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Abstract

This paper studies liquid-model systems with almost identical constant-potential-energy
hypersurfaces. We simulated continuous interpolations between such systems, specifically
between the Lennard—Jones (LJ), Weeks—Chandler—Andersen (WCA), exponent 12
inverse-power-law (IPL), and Yukawa (YK) pair-potential systems. Structure and dynamics
were monitored via the radial distribution function and the time-dependent mean-square
displacement, respectively. In terms of the interpolation parameter, 0 < A < 1, we argue that two
systems have very similar constant-potential-energy hypersurfaces if the potential energies of
configurations rarely cross when plotted as functions of A. Such absence of ‘level crossing’
applies to a very good approximation for the LJ to WCA transformation, and it also applies to a
quite good approximation for the LJ to IPL and the YK to YK transformations (the latter varies
the screening length). In all cases, structure and dynamics are shown to be almost invariant as
functions of A. The density is kept constant when A is varied. Temperature must generally be
adjusted with A\, which is done by an iterative ‘reduced-force-matching’ method with no free
parameters. We also apply the interpolation strategy to two versions of the Kob—Andersen (KA)
binary LJ system and show that a recently introduced shifted-force-cutoff version of this system
has constant-potential-energy hypersurfaces, which are almost identical to those of the original
KA system. This result rationalizes the previously established fact that the two KA versions
have virtually identical physics.
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1. Introduction

The simplest model liquids are described by Newtonian
dynamics and involve only pair-potential interactions [1, 2].
Standard examples include the Lennard—Jones (LJ), inverse-
power-law (IPL), and Yukawa (YK) pair-potential systems. It
is always of interest when different systems have the same—
or almost the same—structure and dynamics [2-10]. A clas-
sical example of this is the observation that the radial distri-
bution function (RDF) of the LJ system is very close to that
of a hard-sphere system, an intriguing fact that was noted in
1968 in some of the earliest scientific computer simulations
[11] and which inspired the advent of successful perturbation
theories based on the hard-sphere system as the zeroth-order
approximation [1, 2, 12-17].

The term ‘quasiuniversality’ describes the fact that
many pair-potential systems have very similar structure and
dynamics [10]. This is usually rationalized by reference to the
hard-sphere system: whenever two systems at two thermody-
namic state points are described well by hard-sphere systems
of same packing fraction, the two systems have very similar
physics. Incidentally, this reasoning was the background of
Rosenfeld’s ‘excess-entropy scaling’ recipe from 1977 [18],
which utilized the fact that the excess entropy is in a one-to-one
correspondence with the packing fraction of the hard-sphere
system mimicking the system in question. A recent alternative
justification of quasiuniversality approximates the relevant
pair potential as a sum of EXP (exponential repulsive) pair
potentials [19]; by reference to isomorph theory [20-22] such
a sum leads to approximately the same structure and dynamics
as that of a single EXP pair-potential system [10, 23].

In this paper, which builds on ideas of [24], we take an
a different approach to predicting when one can expect two
model liquids to have similar physics, an alternative that does
not introduce a reference system. Our main proposition is that
this is the case whenever the two systems have almost the
same constant-potential-energy hypersurface, {2 [24]. If this
applies, geodesic motion on the two 2s will be very similar.
Since geodesic motion defines the so-called NVU dynamics
that leads to the same physics as standard Newtonian dynamics
[25, 26], the two systems must then have very similar structure
and dynamics.

We study below continuous interpolations between well-
known pair-potential systems implemented by introducing
a parameter A that varies from zero to unity. The invest-
igation is divided into two parts. The first part shows res-
ults from computer simulations interpolating between differ-
ent single-particle systems (section 4); a second part stud-
ies an interpolation between two binary systems (section 5).
In all cases we find that the constant-potential-energy hyper-
surface is almost independent of A and that structure and
dynamics, as predicted [24], are almost invariant with chan-
ging A. In particular, this validates the NVU-based approach
to the quasiuniversality of simple liquids [24]. The method
used below is easily generalized to systems characterized by

the non-spherically-symmetric interactions required to model
molecular liquids.

2. Determining when different systems have similar
physics

Consider a system of N point particles described by clas-
sical mechanics. The system’s potential energy is denoted by
U(R) in which R = (ry,...,ry) where r; is the position vec-
tor of particle i. At a thermodynamic state point of temperat-
ure 7, volume V, and (number) density p = N/V, the average
potential energy is denoted by (U). The 3N — 1 dimensional
constant-potential-energy hypersurface () is defined by

Q={ReRMUR)=()}. 1)

We regard the collective position vector R as a point on
a hypersurface of this kind. Usually one assumes periodic
boundary conditions, in which case R* in equation (1) is
replaced by a 3N-dimensional torus (periodic boundary con-
ditions are used throughout this paper). For simplicity, the dis-
cussion is limited to interpolations between systems of same
density, but generalization to systems of different densities is
straightforward.

NVU dynamics is defined by replacing Newton’s equation
of motion by geodesic motion on 2. This can be shown to not
change the structure and dynamics of the system in question
[25, 26]. For instance, the time-autocorrelation functions of
NVU dynamics are identical to those of standard NVE or NVT
dynamics (with obvious exceptions like the potential-energy
time-autocorrelation function). As a consequence, if two sys-
tems have the same {2—possibly at state points with different
temperatures—then they will have the same physics (except
for a possible scaling of time). Likewise, if they have approx-
imately same (), the physics will be approximately the same.
By ‘same physics’ we here mean same structure and dynamics
while, e.g. thermodynamic properties like the average poten-
tial energy or the Helmholtz and Gibbs free energies are not
expected to be identical (or even close). Note, however, that
since the excess entropy is determined by the ‘volume’ (area)
of 2—specifically its logarithm [24]—this particular thermo-
dynamic quantity is invariant whenever (2 is.

The mathematical criterion for two systems, ‘0’ and ‘1’, to
have identical constant-potential-energy hypersurfaces is that
for all configurations R, and Ry,

Uop(Ry) = Uy (Ry) = U; (Ry) =U; (Ry) . (2

The arrow = here represents a logical implication in the
mathematical understanding of this term. By symmetry, =
may be replaced by <= . In practice, equation (2) is never rig-
orously obeyed for any two different systems. For this reason,
it is more practical to be able to investigate whether two sys-
tems have approximately the same €2, which is done by repla-
cing the equality sign in equation (2) by 2. This requires quan-
tifying to which degree = applies, however. An operational
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approach to check for approximately the same (2 is to study to
which degree the following implication applies

Uy (Ra) < U (Rb) = U, (Ra) <U; (Rb) . (3)

By going through the three different possibilities Up(R,) <
Uo(Ry), Up(R,) =Up(Ry), and Up(R,) > Up(Ry), it is
straightforward to show that equations (2) and (3) are mathem-
atically equivalent. When it comes to numerical implementa-
tion, however, it makes better sense to check equation (3) than
equation (2) for being approximately obeyed [27].

What is the requirement on U(R) in equations (2) and (3)?
This is simply that of thermodynamic consistency, i.e. that
the system in question has a well-defined bulk thermodynamic
limit and does not collapse with time. Exact mathematical cri-
teria ensuring this were formulated long ago by Fisher and
Ruelle [28, 29]. In particular, they showed that if the spatial
integral of the pair potential is negative, the system is unstable.
This implies that if Uy(R) is stable, a system with potential-
energy function —Up(R) is unstable. Thus one cannot use
in equation (3) U,(R) = —Uy(R), which would violate the
Fisher-Ruelle stability criterion (while obeying equation (2)
by having the same constant-potential-energy hypersurface).

Below we investigate how well equation (3) applies by
selecting a number of independent equilibrium configurations
of system 0 and plotting how their potential energies change
when the system is gradually transformed into system 1. If the
curves generated in this way rarely cross, then equation (3)
applies to a good approximation and the two {2s must be almost
identical. This approach is inspired by a similar procedure in
isomorph theory [30], in which case it is the density of a given
system that is changed, however, not the system itself.

As mentioned, we keep the density constant when com-
paring two systems. It is important to note that two systems
may have the same (2 at state points of same density but dif-
ferent temperatures. This is because the equilibrium temper-
ature corresponding to a given (2 is neither determined by the
value of the potential energy on {2 nor by the excess entropy
Sex (which quantifies the volume of (2). Thus the temperature
is given by the thermodynamic relation 7= (0U/0Se ), [20,
22, 24], which can differ even for two systems with same (2.
Note that this issue is only encountered because we perform
NVT simulations; the temperature does not need to be known
if one instead uses NVU dynamics [25].

In order to check by NVT simulations whether two sys-
tems have the same—or very similar—physics, we need to
determine the equilibrium temperature at a state point with
constant-potential-energy hypersurface 2. One way of doing
this is by means of the so-called configurational temperature,
Teont, Which in thermal equilibrium is identical to the temper-
ature T and is defined [31-33] by

kBTconf = <§§202]>> (4)

Here the sharp brackets denote canonical averages, which
in the thermodynamic limit N — co may be replaced by
configuration-space microcanonical averages, i.e. averages
over . In this limit, the relative fluctuations of (VU)? and
V2U go to zero, so for a large system one can estimate Tpon
reliably from a single equilibrium configuration R € €2

(VU(R))®

kBT = kBTconf = kBTCO“f (R) = WT(I{) '

&)

The relative error in this estimate decreases with system size
as 1/ V/N.

An alternative to using equation (5) for calculating the equi-
librium temperature at a given state point is to employ so-
called force matching [34]. This approach has the advant-
age that it does not involve the Laplacian of U but only
forces, which are calculated anyway in a computer simula-
tion. A disadvantage is that force matching in contrast to
equation (5) needs a reference system with same (or very sim-
ilar)  for which the temperature is known. If such a sys-
tem is at hand, one can calculate the ratio of the temperat-
ure of the system in question to that of the reference system
from the following argument referring to the thermodynamic
limit (for details please see [24, 34]): At any point R on 2,
the normal vector n(R) is given by n(R) = VU(R)/|VU(R)|.
The curvature x(R), which expresses how fast the nor-
mal vector changes when moving on {2, is given [24] by
K(R) o V- n(R) = V2U(R)/|VU(R)| 2 [F(R)|/Teont(R) in
which F(R) = —VU(R) is the 3N-dimensional force vector
and = signals that the relative deviation vanishes in the ther-
modynamic limit. The equilibrium temperature 7 of the sys-
tem in question relative to that of the reference system, T,
is determined by the fact that since the two systems have the
same ), one has k = k( implying that

L F®)
=T 5wy ©

We refer to equation (6) as ‘reduced-force matching’; the
determination of T according to this is carried out iteratively
(appendix). Except for a density factor that is the same in all
cases of this paper, the quantity F(R)/kgT is the so-called
reduced force that plays an important role in isomorph theory
[20-22].

3. Pair potentials and simulation details

We consider a systems of N > 1 particles of same mass, m. If
r;; is the distance between particles i and j, in terms of the pair
potential v(r) the total potential energy U is given by U(R) =
>_i<;v(ri). This paper considers some of the most com-
monly studied pair potentials, the LJ [35], Weeks—Chandler—
Andersen (WCA) [12], IPL with exponent 12 [6, 36-38], and
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Figure 1. The pair potentials studied. Plotted as functions of the
pair distance r, the figure shows the Lennard—Jones (LJ),
Weeks—Chandler—Andersen (WCA), inverse power-law with
exponent 12 (IPL), and Yukawa (YK) pair potentials. The Yukawa
potential is shown for the two characteristic lengths, o =1 and

o =3, between which we extrapolate (figure 5).

Yukawa (YK) [39] potentials (figure 1). These are defined by

v (1) =4e (/o) = (/) )

vy (r) — vy (2Y0) , r<2Y/%0
vip (r) = ¢ (r/o) "
€ —r/o

vy (r) = We

In these expressions ¢ determines the energy scale and o the
length scale of the pair interaction. Unless otherwise stated
we use the rationalized unit system in which e=1, o =1,
and kg = 1. When evaluating how much structure and dynam-
ics vary when interpolating between two pair potentials, the
density p is kept constant while temperature is adjusted as
described in section 2 and the appendix.

A general method of interpolating between system 0 of
pair potential v(%)(r) and system 1 of pair potential v(!)(r)
uses the convex combination v (r) = (1 — \)v(® (r) + Av(D)
(0 <X < 1), which generates a one-parameter family of pair
potentials that clearly interpolates smoothly between systems
0 and 1. Below we take this approach in some cases, but gen-
erally employ the philosophy of implementing the most nat-
ural interpolation. In this connection, recall that in their 1971
paper [12], Weeks, Chandler, and Andersen regarded the LJ
pair potential as a sum of a purely repulsive (“WCA’) and
an attractive term, which suggests that one way of interpol-
ating from LJ to WCA is by gradually removing the attract-
ive term. We instead utilize the fact that the WCA pair poten-
tial is defined as the LJ pair potential cut and shifted at the
potential-energy minimum, and gradually reduce the cutoff
from the standard r. = 2.5 to r. = 2!/ that identifies the LJ
pair-potential minimum.

All simulations were carried out using the GPU-optimized
molecular dynamics code RUMD [40] with standard Nose—
Hoover NVT dynamics [41]. For the single-component sys-
tems N =4096 particles were simulated, for the binary sys-
tems N =4000, in both cases at typical liquid state points.
Further details about the simulations are given in the appendix.

4. Interpolating between single-particle systems

We transform LJ gradually into WCA, denoted by LJ —
WCA, by reducing the standard shifted-potential cutoff from
25102, ie.

(M)
VigSwea (1)

v (r)=v(re(N) ,r<re(N)=(1 —)\)2.5+>\21/6
o ,r>re(N).
®)

Clearly, V](g)—>WC A(r) = viy(r) with a shifted-potential cutoff at
2.5 and v](_IJLWCA(r) = vwea(r).

The second interpolation is between LJ and IPL, which is
carried out by gradually removing the attractive r—° term:

—A)r ). ©)

V(L?LIPL(V) =4 ("_12 -

This expression has the required limits vg)_ﬂpL(r) =
4(r~ = r %) and VS)_HPL(r) = 4r712,

The third case interpolates between two Yukawa pair poten-
tials of different screening length. This is done by changing
the parameter ¢ in equation (7) from 1 to 3, i.e. by putting
c=1+4+2\

A 1+2X _,
Vg{K)—>YK (r) = - ¢ /22

(10)
Figure 2 shows the pair potentials of these interpolations for
six values of \. Note that the pair potentials vary considerably
with A.

Consider first L] — WCA (figure 3). Panel (a) shows
how the potential energy varies with A for 32 independ-
ent configurations generated in a standard equilibrium Nose-
Hoover NVT simulation of the LJ system (defining A =0) at
the reference thermodynamic state point (p,7T) = (1.0,2.0).
No extra simulations were carried out in order to calculate
how the potential energies of these configurations change
with A, which is determined entirely by the pair potential
V](_?LWC A(7) and the configuration in question. Not surpris-
ingly, the potential energy increases when the shifted-potential
cutoff is reduced; in fact it changes from negative to pos-
itive values. It is not possible to judge from panel (a) to
which degree equation (3) is obeyed, however, because the
potential energies of the 32 configurations follow each other
closely. To investigate the equation (3) criterion we plot in
panel (b) as a function of A\ the normalized potential-energy
variation, AU/o(U), in which AU = U — (U) and o*(U) =
((AU)?) = (U*) — (U)* (averaging over the 32 configura-
tions). If these curves never intersect—no ‘level crossings’
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LJ-»WCA (a)
1 1 1 1
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LJ-IPL (b) YK-YK (c)
] 1 ] ] ] ]

2.0 2.5

2.0 2.5 1 2 3 4
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Figure 2. The three simulated pair-potential interpolations, each of which is shown for six values of A (legend of (a)). (a) LT — WCA,
corresponding to cut-and-shifted LJ systems with a cutoff that decreases from 2.5 (A = 0, defining the standard LJ system) to 270 A=1,
defining the WCA system); (b) L] — IPL; (¢) YK — YK. In all cases the potentials vary significantly so a priori one might expect quite

different physics.
LJ-WCA
(a) 104
2 103k
1 102
— A 101
= ofF 3 =y "
S-oaf 2 g
> <10
< /\/—\ \%
—2F ) 10-2
-3F 1073
-4
_af 10
1 1 1 1 1 107" 1 1 1 1 1 1 1
0.00 0.25 0.50 0.75 1.00 4 1073107210-110° 10! 102 10% 10* 10°
A t

Figure 3. Results for the LT — WCA interpolation. The reference state point (p,T) = (1.0,2.0) is where the A =0 simulation was carried
out, which forms the basis for the A-scaling plots in (a) and (b). (a) Per-particle potential energy with changing X plotted for 3 equilibrium
configurations. (b) Fluctuations of U around the sample-average for 32 independent configurations, scaled with the standard deviation o (U).
For A < 0.75 there are virtually no ‘level crossings’, and for A > 0.75 equation (3) is still largely obeyed. (c) Radial distribution functions
g(r) for six X values. For each A the temperature was adjusted according to the reduced-force-matching criterion equation (6), leading only
to minor temperature changes (see below). (d) Reduced-unit mean-square displacement as a function of time with changing A.

— then equation (3) is rigorously obeyed. This is not rigor-
ously the case, but it does apply to a very good approxim-
ation. Consequently, as argued above by reference to NVU
dynamics, one expects very similar structure and dynamics.
We investigate this by carrying out NVT simulations for A =
0.0,0.2,0.4,0.6,0.8,1.0 (all at density 1.0), with temperat-
ures adjusted by reduced-force matching (section 2 and the
appendix). The resulting RDF and the reduced-unit mean-
square displacement (MSD) as a function of time are shown
in panels (c) and (d). The structure and dynamics of all sys-
tems are clearly very similar. This is not at all unexpected in
view of the well-known fact that the WCA system provides
an excellent approximation to the LJ system [2, 12], which is
further confirmed by the fact that the temperature adjustments
all are below 5% (in fact, not adjusting the temperature gives
virtually as good results).

The LJ — IPL interpolation is studied in figure 4 at the
same reference state point, (p,7T) = (1.0,2.0). Although the
IPL and LJ pair potentials are quite different, (b) shows that
equation (3) is obeyed to a quite good approximation. Panels

(c) and (d) show structure and dynamics at the temperature of
the reference state point, 7 = 2.0, for varying \. Panels (e) and
(f) show analogous data with temperature adjustment, leading
to almost perfect data collapse. We return to the magnitude of
the temperature adjustment in figure 6 below.

We finally turn to YK — YK, in which case the reference
state pointis (p, T) = (0.5,0.02). As previously, we performed
a A =0 simulation to generate the 32 configurations used to
calculate the potential energies as functions of A according
to equation (10). Figure 5(a) shows that the potential ener-
gies of these configurations scale in a very similar way when
A is increased. Again, this does not allow for checking how
well equation (3) applies. Panel (b) shows few level crossings.
Indeed, structure and dynamics are almost independent of A
for the temperature-adjusted simulations (panels (e) and (f)),
which is in notable contrast to what happens if the temperature
is not adjusted (panels (c) and (d)).

For the three interpolations figure 6(a) shows the
reduced-force-matchingtemperatures relative to the reference
temperature. Figure 6(b) shows the variation with A\ of the
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Figure 4. Results for L] — IPL with reference state point

(p,T) = (1.0,2.0). (a) and (b) are analogous to the same panels in
figure 3. (c) and (d) show the variation of structure and dynamics if
no temperature adjustment is implemented, in which case the
physics is not quite invariant. (e) and (f) show structure and
dynamics when the temperature is adjusted according to the
reduced-force matching method (appendix). Here both structure and
dynamics are invariant to a notably higher degree.

diffusion coefficient, D, and (c) shows how much the reduced
diffusion coefficient defined by D= p'/3\/m/ksTD =
p'/3T=1/2D[18,20] varies with X (the last equality reflects our
use of rationalized units). D is almost constant. This confirms
the invariance of the dynamics when temperature adjustment
is implemented.

5. Interpolating between two versions of a binary
LJ system

In order to illustrate the generality of our method, this
section studies a transformation involving the well-known

YK-YK

(a) (b)

a(r)

10-6 I T N N N |
103107210 10°_10' 102 103 10*
t

104
2.5 (e) 10 ()
10%
2.0 101k
A 100+
~15F -
— S~ -1
= %10
1.0 v 1072
1073
0.5 104
107%
0.0 1 1 1 10-6 1 1 1 1 1 1
0 1 2 3 4 103107210 10°_10' 102 103 10*
r t

Figure 5. Results for YK — YK with reference state point

(p,T) = (0.5,0.02). (a) and (b) are analogous to the same panels in
figure 3. (c) and (d) show the structure and dynamics if no
temperature adjustment is carried out. The physics changes a lot
with A. (e) and (f) show the same with temperature adjusted, in
which case structure and dynamics are invariant to a very good
approximation.

Kob—Andersen (KA) binary LJ mixture [42]. The KA
system, which consists of 80% A particles and 20% B
particles, is resistant against crystallization and therefore eas-
ily supercooled [42, 43]. For this reason the KA system has
become a standard model for simulation studies of glass-
forming liquids [43—46]. Writing the LJ pair potential between
particles of type o and 3 as vag5(r) =4deas((r/cap) > —
(r/oap)~®), in which o is A or B and likewise for £,
the parameters defining the KA system are [42]: 44 = 1.0,
OAB — OBA — 08, OBB — 088, EAA = 1.0, EAB — €BA = 1.5,
EBB = 0.5.

We interpolate between the standard KA model and a novel
version of it, the so-called modified binary LJ (mBLJ) model
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Figure 6. Temperature adjustment. (a) shows the temperatures determined by reduced-force matching (equation (6)) as functions of A; the
black dashed horizontal line marks unity. In the L] — WCA case the effect is very small, which confirms the well-known fact that the LJ
and WCA systems have very similar physics at a given state point [12]. In the LJ — IPL case up to 25% temperature adjustment is needed,
and even larger adjustments are necessary for YK — YK. (b) shows the diffusion coefficients D as a function of A obtained from the
long-time MSD. (c) shows analogous data for the reduced diffusion coefficient D with the T(\) temperature adjustment in NVT simulations.
The reduced diffusion coefficients are almost constant with changing .

that is at least 100 times less prone to crystallization [47].
This is achieved by changing the like-particle pair-potential
cutoffs to shifted-force cutoffs at significantly smaller dis-
tances. Recall that a shifted-force cutoff at r, replaces the pair
force f(r) = —v'(r) by f(r) —f(r.) below r. [41, 48], a pro-
cedure that results in much better energy conservation than
the standard shifted-potential cutoff because there is no pair-
force discontinuity at r.. In the present case, the primary
effect of switching to short-range shifted-force cutoffs is that
the like-particle attractive interactions become much weaker
than in the standard KA model thus preventing crystalliza-
tion of the KA system (which proceeds via phase separation
and subsequent creation of a pure A particle face-centered
cubic crystal [43]). Specifically, the mBLJ model has like-
particle shifted-force cutoffs at r. = 1.5044, while a shifted-
force cutoff at r. = 2.504p is used for the AB interaction.

The standard KA model involves cutoffs at r. =2.50,3.
One usually implements these as shifted-potential cutoffs, but
for technical reasons we use shifted-force cutoffs also to rep-
resent the standard KA model. The KA and mBLJ pair poten-
tials with different cutoffs are shown in figure 7. Panel (a) com-
pares the shifted-potential and shifted-force versions of the
standard KA system of 7. = 2.50,4 cutoffs. We see that there
is little difference, and as shown in the appendix the dynamics
of the two systems are indeed very similar. This justifies our
use of the shifted-force KA version to represent the standard
KA model. Panel (b) shows the shifted-force KA and mBLJ
pair potentials. The like-particle attractions are much weaker
in the mBLJ case than in the KA case, in particular for the A
particles.

The interpolation from the standard KA model to the mBLJ
model is carried out by using shifted-force cutoffs that are a
convex combination of the old and new ones, i.e. for each of
the three pair interactions the cutoff r.(\) is written as 1 — A
times the KA cutoff plus A times the mBLJ cutoff. For the
like-particle interactions this amounts to 7.(\) = (2.5 — A)oaa

2.0
| | — AA
L.5p] *\ AB
IR o
1.0 | | BB
.
~ 051 _
< \ 1 (a) < (b)
> 0.0 ‘ { — > —
—0.5F
—-1.0f Full Lines KA SF —-1.0f * Full Lines KA SF
Dots KA SP Crosses mBLJ
—-1.5 1 1 ~-15 1 1
: 1.0 1.5 2.0 : 1.0 1.5 2.0
r r

Figure 7. Binary LJ pair potentials. (a) shows the potentials of the
standard, shifted-potential (SP) cutoff version of the KA model
(dots) and the shifted-force (SF) version with the same cutoffs (full
curves). The two cases have almost the same pair potentials, which
is a consequence of the relatively large cutoff used. (b) compares the
SF version of the KA system with its modified version (mBLJ) that
has significantly smaller like-particle cutoffs.

for the A particles and r.(A\) =2.5(1 — N)ogp + 1.5\ a4 for
the B particles; for the AB interaction the cutoff remains at
2.504p. Figure 8 shows the results of this transformation. The
reference state point is (p,T) = (1.2,0.48), which is in the
less-viscous liquid phase compared to the lower temperat-
ures of current numerical studies of glass-forming liquids. As
previously, panel (a) shows the potential-energy variation as
a function of A\ and (b) shows the relative variations. There
are few level crossings. Consistent with this (c) and (d) show
invariant all-particle structure and dynamics (temperature-
adjusted data).

Given that the KA system consists of two different particle
types, one may ask whether the structure and dynamics of A
and B particles are separately invariant. This is investigated in
figure 9. Overall we see good invariance.
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Figure 8. Results for the binary system interpolation KA — mBLJ, plotted as in figure 3. Just as in the single-component cases, the
invariance of 2 that is evident from (b) translates into invariance of the structure and the dynamics. (c) and (d) refer to all-particle data with
temperature adjustment, i.e. the A and B particles are not distinguished here.
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Figure 9. Closer analysis of the KA — mBLJ interpolation in which (a), (b), and (c) report RDF data while (d) and (e) report MSD data.
Overall there is a good data collapse, with a minor deviation for A = 0.8 (compare figure 10 below).

We finally show in figure 10(a) that virtually no temperature
adjustment is needed in the KA — mBLJ case. This import-
ant result is consistent with extensive simulations carried out
at 7=0.37 at which the system is strongly supercooled; here
the KA and mBLJ systems were also found to have virtually

the same dynamics [47]. The relative variation of the diffusion
coefficient and its reduced version are shown in (b) and (c),
respectively. There is little variation although we note a drop
at A =0.8 for which we have no explanation. Table 1 reports
the non-reduced diffusion coefficients for all interpolations.



J. Phys.: Condens. Matter 37 (2025) 265101

L Costigliola et al

1.2 1.2 1.2
A A A A
1.0 Attt e e ke A= Ak A= A=k A R 1.0pA--==-==—m— h—————————— - 1.0pA-=====mm—mmm— hm————————— -
50.8F 50.8F : 50.8F :
Il Il 1
E0.6- QO.G- zg0.6_
= = =
~0.4F Q0.4F Q 0.4f
21 2F 2F
0 (a) » KA-mBL) 0 (b) 0 (c)
0.0L 1 1 1 1 0.0 1 1 1 1 0.0 1 1 1 1
"0.00 0.25 0.50 0.75 1.00 "0.00 0.25 0.50 0.75 1.00 "0.00 0.25 0.50 0.75 1.00
A A A

Figure 10. Effect of temperature adjustment in the KA — mBLJ case. (a) shows that only very little adjustment is needed. (b) and (c) show
data for the all-particle diffusion coefficient and its reduced-unit version.

Table 1. Diffusion coefficient D as a function of A (left column) for the four system considered.

D
A L] — WCA L] —IPL YK — YK KA — mBLJ
0.00 0.0600 0.0596 0.0263 0.000 129
0.20 0.0598 0.0583 0.0338 0.000 135
0.40 0.0615 0.0575 0.0391 0.000 135
0.60 0.0583 0.0555 0.0447 0.000 128
0.80 0.0578 0.0563 0.0496 0.000 107
1.00 0.0717 0.0560 0.0526 0.000 128

6. Discussion

This paper has studied gradual interpolations between some
of the most common pair-potential systems. Interpolation
between two pair-potential systems was achieved by introdu-
cing a parameter )\ such that system O corresponds to A = 0 and
system 1 to A = 1. The following criterion was used for check-
ing whether two systems have the same, or almost the same,
constant-potential-energy hypersurface ): First one selects a
number (here 32) of statistically independent equilibrium con-
figurations of system O at the reference state point. If the
potential energies of these configurations as functions of A
show no or only few level crossings, the two systems have the
same or almost the same (2. By reference to the equivalence
of NVU and NVT dynamics, this implies the same or almost
the same structure and dynamics. The excess entropy Sey is
also the same or almost the same for the two systems, while
other thermodynamic quantities like the potential energy and
the Helmholtz and Gibbs free energies are not expected to be
invariant when interpolating between system 0O and system 1.
We note, incidentally, that our findings confirm the quasiuni-
versality of simple liquids [2-10] by the fact that all systems
have almost identical €2, structure, and dynamics (compare
figures 3-5 and 8).

We presented data for three interpolations between single-
component pair-potential systems and data for an interpolation
between two different versions of the KA binary LJ liquid.
In all four cases there are only few ‘level crossings’, which
means that equation (3) applies to a good approximation. This
claim is a bit hand-waving, however. Can one can quantify

to which degree equation (3) is fulfilled? Inspired by [27] we
use the Pearson correlation coefficient R between the 32 dif-
ferent potential energies at the starting point A =0 and at an
arbitrary A < 1. Figure 11 shows such data plotted with the
ordinate axis going to zero in order to visualize how close the
correlation coefficients are to unity. Most data have R > 0.99,
but the YK — YK interpolation has 0.95 <R < 0.96. In
summary, the intuitive criterion of ‘few’ level crossings trans-
lates into correlation coefficients that are indeed close to
unity.

An important point is that if two systems have the same ()
at two state points of same density, this does not imply the
two systems have the same temperature. A crucial ingredi-
ent of the interpolation method is therefore the introduction of
iterative reduced-force matching based on equation (6), which
identifies the temperature at which the A\ system is predicted
to have the same physics as system 0 at the reference state
point.

We checked for ‘same physics’ by evaluating the RDF
and the MSD. An obvious question is whether more complex
liquid characteristics like higher-order structural measures or
collective dynamic quantities like the frequency-dependent
viscosity are also expected to be virtually invariant if there are
only few level crossings. We have not investigated this but do
expect it to be the case because of the equivalence of NVU and
NVT dynamics [25]. Another point it would be useful to look
into in future works is the effect of changing the ratio of the
A and B particle masses of the binary LJ system. Following
the original KA paper [42] we assumed identical masses,
but changing the ratio will modify both the single-particle
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Figure 11. Correlation coefficient R between the potential energies as a function of A. Each point represents the Pearson correlation
coefficient obtained by considering as independent variable the potential energies of the 32 configurations at A =0 and as dependent
variable the potential energies of the same 32 configurations evaluated at the \ values indicated. In all cases the correlations are very strong;
R is mostly above 0.99 and always above 0.95. (b) shows the same data as (a).

and the collective dynamics. At the same time, the above
NVU-based arguments would not be affected because the
statistical Boltzmann probability are not influenced by the
particle masses. Our prediction is that one would still see very
similar dynamics of the shifted-potential and shifted-force ver-
sions of the system, however. We base this expectation on the
fact that standard NVU geodesic dynamics is modified for sys-
tems of different particle masses because the metric defining
geodesics itself involves the particle masses, a point first dis-
cussed by Hertz [49, 50].

The interpolation approach introduced above is general. It
is not limited to pair-potential systems or to systems of same
density, although these two restrictions apply to the cases stud-
ied. For future work, in order to validate our ‘absence-of-level-
crossing’ criterion ensuring very similar structure and dynam-
ics after temperature adjustment, it will be important to study
systems of varying density [20, 22], as well as to interpol-
ate between non-pair potential systems, between atomic and
molecular models, and between different molecular models.
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Appendix

This appendix gives further simulation details, compares the
dynamics of the shifted-potential and shifted-force KA ver-
sions with same (long) cutoff, and describes the iterative
reduced-force-matching method.

A.1. Simulation details

All simulations were performed using the GPU-optimized
molecular dynamics code RUMD [40] using an NVT integ-
rator based on a leap-frog discretization of the Newtonian
equation of motion coupled with a Nose—Hoover thermostat.
Table Al lists simulation details including the number of steps
‘Short sim’ and ‘Long sim’ indicated as vertical dashed lines
in figure A1 (see below).

A.2. Comparing the dynamics of KA systems with different
cutoffs

Figure A2 compares the MSD of the KA system when the
interaction potential is truncated by either shifted-force (SF) or
shifted-potential (SP) cutoffs at the same (standard) distances.
Both the A and B particle MSDs are shown. There is no visible
difference between the two cutoff implementations.

A.3. The reduced-force-matching procedure

The reduced-force-matched temperatures (figure 6) were cal-
culated by matching the value of the reduced force according
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Table A1. Simulation details.

Interpolation Time step Short sim

Long sim Density reference Temp. Saving

921
21
920
24

0.002
0.002
0.010
0.005

L] - WCA
LJ —IPL
YK — YK
KA — mBLJ

4096
4096
4096
4000

128
128
128

64

225
225
224
228

1.0
1.0
0.5
1.2

2.00
2.00
0.02
0.48

5

10 ) T™TTTm
10'}
10}
10°

RV PP [P [ [ e g ey g gpp—

Figure A1. Time scales associated with the number of steps reported in table Al. From left to right the vertical dashed lines correspond to
how frequently the average value of the force is saved (‘Saving’ in table A1) and the length of the short and the long simulations,

respectively.
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2 =—= KABLJ T=0.48 B SF

KABLJ T=0.48 A SP
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Figure A2. Comparing the A and B particle MSD of the standard
KA systems with shifted-potential (SP) and shifted-force (SF)
cutoffs at the state point (p,T) = (1.2,0.48).

to equation (6) [34]. The first step is to equilibrate the A =0
system and simulate it for the number of steps indicated as
‘Long sim’ in table A 1. From this the value of the length of the
3N-dimensional force vector |F(R)| is sampled with the fre-
quency indicated by ‘Saving’. The time average of the length
of the reduced force vector, |[F(R)|/kgT, is evaluated and used
in the following steps as reference (note that the reduced force

vector in general includes a density factor [20], which for sim-
plicity is omitted in this paper because density is kept con-
stant).

The temperature corresponding to the same reduced-force
vector at a new value of ) is found using the following iterative
procedure.

(1) The length of the reduced force vector is evaluated for the
new value of \.

(2) A new temperature, T()), is found from |F(R)|» /kgT(\) =
IF(R)[s—o/ksT(\ = 0).

(3) A new simulation of length ‘Short sim’ is run at
T(\), after which the length of the reduced-force vec-
tor is evaluated and compared to the reference value
IF(R)|s—o/ksT(A = 0)

(4) Steps 2 and 3 are repeated until the relative difference
between the lengths of the reduced force vector is below
5-107S.

The need for this iterative procedure arises from the fact that
the theory is only approximate. For selected values of A (0.2,
0.4, 0.6, 0.8, 1.0) a longer simulation (of ‘Long sim’ steps) is
run to obtain better statistic on the RDF and the MSD; these
data are the ones shown in the figures of the main paper. The A
parameter varies in all cases between 0 and 1, an interval that
is divided into steps of 0.05. This is why there are 21 points for
T()) in figure 6(short simulations) and only 6 for D(\) (long
simulations).
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