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ABSTRACT

This paper investigates the local hydrodynamics of a dense fluid confined in nanoscale slit-pores with different heights. Using non-
equilibrium molecular dynamics simulations of the fluid system, we induce a steady-state sinusoidal velocity profile across the channel having
a characteristic wavelength, thus, probing the fluid response to a specific Fourier mode. As expected, for sufficiently large channel heights and
wavelengths there is an excellent agreement between the hydrodynamic predictions and simulation data. As the wavelength decreases to
around 5 molecular diameters, the classical hydrodynamics fails to predict the steady-state velocity profile; we attribute this to the non-local
nature of the fluid response and the presence of density gradients in the wall–fluid interfacial region. Using generalized hydrodynamics and
the Fourier spectrum of the density profile, we derive the strain rate amplitude and shear pressure corrections due to these two effects. The
local relaxation from the steady-state to the zero flow situation is tracked for different channel heights and wavelengths. The relaxation is in
general visco-elastic in the wall–fluid region, and we argue that this phenomenon is the mechanism behind the “enhanced viscosity” used in
the literature. We also report a surprising dynamics for the fluid located between the wall–fluid region and bulk region, which cannot be
explained by classical hydrodynamics; here, an initial exponential relaxation abruptly transitions into a linear relaxation. The work highlights
the many different physical mechanisms present in nano-confined fluids, and that the fluid response is in general position and wavelength
dependent.
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I. INTRODUCTION

Understanding hydrodynamics on the nanoscale has been a very
active research field for decades1–5 and supports the technological
advancement of fabricating and utilizing increasingly smaller lab-on-a-
chip devices.6 It is well known that classical hydrodynamic theory can,
in fact, be applied on surprisingly small length scales: Koplik et al.7 and
Travis et al.8 showed that for a fluid flow in a slit-pore of a height of
just ten particle diameters, the hydrodynamic prediction agrees very
well with molecular dynamics simulation results. More recently,
Hansen9 investigated hydrodynamic correlation functions in equilib-
rium, again using molecular dynamics, concluding that the theory is
valid down to around 10nm for different model liquid systems.

The classical predictions will eventually break down as mecha-
nisms relevant on extreme small scales emerge. This includes coupling
between the fluid linear and angular momenta,10 coupling between
polarization and thermal gradient,11 non-local response calling for
generalized linear constitutive relations,12 and velocity slip boundary
conditions.13,14 It is important to note that experimental data with
sufficiently high resolution are often not obtainable and many

investigations are based on comparison between theoretical predic-
tions and molecular simulation data, i.e., the latter is considered as an
ideal numerical experiment.

Fluid flows in nanoscale tubes and channels are inherently com-
plicated to model, particularly since the fluid can form structures in
the wall–fluid interfacial region.3,15 This structuring can have a charac-
teristic length that is on the same order of magnitude as the channel
itself and potentially affects the local transport properties.16 A lot of
work has been devoted to simulate and model these extreme confined
fluid systems, see, e.g., Refs. 7 and 17–20; however, there are still unex-
plored phenomena. For example, it is known that the visco-elastic
properties of the fluid are position dependent,21 but no direct compari-
son with theoretical predictions or a study of the wavelength depen-
dency has been carried out, to our knowledge.

In this study, we perform a series of direct non-equilibrium
molecular dynamics simulations (NEMD), where we employ a spatial
sinusoidal external driving force to a simple dense fluid confined
between two parallel walls. This allows us to investigate the system
response to a specific wavelength, here also denoted Fourier mode.
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Therefore, the resulting local steady-state velocity is a function of two
characteristic length scales: the force wavelength and channel height.
Removing the driving force, we can also follow the local relaxation
dynamics, again for the two characteristic length scales just mentioned.
The second purpose is to compare the classical hydrodynamic theory
against the simulation results: We solve the momentum balance equa-
tion for the system using two standard constitutive relations: Newton’s
law of viscosity and Maxwell’s visco-elastic model. The comparison
tests the classical theory and, moreover, enables us to resolve different
local dynamics characterizing the hydrodynamics in nano-scale con-
finement and analyze the mechanisms that lead to the failure of classi-
cal hydrodynamics on these extreme small scales.

II. HYDRODYNAMICS

The system is a fluid confined between two semi-infinite parallel
walls. The direction of confinement is the z-direction, see Fig. 1, and
the walls lie in the (x, y)-plane. For times t � 0, the fluid features a
sinusoidal steady flow in the x-direction. This is generated by an exter-
nal driving force given by

Fext ¼ qA sinðknzÞ; (1)

where q is the system density, A the acceleration amplitude, kn
¼ 2pn=h the force wave vector, n 2 Nþ is the wave number, and h
the channel height. In the theoretical treatment, it is assumed that the
acceleration amplitude is sufficiently small such that only the nth
Fourier mode in the velocity field is excited. Another way to generate a
spatially varying flow is to apply oscillatory shearing in the (x, y)-plane
by moving the wall atoms. This resembles an experimental approach;
however, it complicates the underlying equations while probing for the
same dynamics. For t � 0, the external force is switched off and we
follow the relaxation dynamics.

To derive the hydrodynamic predictions of this scenario, we first
derive the steady-state profile which also acts as the initial condition
for the relaxation dynamics. The wall–fluid interactions are such that
we can assume no-slip Dirichlet boundary conditions. The momentum
balance equation for the geometry illustrated in Fig. 1 and for suffi-
ciently low Reynolds numbers is

q
@u
@t

¼ Fext � @Pxz
@z

; (2)

where u is the streaming velocity in the x-direction and Pxz the shear
xz-component of the pressure tensor. In the steady state, i.e., for t � 0,
the shear pressure is given by Newton’s law of viscosity,22

Pxz ¼ �g0
@u
@z

; (3)

where g0 is the shear viscosity. By substitution, we get the equation for
the steady-state velocity, u0 ¼ u0ðzÞ,

d2u0
dz2

¼ � A
�0

sinðknzÞ; (4)

where �0 ¼ g0=q0 is the kinematic viscosity under the assumption
that the density is constant q ¼ q0. With the Dirichlet boundary con-
ditions u0ð0Þ ¼ u0ðhÞ ¼ 0, we get the steady-state solution,

u0ðzÞ ¼ Un sinðknzÞ ; t � 0; (5)

where the velocity amplitude is related to the wave vector and channel
height through

Un ¼ A
�0k2n

¼ h2A
4n2p2�0

: (6)

We can now derive the relaxation dynamics using Eq. (5) as the initial
condition.

A. Relaxation of a Newtonian fluid

For the Newtonian relaxation, we substitute Eq. (3) into the
momentum balance equation, Eq. (2), and noting that Fext ¼ 0 for
t � 0 we obtain a simple diffusion problem,

@uN

@t
¼ �0

@2uN

@z2
: (7)

uN is used to indicate that this is the velocity field obtained from the
Newtonian model. With Dirichlet boundaries and the initial condition
specified above, this gives the following solution:

uNðz; tÞ ¼ u0ðzÞ expð�ltÞ; (8)

where we have introduced the frequency coefficient l ¼ �0k2n to ease
the reading. The detailed derivation can be found in Appendix A.
Through the prefactor Un, we immediately see that the system relaxa-
tion depends on the channel height h and the driving force
wavelength.

B. Relaxation of a Maxwellian fluid

To model the visco-elastic relaxation, we apply Maxwell’s
model,22,23

@u
@z

¼ � 1
g0

1þ sM
@

@t

� �
Pxz; (9)

where sM is the Maxwell relaxation time. It is here convenient to for-
mulate the dynamics in Laplace space. To this end, we first note that
Eq. (9) in Laplace coordinate, s, is given by

FIG. 1. Schematics of the system under study. For t< 0, an external driving force
is applied and the velocity profile, u0 ¼ u0ðzÞ, is a steady-state sinusoidal flow pro-
file. For t � 0, the external driving force is removed and the velocity profile relaxes
toward a zero flow situation. The dashed line illustrates how the relaxation may
overshoot under certain conditions.
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@ûM

@z
¼ � 1

g0
1þ sMsð ÞP̂xzðz; sÞ þ sM

g0
Pxzðz; 0Þ; (10)

where the hat-symbol indicates the dynamical variable in Laplace
space and superscript M indicates that this is the velocity obtained
from Maxwell’s model. The initial shear pressure Pxzðz; 0Þ is obtained
from the steady-state velocity profile u0, where elastic effects are
absent, i.e.,

@

@z
Pxyðz; 0Þ ¼ q0A sinðknzÞ: (11)

By differentiation of Eq. (10), one then obtains

@2ûM

@z2
� sð1þ sMsÞ

�0
ûM ¼ A

g0

sMl� ð1þ sMsÞ
l

sinðknzÞ: (12)

This inhomogeneous differential equation can be solved, see
Appendix B for details, giving

uMðz; tÞ ¼ u0ðzÞ expð�CtÞKðtÞ: (13)

C ¼ 1=ð2sMÞ is the attenuation coefficient, andK is defined as

KðtÞ ¼

1� 2sMlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sMl

p sinhðx0tÞ þ coshðx0tÞ; sM � 1=ð4lÞ ;

1� 2sMlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� 4sMlj
p sinðx0tÞ þ cosðx0tÞ; sM > 1=ð4lÞ ;

8>>>><
>>>>:

(14)

where

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� 4sMlj

p
=ð2sMÞ (15)

is the characteristic frequency. Notice that there exists a particular
Maxwell time, s expM ¼ 1=ð4lÞ ¼ 1=ð4�0k2nÞ, where the temporal part
of the solution for uM changes topology, that is, it goes from a mono-
tonically decreasing function to an oscillatory behavior resembling a
damped oscillation. At this time, the relaxation is purely exponential,
still it should not be identified as the onset of visco-elastic behavior
as this is the case for sM 6¼ 0, but solely as a topological conjugacy
value.

Figure 2 shows the temporal factors of uN (thick full line) and uM

(broken lines) for different Maxwell times. As sM ! 0, we get the
expected single exponential behavior characterizing a Newtonian fluid.
Notice the relatively fast monotonically decreasing relaxation for
0 < sM � s expM compared to the purely viscous relaxation.

There are, of course, alternative visco-elastic models, to name a
few the Kelvin–Voigt model, Burgers model, and the Maxwell–
Weichert element.22,24 We here test the Maxwell model as this is the
standard exemplary and simple model for visco-elastic behavior.

III. SIMULATION RESULTS AND DISCUSSION
A. Molecular dynamics simulations

The dense fluid is composed of simple spherical particles con-
fined between two atomistic walls with a simple cubic lattice structure.
All particles have same mass and interact via the cut and shifted
Lennard-Jones potential,

UðrÞ ¼ 4�
r
r

� �12

� r
r

� �6
" #

þ UðrcÞ; r � rc;

0; r > rc;

8>><
>>: (16)

where r is the distance between two particles, � is the simulation energy
scale, and r is the characteristic particle diameter defining the simula-
tion length scale. All mechanical quantities can be expressed in terms
of r; �, and particle mass m,25 and following common practise we will
omit writing these units explicitly. In the simulations r; �, and m are
set to unity. All particles interact with same energy and lengths scales,
� and r. The cutoff rc is set to 2.5 except for the wall–wall particle inter-
actions where rc ¼ 21=6, that is, the particles are standard Lennard-
Jones particles except for the wall–wall interaction, which is given by
the Weeks–Chandler–Andersen (WCA) potential. The two walls are
each composed of three layers of wall particles in the confining z-direc-
tion. The wall particles are bonded to their crystal lattice site using a
restoring Hook spring force with a spring constant j¼ 500 for all sim-
ulations; the crystal lattice sites have z-coordinates 0.5, 1.5, and 2.5 for
the lower (left) wall, and Lz � 2:5; Lz � 1:5; Lz � 0:5 for the upper
(right) wall. The fluid bulk density is between 0.73 and 0.75 depending
on the channel height, and the wall density is qw ¼ 0:9, which ensures
a non-penetrable wall crystal. The simulation box is rectangular. In the
unconfined directions with lengths Lx ¼ Ly ¼ 20, while it varies in the
confined direction using Lz¼ 12 to Lz¼ 50, see Table I. The particle
equations of motion are integrated forward in time using a leap-frog
integrator25 with time step 0.002 or 0.005. Only the wall atoms are
thermostated20 using a heat-bath coupling method26 with relaxation
time of 0.01. The thermostat results in a system temperature T¼ 1.1,
and the bulk fluid state corresponds to a liquid state.

First, the steady-state sinusoidal velocity field is obtained by
applying the external driving force F ¼ ½A sinðknzÞ; 0; 0� for 108 time
steps for all simulations, expect for L¼ 12 where 5� 108 time steps
are used. The external field is then turned off and the subsequent
relaxation of the velocity profile is monitored. The relaxation is a
very fast process and it is subject to large noise-to-signal ratio. Thus,

FIG. 2. Temporal dynamics for the Newtonian model, sM ¼ 0, (full thick line) and
Maxwellian model (punctured lines) for different values of sM. The parameter values
are h¼ 13.6, n¼ 1, and �0 ¼ 2:0 in reduced simulation units, see Sec. III A.
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relaxation data are averaged over at least 1000 independent relaxa-
tion runs; for the smallest system, Lz¼ 12, data are averaged over
5000 relaxations.

The channel height is not uniquely defined. In Table I, we list the
height given by the (average) non-zero density profile, hq. This value
will be smaller than the channel height defined by the distance between
the center-of-mass of the two inner most wall layers facing the con-
fined fluid. We use the recommendation from Ref. 5, where it is shown
that the former definition is in good agreement with the theoretical
predicted height found by Herrero et al.27 and fits simulation data,
whereas the latter definition results in a too large flow rate. To drive
the flow in the simulations, we use a slightly larger height, hF, com-
pared to hq to ensure that all fluid particles are accelerated with a local
constant amplitude.

The velocity profiles are obtained by dividing the simulation box
into 200 bins and calculating the velocity field. In the steady-state, we
have20

u0ðzÞ ¼
X

i2binmivx;i
D E

tX
i2binmi

D E
t

; (17)

where h…it indicates a sample mean with respect to time. During the
relaxation, the number of bins is set to 50 in order to reduce the noise-
to-signal ratio and the instantaneous velocity profiles are sampled
equivalently according to

uðz; tÞ ¼
X

i2binmivx;iðtÞX
i2binmi

; (18)

and a sample mean is performed after the series of relaxations. The
density profile is also obtained using the simple bin method, see
Ref. 20.

As input to the hydrodynamic prediction, the fluid shear viscosity
is calculated in an equilibrium bulk simulation at the identical state
point (T, q0)¼ (1.1, 0.75) using the standard Green–Kubo integral of
the shear pressure;25 this gives g0 ¼ 1:616 0:05.

B. The steady state

We first address the steady-state profile, u0. Figure 3 shows the
profile for two cases with height h ¼ hq ¼ 13:74: In (a), the wave
number is n¼ 1 and in (b) n¼ 3. The classical prediction, Eq. (5),
where the viscosity is found from independent equilibrium simulation
at the bulk state points and no fitting is performed, agrees very well
with simulation data for n¼ 1. Notice that the assumption that the
kinematic viscosity is constant is valid in this case; this also follows pre-
vious studies, see, e.g., Ref. 5. This also means that only one system
response mode is excited corresponding to the external force mode.
Increasing the driving force magnitude A, we find discrepancy with
the prediction at strain rate amplitude of _c0 � 0:1, which defines the
upper bound for the Newtonian regime. Also, notice that the no-slip

TABLE I. Table of system details; the confined simulation box length, Lz, the number of fluid particles, Nf, the driving force wave number, n, the magnitude of the driving force, A,
the channel height used in the driving force, hF, the wave vector given by the driving force, kn, the channel height calculated from the density profile, hq, the half-wavelength, Dz,
as estimated from hq.

Lz Nf n A hF kn hq Dz Sample freq. Relax. time steps

12 1800 1 2:19� 10�1 6 1.05 5.74 2.87 10 2500
20 4200 1 4:03� 10�2 14 0.45 13.74 6.87 50 104

20 4200 2 1:61� 10�1 14 0.90 13.74 �3.44 10 2500
20 4200 3 2:52� 10�1 14 1.35 13.74 �2.29 10 2500
34 8400 1 1:01� 10�2 28 0.22 27.74 13.87 50 16�104

50 13 200 1 3:16� 10�3 44 0.14 43.73 21.87 50 32�104

FIG. 3. Steady-state velocity profiles for n¼ 1 (a) and n¼ 3 (b). In both cases, h¼ 13.74. Filled circles are molecular dynamics simulations data and full line the predictions
from classical hydrodynamics, Eq. (5). For later comparison, the corresponding density profile for n¼ 1 is also shown (scaled and shifted) and we note that the density profile
for n¼ 3 is equivalent. In (a), the strain rate amplitude is 0.020 and in (b) 0.056.
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boundary condition is achieved fairly well with this particular system
setup.

For shorter wavelengths, n¼ 3, the classical description fails and
additional system response modes are excited. The strain rate fulfills
_c0 < 0:1 and we can disregard the discrepancy to be due to non-linear
modes. The power spectra for the two velocity profiles are shown in
Fig. 4, where the wave vector is normalized with respect to kn. While
only the mode k¼ kn is excited when n¼ 1, as discussed above, two
additional low intensity (or amplitude) long wavelength modes are
excited for n¼ 3. The very low intensity (<1) modes are assigned to
the data noise. We will not pursue a more detailed spectral analysis of
the velocity profile here but seek to understand the mechanisms
behind the additional modes. We highlight that for n¼ 3, we observe
that (i) away from the wall–fluid region the velocity amplitude is larger
than predicted, (ii) the amplitude features varying magnitude, (iii) in
the first half-wave nearest to the wall the flow peak features a small pla-
teau, and (iv) the wavelength is varying in the wall–fluid region.

Todd et al.12 showed that for a system with constant density that
undergoes sufficiently small wavelength sinusoidal shear, similar to the
one studied here, the local stress (or shear pressure) is reduced. This
reduction results in an increased velocity amplitude, when compared
to the classical description. The shear pressure reduction is due to the
non-local nature of the fluid response, meaning that the stress at a
point is not simply given by the strain rate at that particular point, as
proposed by the Newtonian constitutive model, but the entire system
strain rate distribution.

We will apply this picture as a model for the enhanced velocity
amplitude. Assuming that only the main Fourier mode is excited, the
strain rate in the bulk region can be written as _c ¼ _c0=2 cosðknzÞ. The
generalized constitutive model for the shear pressure is then

PxzðzÞ ¼ �g0 _c0

ð1
�1

f ðz � z0Þ cosðknz0Þdz0; (19)

where f is the kernel which is an even function around zero and fulfillsÐ1
�1 f ðzÞdz ¼ 1.5,28 Equation (19) is valid for a bulk system of infinite
extent, however, the conclusions from this will be true for the bulk part
of the channel as well. Introducing the variable u ¼ z � z0, we have

PxzðzÞ ¼ �g0 _c0

ð1
�1

f ðuÞ cosðknðz � uÞÞdu: (20)

Taylor expanding the cosine function about the point of interest z, we
have

cosðknðz � uÞÞ ¼ cosðknzÞ � kn sinðknzÞðz0 � zÞ

� k2n
2
cosðknÞðz0 � zÞ2 þ 	 	 	 ; (21)

and substituting into Eq. (20) and performing the integrals gives

PxzðzÞ ¼ �g0 _c0 cosðknzÞ � k2nf2 cosðknzÞ þ 	 	 	� �
; (22)

where we useð1
�1

uf ðuÞdu ¼ 0 and f2 ¼ 1
2

ð1
�1

u2f ðuÞ du: (23)

Except for the first term, the response goes as even powers of wave vec-
tor, and the magnitudes of the terms are determined by the kernel f.
As an example, if we choose a Gaussian form for f, say
f ðuÞ ¼ 1=

ffiffiffiffiffiffi
pr

p
expð�ðu=rÞ2Þ, see Ref. 5, and let r ¼ 0:4 (corre-

sponding to a half width of around particle diameter12), we get f2
approximately equal to 1/20.

The steady-state momentum balance equation is

Fext ¼ dPxz
dz

; (24)

and on substitution of Eqs. (22) and (1) into Eq. (24) we get to second
order in kn,

q0A sinðknzÞ ¼ g0 _c0knð1� k2nf2Þ sinðknzÞ; (25)

or by comparing coefficients,

_c0 ¼
q0A

g0knð1� k2nf2Þ
; 0 < k2n f2 < 1: (26)

Notice that we obtain the classical local result _c0 ¼ q0A=g0kn for
kn ! 0. Using f2 ¼ 1=20 then for kn ¼ 0:45, Fig. 3(a), we get a strain
amplitude increase of approximately 1%, and for kn ¼ 1:35, Fig. 3(b),
approximately 10%. This rough estimate is in good agreement with the
NEMD data.

We conjecture that points (ii)-(iv) are due to the varying density
in the wall-fluid region. The phenomena are found in this region and
also observed if the forcing wavelength is of the order of this wall–fluid
region, that is, for sufficiently large kn. To understand the effect of den-
sity variation, we again investigate the local shear pressure as this is the
fundamental quantity. The momentum balance equation in the steady
state, but now for varying density, q ¼ qðzÞ, reads

qðzÞA sinðknzÞ ¼ dPxz
dz

; (27)

thus, the actual shear pressure can be obtained simply from integra-
tion, i.e.,

PxzðzÞ ¼ A
ðz
0
qðz0Þ sinðknz0Þ dz0

¼ �A cosðknzÞ
kn

qþ A sinðknzÞ
k2n

dq
dz

þ 	 	 	 � Pxzð0Þ (28)FIG. 4. Normalized power spectra for the two velocity profiles in Fig. 3. Notice that
the y-axis is a logarithmic scale.
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for kn 6¼ 0. For kn¼ 0, the shear pressure is 0. Interestingly, shear pres-
sure depends on the product of the driving force and the density deriv-
atives. The series converges very slowly and is not applicable in
practice if one needs to use the higher order numerical derivatives of
the density.

To proceed, we therefore write the density in terms of its Fourier
cosine series,8,29

qzðzÞ ¼ q0 þ
X
i>0

qi cosðkizÞ; (29)

where qi is the ith Fourier coefficient corresponding to the wave vector
ki ¼ 2pi=h. Substitution of this series into Eq. (28) gives upon
integration

PxzðzÞ ¼ �Aq0
kn

cosðknzÞ � Pc
xzðzÞ; (30)

where Pc
xz is the shear pressure correction term coming from the den-

sity variations,

Pc
xz ¼ A

X
i>0

qi
2

cosððki þ knÞzÞ
ki þ kn

þ cosððki � knÞzÞ
kn � ki

� �
: (31)

From this, we confirm the expected behavior, namely, that in the limit
of zero wave vector the shear pressure follows the constant density
local model, Pxz ¼ �Aq0=kn cosðknzÞ since limkn!0 Pc

xz ¼ 0. Also, we
see that there exists a divergent resonance mode at ki¼ kn.

From the momentum balance equation, it is clear that the gradi-
ent of the shear pressure is the force density experienced by the fluid.
Figure 5 shows the force density contribution from the correction
term, Pc

xz, normalized with respect to the amplitude predicted by the
classical theory, that is, kn=ðAq0Þ dPc

xz=dz. The inset shows the
Fourier coefficients which are independent of the applied forces used
here. The effect of density variations on the force in the wall–fluid

interface is significant and increases with kn, that is, the applied force
wave vector. For n¼ 3, the correction term in the wall–fluid region is
of the same magnitude as the classical prediction amplitude, and the
classical theory breaks down. For this wave number, we also observe
the velocity profile plateau, point (iii), and this is the reason why we
attribute the density variations to be the mechanism behind the pla-
teau. The correction quickly decays as kn decreases; for n¼ 1 the cor-
rection term is only around 10% of the classical prediction. Note, for
n¼ 1 the plateau is absent in agreement with the conjecture.

Derivation of the corresponding velocity profile will require a
non-local constitutive model as we used above, however, at the wall–
fluid boundary we cannot apply the infinite spatial extension and the
spatial support of the kernel is unclear; we will not pursue this further.
For more on this, the reader is referred to Ref. 30.

It is important to mention that the first attempt to account for
the effect of density variations on the flow properties is due to Bitsanis
et al.16,31 who proposed the local average density model (LADM). In
this approach, the effects of large density variations are dramatically
reduced by density averaging. While the LADM has been applied suc-
cessfully to different flow systems, see, e.g., Ref. 32, it cannot account
for the flow enhancement observed here, which is explained by the
non-local effects.5,12,14

C. Relaxation dynamics

Figure 6 shows the relaxation from the steady state to zero flow
for n¼ 1 and (a) h¼ 5.74 and (b) h¼ 13.74. Data are shown as sym-
bols and lines are spline fits to data, which serve as a guide to the eye.
For the smaller channel, the relaxation is fast as predicted by the the-
ory, and the velocity shows a small overshoot indicating a visco-elastic
response as it was illustrated in Fig. 1.

To reduce the noise-to-signal ratio, we investigate the average
relaxation dynamics in a spatial region in the channel. Let zi and ziþ1

define the spatial boundaries of a region of interest, then

�uðtÞ ¼ 1
Dz

ðziþ1

zi

uðz; tÞ dz; (32)

such that Dz ¼ ziþ1 � zi is the region height. For the Newtonian fluid,
this gives

�uNðtÞ ¼ A cosðknziÞ � cosðknziþ1Þð Þ
�0k3nDz

expð�ltÞ; (33)

and for the Maxwellian fluid,

�uMðtÞ ¼ A cosðknziÞ � cosðknziþ1Þð Þ
�0k3nDz

expð�CtÞKðtÞ: (34)

It is natural to let the averaging region be defined by the half-wave of
the driving force such that zi ¼ ih=ð2nÞ; i ¼ 0; 1;…; 2n, and therefore
Dz ¼ h=ð2nÞ. Due to symmetry, one can further average the velocity
in the pair of regions (taking the sign into account) with same distance
to the wall, i.e., i¼ 0 and i ¼ 2n, i¼ 1 and i ¼ 2n� 1, and so forth.
The region pairs we symbolize with a natural number and the same
number with dagger, for example, 1 and 1† in Fig. 6.

Figure 7 shows the normalized spatial average relaxation dynam-
ics for n¼ 1 and h ¼ 5:74; 13:74; 27:74, and 43.73. The spatial average
is performed over region 1 and 1y as explained above. For the three
largest channel heights, the relaxation data are predicted very well by

FIG. 5. Force density contribution from the correction term for the shear pressure
normalized with respect to the classical prediction amplitude. Black line is for wave
number n¼ 1 and red for n¼ 3. Inset shows the Fourier coefficients for the density
profile used as input to Eq. (31).
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Newton’s law of viscosity, Eq. (33), again without any fitting using
g0 ¼ 1:6.

For h¼ 5.74, where Dz ¼ 2:87 and kn¼1 ¼ 1:05 the system fea-
tures a visco-elastic relaxation; this visco-elastic behavior is consistent
with the small length-scale relaxations from thermal perturbations in
equilibrium.5 We fit the data to the Maxwell model, Eq. (34), in two
different ways. First, we use the Green–Kubo shear viscosity, g0 ¼ 1:6,
allowing sM to be the only fitting parameter; the result of this gives the
full line in Fig. 7 with sM¼ 0.14. It is clear that this yields poor agree-
ment with data. In the second approach, both g0 and sM are fitting
parameters (dashed line) giving g0 ¼ 1:39 and sM ¼ 0:20. The second
fitting procedure gives better agreement and results in a lower viscos-
ity, indicating a reduced viscous dissipation on these small length
scales; this is in agreement with Ref. 33, where multiscale equilibrium
relaxations are studied. It is also interesting to note that the relaxation
for h¼ 5.74 appears exponential in accordance with theory at very
short times, where the corresponding bulk fluid is in the ballistic
regime.

In Fig. 8, relaxation snap-shots for h¼ 13.74 are shown for wave
numbers n¼ 2 (a) and n¼ 3 (b). Again, symbols are raw data and
lines are spline fits to the data. Recall that for these wave numbers, the

FIG. 7. Normalized averaged velocity relaxation for n¼ 1 and four different channel
heights h ¼ 5:74; 13:74; 27:74, and 43.73. Symbols are averaged simulation data and
lines theoretical predictions, where Eq. (33) is used for h ¼ 13:74; 27:74; 43:73 and
Eq. (34) for h¼ 5.74. For the three largest channels, no fitting is employed using the
Green–Kubo viscosity g0 ¼ 1:6. For h¼ 5.74 Eq. (34) is fitted to data using one param-
eter, sM, (full line) and two parameters, sM and g0 (dotted line); see text for further
details.

FIG. 8. Snap-shots of the velocity relaxation profiles for h¼ 13.74. In (a) n¼ 2 and in (b)
n¼ 3. Symbols are simulation data and lines are spline fits (trend lines). The numbers indi-
cate the region intervals used in the spatial averaging. Shaded regions depict the walls.

FIG. 6. Snap-shots of the velocity profiles for n¼ 1. In (a) h¼ 5.74 and in (b)
h¼ 13.74. Symbols are simulation data and lines are spline fits shown to guide the
eye. The vertical dashed line shows the separation of the region intervals used in
the spatial averaging, and the numbering refers to the interval. Shaded regions
depict the walls.
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steady-state velocity profile is affected by the density gradient in the
wall–fluid region as well as non-local viscous response properties.
Figure 9(a) plots the corresponding spatial relaxation averages over the
regions indicated in Fig. 8. Also, the overall system average relaxation
is shown.

For n ¼ 2;Dz ¼ 3:44, we observe different local relaxation
dynamics: The region closest to the wall, regions 1 and 1†, are charac-
terized by large densities and density variations, and features clear
visco-elastic behavior. The relaxation is fitted to the Maxwell model,
Eq. (34), using sM as fitting parameter with g0 ¼ 1:6. The best fitted

Maxwell time is sM ¼ 0:26, which is different from the corresponding
value found in Fig. 7, sM ¼ 0:14, indicating a difference in the relaxa-
tion dynamics, and in particular, an enhanced elastic response. The
relaxation dynamics around the channel center, regions 2 and 2y, is fit-
ted to the Newtonian model using g0 as a fitting parameter obtaining
g0 ¼ 1:24, likely due to the non-local effect.

The system’s overall average relaxation for n¼ 2 is a visco-elastic
relaxation. While it does not feature an overshoot, it can appear purely
viscous, but, with a higher viscosity coefficient compared to bulk. This
apparent increased viscosity can be the mechanism behind the so-
called enhanced viscosity reported in the literature, see, e.g., Ref. 34,
but we argue here that the “enhancement” is actually an increased elas-
tic response on small length scales even if the overshoot is absent.

The different dynamics in the channel is even more evident for
the mode corresponding to n¼ 3, Fig. 9(b), where the half-wavelength
is Dz ¼ 2:29. In the wall–fluid regions, regions 1 and 1†, the elastic
response is further enhanced as the average is performed over a smaller
region where the density layering is more pronounced. For the next
half-wave, regions 2 and 2y, we observe a surprising relaxation that
does not feature any clear viscous or visco-elastic response; initially,
the relaxation appears exponential but transitions to a linear decay.
Naturally, a fit of Eqs. (33) or (34) to data results in very poor agree-
ment. Thus, the classical description fails in this local region and nei-
ther the Newton nor Maxwell model is not applicable. One can, of
course, fit an exponential (or Prony) series to the relaxation curves,
which will reveal a spectrum of relaxation times, or model the relaxa-
tion using more advanced visco-elastic models, like the Maxwell–
Weichert element; however, it is the purpose here to test the two
standard models. This is an interesting question and warrants a sepa-
rate, more detailed investigation in future.

It is also interesting that this region features maximum amplitude
in the steady state, Fig. 3. In the channel mid-region, the dynamics
again changes showing a clear visco-elastic response on the length scale
of Dz. As it is the case for n¼ 2, the system overall average relaxation
dynamics appears to involve no elastic component even if this is
indeed present on the small length scale.

IV. CONCLUSION

We here investigated the nanoscale dense fluid response to a
sinusoidal varying driving force for different channel heights and
external force wavelengths. It was shown that for sufficiently large
driving force wavelengths and channel heights both of the order of 10
particle diameter, the steady-state velocity profile is correctly predicted
by classical hydrodynamics using Newton’s viscosity law. For small
wavelengths, the classical theory breaks down, which we showed to be
due to (i) non-local fluid response and (ii) the presence of density var-
iations in the wall–fluid region.

The relaxation from the steady state to zero flow was also studied.
Again, the relaxation dynamics is well described by hydrodynamics for
large wavelength and channel height. For small channel heights, the
Maxwell model correctly captures the visco-elastic overshoot; however,
it fails quantitatively and as a consequence both the Maxwell time and
the viscosity must be used as free fitting parameters. For small wave-
lengths, the relaxation dynamics varies with respect to position. As
expected, the elastic component is enhanced, and in the wall–fluid
interface the density layering greatly affects the local transport proper-
ties. In general, we conclude that the wall–fluid interfacial region

FIG. 9. Normalized averaged velocity relaxation for h¼ 13.74 and (a) n¼ 2 and (b)
n¼ 3. Symbols are averaged simulation data and lines the theoretical predictions,
Eqs. (33) or Eq. (34), see legends for the parameter values.
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features pronounced visco-elastic response compared to the bulk
region at the same length scale.

We wish to highlight the region between the wall–fluid interface
and the bulk: In the steady state, it features the maximum velocity
amplitude over the entire profile, and the relaxation dynamics is very
different from the other regions in that it falls into two different
regimes, namely, (i) initial exponential relaxation and (ii) what appears
to be a linear relaxation. The classical theory cannot even qualitatively
account for the dynamics.

It is natural to extend the investigation to even higher wave num-
bers, however, the underlying modeling applied here will fail in this
case, for example, due to the coupling between the strain rate gradient
and the density which is not included here, see Refs. 29, 35, and 36.
The effects of increasing the wave number will also be enhanced by the
complex interfacial dynamics. We expect this to be a focus in future
research.
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APPENDIX A: NEWTONIAN RELAXATION

The momentum balance equation for the geometry shown in
Fig. 1 and when no external force is applied is given in Laplace
space as

qðsûðz; sÞ � u0ðzÞÞ ¼ � @

@z
P̂xzðz; sÞ; (A1)

where the hat-symbol indicates the Laplace transform, s ¼ aþ ix is
the generalized Laplace coordinate with dimension inverse time,
and u0ðzÞ is the initial condition given in Eq. (5). Using Newton’s
law of viscosity, Eq. (3), in Laplace space, we have

P̂xzðz; sÞ ¼ �g0
@ûðz; sÞ

@z
; (A2)

the following second order non-homogeneous differential equation
can be obtained:

@2û
@z2

� s
�0

û ¼ � 1
�0

u0ðzÞ: (A3)

Here, �0 ¼ g0=q0 is the kinematic viscosity. The differential equa-
tion is of the general form given by

@2û
@z2

þ aðsÞû ¼ b; (A4)

with

aðsÞ ¼ � s
�0

and b ¼ � 1
�0

u0ðzÞ: (A5)

The general solution is given as the sum of the homogeneous and
particular solutions as u ¼ uh þ up, with

uh ¼ C1e
nz þ C2e

�nz; n2 ¼ s
�0

: (A6)

The no-slip boundary conditions in Laplace space are

ûð0; sÞ ¼ ûðh; sÞ ¼ 0; (A7)

from which the coefficients C1 and C2 can already be seen to be
zero. The solution is thus given by the particular solution u¼ up.
Guessing the particular solution to be

ûpðzÞ ¼ Cu0ðzÞ (A8)

and solving Eq. (A4) for ûp gives

C ¼ 1
lþ s

; (A9)

where l ¼ �0k2n. The specific solution is then given by

ûðz; sÞ ¼ 1
lþ s

u0ðzÞ; (A10)

in agreement with the boundary conditions. Performing an inverse
Laplace transformation [using L�1½1=ðs� aÞ� ¼ expðatÞ], the solu-
tion in time is

uðz; tÞ ¼ u0ðzÞe�lt : (A11)

APPENDIX B: MAXWELLIAN RELAXATION

The Maxwell time sM is introduced by Maxwell’s model, Eq.
(9), as constitutive equation instead of Newton’s law of viscosity. In
Laplace space, it reads

@ûðz; sÞ
@z

¼ � 1
g0

1þ sMsð ÞP̂xzðz; sÞ þ sM
g0

Pxzðz; 0Þ; (B1)

where the last term is the initial shear pressure for which the exter-
nal force has been lifted, but the relaxation has not yet started.
We can use Newton’s law of viscosity to express this in terms of
u0ðzÞ as
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Pxzðz; 0Þ ¼ �g0
@u0ðzÞ
@z

: (B2)

Taking the spatial derivative of Eq. (B1), we get

@2û
@z2

¼ � 1
g0

1þ sMsð Þ @P̂xz

@z
þ sM

g0

@

@z
Pxzðz; 0Þ: (B3)

Inserting u0ðzÞ ¼ A=ð�0k2nÞ sinðknzÞ in Eq. (B2) and taking the
derivatives give

@

@z
Pxzðz; 0Þ ¼ q0A sinðknzÞ: (B4)

Inserting this into Eq. (B3) and isolating P̂xz gives

@P̂xz

@z
¼ � g0

1þ sMs
@2û
@z2

þ sMq0A
1þ sMs

sinðknzÞ: (B5)

Inserting Eq. (B5) and the initial condition u0ðzÞ into the momen-
tum balance equation Eq. (A1), the equation for û is obtained as

@2û
@z2

� sð1þ sMsÞ
�0

û ¼ sMl� ð1þ sMsÞ
�0

u0ðzÞ; (B6)

where again we use l ¼ �0k2n. Equation (B6) is on the same general
form as in the previous case. The coefficients are

aðsÞ ¼ � sð1þ sMsÞ
�0

; (B7)

bðsÞ ¼ sMl� ð1þ sMsÞ
�0

u0ðzÞ: (B8)

The homogeneous solution is

ûM
h ðz; sÞ ¼ C1e

wz þ C2e
�wz; (B9)

but again, from the no-slip boundary conditions, the coefficients C1

and C2 are found to be zero. The particular solution is thus our only
concern. We guess the solution as

ûðz; sÞ ¼ BðsÞu0ðzÞ: (B10)

Inserting into Eq. (B6) determines B(s) to be

BðsÞ ¼ 1þ sMðs� lÞ
sð1þ sMsÞ þ l

: (B11)

It is now possible to perform an inverse Laplace transform of B(s).
The poles of B(s) are

s1;2 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 4lsM

p � 1
2sM

; (B12)

and the zero is (where the numerator is zero)

s0 ¼ lsM � 1
sM

: (B13)

Factorizing B(s) gives

BðsÞ ¼ s� s0
ðs� s1Þðs� s2Þ (B14)

¼ s
ðs� s1Þðs� s2Þ �

s0
ðs� s1Þðs� s2Þ : (B15)

We apply the following rules of inverse Laplace transform:

L�1 1
ðs� aÞðs� bÞ

	 

¼ ebt � eat

b� a
; (B16)

L�1 s
ðs� aÞðs� bÞ

	 

¼ bebt � aeat

b� a
: (B17)

Then, B(t) becomes

BðtÞ ¼ e�CtKðtÞ; (B18)

where C ¼ 1=ð2sMÞ is the attenuation coefficient and KðtÞ is
defined as

KðtÞ ¼ 1� 2sMlð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sMl

p sinh x0tð Þ þ cosh x0tð Þ (B19)

with the characteristic frequency given by

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sMl

p
2sM

: (B20)

The temporal evolution is thus an exponential decay weighted by a
sum of hyperbolic sine and cosine functions. In the limit where
sM approaches the s ¼ 1=4l, this reduces to just an exponential
decay as

lim
sM!1=4l

KðtÞ ¼ 1; (B21)

whereas in the case were sM > 1=4l; KðtÞ reduces to

KðtÞ ¼ 1� 2sMlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� 4sMlj
p sinðx0tÞ þ cosðx0tÞ; (B22)

giving two distinct dynamical regions depending on the parameters
sM and l.
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