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NVU view on energy polydisperse Lennard-Jones systems
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When energy polydispersity is introduced into the Lennard-Jones (LJ) system, there is little effect on structure
and dynamics [T. S. Ingebrigtsen and J. C. Dyre, J. Phys. Chem. B 127, 2837 (2023)]. For instance, at a given state
point both the radial distribution function and the mean-square displacement as a function of time are virtually
unaffected by even large energy polydispersity, which is in stark contrast to what happens when size polydis-
persity is introduced. We here argue—and validate by simulations of up to 30% polydispersity—that this almost
invariance of structure and dynamics reflects an approximate invariance of the constant-potential-energy surface.
Because NVU dynamics defined as geodesic motion at constant potential energy is equivalent to Newtonian dy-
namics in the thermodynamic limit, the approximate invariance of the constant-potential-energy surface implies
virtually the same physics of energy polydisperse LJ systems as of the standard single-component version. In
contrast, the constant-potential-energy surface is significantly affected by introducing size polydispersity.
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I. INTRODUCTION

Polydispersity typically involves a continuous distribution
of parameters in the interaction potentials of models, e.g., of
liquids. This is relevant for describing the jamming of granular
media, e.g., sand, which can be modeled by introducing a
distribution of particle sizes [1–10]. Size polydispersity is
also relevant in the modeling of glass-forming liquids by
allowing for fast equilibration via swap dynamics; here it is
typically introduced via a distribution of the length parameter
of the pair potential [11]. If the “size” of the particle i is
σi, the Lorentz-Berthelot mixing rule states that the interac-
tion with particle j involves the average length parameter,
(σi + σ j )/2 [12]. While size polydispersity is by far the most
commonly studied sort of polydispersity [1,2,4,6–9,13–18],
a few publications have investigated the effects of energy
polydispersity [19–22]. Using the Lorentz-Berthelot mixing
rule for energies [12], Refs. [19] and [21] studied energy-
polydisperse Lennard-Jones (LJ) fluids in 2D and found only
very small differences between the average properties of poly-
disperse systems and those of the single-component fluid
with interaction energy equal to the average of that of the
polydisperse system. This was recently confirmed in a study
of 3D energy-polydisperse LJ mixtures, demonstrating vir-
tually invariant structure and dynamics when the degree of
polydispersity varies [22]. Energy-polydispersity invariance is
robust; thus, Ref. [22] demonstrated that—excluding the case
of extreme energy polydispersity—invariance is maintained
when varying state point, mixing rule, energy probability dis-
tribution, or the pair potential. The question we address in
this paper is: Why does the introduction of energy polydisper-
sity not affect the structure and dynamics to any significant
degree?

In order to throw light on the energy-polydispersity invari-
ance of structure and dynamics, we adopt below the NVU
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point of view. In a sense, NVU dynamics replaces New-
ton’s second law by his first law—the law of inertia—by
considering geodesic motion on the constant-potential-energy
hypersurface in 3N dimensions (N is the number of particles)
[23,24]. In the thermodynamic limit (N → ∞) this time evo-
lution results in the same structure and dynamics as standard
Newtonian dynamics [23,24]. In fact, if NVU dynamics is
discretized for numerical implementation, the result is iden-
tical to the well-known Verlet algorithm [12,25,26] with a
varying time step, the relative fluctuations of which go to zero
for N → ∞ [24]. The conjecture investigated in this paper is
that energy-polydisperse LJ mixtures have approximately the
same constant-potential-energy surfaces as those of the single-
component LJ system, which would explain the observed
invariance of structure and dynamics upon the introduction of
energy polydispersity.

II. APPROXIMATE INVARIANCE OF STRUCTURE
AND DYNAMICS

This section details the systems studied, how they
were simulated, and gives results for the structure and
dynamics confirming those of Ref. [22]. We simulated
energy-polydisperse Lennard-Jones (LJ) liquids in the NV T
ensemble using a pilot version of an in-house developed GPU-
optimized Python molecular dynamics code [27]. The LJ pair
potential between two particles at distance r, v(r) is given by

v(r) = 4ε((r/σ )−12 − (r/σ )−6) . (1)

Here ε is the characteristic energy and σ the characteristic
length (“particle size”). For polydisperse systems these pa-
rameters vary for different particle pairs, usually according
to a continuous probability distribution. This paper focuses
on energy polydispersity. Thus, σ is the same for all par-
ticles unless otherwise stated, henceforth set to unity. The
characteristic energy of the i j pair interaction follows the
Lorentz-Berthelot mixing rule [12], εi j = √

εiε j , in which
each particle has been assigned an energy εi chosen randomly

2470-0045/2025/111(2)/025420(11) 025420-1 ©2025 American Physical Society

https://orcid.org/0009-0005-7386-1738
https://orcid.org/0000-0002-3324-2693
https://orcid.org/0000-0002-0770-5690
https://ror.org/014axpa37
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.111.025420&domain=pdf&date_stamp=2025-02-25
https://doi.org/10.1021/acs.jpcb.3c00346
https://doi.org/10.1103/PhysRevE.111.025420


LANG, COSTIGLIOLA, AND DYRE PHYSICAL REVIEW E 111, 025420 (2025)

FIG. 1. Average structure and dynamics of LJ systems of dif-
ferent energy polydispersity at the state point (ρ, T ) = (0.85, 0.70)
that is close to the triple point of the single-component LJ system.
(a) shows the average radial distribution function, g(r), for up to
40% polydispersity. (b) shows the corresponding average incoherent
intermediate scattering functions, Fs(q, t ), where the five solid lines
represent data for the wave vector of the first peak of the static
structure factor of the monodisperse system (q = 7.2) and the five
dashed lines represent data for the wave vector corresponding to the
box length (q = 0.19). Structure and dynamics are virtually indepen-
dent of the degree of polydispersity. These results confirm those of
Ref. [22] and set the stage for the investigation.

from a box distribution centered around unity (in practice we
operated with 256 different equally spaced randomly chosen
particle energies). The energy polydispersity δε is defined as
the standard deviation over the mean, which in the case of unit
mean energy reduces to δε ≡

√
〈ε2〉 − 1.

Systems of N = 32 000 particles of mass unity were simu-
lated with standard Nose-Hoover NV T dynamics at the state
point (ρ, T ) = (0.85, 0.70), which is close to the triple point
of the single-component LJ system. This is the state point

studied throughout the paper. The time step used was 0.0025
in LJ units [defined by ε = σ = 1 in Eq. (1)]. A standard
shifted-potential cutoff at 2.5 was used. We also simulated LJ
systems with a shifted-force cutoff at 1.5 [28], leading to the
same overall conclusions (Appendix).

Figure 1 shows the structure and dynamics for energy
polydispersity δε = 0%; 10%; 20%; 30%; 40%. The first case
corresponds to the standard single-component LJ system. The
next four cases correspond to particle energies varying be-
tween 0.83 and 1.17 (10% polydispersity), between 0.65 and
1.25 (20% polydispersity), between 0.48 and 1.52 (30% poly-
dispersity), and between 0.31 and 1.69 (40% polydispersity).
These are quite significant polydispersities. Nevertheless, the
average radial distribution function (RDF), g(r), of Fig. 1(a)
and the average incoherent intermediate scattering function,
Fs(q, t ), of Fig. 1(b) are virtually the same for all five systems.

Figure 2 analyzes to which degree the neighborhood of
a given particle correlates with its energy for up to 50%
polydispersity. We divided the particles into four categories
according to their energy, each of which contains one quarter
of the particles. Figure 2(a) shows that as polydispersity is
increased, the energy-resolved RDFs differ increasingly, i.e.,
the neighborhood of each particle depends more and more on
its energy. As shown in the right panel of Fig. 2(b), the case
of 50% polydispersity self-organizes by a continuous phase
separation into high (red) and low (blue) energy particles [22].

To illuminate the self-organization observed for 50% poly-
dispersity, we study in Fig. 3 how the potential energy
relaxes toward equilibrium after polydispersity is introduced.
The idea is that if there is phase separation deriving from
self-organization, the energy will relax slowly toward its
equilibrium value (a process that is controlled by the particle
diffusion coefficient and the simulation box size). Figure 3(a)

FIG. 2. Radial distribution functions (RDFs) of LJ systems with energy polydispersity varying between 20% and 50%. (a) For each
polydispersity the particles are divided into four categories according to their energy as illustrated in the inset of the left of panel (a). With
increasing polydispersity the energy-resolved RDFs differ more and more. (b) shows snapshots for each polydispersity in which the red
particles have large energy and the blue have small energy.
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FIG. 3. Potential-energy relaxation after an instantaneous change
of energy polydispersity. The dashed lines mark the equilibrium
potential energy approached at long times. (a) Jumping from the
equilibrium single-component system to different polydispersities;
(b) jumping from an equilibrium 30% polydispersity system to differ-
ent polydispersities. In most cases little happens, which is consistent
with the system being in equilibrium already immediately after the
polydispersity was changed at t = 0. For jumps to 50% polydisper-
sity this is not the case, however; the 50% data confirm the phase
separation observed as this system slowly equilibrates [Fig. 2(b)].
For the jumps to 40% polydispersity there is a slight tendency of
similar behavior.

shows the time evolution of the average potential energy per
particle, U , after jumps at t = 0 from the single-component
system to polydispersities up to 50%, and (b) shows simi-
lar data for jumps starting from 30% polydispersity. In both
cases the jumps to and from up to 30% polydispersity equili-
brate quickly. In contrast, jumps to 50% polydispersity show
a slow relaxation toward equilibrium, confirming that self-
organization takes place in this case. The jumps to 40% show
a slight hint of the same behavior. Henceforth we leave out
40% and 50% polydispersity from the analysis.

III. DIGRESSION: NVU DYNAMICS IN BRIEF

This section briefly reviews NVU dynamics [23,24,29–31]
for readers unfamiliar with this alternative molecular dynam-
ics characterized by conservation of the potential energy. For
systems of many particles, Newtonian and NVU dynamics
lead to the same structure and dynamics [24]. This may be
understood as a consequence of the fact that in the thermody-
namic limit of Newtonian dynamics, the relative fluctuations
of the potential energy U go to zero. Identical structure and
dynamics has been shown theoretically and numerically for
both atomic [23,24] and molecular [29] models. In fact, as
already mentioned, the discretized NVU algorithm is identi-
cal to the standard Verlet algorithm of molecular dynamics
simulations, however with a varying time step ensuring con-
servation of the potential energy [23].

Consider a system of N particles in three dimensions with
periodic boundary conditions. It is convenient to introduce
the 3N-dimensional configuration vector R ≡ (r1, . . . , rN ) in
which ri is the position of particle i. A constant-potential-
energy surface � is defined by the value of the potential
energy U0,

� = {R |U (R) = U0} . (2)

Equation (2) defines a 3N − 1 dimensional so-called level
surface, which is a submanifold of the 3N-dimensional torus
of all particle positions corresponding to periodic boundary
conditions. The surface � has the metric inherited from Eu-
clidean space and is thus a Riemannian manifold. This makes
it possible to define geodesics as curves of minimum length
or, more accurately, of stationary length in the sense that the
length does not change for infinitesimal curve perturbations
keeping the endpoints fixed. NVU dynamics is defined as
geodesic motion on � [23]. The motion proceeds with con-
stant velocity, implying that, in fact, both the potential and
the kinetic energy are conserved in NVU dynamics. In phys-
ical terms, NVU dynamics may be thought of as embodying
frictionless motion on a curved surface in high dimensions,
i.e., as expressing the law of inertia for motion on the curved
hypersurface �.

It follows that systems with identical constant-potential-
energy surfaces have the same structure and dynamics, also
when studied by standard Newtonian dynamics. In many
cases, the same � at given state points of two systems cor-
responds to different temperatures, but this turns out to be a
minor effect in this study that can be ignored. We investigate
below whether the � surfaces change only little when energy
polydispersity is introduced.

IV. APPROXIMATE INVARIANCE OF THE
CONSTANT-POTENTIAL ENERGY SURFACE �

Returning to the invariance to a very good approxima-
tion of structure and dynamics when energy polydispersity
is introduced, the observations of Fig. 1 would, as men-
tioned, be explained if the constant-potential-energy surface
� is independent—or almost independent—of the energy
polydispersity. We proceed to investigate whether this is the
case. Note first, however, that there is no theoretical rea-
son a given � is completely unaffected by the degree of
energy polydispersity: any two configurations that have iden-
tical potential energy at one polydispersity, will most likely
have different potential energies for a different polydispersity.
Checking invariance of the identity U (Ra ) = U (Rb) is there-
fore not useful for investigating approximate invariance of the
constant-potential-energy surface. Instead, we take inspiration
from isomorph theory that considers invariance of the inequal-
ity U (Ra ) < U (Rb) when configurations are scaled uniformly
[32]. Comparing two potential-energy functions correspond-
ing to different energy polydispersity, U1(R) ≡ U (R, δ(1)

ε )
and U2(R) ≡ U (R, δ(2)

ε ), we investigate numerically how well
the following logical implication is obeyed:

U1(Ra ) < U1(Rb) ⇒ U2(Ra ) < U2(Rb) . (3)

If this applies rigorously for all configurations, then U1(Ra ) =
U1(Rb) ⇒ U2(Ra ) = U2(Rb), i.e., systems 1 and 2 have
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FIG. 4. Potential energies of configurations as a function of the degree of energy polydispersity. (a) and (b) show the potential energies of 32
independent configurations taken from an equilibrium simulation at 0% and 30% energy polydispersity, respectively. Once the configurations
have been selected at the polydispersity marked by the vertical dashed line, the degree of polydispersity is varied continuously in the expression
for U (R), i.e., no further simulations are carried out. A closer look at the crossings is provided in (d) and (e), which show the relative potential-
energy variations of the data of (a) and (b). The observed rare crossings mean that energy polydisperse LJ systems to a good approximation
conform to Eq. (3), i.e., have invariant �. For comparison, (c) and (f) show the effect of introducing size polydispersity.

identical �. If, however, one more realistically observes that
Eq. (3) applies for most configurations, though not always,
then the corresponding constant-potential-energy surfaces are
not identical, but merely almost identical. In that case, by
reference to NVU dynamics one expects approximately, not
rigorously, invariant structure and dynamics.

To check Eq. (3), numerically we first sampled several con-
figurations from an equilibrium simulation of system 1, e.g.,
the single-component LJ system. The configurations were
sampled at times separated enough that they are statistically
independent. For each configuration, we then evaluated the
potential energy corresponding to a different degree of poly-
dispersity in order to investigate how this quantity changes,
i.e., no further MD simulations were carried out. Plotting the
potential energies as functions of the polydispersity yields a
figure confirming Eq. (3) if none of the curves cross each
other.

Figure 4(a) shows a plot constructed in this way in which
the configurations were selected from an equilibrium simu-
lation of the single-component system; (b) shows the analog
if configurations are selected from an equilibrium simula-
tion at 30% energy polydispersity (in which case the lower
polydispersities were obtained by a uniform scaling of the
energies relative to unity). One first observes that the value of
the potential energy changes only a little. Moreover, there are
only a few curve crossings, which largely validates Eq. (3).
Figures 4(d) and 4(e) study the crossings in more detail by
plotting the relative variation of the potential energy as a
function of the degree of polydispersity, i.e., after the average
of U has been subtracted at each polydispersity and the data
subsequently normalized to unit variance. The vertical dashed
lines mark the polydispersity of the system simulated to gen-

erate the configurations. For comparison, Figs. 4(c) and 4(f)
show the same when size polydispersity is introduced. While
for energy polydispersity there are only a few crossings, and
when two curves do cross they generally stay close, neither of
these observations apply for size polydispersity.

Note that there is little difference between selecting the
configurations from the single-component LJ system and then
introducing polydispersity [(a) and (c)] and the alternative
of selecting the configurations at 30% energy polydisper-
sity and subsequently decreasing the polydispersity [(b) and
(d)]. This shows that the configurations remain equilibrium
configurations to a good approximation after changing the
polydispersity.

The results shown in Figs. 4(a), 4(b), 4(d), and 4(e) refer to
one particular choice of random energies. We have repeated
this analysis for several other choices and—reflecting the fact
that large samples are studied—have found that the results are
the same. Thus, for different choices of random energies or
different choices of equilibrate configurations, Figs. 4(a) and
4(b) are basically unchanged, while Figs. 4(d) and 4(e) can be
visually different, but are always qualitatively the same with
few level crossings [independence of configurations and ran-
dom parameters applies also to the size-polydispersity results
of Figs. 4(c) and 4(f)]. Figures 14–17 in the Appendix demon-
strate that different choices of polydispersity qualitatively lead
to the same conclusions.

Figure 4 features several instances of weak “level” cross-
ings in the sense that the two potential energies stay close even
if they cross at some polydispersity. Intuitively, one expects
this implies a less severe violation of the proposed invariance
of � than if, e.g., the energies vary wildly as in the case of
size polydispersity [Fig. 4(f)]. How to quantify this? A simple
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FIG. 5. Correlations between the potential energy of configurations sampled from the equilibrium state of potential U1 corresponding to
some polydispersity, subsequently evaluated with respect to a different polydispersity, corresponding to the potential energy U2. (a) Correlation
between the single-component system, U1, and 30% energy polydispersity, U2. (b) The reverse of (a); configurations were here selected from
a 30% energy polydispersity simulation and subsequently evaluated with respect to zero polydispersity. The strong correlations observed in
(a) and (b) are in contrast to what happens for size polydispersity; thus, (c) shows the analogous correlation between the potential energies of
the single-component system and that of 30% size polydispersity. (d) shows how the Pearson correlation coefficient R varies as a function of
polydispersity for the two cases of energy polydispersity [blue and green corresponding to (a) and (b)], and for size polydispersity (yellow). In
the latter case the correlation coefficient drops quickly.

possibility is to calculate how the Pearson correlation coeffi-
cient R between the initial and final potential energies, U1 and
U2, varies as a function of the degree of polydispersity. Fig-
ure 5(a) shows a plot of δε = 0% data versus δε = 30% data,
and Fig. 5(b) shows the reverse correlation plot. In both cases
there is a strong correlation with R > 0.95 (note that these
plots involve many more configurations than the 32 of Fig. 4).
This confirms the conjecture that energy polydispersity leads
to only minor modifications of the constant-potential-energy
surfaces.

It is instructive to compare to size polydispersity. This
is studied in an analogous way in Fig. 5(c) starting from
the monodisperse LJ system. This time there is a very poor
correlation between the δσ = 0% polydispersity and δσ =
30% polydispersity. In fact, the correlation coefficient drops
quickly as a function of polydispersity; this is clear from
Fig. 5(d) that shows the correlation coefficients as a function
of polydispersity for all three cases.

V. TWO FURTHER APPROXIMATE INVARIANTS

The 3N-dimensional collective force vector composed of
all particle forces is minus the gradient of U (R). Two systems

with identical � at given state points will have proportional
collective force vectors because both are normal to �, but
the force vectors are not necessarily of the same length. A
closer analysis, which will not be repeated here [30,31], shows
that the so-called reduced force vectors [33] are identical.
This leads to the same structure and dynamics even though
the temperatures may differ for two systems at state points
with the same �. In the present case of energy polydispersity
with energies averaging to unity, there is no need to adjust
the temperature, however. Thus, one way to confirm the above
finding of closely similar �s when the energy polydispersity is
changed is to look at the distribution of the individual particle
forces [22].

We carried out such an analysis with a focus on calculating
the Pearson correlation coefficient, again jumping between
0% and 30% polydispersity. Figure 6(a) shows a scatter plot
of the x coordinates of all particle forces in the 0%–30%
case, and (b) shows the reverse change. We find in both cases
a strong correlation (R > 0.96). The linear-regression slopes
are close to but not identical to unity. This suggests that a
slight adjustment of the temperature would result in an even
better collapse of the RDFs and of the intermediate scattering
functions (Fig. 1), but we have found that this effect is minor

FIG. 6. Correlation between the individual particle forces in the x direction, Fx , of a single configuration sampled from the equilibrium state
of some polydispersity, subsequently evaluated with respect to a different polydispersity. (a) Correlation between the single-component system
and 30% energy polydispersity. (b) The reverse of (a); configurations were here equilibrated at 30% energy polydispersity and the forces were
subsequently evaluated with respect to 0% polydispersity. In both (a) and (b) there is a strong correlation. This is in contrast to what happens in
the case of size polydispersity; thus, (c) shows a scatter plot between the single-component system and 30% size polydispersity. (d) shows how
the correlation coefficient R varies as a function of polydispersity for the two cases of energy polydispersity [blue and green corresponding to
(a) and (b)] and size polydispersity (yellow). In the latter case the correlation coefficient drops quickly.
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FIG. 7. Correlation between the configurational temperatures, Tconf , of configurations sampled from the equilibrium state of some
polydispersity and Tconf evaluated with respect to a different polydispersity. (a) Correlation between the single-component system and 30%
energy polydispersity. (b) The reverse of (a); configurations were here equilibrated at 30% energy polydispersity and the configurational
temperatures were subsequently evaluated with respect to 0% polydispersity. In both (a) and (b) there is a strong correlation, which is in
contrast to what happens in the case of size polydispersity; thus, (c) shows a scatter plot between the single-component system and 30% size
polydispersity. (d) shows how R varies as a function of polydispersity for the two cases of energy polydispersity [blue and green, respectively
corresponding to (a) and (b)] and size polydispersity (yellow). In the latter case the correlation coefficient drops quickly.

and did not investigate it further. For comparison, we show in
Fig. 6(c) the same analysis when going from 0% to 30% size
polydispersity. In that case the forces correlate only weakly,
and as shown in (d) a significant “decorrelation” takes effect
even when just a small size polydispersity is introduced (yel-
low curve). Overall, the picture for the forces is very similar
to that of the potential energies (Fig. 5).

That the temperatures corresponding to a given � are virtu-
ally independent of the energy polydispersity can be validated
by considering the so-called configurational temperature Tconf ,
a quantity that refers exclusively to the configurational de-
grees of freedom [31,34–38] with the property that Tconf = T
for a system in thermal equilibrium. Tconf is defined as a ratio
of two canonical averages, kBTconf ≡ 〈(∇U )2〉/〈∇2U 〉. For a
large system Tconf can be reliably evaluated from a single equi-
librium configuration because the relative fluctuations of both
numerator and denominator go to zero in the thermodynamic
limit.

Figure 7 shows plots analogous to those of Fig. 6 with
Tconf (R) ≡ (∇U (R))2/∇2U (R) instead of the individual x
components of the particle forces. Note that while the latter
gives many data points for each configuration R, the former
yields just a single point meaning that several configurations
are needed to make the plot, as for U in Fig. 5. The Tconf

results are quite similar to those of Fig. 6: Going from 0% to
30% energy polydispersity or the reverse, the configurational
temperatures correlate strongly, which is not the case for size
polydispersity.

VI. SUMMARY

We have shown that the constant-potential-energy surfaces
of energy polydisperse LJ systems are virtually indepen-
dent of the degree of polydispersity in the range 0%–30%,
i.e., almost identical to those of the single-component LJ
system. By reference to NVU dynamics, this explains why
structure and dynamics are not affected by energy poly-
dispersity to any significant degree [19,21,22]. This is in
contrast to what happens when size polydispersity is intro-
duced, in which case the constant-potential-energy surfaces

are not invariant and both structure and dynamics change
dramatically [22].
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APPENDIX

This Appendix presents results corresponding to those of
the main paper using a shifted-force cutoff and studies the
effect of randomly introducing polydispersity in four different
cases. Since the figures confirm the findings of the main paper,
few comments are given except for the figure captions.

FIG. 8. Average structure and dynamic of LJ systems of different
energy polydispersity simulated with a shifted-force cutoff at 1.5 at
the state point (ρ, T ) = (0.85, 0.70); this figure is the shifted-force
analog of Fig. 1. (a) shows the average RDF for up to 40% polydis-
persity. (b) shows the corresponding average incoherent intermediate
scattering functions where solid lines represent the wave vector of
the first peak of the static structure factor of the single-component
LJ system (q = 7.2) and dashed lines represent the wave vector
corresponding to the box length (q = 0.19). For both structure and
dynamics, we find as in Fig. 1 results that are virtually independent
of the degree of polydispersity.
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FIG. 9. Structure of LJ systems with energy polydispersity varying between 20% and 50%; this figure is the shifted-force analog of
Fig. 2. (a) The particles are divided into four categories according to their energy as illustrated in the inset of the first panel. With increasing
polydispersity the energy-resolved RDFs differ more and more. Interestingly, the difference is less pronounced than for the shifted-potential
simulations of the main paper. (b) shows snapshots for each polydispersity in which the red particles have large energy and the blue have small
energy. In contrast to the findings of the main paper, there is no clearly visible phase separation at the highest polydispersity.

FIG. 10. Potential energies of configurations as a function of the degree of polydispersity; this figure is the shifted-force analog of Fig. 4.
Note that the potential energy used here differs from that of the main paper, reflecting the fact that the pair forces are modified below the
cutoff. (a) and (b) show the potential energies of 32 independent configurations, taken from an equilibrium simulation at 0% and 30% energy
polydispersity, respectively. A closer look at the level crossings is provided in (d) and (e) that show the relative potential-energy variations of
the data in (a) and (b). The observed rare crossings mean that energy polydisperse LJ systems to a good approximation conform to Eq. (3),
which is equivalent to having invariant �. For comparison, (c) and (f) show the effect of introducing size polydispersity.
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FIG. 11. Correlation between the potential energy of configurations sampled from the equilibrium state of the potential U1 corresponding
to some polydispersity, subsequently evaluated with respect to a different polydispersity corresponding to the potential energy U2; this figure is
the shifted-force analog of Fig. 5. (a) R between the single-component system, U1, and 30% energy polydispersity, U2. (b) The reverse of (a);
configurations were here equilibrated at 30% energy polydispersity and subsequently evaluated with respect to zero polydispersity. In both
(a) and (b) there is a strong correlation. The strong correlations observed in (a) and (b) are in contrast to what happens in the case of size
polydispersity for which (c) shows R between the single-component system 30% size polydispersity. (d) shows how R varies as a function of
polydispersity for the two cases of energy polydispersity (blue and green) and size polydispersity (yellow). In the latter case the correlation
drops quickly.

FIG. 12. Correlations between the individual particle forces in the x direction, Fx , of a single configuration sampled from the equilibrium
state of some polydispersity, subsequently evaluated with respect to a different polydispersity; this figure is the shifted-force analog of Fig. 6.
(a) Correlation between the single-component system and 30% energy polydispersity. (b) The reverse of (a); the configuration is here an
equilibrium configuration at 30% energy polydispersity and the forces were subsequently evaluated with respect to 0% polydispersity. In both
(a) and (b) there is a strong correlation, which is in contrast to what happens in the case of size polydispersity; thus (c) shows the correlation
between the single-component system and 30% size polydispersity. (d) shows how R varies as a function of polydispersity for the two cases of
energy polydispersity (blue and green) and size polydispersity (yellow). In the latter case the correlation coefficient drops quickly.

FIG. 13. Correlations between the configurational temperatures, Tconf , of configurations sampled from the equilibrium state of some
polydispersity and the configurational temperature evaluated with respect to a different polydispersity; this figure is the shifted-force analog of
Fig. 7. (a) Correlation between the single-component system and 30% energy polydispersity. (b) The reverse of (a); configurations were here
equilibrated at 30% energy polydispersity and the configurational temperatures subsequently evaluated with respect to 0% polydispersity. In
both (a) and (b) there is a strong correlation, which is in contrast to what happens in the case of size polydispersity; thus, (c) shows a scatter
plot between the single-component system and 30% size polydispersity. (d) shows how R varies as a function of polydispersity for the two
cases of energy polydispersity (blue and green) and size polydispersity (yellow). In the latter case the correlation coefficient drops quickly.
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FIG. 14. Potential energies of configurations as a function of the degree of energy polydispersity for four different choices of random
energies. In each case 32 independent configurations are taken from an equilibrium simulation at 0% energy polydispersity.

FIG. 15. Potential energies of configurations as a function of the degree of energy polydispersity with four different choices of random
energies. In each case 32 independent configurations are taken from an equilibrium simulation at 30% energy polydispersity. The 32
configurations sampled in each subplot are different since we choose different choices of random energies at the beginning of the 30%
polydispersity equilibrium simulation, while in Fig. 16 below the configurations are the same. The figure demonstrates that Eq. (3) is obeyed
independent of the choice of random energies.

FIG. 16. Correlations between the potential energy of configurations sampled from the equilibrium state of the single-component system
U1, subsequently evaluated with respect to 30% energy polydispersity U2, with four different choices of random energies.

FIG. 17. Correlations between the potential energy of configurations sampled from the equilibrium state of 30% energy polydispersity
system U1, subsequently evaluated with respect to zero polydispersity, with four different choices of random energies.
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1. Shifted-force cutoff

A shifted-force cutoff is defined by adding a constant to
the pair force below the cutoff radius in such a way that
the pair force at the cutoff is zero [12,39]. In NV E simu-
lations, this force continuity results in a much better energy
conservation than that of a shifted-potential cutoff. For the
single-component LJ system with σ = 1 it has been demon-
strated that a shifted-force cutoff at just 1.5 is enough to
obtain as accurate structure and dynamics as simulations with
a shifted-potential cutoff at 2.5 [28], even though the LJ pair

force is 30 times larger at distance 1.5 than at distance 2.5.
This fact allows for a speed up of simulations of a factor of
four at typical liquid state points [28]. Results for shifted-force
cutoff simulations are given in Figs. 8–13.

2. Other choices of random energies

Figures 14–17 demonstrate that the approximate invariance
of � with changing energy polydispersity does not depend on
the choice of the random energies.
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