energy minimum,
giving the optimal pair distance for a pair of particles in isolation. At very long
distances the potential energy and the force both goes to zero. This potential is used
extensively in this thesis.

5



6 2. SIMULATION METHODS
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Figure 2.1: The Lennard-Jones potential and the size of the associated
force as a function of the pair distance r. This potential is a classic example
of a pair potential used in molecular dynamics simulations.

From the potential it is possible to extract an associated force as the gradient of
the potential energy

F ≡ −∇U(R) (2.3)

where the potential energy U is defined as above. This implies that the force is given
by a set of pair forces, e.g. fij , the force on particle i from particle j.

For the Lennard-Jones potential this is

fLJ
ij (rij) = −24εij

[
2
σ12

r13ij
− σ6

r7ij

]
r̂ij (2.4)

where r̂ij is the unit vector pointing from particle i to particle j. The size of the
force associated to the Lennard-Jones potential is also included in figure 2.1, with
repulsive forces corresponding to positive values on the y-axis.

The total force on a particle is obviously the sum of these

fi =
∑
j 6=i

fij(rij) (2.5)

From Newton’s equation of motion we have

d ri
d t

= vi(t) (2.6)

and

dvi
d t

=
fi(t)

mi
(2.7)
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To use this in molecular dynamics simulations, we need to discretize the time which
can be done in a number of ways. Here we do it with the leap-frog algorithm based on
the very common Verlet algorithm [68]. If we imagine that time is discretized around
a specific time t with time steps ∆t, e.g. . . . , t− 2∆t, t−∆t, t, t+ ∆t, t+ 2∆t, . . ., we
calculate the position and force at these time steps, . . . ,R(t−∆t),R(t),R(t+∆t), . . ..
The velocities are not calculated at the time steps but rather at the intermediate half-
step . . . ,V(t −∆t/2),V(t + ∆t/2), . . .. This introduction of intermediate half-steps
is what prompted the name “leap-frog” and is where the algorithm deviates from the
original Verlet algorithm. The leap-frog algorithm is mathematically equivalent to
the original Verlet algorithm but is generally more stable in computer simulations.

The time evolution of a particle in the system is as follows,

vi(t+ ∆t/2) =vi(t−∆t/2) + ∆t
fi(t)

mi
(2.8)

ri(t+ ∆t) =ri(t) + ∆tvi(t+ ∆t/2) (2.9)

after which the new forces F(t+ ∆t) can be evaluated from the updated position.
Since velocity and position are not know at exactly the same time, the total energy

of the system is not know. In order to resolve this one takes as the velocity v(t) the
mean of the velocities immediately before and after

v(t) =
v(t−∆t) + v(t+ ∆t)

2
(2.10)

2.2 Monte Carlo simulations and Metropolis algorithm

An alternative to molecular dynamics simulations is to use Monte Carlo methods,
that relies on repeated random sampling. The name, Monte Carlo, is a reference
to this randomness. In the context of computer simulations of classical mechanical
systems, this is often done with the Metropolis algorithm [37]. The basic algorithm
is as follows:

Start with a set of particle positions R(t) (for the sake of this thesis, the velocities
are not used in the Monte Carlo simulations) from which we evaluate a potential
energy U(t). Perform a trial move by displacing the system R∗ = R(t) + δR and
evaluate a trial potential energy U∗ = U(R∗). Most often δR will be a displacement
of one or all of the particles. The system will change into this trial state with the
probability

P (R→ R∗) =

{
exp [−(U∗ − U(t))/kBT ] if U(t) < U∗

1 else
(2.11)

meaning that a system always goes to a state with lower energy if possible and will
perform a move to a higher energy state with a probability given by the relative
Boltzmann probabilities of the two states. The advantage of this way of sampling
the configurational space is, that the micro configuration visited are visited a number
of times proportional to their actual probability meaning that one does not have to
calculate the Boltzmann probability of every micro configuration in order to find the
more probable ones.

Unlike the molecular dynamics simulations, this method does not access the in-
stantaneous dynamics of the system. The “time” t is not a time as such, since the
configuration at time t + ∆t is not uniquely given from the configuration at time
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t. There are however no problem in using this method to estimate different aver-
age thermodynamic quantities like 〈U〉 and long time dynamical behaviour like the
diffusion constant.

The advantage of this method and the reason it is used here is that it allows for
a very easy control over which micro configurations to visit and in turn to calculate
an average over. If for instance one wants to keep a set of particles fixed at their
current location one can simply configure the program to sample only those micro
configurations and be certain that the averages calculated will be an approximation
to the correct averages in that particular subspace of the configurational space. This
will be done in section 7.4 where a molecular systems is investigated and an average
is calculated over micro configurations with a specific orientation and center-of-mass
position of each molecule. Conversely, formulating a self consistent, time reversible
molecular dynamics algorithm for doing this is quite difficult.

2.3 Practical considerations

One clear disadvantage of computer simulations over experiments is the ratio between
real and simulated time. There are different ways to address this problem.

Defined as above, the forces or energies have to be calculated at each time step
as a sum over all particle pairs, meaning N2 calculation per time step. This can be
reduced greatly by making a cut-off in the pair potentials and forces. The Lennard-
Jones potential goes to zero at large pair distances, and the dynamics are largely
dominated by short range interactions. By truncating the energy or force at a specific
distance one still get the same dynamics without a large part of the N2 calculations.
The classic procedure is to truncate and shift the pair potential at a cut-off distance
rC

uSP(r) =

{
u(r) + u(rC) if r < rC

0 else
(2.12)

where rC depends on the specific potential. As an alternative to this one can truncate
and shift the pair force in a similar manner, which have been shown to allow for shorter
cut-off distances [58]. This allows for calculating the interactions only for particles
that are within the cut-off. To gain anything from this one of cause needs to keep
check on which particles are within the cut-off, something that are taken care of by
the use of neighbour lists.

Since the system size in computer simulations are very small compared to exper-
imental system one need to be careful in order to obtain bulk behaviour, if that is in
fact the aim of the simulation. In order to do this one can use periodic boundaries,
where the system is replicated in each direction. The particles are allowed to interact
with particles in these replicas through the pair potentials and if a particle leaves the
simulation box it is automatically replaced by another particle entering from one of
the replicas. To avoid particles interacting with themselves or with a particle and
a replicate of the same particle, periodic boundaries can be used together with a
cut-off in potential or force that is less than half the minimal length of the simulation
box. This criteria is also referred to as the minimal image convention, meaning that
particle i interact with another particle j with a distance rij given by the minimal
distance between particle i and all copies of particle j.
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Figure 2.2: Illustration of the periodic boundary conditions used in many
simulations to get bulk behaviour from “small” systems. The simulation
box is replicated in each direction and the particles can feel these replicas
and is allowed to exit the simulation box, since a particle that moves out of
the simulation box is replaced by one entering from another replica. Taken
from [22].

2.4 GPU computing and RUMD

One huge leap in the efficiency of computer simulations like those described here
came with the introduction of NVIDIA’s CUDA programming environment. This was
created to allow people to write programs that utilized the calculation capabilities of
the graphics cards, the GPUs – Graphics Processing Units. An ordinary computer
program runs on the CPU, Central Processing Unit, which is capable of efficiently
handling a number of difficult calculations requiring large amount of memory. The
GPU, on the other hand, has a huge number of cores, each capable of handling a
single calculation, given that it is not too memory consuming, e.g. what to display
in a single pixel on the screen. This makes it ideal for calculating for instance the
distance between two particles and thus the force between them since this is a very
simple calculation, and one that needs to be done many times per time step during
a computer simulation.

This have been used in the Roskilde University Molecular Dynamics program
RUMD [7]. It is an open source molecular dynamics program, that has been opti-
mized for long simulations of smaller systems. This is seen of figure 2.3, where the
number of time steps performed per second is shown as a function of system size. The
figure compares the RUMD simulation program to the well know computer simulation
program LAMMPS and it is clear that RUMD is better at small system sizes and
that the two programs are comparable at larger sizes. By using smaller system sizes
one can get a higher simulated time to real time ratio, making it possible to better
probe the long time dynamics of viscous liquids. Further more, RUMD allows for
relatively simple manipulation of most parts of the simulation procedures, something
that was used in the work presented in chapter 7.
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grams, LAMMPS, as a function of system size. RUMD greatly out perform
LAMMPS at small systems sizes, and they are comparable at larger sizes.
The figure is taken from [7].
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Roskilde systems and isomorphs

11





3 Roskilde systems

This chapter introduces the notion of a Roskilde simple system and the isomorph
theory. The offset is empirical density scaling, where the isomorph theory is intro-
duced as an explanation for this. Since the conception of the isomorph theory in [23]
the theory have been tested extensively. For a review of the applications and impli-
cations of the theory we refer to the feature article [17]. The theory have also been
reformulated [52]. It is this reformulation that is the basis of the presentation here.

3.1 Empirical power law density scaling

Though there are still no full explanation for the strong state point dependence of
the dynamics of viscous liquids, for a class of systems, the problem has been made
simpler. It was found experimentally by Tölle et al. [56,57] that for ortho-terphenyl,
the dynamics is not a function of density and temperature independently but rather
a specific combination of the two, τ = τ(h(ρ)/T ) with h(ρ) = ρ4. This effectively
reduces the two dimensional (ρ, T )-phase space to a one dimensional one, meaning
that the relaxation calculated at different points in the (ρ, T )-phase space can be
collapsed onto a single curve when plotted as a function of h(ρ)/T . The result signifies
a certain simplicity of the system and it turns out, that this simplicity is present in
a wide variety of systems when h(ρ) is taken as a power law function with a system
dependent scaling exponent γ [46].

The property of empirical density scaling is now widely used in a large class of
different types of systems, such as small molecular glass formers, polymers, ionic
liquids as well as liquid crystals, see for instance [12,36,45].

3.2 Strongly correlating liquids and isomorphs

The isomorph theory is a theory that explains the scaling behaviour for a large class of
systems by comparing the energy landscape of given system at different state points.

The theory originated in 2008 [5,39], where it was shown that some systems have
a high correlation between fluctuations in potential energy U and the configurational
part of the pressure, the virial W , defined from pV = nkBT +W , and microscopically

13
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related to the potential energy as, see for instance [26],

W (R) = −1

3
R · ∇U(R) (3.1)

The correlation was calculated from a standard Pearson correlation

R ≡ 〈∆U∆W 〉√
〈(∆U)2〉〈(∆W )2〉

(3.2)

and the discovery led to the definition of strongly correlating liquids, defined as those
liquids with a correlation above the somewhat arbitrary threshold R > 0.9 [5].

Further investigation of the strongly correlating liquids have resulted in the dis-
covery, that these systems have curves in part of their (ρ, T )-phase space, along
which, the dynamics and structure are invariant when measured in macroscopically
reduced units [6, 23, 50, 51], meaning that the quantities are reduced by the macro-
scopic variables density, temperature and mass. We denote these with a tilde. Taking
as examples length r, the potential energy U , time t and the diffusion constant D,
we have the reduced quantities

r̃ = rρ1/3, Ũ =
U

kBT
, t̃ = tρ1/3

√
kBT

m
, D̃ = Dρ1/3

√
m

kBT
(3.3)

These lines of invariant structure and dynamics where called isomorphs and systems
with such lines are referred to as Roskilde-simple systems or simply Roskilde systems.
The theory have been tested for a large class of system including simple atomic
systems with quite a broad array of interactions and in both liquid and solid states
[1,16,23,27,67], some small stiff molecules [23,28] as well as a flexible Lennard-Jones
chain [65]. Further more the theory have been tested experimentally with success for
van der Wall liquids [24,44,71].

3.3 Isomorph theory

There are two equivalent ways of defining isomorphs and they both deal with reduced
micro configurations.

We denote a micro configuration by R meaning the coordinates of all particles
R = (r1, r2, . . . , rN ). A reduced micro configuration R̃ is the micro configuration
scaled to unit density R̃ = ρ1/3R to make it a dimensionless quantity.

Included here for completeness follows the two definitions following the derivations
of the paper by Schrøder and Dyre (2014) [52].

In deriving the following relations it is important to note, that the isomorph theory
is an approximate theory. This means that we do not expect it to hold perfectly, but
rather to a good approximation.

Further more, when discussing specific micro configurations R it is understood,
that only the physically relevant ones are considered. For instance there is no claims
on the behaviour of the micro configurations with all particles located in a small
subvolume of the total system volume, and so forth.

Scaling of energy surfaces

The first way of defining isomorphs are through the direct comparison of the potential
energy surface at two different state points.
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Figure 3.1: The potential energy of a perfect crystalline system with par-
ticles interacting via a Lennard-Jones potential. The x-axis is the potential
energy of each micro configuration at (ρ1, T1) = (1.2, 1.0). Each micro config-
uration have been scaled to a different density, rho2 = 2.4 and the potential
energy calculated for the scaled micro configurations. These are given as the
y-axis. The high collapse shows that the energies at the two densities are
related in some way. Reproduced from [1].

Two state points, (ρ1, T1) and (ρ2, T2) are isomorphic if there to a good approxi-
mation exists a mapping between the potential-energy surfaces at ρ1 to that at ρ2,

U(R2) u f1(ρ2, U(R1)) (3.4)

where R1 and R2 have the same reduced coordinates, i.e. ρ
1/3
1 R1 = ρ1/3R2 = R̃ [52].

An example of this is shown on figure 3.1, where the energies U(R2) and U(R1) are
plotted against each other for a perfect Lennard-Jones crystal. This system will be
investigated in detail in chapter 4.

From this we can derive a number of invariant quantities for state points that are
isomorphic.

By tailor expansion of equation (3.4) to first order in U(R1), we get

U(R2) uU(R1)

(
∂f1(ρ2, U(R1))

∂U(R1)

)
ρ1,ρ2

+ g1(ρ2) (3.5)

which shows that for small density changes the energy landscape changes by a linear,
affine transformation.

In the original formulation of the isomorph theory [23], this first order approx-
imation was taken to be the exact formulation of the scaling between state points,
though at that point it was not thought of as a first order expansion. From figure
3.1 it also seems that the potential energies are in fact linearly dependent. Further
simulation have however shown that this is not the case [52]. Because of this, a lot
of the isomorphic invariances that have been derived, are derived from the first order
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expansion. In particular if we choose the temperature T2 so it is related to T1 by

T2 = h1(ρ2)T1 (3.6)

where

h1(ρ) ≡
(
∂f1(ρ2, U(R1))

∂U(R1)

)
ρ1,ρ2

(3.7)

we get from equation (3.5)

U(R2) uT2

T1
U(R1) + g1(ρ2) (3.8)

which in turn implies the original isomorph relation presented in [23], comparing
the Boltzmann factors of micro configurations with the same reduced coordinates.
There two state points (ρ1, T1) and (ρ2, T2) are isomorphic if, whenever two micro
configurations R1 and R2 at those state points has the same reduced coordinates
they also have proportional Boltzmann factors to a good approximation

exp[−U(R2)/kBT2] u C12 exp[−U(R1)/kBT1] (3.9)

where C12 is constant that depends on the state points.

Entropic invariance definition

Another and more formal way of defining isomorphs are through their invariance of
configurational or excess entropy. Recall that the entropy of a system can be written
as the sum of the ideal-gas entropy at the same density and temperature and an excess
entropy S = Sid + Sex where Sex necessarily is negative since the ideal gas must be
more disordered than the liquid at the same density and temperature. The invariance
of the excess entropy on isomorphs have been know from the original derivation, but
here becomes the defining quantity.

A system is Roskilde-simple if the following relation holds for all physically rele-
vant configurations

U(Ra) < U(Rb)⇔ U(λRa) < U(λRb) (3.10)

where Ra and Rb are micro configurations at the same state point and λ is a scal-
ing factor [52]. To prove that this implies a constant constant excess entropy for
Roskilde systems we define an instantaneous microscopical excess entropy Sex(R) as
a function of the instantaneous potential energy U(R) by letting the instantaneous
excess entropy be equal to the thermodynamic excess entropy of a system with aver-
age potential energy equal to U(R) and at the same density, ρ, as the configuration
R [52]

Sex(R) ≡ Sex(ρ, U(R)) (3.11)

By inverting this formulation we get the instantaneous potential energy as func-
tion of the instantaneous excess entropy in the same manner as above

U(R) = U(ρ, Sex(R)) (3.12)

assuming that equation (3.11) is bijective.
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The above expressions for excess entropy and potential energy are general and
does not relate to Roskilde-simple systems. The aim is now to use equation (3.10) to
show that for Roskilde-simple systems, the instantaneous excess entropy and instan-
taneous potential energy both depend only on the reduced coordinates, which would
imply that these are conserved between state points, for Roskilde-simple systems.
First we use the micro canonical definition of excess entropy [52]

Sex(ρ, U)/kB = −N lnN + ln(Vol{R̃|U(ρ−1/3R̃) < U}) (3.13)

where Vol means the volume in the reduced coordinate configurational space.
With this we can write

Sex(R1)/kB = −N lnN + ln(Vol{R̃|U(ρ
−1/3
1 R̃) < U(R1)}) (3.14)

and

Sex(R2)/kB = −N lnN + ln(Vol{R̃|U(ρ
−1/3
2 R̃) < U(R2)}) (3.15)

but for Roskilde-simple systems we can use equation (3.10) to rewrite for instance
equation (3.14) by multiplying both the potential energies that define the set with

λ = ρ
−1/3
2 ρ

1/3
1 to get

Sex(R1)/kB =−N lnN + ln(Vol{R̃|U(ρ
−1/3
2 ρ

1/3
1 ρ

−1/3
1 R̃) < U(ρ

−1/3
2 ρ

1/3
1 R1)})

=−N lnN + ln(Vol{R̃|U(ρ
−1/3
2 R̃) < U(R2)})

(3.16)

which is the same as (3.15) for the entropy at the other state point, showing that the
excess entropy only depend on the reduced coordinates [52]

Sex(R) = Sex(R̃) (3.17)

and in turn equation (3.12) becomes [52]

U(R) = U(ρ, Sex(R̃)) (3.18)

From this it is possible to derive some of the characteristic isomorph predictions.
First we can derive the proportionality between Boltzmann factors found in equation
(3.9) from a first order expansion of (3.18) around the thermodynamic excess entropy
at constant density

U(R) uU +

(
∂U(R)

∂Sex(R)

)
ρ

(Sex(R̃)− Sex) (3.19)

uU + T (ρ, Sex)(Sex(R̃)− Sex) (3.20)

where Sex is short hand for the thermodynamic excess entropy and U for the average
potential energy. If we pick two state points with the same excess entropy Sex,
(ρ1, T1 = T (ρ1, Sex)) and (ρ2, T2 = T (ρ2, Sex)), and for these state points pick two
micro configurations with the same reduced coordinates R1 and R2 equation (3.20)
implies that

Sex(R̃)− Sex u U(R1)− U1

T1
u U(R2)− U2

T2
(3.21)
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giving the wanted relation.
As pointed out, the two ways of defining the isomorph criteria are equivalent. To

see this, we again pick a set of state points (ρ1, T1) and (ρ2, T2), with the same excess
entropy. This makes them isomorphic in the latter sense, and the aim is now to show,
that this also makes them isomorphic in the former sense by deriving an expression
for U(R2) of the same form as the one in (3.4). We pick two micro configurations
R1 and R2 with the same reduced coordinates. By combining equations (3.11) and
(3.12) we have

U(R1) =U(ρ1, Sex(ρ1, U(R1)))

U(R2) =U(ρ2, Sex(ρ2, U(R2)))
(3.22)

but since from equation (3.17) we know that Sex is a function of the reduced coordi-
nates, for Roskilde simple systems, we get

Sex(ρ1, U(R1)) = Sex(ρ2, U(R2)) (3.23)

which means, that we can write U(R2) as

U(R2) = U(ρ2, Sex(ρ1, U(R1))) (3.24)

which is what we wanted to show when one identifies f1 of equation (3.4) with

f1(ρ2, U(R1)) = U(ρ2, Sex(ρ1, U(R1))) (3.25)

Further more we can see from this definition of f1 is consistent with our choice of
temperatures in equations (3.6) and (3.7), where we chose

T2 =

(
∂f1(ρ2, U(R1))

∂U(R1)

)
ρ1,ρ2

T1 (3.26)

in order to get isomorphic state points, since(
∂f1

∂U(R1)

)
ρ1,ρ2

=

(
∂U(ρ2, Sex(ρ1, U(R1)))

∂U(R1)

)
ρ1,ρ2

(3.27)

=

(
∂U(R2)

∂Sex

∂Sex

∂U(R1)

)
ρ1,ρ2

(3.28)

=
T2

T1
(3.29)

This implies that the two way of defining isomorphs are consistent. Though the
above derivations have related pairs of state points, it follows immediately, that if
state points 3 is isomorph to state points 1 it is also isomorph to state points 2,
making being isomorphic an equivalence relation. This, together with the fact that
the density changes between isomorphic state points can be made arbitrarily small
means, that it is possible to map out lines in the ρ, T -phase plane, along which all
state points are isomorphic to one another. These lines are called isomorphs.

3.4 Isomorph properties

Though a lot of measurable quantities are invariant on isomorphs, there are really
three main invariances on isomorphs:
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• Invariance of canonical probabilities of micro configurations with the same re-
duced coordinates.

• Invariance of the reduced at micro configurations with the same reduced coor-
dinates.

• Invariance of excess entropy of the isomorphic state points.

Invariance of reduced probabilities

From equation (3.9) it is given that for any relevant pair of micro configurations with
the same reduced coordinates, we have proportional Boltzmann factors. Using this
we can write the probabilities of the reduced micro configuration at the different state
points as

P (ρ
−1/3
2 R̃2)Z2 u C12P (ρ

−1/3
1 R̃1)Z1 (3.30)

where C12 is the state point dependent proportionality constant, but the partition
function Z is just an integral over Boltzmann factors giving

Z2 u 1

C12
Z1 (3.31)

showing that the canonical probabilities are invariant to a good approximation on
the isomorph [23].

Invariance of reduced forces

The reduced force is given by

F̃(R) =
F(R)

ρ1/3kBT
(3.32)

From equation (3.4) we have

U(R2) uf1(ρ2, U(R1)) (3.33)

Since the force F (R) is the negative gradient of U we get

−∇R̃U(R2) u−∇R̃f1(ρ2, U(R1)) (3.34)

−ρ−1/3
2 ∇R2U(R2) u−

(
∂f1(ρ2, U(R1))

∂U(R1)

)
ρ2

ρ
−1/3
1 ∇R1U(R1) (3.35)

ρ
−1/3
2 F(R2) uρ−1/3

1 F(R1)

(
∂f1(ρ2, U(R1))

∂U(R1)

)
ρ2

(3.36)

and if we pick our temperatures, like above, as(
∂f1(ρ2, U(R1))

∂U(R1)

)
ρ2

=
T2

T1
(3.37)

we get for the forces

ρ
−1/3
2 F(R2) uρ−1/3

1 F(R1)
T2

T1
(3.38)

F̃(R2) uF̃(R1) (3.39)
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Invariance of the excess entropy

This invariance follows immediately from the second definition of isomorphs where
it is the defining criteria, but can also be derived from the invariance of probability
distributions, since excess entropy in the canonical ensemble can be written as [23]

Sex = kB

∫
dR̃P (R̃) lnP (R̃) (3.40)

As a side note it is worth mentioning that since the isomorph theory predicts an
invariance of dynamics on the lines of constant excess entropy, this is in agreement
with the Roselfeld’s excess entropy scaling [18,47].

3.5 Finding isomorphs

There are several different ways of finding isomorphs but there are two prominent
methods. The first is related to the invariance of the excess entropy and the second
to the scaling of the energy landscape.

Isomorphs from excess entropy

Writing the excess entropy as a function of volume and temperature, Sex = Sex(V, T )
we can write up the full derivative of Sex as

dSex =

(
∂Sex

∂V

)
T

dV +

(
∂Sex

∂T

)
V

dT (3.41)

Setting this to zero will map out curves in (V, T )-space of constant excess entropy

dSex = 0 (3.42)(
∂Sex

∂V

)
T

dV =−
(
∂Sex

∂T

)
V

dT (3.43)

Using Maxwell’s relations for configurational quantities this can be rewritten as
[23] (

∂Sex

∂V

)
T

dV =−
(
∂Sex

∂T

)
V

dT (3.44)

1

V

(
∂W

∂T

)
V

dV =−
(
∂Sex

∂U

)
V

CvdT (3.45)

〈∆U∆W 〉
kBT 2

d lnV =
1

T

〈(∆U)2〉
kBT 2

dT (3.46)(
d lnT

d ln ρ

)
Sex

=
〈∆U∆W 〉
〈(∆U)2〉 (3.47)

where W is the virial, see equation (3.1).
From this it is possible to see that in order to map out lines of constant excess

entropy, a small change λ in density can be compensated by a change in temperature
as

Sex(ρ, T ) = Sex((1 + λ)ρ, (1 + λγ)T ) (3.48)
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where γ is a scaling exponent given by

γ ≡
(
∂ lnT

∂ ln ρ

)
Sex

=
〈∆U∆W 〉
〈(∆U)2〉 (3.49)

which can be calculated from a simulation as the slope of a linear regression fit to
the potential energy-virial data, i.e. U(R),W (R) .

So in order to find isomorphs, one can map out the configurational adiabat by
simulating at an initial state point ρ0, T0 and calculating the scaling exponent γ. Then
for a small change in density, the corresponding change in temperature is know, and
one has a new state point ρ1, T1 and the procedure can then be repeated using the
new state point as reference.

Equations (3.48) and (3.49) are general, and can be used to map out the lines
of constant excess entropy, regardless of whether the system have isomorphs, so in
order to find out if a system have isomorphs, one would in principle have to test
the invariance of one of the isomorphic quantities. One way of estimating whether
a system will have isomorphs, before performing simulations at the new density and
temperature, is to look at the correlation coefficient R. As a guide, only strongly
correlating systems have isomorphs, though isomorphs have been found in complex
systems with a correlation coefficient of R = 0.86 [65] underlining that the limit
R > 0.9 is somewhat arbitrary. None the less, isomorphic behaviour does require a
numerically high correlation coefficient [4, 23,52].

Since this method relies on a first order differentiation of the excess entropy it
does not allow for very large changes in state point, usually no greater than a couple
of percentage change in density. The next method is more flexible in this respect

Direct isomorph check

This method relies on the scaling properties of the energy landscape. From the first
order Taylor expansion of equation (3.4) and using the relation of equation (3.6) we
had

U(R2) uT2

T1
U(R1) + g1(ρ2) (3.50)

In order to utilize this, one can perform a simulation at ρ1, T1 and calculating
what the potential energy at density ρ2 would be, for the micro configurations of the
simulation by calculating U2 = U(ρ

−1/3
2 ρ

1/3
1 R1) as was shown on figure 3.1.

According to equation (3.50) the energies U1 = U(R1) and U2 should be linearly
dependent, with a proportionality given by T2/T1 so by finding the slope of the
U1, U2-plot, the temperature T2 can be found and this temperature should then give
an isomorphic state points ρ2, T2 to the reference state point ρ1, T1.

The possible size density steps allowed by this method are larger than those
the mapping of configurational adiabats. The method does have a computational
challenge in that the potential energy need to be calculated at two different densities
simultaneously.

Having introduced the basic principles of isomorph theory we continue by showing
how it has been applied in systems of simple crystal solids to predict invariances of
those.





4 Roskilde crystals

In this chapter we apply the isomorph theory to a number of crystalline systems.
While the theory is in principle developed to describe the liquid behaviour it turns
out that it works as well if not better for solids. The result presented here where pub-
lished in the paper [1]. Some of the work was done as part of a masters thesis [38].

In the previous chapter, the isomorph theory was introduced, and shown to be
an explanation for the existence of empirical density scaling found for a large class of
liquids systems.

While the isomorph theory was in principle developed to describe liquid systems
it could be of interest to see if it applies equally well or even better for crystalline
systems.

We present in this chapter results for a series of crystalline systems, some of
which have isomorphs to illustrate the theory, both application and limits. As such
the chapter will not include extensive introduction to the crystal phase. We refer
instead to the literature for a general introduction [3, 30].

The primary system studied is the single component Lennard-Jones system as a
model for a general van der Walls crystal. All particles are of the same type, and the
interactions are given by the very simple Lennard-Jones pair potential

v(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(4.1)

with parameters ε = σ = 1.0. The particles where set up in a perfect 10 × 10 × 10
face centered cubic (fcc) lattice. While the Lennard-Jones crystal does energetically
favor the hexagonal close packed (hcp) structure, the difference in free energies of the
two structures is so low (∼ 0.01%), that the fcc lattice can be considered a stable
structure [61]. This structure also have the added advantage that it fits in cubic
periodic boundary conditions.

In the following we investigate the single component Lennard-Jones (LJ) crystal
in the crystal phase, showing that it obeys the criteria for strong correlation and that
the state points found using the direct isomorph check gives invariant behavior. In
particular, the radial distribution function g(r) will be used to measure invariance
of the structure. It is a measure of the structure of the system, normalized by a
completely random system, and is a classic measure of structure in liquids [26]. For
crystal systems each crystal structure has a signature form of the radial distribution

23
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function. As many of the following systems are simulated in fcc crystal structures
their radial distribution function will look similar.

4.1 Strongly correlating crystals

Following the idea for strongly correlating liquids, we look here at the correlation
between the fluctuations in instantaneous potential energy U and virial W . The top
panel of figure 4.1 shows the normalized fluctuations in potential energy and virial
as a function of time, for a simulation of the LJ crystal. The two values follow each
other perfectly and by calculating the correlation using equation 3.2 one gets the
value R = 0.999. This is clearly a strongly correlating system. To test whether this
is a feature of the particular LJ crystal or of crystals in general we introduce a new
model, a model referred to here as the NaCl since it derives from a model of liquid
NaCl [55] and is a simple binary ionic model. The interactions of this model are given
by a Lennard-Jones potential with an added Coulomb potential

vij(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
zizje

2

4πε0rij
(4.2)

where εij , σij and zij depend on the type of the interacting particles. Details on
the parameters can be found in [55]. To deal with the long-range interactions of the
Coulomb potential, shifted force-cut off where used, with a Rc = 6.5ρ−1/3, shown to
work well for Coulomb interactions [25]. This system was simulated as two interpene-
trated fcc cubic lattices, consisting of one particle type each, the structure of ordinary
NaCl crystals [30]. Due to the added ionic interactions we do not expect this system
to be strongly correlating and consequently we expect it to have isomorphs, since it
will not have isomorphs in the liquid phase. The correlation for this model is also
included as the bottom panel of figure 4.1 and while the correlation R = 0.828 shows
that the system is not a strongly correlating one, it is not far from the limit, and as
was mentioned, isomorphs have been found is systems with R = 0.86 [65], so it is not
impossible that this system will have isomorphs.

We test this by using the direct isomorph check to find state points that should
be isomorphic, and test for invariance of structure and dynamics.
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Figure 4.1: The fluctuations in potential energy and virial for the Lennard-
Jones crystal, (A), and the NaCl model, (B). With RLJ = 0.999 for the
Lennard-Jones crystal we expect the Lennard-Jones crystal to have iso-
morphs. For the NaCl model RNaCl = 0.828 which is below the limit for
a strongly correlating liquid, but not too far so the NaCl model might have
isomorphs. Reproduced from [1].
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4.2 Finding isomorphic state points
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Figure 4.2: The scaled and unscaled potential energy for the Lennard-
Jones, (A), and NaCl model, (B). In both cases the scaled density is twice
the unscaled one. Using the slope of a linear regression to the data, one
can find the relation temperature T2/T1, where T2 should give isomorphic
behaviour, given that the system have isomorphs. Reproduced from [1].

While it is possible to map out the isomorphs as configurational adiabats we find
isomorphs here from the direct isomorph check as introduced in the previous chapter,
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see 3.5. By comparing the potential energy at two micro configurations with the same
reduced coordinates at different densities, ρ1 and ρ2, one can get the relationship
h(ρ2/ρ1) = T2/T1, which from the reference state point (ρ1, T1) makes it possible
to calculate the temperature T2 that makes the state point (ρ2, T2) isomorphic to
the reference state point. An illustration of the procedure is shown on figure 4.2
for both the LJ model, top panel, and the NaCl model, bottom panel. In both
cases the potential energy of unscaled and scaled configurations are plotted against
each other, and the resulting scatter data is fitted by a straight line. The slope
then gives the wanted relation. In case of the LJ crystal one gets for the reference
state point (ρ1, T1) = (1.2, 1.0) and ρ2 = 2ρ1 = 2.4, that the temperature T2 =
21.14 T1 = 21.14 should give invariant reduced dynamics and structure if the system
have isomorphs. Likewise for the NaCl model, the state point (ρ2, T2) = (1.0, 162.4)
should give invariant behaviour to the reference state point (ρ1, T1) = (0.5, 10).

4.3 Structural invariance

To test whether the systems have isomorphs we compute the radial distribution func-
tion for the two model systems at state points found with this method to test for
invariance. For the LJ model the result of these calculations can be seen on the
top panel of figure 4.3. Though not very clear on the figure, there are in fact seven
different state point, plotted on top of each other. The collapse of the structure is
extra ordinary, even for systems with isomorphs. To test whether this invariance is
simply due to qualities of the LJ crystal and not isomorphs, figure 4.3 also includes
data for the radial distribution function calculated along an isotherm. Here there are
no collapse showing that the invariance of the structure is not a general feature of
the LJ crystal. Likewise, state points along an isochore were simulated and tested
for collapse in both structure and dynamics and no collapse was found. At a large
number of these state points, the systems melted. That data is not presented here,
but may be found in the paper [1].

For the NaCl the result is quite different. Figure 4.4 shows the radial distribution
function for a set of state points found with the direct isomorphs check. Each panel
shows the calculations carried out over a set of pair types, e.g. the top panel shows
the radial distribution function for particles of different types. In none of the cases
are there any significant collapse of the data. That the data seems to collapse in
the minimas is a result of the fact that when calculated in reduced units, the crystal
structure results in minimas at certain distances. For the highest density ρ = 0.9,
the system is melted giving a structure completely different from the others.
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Figure 4.3: The radial distribution function along the isomorph for the
Lennard-Jones crystal as a function of reduced pair distance. The collapse
are impressive, even for isomorphic systems. Also included is the radial dis-
tribution function of the system along an isotherm to show that the collapse
is not an inherent feature of the LJ fcc crystal system. Reproduced from [1].
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4.4 Dynamical invariance
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Figure 4.5: The normalized velocity autocorrelation function as a function
of the reduced time for the Lennard-Jones crystal along the isomorph and an
isotherm. As a measure of dynamics, this figure shows that the isomorphic
behaviour of the crystal also includes invariance of dynamics and that the
isotherm does not exhibit such an invariance. Reproduced from [1].

Besides structure, the isomorph theory predicts that the dynamics are invariant
along an isomorph. In liquids this is usually shown with the collapse of the long time
dynamics, for instance via the diffusion of the system. In a perfect crystal such as
the one used here, there are no real long time dynamics. Instead we calculate the
normalized velocity self autocorrelation

Av(t) =
〈vi(t) · vi(0)〉
〈vi(0) · vi(0)〉 (4.3)

where the mean 〈·〉 is taken both over particles and initial times t = 0. For the
LJ crystal this was calculated along the isomorph and the isotherm. Figure 4.5
shows these data, and the collapse of the data for the isomorphic state points further
confirms that the isomorph theory applies for the crystal phase.

Another way of probing dynamics of the crystal phase is to introduce defects. We
introduced eight vacancies in a perfect 8× 8× 8 LJ crystal giving a vacancy density
of ρvac = 0.004. This will introduce some lattice jumping on a time scale much slower
than that probed by the velocity autocorrelation. We measured the mean square
displacement,

msd(t) ≡ 〈(ri(t)− ri(0))2〉 (4.4)
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Figure 4.6: Diffusion in Lennard-Jones crystals with a small number of va-
cancies. Note that this is the total mean square displacement of the system.
Also this measure of long time dynamics collapses even though the config-
urations related to the diffusion of a particle only constitutes a very small
volume of the entire configurational space. Reproduced from [1].

over large time intervals in such a defect crystal for several isomorphic state points,
shown in figure 4.6.

The data shown is for the total mean square displacement so also the particles
far from the vacancies are included in the mean, e.g. a msd-value of 1 corresponds to
all particles having moved one interparticle distance on average.

From the collapse it is clear that also the long time dynamics of a defect crystal
can be predicted by the isomorph theory despite the fact that the configurations
corresponding to a lattice jumps represent only a very small fraction of the entire
available configurational space.

4.5 Isomorph jumps

Another classic test of isomorph theory is the isomorph jump [23]. Owing to the
invariance between isomorphic state points of the probabilities for micro configura-
tions with the same reduced coordinates, it follows that any equilibrium configuration
taken from one state points can be scaled to a different state point isomorphic to the
first, and still be an equilibrium configuration. This is tested for the LJ crystal by
instantaneously changing the density and/or temperature of a micro configuration,
and measuring the relaxation through the potential energy of the system. On figure
4.7 this is done for the three different jump types; an isomorphic, an isochoric and an
isothermal jump. While all systems show fast relaxation, the relaxation is fastest for
the isomorphic jump despite this being the greatest jump measured in (ρ, T )-space.
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Figure 4.7: The relaxation of the Lennard-Jones crystal after an instanta-
neous change in temperature and/or volume. Of the three jumps the isomor-
phic jump is the greater one measured in (ρ, T )-space but has the shortest
relaxation time. Reproduced from [1].

4.6 Other crystalline systems

To broaden the investigation and test whether there might be another explanation
for the fact that the data from the NaCl model do not scale, other than that the
model does not have isomorphs, we test a series of other crystalline systems. Each
system is picked to test a specific point. The reasoning is explained in greater detail
in the paper [1]. The procedure of mapping out isotherms and isochores to show that
it is in fact only the isomorphic state points that have invariance was repeated for a
number of the following systems, confirming this. That data is not presented here,
but can be found in the paper.

First we test whether it is simply the fcc crystal structure that gives the isomorphic
behaviour of the LJ crystal. To this end we simulate the Wahnström binary Lennard-
Jones system [69], which crystallizes in a Laves phase [41], a crystal phase with twelve
atoms in the unit cell. As the name suggest, the model consists of two particle types,
in a 50/50-mixture, interacting via the Lennard-Jones potential. The parameters can
be found in [69]. Shown on figure 4.8 is the all-particle radial distribution function
calculated for two state points, found with the direct isomorph check. Again the
collapse is impressive even by isomorph standards. The figure confirms, that it is not
the particular crystal phase, that gives rise to the isomorphic behavior.

Secondly we investigate whether it is only the Lennard-Jones potential or perhaps
a potential that is the sum of inverse power law (IPL) terms that can give isomorphic
crystals. To test this we use the Buckingham potential [11]

v(r) = ε

(
6

α− 6
exp[α(1− r/σ)]− α

α− 6

( r
σ

)−6
)

(4.5)
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Figure 4.8: All-particle radial distribution of the Wahnström binary
Lennard-Jones model. This model forms a complex Laves crystal structure.
Despite this, the model also have isomorphs. Reproduces from [1].
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Figure 4.9: The radial distribution function of the Buckingham potential.
The Buckingham potential differs greatly from the Lennard-Jones potential,
showing that it is not the pure Lennard-Jones potential that allows for iso-
morphic behavior.



34 4. ROSKILDE CRYSTALS

This potential is quite different from the Lennard-Jones potential, but liquid systems
interacting with the Buckingham potential have been shown to have isomorphs [63].
Setting up a fcc crystal of particles interacting via the Buckingham potential, finding
three isomorphic state points and calculating the radial distribution function for
these results in the data presented on figure 4.9. Also here the collapse of the data is
very close to perfect, showing that it is not only Lennard-Jones potentials that have
isomorphs in the crystal phase.
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Figure 4.10: The radial distribution function of the “sum-IPL” model.
Despite the hard core of the potential, the system have isomorphs as shown
from the invariance of the structure. Reproduces from [1].

While a potential consisting of a single IPL term trivially obeys isomorph theory
[23] it could be, that it is the number of IPL terms that prevents the NaCl system
showing invariance. To test this hypothesis we simulated a crystal with a potential
referred to here as the “sum-IPL” system, since it is the integral over all IPL terms
with an exponent greater than some n0

v(r) =ε

∫ ∞
n0

dn(r/σ)−n (4.6)

=ε
(r/σ)−n0

ln(r/σ)
(r > σ) (4.7)

We simulated this potential with n0 = 6 and with interparticle distances all greater
that the distance of divergence r = σ. This system was also set up in an fcc lattice,
and the radial distribution function calculated for isomorphic state points found with
the direct isomorph check. In [64] it was shown that the model have isomorphs in the
liquid phase, so we expect it to have isomorphs in the crystal phase as well, which
is confirmed by the data presented in figure 4.10, showing data for three isomorphic
state points.

With all these different model systems, it seems that the reason the NaCl crystal
does not have isomorphs in the crystal phase is the same as the reason it does not have
it in the liquids face, the strong long-ranged interactions of the Coulomb potential
[5, 53]
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We turn instead to a different class of model systems, molecular models. As
mentioned, the isomorph theory have been tested for a number of molecular models,
and we present here two such models simulated in the crystal phase. The first model
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Figure 4.11: The intermolecular atom-atom radial distribution function
calculated for the Lewis-Wahnström OTP model simulated on state points
along an isomorph. The collapse is not as good as for the isomorphic atomic
models, but still better than that found for the NaCl model. Also included is
the radial distribution calculated along an isotherm to illustrate, that there
is in fact a collapse of the isomorph data. Reproduced from [1].

is the Lewis-Wahnström ortho-terphenyl (OTP) model [35]. This model is a three
particle molecular model, with each particle corresponding to a phenyl-group. The
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particles interact with the Lennard-Jones potential and the intramolecular distances
are fixed using constraints, with a 75◦ angle. The results for this model is shown
in figure 4.11, and are less impressive than the corresponding results for the non-
molecular systems with isomorphs. Still, comparing to the NaCl model the collapse
is very clear. For this model we have also included the data for an isotherm. This was
done to illustrate the difference between a not-perfect collapse, along the isomorph,
and a non-existing one.
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Figure 4.12: Ice, here modeled with the SPC/E hexagonal model, does not
have isomorphs, as evident from the lack of collapse in the oxygen-oxygen ra-
dial distribution function. Water has generally been an example of a system
with out isomorphs [23]. Like the NaCl model it has strong long-range inter-
actions, greatly reducing the potential energy-viral correlation. Reproduced
from [1]

Lastly we show data for simulations of ice, modeled with the three site SPC/E
hexagonal model [9]. From the data presented in figure 4.12 it is clear that the model
does not have isomorphs. Given that water has near zero potential energy-virial
correlation and has been used as an example of a system without isomorphs [23], this
further confirms the result, that the systems without isomorphs in the liquid phase
does not have isomorphs in the crystal phase.

4.7 Summary

We have demonstrated how to apply the isomorph theory. By generating state points
that should give invariant dynamics and structure and then testing for these invari-
ances, it is often easy to determine whether a systems has isomorphs. One could
imagine borderline cases, where it is hard to determine if a system has isomorphs,
but for all systems tested here there are a clear distinction between systems with
isomorphs and systems without.

Further more we have shown in this section that the isomorph theory work very
well in the crystal phase, giving an even better collapse of structure and dynamics
than isomorphs in the liquid phase. The reasons for this is still unknown. None the
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less it stands, that having isomorphs is not a phase-related property, but survives the
first order phase transition.





Part II

Pseudosomorphs
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5 Pseudoisomorphs

This chapter deals with systems that behave like isomorphic systems but lack the
defining feature of invariant excess entropy, so called pseudoisomorphic systems. We
introduce the molecular models that are used in this thesis, and illustrates the be-
havior of systems with intramolecular springs.

5.1 Characterization

Though the isomorph theory is working very well in predicting the behaviour of a
large class of model systems, including molecular models, there are some systems,
for which it does not work. These include, as shown in the chapter 4, systems with
Coulomb interactions, but also molecular models, where the bonded interactions are
not a constraint.

In a recent paper [66] it was shown, that the Lennard-Jones chain with intramolec-
ular harmonic springs does not have isomorphs. The authors showed, that the dy-
namics and structure are not invariant on the configurational adiabats by using the
method described in section 3.5 to step out the configurational adiabat from small
changes in density. The reason for this is presumably that the fast vibrations of
the intramolecular springs contributes to the configurational entropy used to identify
isomorphs.

Despite this, the authors where able to use empirical density scaling to find lines
in the (ρ, T )-phase plane, along which the dynamics and structure are invariant
in reduced units. Since the lines are not true isomorphs, they have been named
pseudoisomorphs, due to their isomorph like behaviour. This part of the thesis deals
with these and provides ways of identifying the pseudoisomorphic state points with
out the need for empirical density scaling.

5.2 Models

This section deal primarily with two molecular models.
The first is a simple asymmetric dumbbell model that was originally introduced

in [40] as a toy model of toluene. The model consist of two Lennard-Jones particles,
a large and an small one, and was originally modeled with a fixed constraint on the
intramolecular distance with length l0 = 0.584 but we use it here with a harmonic

41
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bond potential of the same length and with strength k0 = 3000. The non-bonded
potentials are of the Lennard-Jones type

vij(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(5.1)

The model parameters are as follows: εAA = 1.0, σAA = 1.0 and mA = 1.0, εBB =
0.117, σBB = 0.788 and mB = 0.195. For mixing interaction the Lorentz-Berthelot
rules are used

εAB = εBA =
√
εAAεBB (5.2)

σAB = σBA =
σAA + σBB

2
(5.3)

The figure 5.1 shows the fluctuations in U and W for this model, both when the
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Figure 5.1: The figure shows the fluctuations in potential energy and virial
for the asymmetric dumbbell model, comparing two different types of bonded
interactions. The black crosses are the model with harmonic springs and
the red circles are with a fixed constraint. Both are simulated at (ρ, T ) =
(1.863, 0.465), a reference state point taken from [29]. It is very clear that
the correlation coefficient drops drastically when the harmonic bonds are
used. With a correlation of RS = 0.58 we do not expect the system to
have isomorphs. Also shown is the scaling parameter γS = 4.66, which also
decreases from the one found in the constraint model γC = 5.68.

bonded interactions are harmonic springs and when they are fixed constraints. It was
shown in [29], that the model with intramolecular constraints does have isomorphs,
which is also indicated by the high correlation coefficient, RC = 0.96. From the spread
in the data it is clear that the correlation is worse for the model with harmonic springs,
with RS = 0.58, and we do not expect this model to have isomorphs.

The second model used is identical to the one used in [66]. It is a 10 bead linear
chain molecular model with bonded interactions given by a harmonic spring potential
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with length l0 = 1.0 and strength k0 = 3000. All atoms are of the same type and
the non-bonded potential is a Lennard-Jones potential with parameters ε = 1.0,
σ = 1.0 and m = 1.0. This model have been investigated in great detail both with
intramolecular constraint, harmonic bond and FENE potential. For detail we refer to
[65,66]. The figure 5.2 shows the fluctuations in U and W for the Lennard-Jones chain
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Figure 5.2: Similar to figure 5.1, the figure shows the fluctuations in
potential energy and virial but for the Lennard-Jones chain model, with
harmonic springs and fixed constraint. The data is from the state point
(ρ, T ) = (1.00, 0.70), a reference state point taken from [66]. Also here, the
correlation coefficient is much lower for the system with harmonic springs
with RC = 0.86 and RS = 0.28. Comparing to the asymmetric dumbbell
model the correlation coefficient is lower even for the system with constraint.
The constraint scaling parameter γC = 7.36 is higher than that of the asym-
metric dumbbell model but the spring parameter γS = 4.68 is comparable to
that of the asymmetric dumbbell.

model in both the constrained and harmonic spring version. As with the asymmetric
dumbbell model, the correlation coefficient is much higher for the constrained model,
RC = 0.86 than the spring model RS = 0.28. Despite the correlation coefficient of
the constrained model being below R = 0.9 it was shown in [65], that this model does
have isomorphs.

For both models it is clear that the substitution of the fixed constraints with har-
monic springs greatly changes the shape of the configurational adiabat. Interestingly
the scaling coefficient γLJCS = 4.68 for the spring model is comparable to that for the
asymmetric dumbbell model where γASDS = 4.66, while for the constraint models the
values, γASDC = 5.68 for the asymmetric dumbbell model and γLJCC = 7.36 for the
Lennard-Jones chain model, are quite different. This could be an indication of the
effect of harmonic bonds on the excess entropy.

Since both these models have low correlation coefficient with intramolecular springs
we do not expect them to have isomorphs.
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5.3 Configurational adiabat

In order to test whether the models have isomorphs we trace out the configurational
adiabat and measure the dynamics at different state points along it. As mentioned this
was done for the Lennard-Jones chain model with harmonic springs in [66], showing
that the model does not have isomorphs. We do it here for the asymmetric dumbbell
model to illustrate the effect. Taking as a reference state point the state point used in
figure 5.1, (ρ, T ) = (1.863, 0.465) we get a set of state points along the configurational
adiabat. The figure 5.3 shows the intermediate scattering function calculated at
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Figure 5.3: The figure shows the intermediate scattering function for the
light and heavy particle measured on state points along a configurational
adiabat. The data is shown as a function of reduced time and at a constant
reduced q, meaning that if the system had isomorphs the data would all
collapse to a good approximation. This clearly shows, that the asymmetric
dumbbell model with harmonic springs does not have isomorphs.

state points along this configurational adiabat for the light and heavy particles of the
asymmetric dumbbell model. The data is presented in reduced units and at constant
reduced q-value, corresponding to the main peak in the static structure factor at the
reference state point. If the system had isomorphs the data would collapse to two
curves, showing that the system does not have isomorphs.

On figure 5.4 we have shown the change in structure along the configurational
adiabat, measured as the radial distribution function of the heavy-heavy and light-
light pair distances. Here the data almost collapse which, if taken with out the data
for the dynamics, could lead to the assumption that the system have isomorph. We
attribute this to the fact, that the system is quite dense so structure does not change
a lot with state point. Due to this, we will not focus on the structure when identifying
pseudoisomorphic state points in the following chapters.
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Figure 5.4: The radial distribution function for the light-light and heavy-
heavy particle distances measured along a configurational adiabat, in reduced
units. Here the data almost collapses. We attribute this to the fact that the
system is very dense, so that structure does not change much with state point
in general.

5.4 Empirical density scaling

Here we show that it is possible to use empirical density scaling to obtain state points
of invariant dynamics for systems with intramolecular springs. These lines was what
the authors of [66] called the pseudoisomorphs. The figure 5.5 shows the empirical
density scaling of the asymmetric dumbbell model. Three dynamical measures have
been calculated along different isochores, resulting in the top panel of the figure.
The top panel shows the data plotted as a function of the inverse temperature. The
measures used are the relaxation times of the heavy and light particle intermediate
scattering function and the center of mass diffusion coefficient. By scaling the heavy
particle intermediate scattering function by hand, and applying the same density
dependent scaling h(ρ̃) = h(ρ/ρ0) to all quantities, the data collapses to a good
approximation, see the bottom panel of figure 5.5. This type of scaling resembles
that done in experiments to get a scaling coefficient γ.

On figure 5.6 the scaling parameter h(ρ̃) is shown as a function of the reduced
density ρ̃ = ρ/1.863. The data have been fitted by two different function, a power
law function hpl(ρ̃) = ρ̃5.43, similar to the ones used for empirical density scaling in
experiments, and a function similar to the one used to fit the Lennard-Jones chain
data in [66], h(ρ̃) = 2ρ̃α− ρ̃β , with α = 3.68 and β = 1.81. For small density changes
these collapse, but for larger, they are clearly different, and even for the ∼ 10%
density change shown here it is clear that hpl does not a fit as well. This is not
surprising since it has one less free parameter than the other but does underline, that
simple power law scaling is only a practical approximation.
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Figure 5.5: Density scaling of different dynamical measures along several
isochores for the asymmetric dumbbell model. The figure includes the relax-
ation times from the intermediate scattering function for the heavy and light
particles and the center of mass diffusion constant. The top panel shows the
reduced quantities plotted against the inverse temperature. Here the light
particle data have been omitted for clarity. In the bottom panel the relax-
ation time of the heavy particle intermediate scattering function have been
scaled by hand to get invariant dynamics giving an empirical h(ρ/ρ0). The
remaining quantities have the been plotted with this scaling h(ρ/ρ0), to show
that all the dynamical quantities collapse to a good approximation with the
same scaling factor.
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Figure 5.6: The scaling parameter h(ρ̃) as a function of reduced density
ρ̃ = ρ/1.863 found from the density scaling of figure 5.5. The data have been
fitted by both a power law function, giving a function hpl(ρ̃) = ρ̃5.43 and,
similar to what is done for the Lennard-Jones chain in [66], a function h(ρ̃) =
2ρ̃3.68− ρ̃1.81. Even over the ∼ 10% density change there are indications that
the power law function only works for small density changes.

From the function, it is possible to extract a scaling parameter through

γ =
d lnh(ρ̃)

d ln ρ̃
(5.4)

For the power law scaling function it is simply γpl = 5.43 and for the other

γ(ρ̃) =
2αρ̃α − ρ̃β

2ρ̃α − ρ̃β (5.5)

=
7.36ρ̃3.68 − 1.81ρ̃1.81

2ρ̃3.68 − ρ̃1.81 (5.6)

which gives γ(1.0) = 5.55, slightly different from the power law scaling parameter.
This gives us an idea of the shape of the pseudoisomorph and when presenting

methods for finding the pseudoisomorphs we will be able to compare the found state
points to those given by the density scaling presented here.





6 Scaling of effective springs

In the chapter we develop a method for identifying the pseudoisomorphic state points
for the two presented models. We introduce a new isomorph invariant, showing that
the reduced eigenvalues of the potential energy Hessian are invariant for isomorphic
systems. The method presented here utilizes this new isomorph invariant together
with the fact that for the molecular models the eigenvalues separate into those that
are related to the model bonds and those that are not. We use this to predict pseu-
doisomorphic state points.

From the definition of isomorph theory, presented in chapter 3, we know that, if R1

and R2 are two physically relevant micro configurations from two different isomorphic
state points, that have the same reduced coordinates ρ

1/3
1 R1 = ρ

1/3
2 R2 = R̃, then

the potential energy obeys [52]

U(R2) u f1(ρ2, U(R2)) (6.1)

where f1 is a state point dependent one-to-one mapping. In a more macroscopic way
the means that large parts of the potential energy surface (PES) scales in a simple
manner. Inspired by this we test whether the local curvature of the PES is invariant
for isomorphic state points.

6.1 The local potential energy surface

We do so by calculating the potential energy Hessian H(R) at a specific micro con-
figuration. Recall that for a system of N particles the Hessian is a 3N × 3N matrix
defined as

Hi,j(R) =
∂2U(R)

∂qi∂qj
(6.2)

where q is a given component of the 3N dimensional position vector R.

Since all potentials used here are pair potentials, the elements of the Hessian fall

49
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in four categories as follows

Hαi,αi =
∑
j 6=i

[
u2(rij)(αi − αj)2 + u′(rij)/rij

]
, (6.3)

Hαi,βi =
∑
j 6=i

u2(rij)(αi − αj)(βi − βj), (6.4)

Hαi,αj =−
(
u2(rij)(αi − αj)2 + u′(rij/rij

)
, (j 6= i) (6.5)

Hαi,βj =u2(rij)(αi − αj)(βi − βj), (j 6= i) (6.6)

where i, j denotes the particle, α and β are distinct components of the position of the
given particle and

u2(rij) ≡
[
u′′(rij)− u′(rij)/rij

]
/r2ij (6.7)

with u′ and u′′ being the first and second order derivative of the pair potential with
respect to the interparticle distance

u′(rij) =
du

drij
, u′′(rij) =

d2u

d(rij)2
(6.8)

The notation is borrowed from [59].

Investigating systems through the energy landscape is hardly a new idea [70].

By calculating the eigenvalues of the Hessian we obtain a set of primary curvatures
of the PES. It is customary to express these eigenvalues λi as eigenfrequencies ωi of
the system, but we have chosen to express them as effective springs strengths ki
instead, λi = 2ki, since this makes for a more direct comparison to the strength of
the intramolecular bonds of the models used. The eigenvalues were found using the
Python package NumPy [62].

The Hessian was calculated in inherent states (IS), i.e. local potential energy
minimas. These where found using a simple steepest descend algorithm, where the
velocities of the particles where set to zero at each time step. This makes the system
move in the direction of the force F = −∇U at all times, eventually leading to the
local minima. Though faster and potentially more stable methods exists [13, 43], for
the scope of this investigation, this simple algorithm was sufficient.

6.2 A new isomorph invariant

In order to test whether the curvature is an isomorph invariance we calculated the
Hessian for the well known Kob-Andersen binary Lennard-Jones mixture [32], known
from literature to be an isomorphic system [23].

An equilibrium simulation was performed in the NV T -ensemble for the KABLJ
at (ρ1, T1) = (1.228, 0.557). From this an equilibrium micro configuration R1 was
picked out and quenched to the local IS, R1,IS, and the effective springs correspond-
ing to eigenvalues of the Hessian were determined. Simultaneously the equilibrium
configuration was scaled to a different density ρ2, i.e. R2 = (ρ2/ρ1)−1/3R1. The
scaled micro configurations was quenched at ρ2 to R2,IS and the resulting effective
springs compared to those at the reference state point. Such spectra are shown on
the top panel of figure 6.1, for density changes in either direction.
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Figure 6.1: The normalized effective spring strength spectrum of the
KABLJ mixture. These where calculated at different densities, by scaling an
equilibrium micro configuration at (ρ, T ) = (1.228, 0.557) to different densi-
ties, and then calculating the Hessian at the associated IS at each density.
On the top panel (A) the effective spring spectra are presented as calculated
and on the bottom panel (B) the same data is shown but for the reduced
effective springs. The collapse of the data on the bottom figure shows that
the curvature of the PES is an isomorph invariant.
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To test for isomorphic invariance, the effective springs ki were calculated in re-
duced units k̃i as

k̃i = ki/(ρ
2/3kBT ) (6.9)

For the reference effective springs, ρ and T are given by the state point at which
the equilibrium simulation is performed. For the scaled effective springs, we use the
literature values of the isomorphic state points at the scaled densities,

(ρ, T ) = (1.168, 0.431), (ρ, T ) = (1.318, 0.795) (6.10)

As shown on the bottom panel of figure 6.1, this resulted in approximately invariant
spectra showing that the local curvature of the PES is in fact an isomorph invariant.

6.3 The effective spring spectrum of a molecular system

As each eigenvalue corresponds to the curvature in some direction on the PES, we
test if the intramolecular springs are visible in the spectrum. A spring should, due
to the high spring strength k = 3000 result in a large curvature in one particular
direction per spring.
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Figure 6.2: The spectrum of effective springs strengths calculated from a
single inherent state as the eigenvalues of the Hessian for the asymmetric
dumbbell model. Marked with a dashed red line is the spring constant of the
model, k0 = 3000. The arrow indicate the separation between the low and
high strength springs. The number of effective springs above this separation
matches the number of harmonic bonds in the system.

Figure 6.2 shows a spectrum of effective springs calculated for the asymmetric
dumbbell model. The spectrum clearly separates into two parts. In the high end of the
spectrum is one part where the effective spring strength are comparable to the model
spring strength, marked with a red dashed line. These seems to be directly connected
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to the springs of the molecular models, both because of the value and because the
number of such springs perfectly matches the number of bonded interactions in the
system. In the other end are the remaining springs, characterized by a relatively low
spring strengths. The two parts are separated by a clear region where there are no
effective springs, indicated by the green arrow on the figure.
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Figure 6.3: Histograms of effective springs calculated for the LJC model
at three different densities. The effective springs have been reduced with
temperatures from the empirical formula for pseudoisomorphic state points
from [66]. While the low end of the histogram seems to collapse to a good
approximation, the high end of the spectra does not. This indicates, that
scaling eigenvalue spectra can be used to find pseudoisomorphic state points.

Inspired by the scaling behavior of the spectrum for the KABLJ system, we
test how the spectrum of the pseudoisomorphic Lennard-Jones system behaves. On
figure 6.3 the reduced effective spring spectrum of the Lennard-Jones chain model is
shown for three densities. The spectra was created in the same way as the KABLJ
spectra, and were reduced by the temperatures given in [66], that resulted in invariant
dynamics. The shift in the high end of the histograms seems to come exclusively from
the fact that the model spring strength is not the same, when calculated in reduced
units. For the low strength part of the figure, the three spectra collapses showing
that also pseudoisomorphic state points obey this new isomorph invariant.

Having shown that the effective spring spectrum separates into stronger and
weaker springs, corresponding to more and less curved parts of the local PES, and
that the weaker effective springs scale in an isomorphic way, we wish to exploit this
in order to find pseudoisomorphic state points. The question then becomes how to
quantify the collapse of the low end of such a spectrum. In the following sections we
present two different approaches to this.

Much like the direct isomorph check, described in section 3.5, we will use our
reference state point (ρ1, T1), and then pick a different density ρ2 and attempt to find
the temperature T2 so that the state point (ρ2, T2) is pseudoisomorphic to (ρ1, T1).
In the direct isomorph check, one compares the potential energies of at comparable
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micro configurations R1 and R2, where R2 is constructed as

R2 =
ρ2
ρ1

−1/3
R1 (6.11)

We use a similar R2, but instead we take this to be the micro configuration at ρ2
that are quenched to the local IS. The resulting two spring strength spectra should
reveal the scaling between the PES at the two densities.

6.4 Proportional springs

Since the spectrum of reduced effective springs is invariant, the individual effective
springs should also be invariant to a good approximation. By sorting the effective
springs by their strength and comparing two such sorted sets, we hope to compare
springs, that correspond to the same curvature of the PES. Using this we get

k̃i1 uk̃i2 (6.12)

ki1

ρ
2/3
1 kBT1

=
ki2

ρ
2/3
2 kBT2

ki1

(
ρ2
ρ1

)2/3
T2

T1
=ki2

(6.13)

where the i refers to number in the sorted set of effective springs. As the proportion-
ality constant depends on temperature, T2 can be found from the the relationship
between ki1 and ki2.

Such a proportionality can be seen on figure 6.4 for the asymmetric dumbbell
model and figure 6.5 for the Lennard-Jones chain. The figures shows the pro-
portionality for the low strength springs for different densities, with respect to the
reference densities, for sets of sorted effective springs. The large figures are a zoom
in on the low strength part, and the inserts shows the full figure. It is clear in both
cases that the high strength springs scale differently from the low strength ones. The
full lines are the symmetric slope of the data, and the dashes is a line of slope 1.0.

In both cases the low strength springs are proportional to a good approximation.

In order to get T2 we look at the variance of the low strength spring constants
〈(∆k)2〉 corresponding to the symmetric slope of the data in figures 6.4 and 6.5.
Defining

α ≡ 〈(∆k2)2〉
〈(∆k1)2〉 (6.14)

which we can access from the data, we can compare the variance of the reduced spring
strengths to get an estimate of T2,

〈(∆k̃1)2〉 =〈(∆k̃2)2〉
〈(∆k1)2〉
(ρ

2/3
1 T1)2

=
〈(∆k2)2〉
(ρ

2/3
2 T2)2

T2 =T1

√
α

(
ρ1
ρ2

)2/3

(6.15)
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Figure 6.4: The sorted effective spring strengths at the reference state
point, plotted against the effective spring strengths at state points with den-
sities slightly below and above the reference density, for the asymmetric
dumbbell model. The approximate proportionality between the low spring
strength eigenvalues is quite clear. For both density changes, the correlation
coefficient is 0.999. The primary figure is a zoom in on only the low strength
effective springs where as the insert is the complete spectrum showing clearly
the separation between weak and strong springs, as well as the fact that the
high strength springs does not scale in the same way as the low strength
ones.

Though it is in principle possible to get an estimate of the temperature T2 from a
single comparison of spectra, it makes sense to use a series of comparisons to increase
the accuracy. The effect of this is shown on figure 6.6 for the asymmetric dumbbell
model, where the estimated T2 is plotted as a function of the number of spring
strength comparisons made normalized with the temperature estimated after 4096
comparisons. It shows that even very few comparisons give a good results deviating
by less than a percent. For the Lennard-Jones chain model the deviations are larger
but still small enough that only a few spectra are needed. In both cases the standard
deviation goes as 1/

√
n as expected.
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Figure 6.5: Corresponding to figure 6.4, but for the Lennard-Jones chain
model. Also here the proportionality between the low strength eigenvalues
is quite clear for both an increase and decrease in density, with correlation
coefficients close to 1. The separation between weak and strong springs is
visible on the insert. Here it is also clear that the scaling is different for the
strong and weak springs.
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6.5 The sum of the springs

A different approach is to consider the spectrum rather than the individual springs.
Often when people work with the thermodynamics of IS, they use a harmonic ap-
proximation of the local curvature [48, 49, 54]. In that case, the quantity L defined
as

L ≡ 1

3N − 3

3N−3∑
i

log k̃i (6.16)

where k̃i is the reduced ki, is used to estimate the free energy [48] or entropy [54]
associated to the basin surrounding an IS. Note that the sum exclude the 3 eigenvalues
that are zero due to the periodic boundary conditions. This L can be related to the
non-reduced springs as

S =

3N−3∑
i

log(ki/ρ
2/3kBT ) (6.17)

=

3N−3∑
i

log(ki)− (3N − 3) log(ρ2/3kBT ) (6.18)

Calculating L for the KABLJ system from the three spectra shown in figure 6.1,
gives the values

ρ = 1.168, L/(3N − 3) = 2.148 (6.19)

ρ = 1.228, L/(3N − 3) = 2.146 (6.20)

ρ = 1.318, L/(3N − 3) = 2.144 (6.21)

values that are very close to constant. In order to apply the same measure to the
molecular models, we define the similar quantity LPI for the systems with springs,

LPI,1 =

3N−(nS+3)∑
i

log(k
(1)
i )− (3N − (nS + 3)) log(ρ

2/3
1 kBT1) (6.22)

where nS are the number of harmonic bonds in the system. Calculating this for
the histograms of the Lennard-Jones chain model, using the short hand notation
NPI = 3N − (nS + 3), gives

ρ = 0.96, LPI/NPI = 4.567 (6.23)

ρ = 1.00, LPI/NPI = 4.500 (6.24)

ρ = 1.08, LPI/NPI = 4.471 (6.25)

The deviation in these numbers are slightly larger than those of the KABLJ system,
but as the isomorph theory is approximate in nature, we expect some variation. In
both cases the deviations seems to be a systematic, with higher density leading to
lower L or LPI values.

To use this formulation to predict the pseudoisomorphic state points we use that
for pseudoisomorphic state points, the LPI values should be constant. Defining

s1 =

NPI∑
n

log(k(1)n ) (6.26)
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we can see that the temperature T2 that gives invariant LPI -values can be found as

LPI,1 = LPI,2

s1 −NPI log(ρ
2/3
1 kBT1) = s2 −NPI log(ρ

2/3
2 kBT2) (6.27)

giving

T2 = T1

(
ρ2
ρ1

)2/3

exp

[
s2 − s1

3N − (nS + 3)

]
(6.28)

As above we calculate the right hand side of the equation for a large number of
IS, using the average T2 as the pseudoisomorphic temperature.

6.6 Applying the two methods

The above section gives two methods of identifying pseudoisomorphs based on the
effective springs calculated from the potential energy Hessian.

The first method defined by equation (6.15), where T2 is estimated from the
proportionality of the sorted effective springs at different densities, and the second,
defined by equation (6.28), where T2 is estimated from the invariance in the value
LPI =

∑NPI
n log k̃n.

The temperatures found by the two methods are shown in figure 6.7. The top
panel shows the temperatures found for the asymmetric dumbbell model, and the
bottom panel for the Lennard-Jones chain model. Both figures also include the em-
pirical estimate of the temperature found from density scaling, taken from section 5.4
for the asymmetric dumbbell model and from [66] for the Lennard-Jones chain. None
of the models gives a perfect match to the empirical estimate of the temperature, but
it seems that the method using the LPI -value gives the best fit.

From simulations at the state points generated from the proportionality of the
sorted springs, we are able to compare the reduced dynamics, to test if they are in fact
invariant. The figures 6.8 and 6.9 show the dynamic measured as the intermediate
scattering function for the asymmetric dumbbell model and the Lennard-Jones chain
model respectively.

In figure 6.8 the intermediate scattering function is shown for the light and heavy
particles separately, at constant reduced q-value, corresponding to the first peak of
the structure factor at the reference state point. The collapse is very good, though
slightly better for the heavy particles. This might be because the dynamics are
dominated by the behaviour of the heavy particles. Similar behaviour is seen for
systems with regular isomorphs, For the KABLJ system, which also have heavy and
light particles, it has been shown that the structure of the heavy particles collapses
better along the isomorph than that of the light particles [23].

Figure 6.9 shows the segmental and center-of-mass intermediate scattering func-
tion at constant reduced q-values. Here the collapse is not quite as good as that of
the asymmetric dumbbell model. In particular, the low density state point (ρ, T ) =
(0.96, 0.546) seems to deviate from the rest both in case of the segmental and center-
of-mass part. Still, the collapse is far better for the state points found with this
method than for the configurational adiabat.

Repeating this procedure for the method with invariant LPI -value results in the
data presented in figures 6.10 and 6.11. As was perhaps expected from the predicted
temperatures, it seems that the collapse in the latter figures are better than the
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Figure 6.7: The temperature T2 estimated with the two method described
in sections 6.4 and 6.5, for the asymmetric dumbbell model, top panel, and
the Lennard-Jones chain model, bottom panel. On both figures the formula
derived from empirical density scaling, for the respective model, is included.
For neither method the collapse is perfect. The two methods deviate slightly
and it seem the method that relies on the value LPI is slightly closer to the
empirical estimates.



60 6. SCALING OF EFFECTIVE SPRINGS

0.01 1 100 10000
Reduced time

0

0.2

0.4

0.6

0.8

In
te

rm
ed

ia
te

 s
ca

tt
er

in
g

 f
u

n
ct

io
n

ρ=1.772, Τ=0.354

ρ=1.863, Τ=0.465

ρ=1.939, Τ=0.574

ρ=2.018, Τ=0.705

ρ=2.121, Τ=0.903

0

0.2

0.4

0.6

0.8

ρ=1.772, Τ=0.365

ρ=1.863, Τ=0.465

ρ=1.939, Τ=0.557

ρ=2.018, Τ=0.664

ρ=2.121, Τ=0.823

Asymmetric dumbbell model

Light particles
Heavy particles

A

B

Light particles

Heavy particles

Pseudo
isomorph

Conf.
adiabat

q = 9.854 (ρ/1.863)
1/3

q = 7.156 (ρ/1.863)
1/3

Figure 6.8: The intermediate scattering function of the separate particle
types for the asymmetric dumbbell model, plotted as a function of reduced
time, for constant reduced q-values. The top panel, (A), shows the interme-
diate scattering function for state points along the configurational adiabat,
mapped out from the reference state points. It is clear that the there is no
collapse showing that the asymmetric dumbbell model does not have iso-
morphs. The bottom panel, (B), shows the same data for state points along
the pseudoisomorph mapped out using the method defined in equation (6.15),
using the proportionality of the sorted effective springs. The collapse, though
not perfect, is remarkable given that the state points used are all predicted
using equilibrium micro configurations at a single reference density.

corresponding collapses of figures 6.8 and 6.9, indicating that using the invariance of
the L-values give a better estimate of the pseudoisomorphs.

To test how well the last method estimates the invariance of the dynamics we have
calculated the reduced relaxation time τ̃ , for three different quantities for the Lennard-
Jones chain model, at the state points found with this method. The figure 6.12 shows
τ̃ for the segmental and center of mass intermediate scattering function and for the
end-to-end autocorrelation. Also included on the figure is data from an isotherm,
the configurational adiabat and the state points found from the empirical formula
provided in [66]. Of the four sets of state points it is clear that the pseudoisomorph
found here, and the state points found from empirical density scaling gives the most
invariant dynamics. By numerically evaluating the derivative

α =
d log τ̃

dρ
(6.29)

it is possible to determine that the pseudoisomorph deviates slightly more from in-
variance.
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Figure 6.9: The segmental and center of mass intermediate scattering func-
tion for the Lennard-Jones chain, plotted as a function of reduced time for
a constant reduced q-value. The top panel, (A), shows the data for the con-
figurational adiabat starting at the reference state point. The bottom panel,
(B), shows the data for the pseudoisomorph found by the method presented
in this paper. Again the collapse of the pseudoisomorph is quite a lot better
than the corresponding configurational adiabat though not nearly as good
as the collapse of data presented in [66], where the authors used empirical
density scaling.

To test the limit of these methods, we applied it to the asymmetric dumbbell
model, but with the spring strength reduced to k = 250. On figure 6.13 both the
comparison of sorted springs and the distribution of effective spring values is shown.
In both cases, it is not clear how to separate out the effective springs related to the
model springs. In this case we would not be able to apply these methods.
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Figure 6.10: The intermediate scattering function of the separate particle
types for the ASD model, plotted as a function of reduced time, for constant
reduced q-values, for state points found from invariant LPI -values. Com-
pared to the collapse presented in figure 6.8 the collapse is almost perfect for
this method.
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Figure 6.11: The segmental and center of mass intermediate scattering
function for the LJC, plotted as a function of reduced time for a constant
reduced q-value for state points found from invariant L-values. Again the
collapse of the pseudoisomorph is quite a lot better than the corresponding
configurational adiabat though not as good as the collapse of data presented
in [66], where the authors used empirical density scaling.
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Figure 6.12: Three reduced relaxation times of the LJC model plotted as
a function of density along the empirical pseudoisomorph of paper [66], the
configurational adiabat, an isotherm and the pseudoisomorph presented in
this paper. The relaxation times are from the end-to-end auto correlation,
the center of mass intermediate scattering function and from the segmental
scattering function. In all three cases it is clear that the pseudoisomorph
found in this paper gives almost as good invariance as the state points found
with empirical density scaling.
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Figure 6.13: The asymmetric dumbbell model with a spring strength of k =
250. Here the effective springs related to the model springs does not separate
out, neither for the sorted springs, top panel, nor for the distribution, bottom
panel. This illustrates the limits of the methods presented here.
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6.7 Discussion and conclusion

We have shown for the first time that it is possible to find pseudoisomorphic state
points for the two models used here, from the invariance of the curvature of the PES.
Specially the method, where the effective spring spectrum was characterized by the
LPI -value, resulted in a very good collapse of the dynamics expressed through the
intermediate scattering function for both models.

For the Lennard-Jones chain, there where some deviations at low densities when
comparing to the invariance along the state points found with empirical density scal-
ing. It is possible that this is due to the low pressure, P ∼ 0.5 at the state points with
this density. The isomorph theory generally breaks down at low pressure [23] which
would mean that the isomorphic invariance of the effective spring spectrum does not
hold, something that might not be a problem for the empirical density scaling.

As such the method presented here, is not meant to compete with the empirical
density scaling, where a large number of simulations or experiments are performed
in order to estimate the scaling parameter. The methods presented here gives the
scaling parameter from configurations picked out of an equilibrium simulation only at
the reference state point. Finding the pseudoisomorphs does however seem to require
more work than finding ordinary isomorphs, as the scaled configurations needs to be
quenched in order to find the relevant spectra.





7 Free energy scaling

In this chapter we present a different approach to identifying pseudoisomorphic state
points. The idea is to generalizes the invariance of Boltzmann probabilities between
pseudoisomorphic state points, to an invariance of probabilities in a coarse grained
configurational space. This results in 2 different ways of finding pseudoisomorphs, one
for each model type. The general method relies on a free energy expression, defined
for a configurational space, where the intramolecular vibrations have been integrated
out. Also this method makes it possible to identify pseudoisomorphic state points.

7.1 Introduction

In the previous chapter pseudoisomorphs were identified with success from the invari-
ance of parts of the eigenvalue spectra, calculated at different inherent states (IS).
The primary tool was the scaling properties of the potential energy surface (PES)
between isomorphic state points. This was used together with the fact, that the
eigenvalue value spectrum separated into a part related to the model spring and a
part related to the remaining degrees of freedom.

In this chapter we present a different approach to finding pseudoisomorphic state
points. The reason for introducing another method is that, the method presented
in the previous chapter utilizes a particular feature of the two model systems. As
was shown on the figure 6.13 it is not always possible to to separate the eigenvalues
spectrum into an “isomorphic” and “non-isomorphic” part. We wish to develop
a general method that could in principle be applied to any kind of system with
pseudoisomorphs. In testing implementations of this method we will be using the
same model systems, so the harmonic bonds will still be present.

As was show in chapter 3, for ordinary isomorphic state points (ρ1, T1) and
(ρ2, T2), we have that the probability distribution of a given reduced micro con-
figuration, R̃, is independent of state point [23,52]. The above criteria can be written
as

P1(R̃) =P2(R̃) (7.1)

exp[−U(ρ
− 1

3
1 R̃)/kBT1] ∝ exp[−U(ρ

− 1
3

2 R̃)/kBT2] (7.2)

67
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where the proportionality is due to the normalization, independent of the specific
micro configuration. This can not be true for systems with pseudoisomorphs since
this would imply isomorphic behavior.

The overall idea of the procedure presented here is to separate the degrees of
freedom (DOF) into “isomorphic” I and “non-isomorphic” nI DOF and define a
probability function in a reduced space, where the nI DOF have been integrated
out. The idea of “isomorphic” and “non-isomorphic” DOF is somewhat abstract,
but if one takes as an example the Lennard-Jones chain model, the results from [66]
shows that the long time dynamics behave as if the system had isomorphs. Here we
advocate that one can think of this as if some of the DOF behave isomorph-like and
some do not. This sets a natural limit to the method, since it will only work if the
DOF can be separated into two such sets. For the models used here this seems to
be the case, since the introduction of harmonic bonds in the models is what caused
them to “lose” their isomorphs.

7.2 Proportional reduced space Boltzmann factors

By separating the degrees of freedom into isomorphic and non-isomorphic DOF, RI
and RnI , we can write the probability of a given micro configuration as

P (R) = P (RI , RnI) =
1

Z
exp[−U(RI , RnI)/kBT ] (7.3)

Note that RI and RnI does not in general represent a well know set of Cartesian
coordinates only DOF.

In order to integrate out the non-isomorphic DOF we define an isomorphic con-
figurational free energy F I as a function of a specific value of the the isomorphic
DOF,

exp[−F I(RI)/kBT ] ≡
∫

dRnI exp[−U(RI , RnI)/kBT ] (7.4)

This lets us calculate the probability of a specific value of our isomorphic DOF in the
configurational space where the non-isomorphic DOF have been integrated out.

P I(RI) =

∫
dRnIP (RI , RnI) =

1

Z
exp[−F I(RI)/kBT ] (7.5)

where the first equality follows from the statistical independence of all DOF at equi-
librium.

In order to compare probabilities at different state points we introduce the ab-
stract notion of reduced degrees of freedom denotes as the other reduced quantities,
e.g. R̃I . To relate, for instance, the probability of a specific value of a reduced
DOF to that of the corresponding DOF at (ρ1, T1) we will use the subscript 1, i.e.
P I1 (R̃I) ≡ P I(RI,1).

Having defined the probability distribution in isomorphic space, we can see that
in order for two micro configurations to have the same probabilities for a given value
of the reduced isomorphic DOF we have

P I1 (R̃I) =P I2 (R̃I) (7.6)

exp[−F I1 (R̃I)/kBT1] ∝ exp[−F I2 (RI)/kBT2] (7.7)
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which gives the defining relation for state points with the same value for the reduced
isomorphic DOF

−F I1 (R̃I)/kBT1 + C =− F I2 (R̃I)/kBT2 (7.8)

where C is constant for a given set of state points. This equation highly resembles
the original formulation of the isomorph theory [23] except that it is free energies
rather than potential energies that are compared.

From this it follows that two pseudoisomorphic state points have the same iso-
morphic free energy for each micro configuration in reduced space, except for an
additive constant for a given value of R̃I . Put in terms of the direct isomorph check,
see chapter 3, given a state point (ρ1, T1) and a different density ρ2 we can find the
pseudoisomorphic state point by finding the value of T2 that gives the best approx-
imation to the linear relation in the above expression, when calculating F I1 and F I2
for a set of R̃I ’s.

The challenge of this general method is to access the free energy, since this is
related to the accessible volume of an entire multidimensional space, meaning that a
brute force approach will be impossible. Calculating free energies has almost become
an independent branch in condense matter simulations, in particular in biophysics
[31]. Different ways of doing this have been suggested in the literature ranging from
standard thermodynamic integration to transition path sampling [10], and for any
specific type of model system, it may be that a specific solution is needed. Here we
present two ways of doing this. The first resembles the method presented by Bennett
[8] and relies on the fact that for a simple model, like the asymmetric dumbbell
model, it is easy to associate the isomorphic and non-isomorphic DOF to a specific
set of Cartesian coordinates, making it possible to simulate in a non-isomorphic space
through Monte Carlo simulations. The second uses the fact that the models used here
have intramolecular harmonic springs, which makes it possible to approximate the
free energy through a harmonic approximation.

7.3 Free energy differences

Rather than trying to calculate the free energies at a given state point, we recast
equation (7.8) into

−F I2 (R̃I)/kBT2 + F I1 (R̃I)/kBT1 = C (7.9)

The aim is then to shown, that the difference in free energy for configurations
with the same value for the reduced isomorphic degrees of freedom is constant.

Imagine we have a state point 1 and want to test whether another state point 2
is pseudoisomorphic to the first. Using the notation U1 = U(RI,1, RnI,1) = U(R1)
we can write the exponent to the difference in free energy as

exp[−F I2 /kBT2]

exp[−F I1 /kBT1]
=

∫
dRnI exp[−U2/kBT2]∫
dRnI exp[−U1/kBT1]

(7.10)
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By multiplying the numerator with the constant function exp[(−U1 +U1)/kBT1] = 1
and rearranging the exponents, one gets

exp[−F I2 /kBT2]

exp[−F I1 /kBT1]
=

∫
dRnI exp[−U2/kBT2] exp[(−U1 + U1)/kBT1]∫

dRnI exp[−U1/kBT1]

=

∫
dRnI exp[−U2/kBT2 + U1/kBT1] exp[−U1/kBT1]∫

dRnI exp[−U1/kBT1]

= 〈exp[−U2/kBT2 + U1/kBT1]〉1,nI

(7.11)

where the subscript 1, nI in the final term indicates that the average should be carried
out over non-isomorphic micro configurations generated at state point (ρ1, T1).

From this we get the difference in free energy as

F I2 /kBT2 − F I1 /kBT1 = ln
(
〈exp[−U2/kBT2 + U1/kBT1]〉1,nI

)
(7.12)

which should be approximately constant for any value of the reduced isomorphic
DOF. Again it it worth noting, that this way of calculating free energy differences is
not related to isomorphs or pseudoisomorphs. The method was originally formulated
to calculate the difference in free energy between two known state points [8]. The
problem of finding pseudoisomorphic state points is different in that regard, since T2

is unknown.

As with the direct isomorph check we wish to find the temperature T2, given
the reference state point (ρ1, T1) and the density ρ2. Using equation (7.11) with out
knowing T2 can be done by taking R2 as for the direct isomorph check

R2 = ρ
−1/3
2 ρ

1/3
1 R1 (7.13)

and consequently the potential energy

U2 = U(ρ
−1/3
2 ρ

1/3
1 R1) (7.14)

as the potential energy of the micro configuration R1 scaled to density ρ2.

From equation (7.12) we have that the difference between isomorphic free ener-
gies at two pseudoisomorphic state points must be approximately constant. Being
approximately constant is not a very functional property when the constant is un-
known, so instead we calculate the difference, X(T2) = F I2 /kBT2 − F I1 /kBT1, and
the variance of this difference

〈
(∆X)2

〉
. For a perfect pseudoisomorphic system, this

would be zero exactly since according to equation (7.8) the difference is equal to a
constant that only depend on the state point, not the micro configuration.

By calculating this for a given state point (ρ1, T1) and a different density ρ2 and
for several different values of T2 we can get an approximation to the deviation from
zero as a function of T2, and by fitting this to a second order polynomial, we get an
approximate expression for the variance, with a minimum that gives the temperature
T2 that should result in pseudoisomorphic behaviour for the chosen density ρ2.

In the following we apply this method to the asymmetric dumbbell model. There
the non-isomorphic DOF are the intramolecular vibrations of which there are one per
molecule.
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7.4 Simulations in reduced space

The asymmetric dumbbell is a perfect candidate for this procedure, since it is very
easy to rewrite the ordinary 3 × N dimensional position vector R in a form that
separates the intramolecular vibrational degrees of freedom from the rest.

For a given molecule n we have two particles A and B. We can write the position
of these as

rAn(t) = rnCM (t) + An(t), rBn(t) = rnCM (t) + Bn(t) (7.15)

with

An(t) =
sn(t)

mA
r̂n(t), Bn(t) = −sn(t)

mB
r̂n(t) (7.16)

where rnCM is the center of mass position of molecule n, sn is the mass-reduced
distance from the center of mass of the molecule to the particles, mA,B is the mass
of particles of type A and B respectively and r̂n is the orientation of the molecule,
given as the unit vector from particle B to particle A. In particular sn is related to
the intramolecular distance as

|rA,n − rB,n| =
√

An −Bn

=

√(
1

mA
+

1

mB

)2

s2nr̂n(t)r̂n(t)r̂n(t)r̂2n

=

(
1

mA
+

1

mB

)
sn (7.17)

Written like this, it is clear that rnCM (t) and r̂n(t) are related directly to the
non-vibrational DOF of the molecule and sn(t) directly to the vibrational one. By
fixing rnCM (t) = rnCM (t0) and r̂n(t) = r̂n(t0) we are keeping a constant value of the
isomorphic DOF, RI .

From a computational point of view, this could be done in different ways and
though we have chosen to use Monte Carlo simulations, it might be that the best
solution for a different system is one of the following.

If one wanted to perform molecular simulations in 3 × N -dimensions, one could
attempt to solve the problem, by applying a constraint potential on the molecular
centers of mass and orientations through Gauss principle of least constraints, which
states that the acceleration of a system under constraints applied to a system should
be so that it minimizes the difference

D =

N∑
i

1

2mi
(miẍi − fi)

2 (7.18)

where fi is the unconstrained force acting on the system [21]. In essence, the con-
strained dynamics be as close as possible to the unconstrained one. Using this formu-
lation, one can correctly define an constraint force. The method has been used with
success to constraint the distance between bonded particles [19,60]. The problem at
hand does however require constraints on the rotation of the molecules meaning that
the problem becomes very complicated requiring the inclusion of quaternions [2].

Alternatively one could try to formulate the problem as dynamics inN/2-dimensions,
where each dimension correspond to a sn(t). This could be done trough a Lagrangian
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formulation of the dynamics, see for instance [33]. In this formulation of dynamics,
the system is described through generalized coordinates, in case of the asymmetric
dumbbell the intramolecular bond lengths sn. For a Lagrangian L(t, S, Ṡ) where S is
the N/2 bond lengths and Ṡ the time derivative of these, the principle of least action
gives the motion of each of the DOF in the system by

d

d t

∂L
∂ṡn
− ∂L
∂sn

= 0 (7.19)

For our system the Lagrangian can be defined as L(t, S, Ṡ) = U(t, S) + T (t, Ṡ), with

T (t, Ṡ) =

N/2∑
n

1

2

(
1

mA
+

1

mB

)
ṡ2n (7.20)

and

U(t, S) =

N/2∑
n

1

2
kn

(
1

mA
+

1

mB

)2

(sn(t)− sn,0)2 +

N/2∑
n,m>n

A,B∑
i,j

uijLJ(r2in,jm) (7.21)

where r2in,jm is the squared distance between particles i in molecule n and particle

j in molecule m which depends on sn and sm and uijLJ(r2in,jm) is the Lennard-Jones
potential between these particles. From these definitions one can derive an expression
for acceleration d2sn/dt

2 as a function of S making it possible to get an expression for
the dynamics. This will however require a large effort to implement in RUMD, and
would probably be better solved by a dedicated software. Besides this, the two meth-
ods outlines above only provides an NV E-like ensemble and adding a temperature
control would further complicate the methods.

We have chosen to use Monte Carlo simulations. This allows for a relatively sim-
ple procedure and automatically assures that the temperature is correct through the
Metropolis algorithm, see section 2.2. In order to sample the right micro configura-
tions, we altered the generation of trial moves. Given a configuration R we created
a trial state by changing all the intramolecular distances by a small random number,
while keeping orientation and center of mass position of each molecule fixed. The
random numbers where taken from a uniform distribution with a mean of 0 and a
width of approximately 1/1000 of the natural model spring length. This was done by
changing the mass reduced lengths sn by a displacement δsn, and then adding it to
the Cartesian coordinates of the particles A and B in molecule n as

r∗An
= rAn(t) +

1

mA
δsnr̂n, r∗Bn

= rBn(t)− 1

mB
δsnr̂n (7.22)

This ensures, that the center of mass is fixed, by changing the positions of particles in
a molecule relative to their mass and keeps the orientation fixed by adding a vector
that is proportional to the normalized orientation of the molecule r̂n. These trial
states are then tested in accordance with the Metropolis algorithm ensuring that the
configuration space is sampled in properly. This allows us to perform simulations in
the reduced space, where only vibrations occur and calculate the average needed in
equation (7.12).

This resulted in the following procedure:

• Run an ordinaryNV T -simulation at the reference state point, (ρ, T ) = (1.863, 0.465).

• Pick from the simulation a number of configurations, Ri.
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• For each of these, do a Monte Carlo simulation, where the trial moves are
restricted to those that conserve all molecular centers off mass and orientations.

• Calculate the potential energy U1 and the scaled potential energy U2 at given
intervals.

7.5 Results of simulations in reduced space
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Figure 7.1: The variance ofX(T2) = F I2 /kBT2−F I1 /kBT1 and the quadratic
fit to this. Using a quadratic fits makes it possible to estimate the location
of the minimum of the variance. The T2 that corresponds to the minimum in
the variance is used as the candidate for the pseudoisomorphic state point.

Applying the method described above, we get the variance of the difference in
free energy 〈(∆X)2〉. This variance is plotted as a function of T2 on figure 7.1, for the
densities ρ1 = 1.863 and ρ2 = 1.939. The minimum in the variance is found at T2 =
0.578. The state point (ρ2, T2) = (1.939, 0.578) should then be pseudoisomorphic to
the reference state point (ρ1, T1) = (1.863, 0.465). This estimate is taken from one
simulation, meaning one starting configuration or set of isomorphic DOF. To test the
dependence on the chosen configuration in this method we repeated the procedure for
a large number of configurations. On figure 7.2 the average predicted T2 is plotted
as a function of the number of simulations run. While the result clearly depends on
configuration as seen from the variations when a small number of these are used, the
fluctuations are never large with the temperature varying less than a percent. On the
figure it seems that after 7500 simulations even these fluctuations disappear leaving
statistical noise. It seems the method is rather resilient and we have applied it to a
number of density changes.

The temperatures found with this method are shown in table 7.1, where they
are compared to the temperatures found to give pseudoisomorphic behaviour in the
last chapter. The difference between the predicted temperatures is small showing
that the method presented here is a valid one, but they are not exactly the same.
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Figure 7.2: The predicted T2 changes with the number of simulations per-
formed, but the fluctuations are rather small. After 7500 simulations, the
temperature is almost fixed.

Table 7.1: The predicted T2 from the method described in the last chapter
with scaled springs TSS and the method used here, equating free energies
T2,FE

ρ T2,SS T2,FE

1.772 0.352 0.352
1.853 0.465 0.465
1.939 0.577 0.578
2.018 0.711 0.707
2.121 0.915 0.906

To test whether the differences are small enough that they effectively give the same
dynamics, we have performed simulations at these state points and calculated the
intermediate scattering function for the heavy and light particles, as was done in the
previous chapter. Figure 7.3 shows these results and it is clear that there is a collapse,
but it is not as good as the one found in the previous chapter. In particular the light
particles seems to be affected by the small changes in temperature. Even so, the
quality of the collapse shows that the method generates state points with invariant
dynamics to a good approximation.
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Figure 7.3: The intermediates scattering function for the heavy and light
particles along the pseudoisomorph generated by this method calculated with
constant reduced q-values. While not perfect, the collapse is rather good

7.6 Harmonic approximation

An alternative way of accessing the free energy of the system relies on the harmonic
nature of the intramolecular bonds. Thinking of the systems as done above one
can imagine, that the non-isomorphic or vibrational configurational space can be
approximated by a set of non-interacting one-dimensional harmonic bonds. If this is
the case, the reduced isomorphic free energy F I/kBT can be found from the properties
of these bonds as shown below.

First we write up the configurational free energy of a system of non-interacting
one-dimensional harmonic oscillators

exp[−FH/kBT ] =

∫
dX exp[−U(X)/kBT ] (7.23)

Since we are dealing with harmonic oscillators, we have

U(X) =
∑
i

ui,0 +
1

2
ki(xi − xi,0)2 (7.24)

Because the potential is a sum of independent terms, we can rewrite the expression
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for the energy as

exp[−FH/kBT ]

=

∫
dx1 . . . dxN exp

[
−
∑
i

(
ui,0 +

1

2
ki(xi − xi,0)2

)
/kBT

]

=

∫
dx1 . . . dxN exp

[
−
∑
i

ui,0/kBT

]∏
i

exp

[
−1

2
ki(xi − xi,0)2/kBT

]
= exp[−U0/kBT ]

∏
i

∫ ∞
−∞

dxi exp

[
−1

2
ki(xi − xi,0)2

]

= exp[−U0/kBT ]

(∏
i

√
2πkBT

ki

)
(7.25)

where U0 =
∑
i ui,0. This gives

FH/kBT =− U0/kBT +N/2 ln (2πkBT )− 1

2

∑
i

ln(ki) (7.26)

In our formulation of probabilities in isomorphic space, FH/kBT is exactly the needed
F I(RI)/kBT .

In accordance with equation (7.12) two state points are pseudoisomorphic if

−F I1 (R̃I)/kBT1 + C = −F I2 (R̃I)/kBT2 (7.27)

which means that if the harmonic approximation is valid, two state points are pseu-
doisomorphic if

−U0,1/kBT1 −
1

2

∑
i

ln(k1i ) + C = −U0,2/kBT2 −
1

2

∑
i

ln(k2i ) (7.28)

where the term N/2 ln (2πkBT ) is included in the general constant C since it is
independent of configuration.

Thus in order to find the free energies of the system, we need to know U0 and ki.
Since we established in the previous chapter, that the eigenvalues of the potential

energy Hessian calculated at an inherent state (IS) separates into a part that related
to the springs and a part that does not, one immediate way of accessing ki could be
to take the values of the eigenvalue spectrum that corresponds to the model springs.
As a reminder, figure 7.4 shows the eigenvalue spectrum of a single IS for the LJC
model and the separation between the high and low strength parts is marked with a
green arrow. Recall that the number of eigenvalues in the high strength part of the
spectrum matches the number of bonds in the system. As each eigenvalue corresponds
to an eigenvector, the assumption of non-interacting one-dimensional oscillators seems
reasonable, even though all springs in the LJC model are in fact interacting with at
least one other spring.

Using as U0 the total potential energy of the system at the IS and as the spring
strength, the effective springs strengths from the eigenvalues, we get the temperature
T2 from the equation (7.28) as

U0,2/kBT2 = U0,1/kBT1 + (ln
∑
i

k1i − ln
∑
i

k2i )/2))2 + C (7.29)
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Figure 7.4: The spectrum of the potential energy Hessian eigenvalues for
the LJC model. In the previous chapter, we focused on the low strength
part of such spectra. Here we focus instead on the high strength parts, pre-
sumably corresponding to the model springs. As in figure 6.2 the separation
between the two parts are marked with green arrow and the value of the
spring strength defined in the model is shown with a dashed red line.

Equation (7.28) only relates two IS, but in this reformulation T2 can be found from the
proportionality between the variance of U0,2 and the right hand side of the equation
above

T2 =

√
〈(∆U0,2)2〉

〈(∆(U0,1/kBT1 + (ln
∑
i k

1
i − ln

∑
i k

2
i )/2))2〉 (7.30)

Temperatures found in this manner are presented in figure 7.5. The temperatures
are shown together with the temperature found in chapter 6, where the invariance
of the new L-values was used. Also shown is the temperatures of the configurational
adiabat and the empirical formula derived in [66]. The temperatures found with this
method matches the temperatures found by the method introduced in the previous
chapter and as such is very close to the temperatures of the empirical density scaling
as well. Since the temperatures found here are almost identical to those found in the
previous chapter, we will not test the invariance of the dynamics.
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Figure 7.5: The temperatures found from integrating out the vibrational
degrees of freedom, using the Hessian of the system, calculated at a number
of IS, for the LJC model. Also shown are the temperatures found with the
method presented in chapter 6 using the invariance of the L-value. Further
more, the temperatures of the configurational adiabat and the empirical for-
mula derived in [66] are shown. The approach of integrating out free energies
agree almost completely with the previous result.

7.7 Discussion and conclusion

We have shown that it is possible to estimate pseudoisomorphs from invariance of the
reduced isomorphic free energy expressed as

−F I2 (R̃I)/kBT2 = −F I2 (R̃I)/kBT2 + C (7.31)

where the isomorphic free energy is given as

exp[−F I(RI)/kBT ] =

∫
dRnI exp[−U(RI , RnI)/kBT ] (7.32)

and RI and RnI represent the values of the isomorphic and non-isomorphic degrees
of freedom.

In particular we showed that through simulations in “vibrational” space it is
possible to estimate the pseudoisomorphic state points for the asymmetric dumbbell
model. And even though this method does not seem to work as well as the method
presented in the previous chapter, it has the added advantage that it does not use
the springs directly, so it could be applied to different types of systems, where there
are pseudoisomorphs. Further more, it is possible that the specific implementation
using Monte Carlo simulations can be modified or replaced with another simulation
procedure further increasing the areas of application. It does however have the clear
drawback, that it only works because we can physically separate the isomorphic and
non-isomorphic degrees of freedom, something that is not necessarily true for other
cases.
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We have also showed that using a harmonic approximation to the free energy and
the eigenvalues of the potential energy Hessian, we can predict pseudoisomorphic
state points of the Lennard-Jones chain model with very high precision.

This criteria of invariant free energy opens up a different way of solving the
problem of finding pseudoisomorphs.

Ways of accessing the isomorphic free energy can be tailor made to specific sys-
tems, meaning that this method might be more robust to application for different
kinds of systems with pseudoisomorphs.

There are however some things to consider.
While the results from the Monte Carlo simulations in reduced space are good

for the asymmetric dumbbell model, it is not clear how such a method should be
generalized even to the Lennard-Jones chain model. Is it the orientation that should
be fixed? Defined naively as the end-to-end vector, it seems to be a rather arbitrary
quantity to fix. Is the end-to-end vector more defining of the system than the vector
from the first to the second-to-last particle in the chain? The problem only gets more
complicated if one imagines a cyclic molecule.

As for the pseudoisomorphs of the LJC, they relied, as in last chapter on the
separation of the eigenvalue spectrum, though in a completely different way than
before. This means, as alluded to earlier, that we do not have a final procedure for
finding pseudoisomorphic state points in a general system with pseudoisomorphs.

Even so, given that the problem of identifying isomorphs in systems with harmonic
bonds have been known for nearly as long as the isomorph theory it self, the results
presented in this thesis must be considered a step in the right direction.
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