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ABSTRACT
We clarify the relationship between freezing, melting, and the onset of glassy dynamics in a prototypical glass-forming mixture model. Our
starting point is a precise operational definition of the onset of glassiness, as expressed by the emergence of inflections in time-dependent
correlation functions. By scanning the temperature–composition phase diagram of the mixture, we find a disconnect between the onset
of glassiness and freezing. Surprisingly, however, the onset temperature closely tracks the melting line, along which the excess entropy is
approximately constant. At fixed composition, all characteristic temperatures display nonetheless similar pressure dependencies, which are
very well predicted by the isomorph theory. While our results rule out a general connection between thermodynamic metastability and
glassiness, they call for a reassessment of the role of crystalline precursors in glass-forming liquids.
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Two-step relaxation is one of the most prominent features
of liquids approaching the glass transition.1 It manifests itself as
a plateau in time-dependent correlation functions and reflects the
strong separation of timescales between fast microscopic motion
and a spectrum of much slower relaxation processes. In a thermal
cooling process, two-step relaxation first appears around a crossover
temperature, To, that marks the onset of slow dynamics2 or, as
we shall write in the following, “onset of glassiness.”1 Below To,
the system ceases to be a normal liquid and develops the typical
features of glassy dynamics, including dynamic heterogeneity and
super-Arrhenius dependence of relaxation times. Predicting and
explaining the origin of these features in materials as diverse as
supercooled liquids,3 spin glasses,4 or type-II superconductors5 is a
key challenge in the field of disordered systems.

One important and yet often eluded question is whether the
onset of glassiness is related or not to thermodynamic metastabil-
ity with respect to an ordered phase. From a theoretical standpoint,
a connection between the onset of glassiness and frustrated crys-
tallization has been invoked in a phenomenological model of the
glass transition.6 In a similar vein, the so-called frustration-limited
domains theory7 attributes the onset of glassiness to an avoided
crystallization, which occurs, however, in a curved space where

geometric frustration is lifted. By contrast, in theoretical approaches
based on mean-field spin glass models or infinite-dimensional sys-
tems,8 crystallization is ruled out from the outset, and the onset
of glassiness results from activated transitions between amorphous
metastable states.9,10 Most other theories of the glass transition3 also
neglect the role of crystallization.

From an empirical point of view, it is clear that thermody-
namic metastability is not a necessary condition for glassy dynamics:
liquid silica, for instance, displays glassy dynamics already at the
melting temperature Tm.11 A connection between crystallization and
the onset of glassiness may nonetheless hold within a subset of liq-
uids.12 Previous analysis of experimental data13 indicated a rough
correlation between the melting temperature Tm and a crossover
temperature TA, akin to To, at which super-Arrhenius behavior sets
in.14 Recent simulation studies of a Lennard–Jones (LJ) binary mix-
ture even suggested an identity, Tm ≈ To.15,16 In multi-component
systems, however, the liquid phase can be metastable with respect to
a pure crystal, to coexisting liquid and crystal phases or to phase-
separated crystals, and freezing and melting transitions must be
clearly distinguished. These aspects have not been addressed in any
detail so far. There are also indications that thermodynamic proper-
ties related to the excess entropy17 change sharply around To.15 Our
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goal is to clarify these connections in a prototypical glassy binary
mixture with different chemical compositions, disentangling the role
of freezing and melting, and to provide the basis for a systematic
analysis on a broader range of liquids.

One technical hurdle is the determination of the onset tem-
perature To, for which there is no generally agreed, operational
definition. In fact, while the concept of the onset of glassiness is well-
established, its practical determination has never been standardized.
The appearance of the super-Arrhenius dependence of the struc-
tural relaxation time τα can be used as a proxy for To, but such a
procedure is often done “by eye” or assuming a functional form for
τα(T).7,14,18 The onset of glassiness is also associated with a decrease
in the inherent structure energy with decreasing temperature,2,9 but
the crossover is broad and does not provide a clear-cut definition.
Alternative but more complex procedures have been proposed.19,20

In the following, we provide a straightforward and precise definition
of the onset of glassiness in terms of the inflection points of time-
dependent correlation functions. Our procedure removes the above
difficulties and is generally applicable to both simulation and exper-
imental data, as it does not require knowledge of the interaction
potential.

In this work, we study the composition dependence of the onset
of glassiness in the Kob–Andersen (KA) mixture,21 which is an LJ
mixture of two types of particles, A and B. The concentration of
B particles is x, with x = 0.2 corresponding to the canonical KA
mixture. We performed molecular dynamics simulations for a KA
mixture composed of N = 500 particles using the atooms simula-
tion framework,22 both along constant pressure and constant density
paths. As a cross-check, we did additional simulations for a larger
system size (N = 8000) using RUMD.23 All quantities are expressed
in standard LJ units. More details are given in the supplementary
material.

We compute the self-intermediate scattering function Fs(k, t)
for the A-particles (the results for the B-particles are qualitatively
similar; see the supplementary material). We focus on wavenum-
bers k around the first peak of the structure factor SAA(k). The
calculation of the time derivative F′s(k, t) requires some care as it
can be affected by statistical noise: to cope with this, we first com-
pute dFs(k, t)/d log t = tF′s(k, t) by central differences, then fit it to
a fourth order polynomial in log t, restricting the time range such
that Fs is between 0.05 and 0.98, and extract its critical points. Small
changes to the fit range do not change our conclusions. The onset is
defined by the emergence of two minima in tF′s(k, t). The height δ
of the smallest barrier separating the two minima of tF′s provides
a precise, observable-dependent order parameter for the onset of
glassiness: δ becomes finite below To. Although To depends, in prin-
ciple, on the chosen observable, we found that its dependence on
wavenumber, chemical species, and correlation function is weak;
see below. Therefore, as a crossover, the onset of glassiness remains
well-defined.

Our procedure is illustrated in Fig. 1 for the canonical concen-
tration x = 0.2 at pressure P = 10.19 and wavenumber k = 7.2. We
start by equilibrating the system at high temperatures, in the liq-
uid phase, and decrease the temperature at fixed pressure until δ > 0.
Once To has been bracketed, we perform additional simulations to
refine its determination. Panel (a) displays Fs(k, t) around To. The
definition of the onset can be grasped from panels (b) and (c): below
To, the time derivative tF′s(k, t) displays one local maximum, cor-

FIG. 1. Protocol to define the onset temperature, illustrated along the isobar
P = 10.19 for x = 0.2: (a) Fs(k, t) of A-particles (k = 7.2) for temperatures
around To; (b) tF′s(k, t) for the same temperatures as in (a), the solid lines are
fourth order polynomial fits; (c) order parameter δ(T) obtained from tF′s(k, t), the
solid line is a linear fit vanishing at To; (d) activation energy E(T). In (c) and (d),
the arrows mark To and TA, respectively. In (d), the shaded area indicates the
estimated range of validity of the high-temperature Arrhenius fit.

responding to the sought-for inflection of Fs(k, t). The polynomial
fit, indicated by solid lines, is fairly robust and works well even with
noisy data. Small oscillations in tF′s(k, t) at short times, unrelated
to the onset of glassiness,24 are visible with high-quality statistics,
but they do not affect the calculation of δ; see the supplementary
material. To locate To precisely, we fit δ(T) to a linear function
that vanishes at To. A simpler bisection procedure, which avoids
any fitting, provides consistent results. Finally, we show in panel
(d) the activation energy E(T) = T log(τα/τ∞)7 associated with
the structural relaxation time τα(T), at which Fs(k, τα) = 1/e. The
microscopic time τ∞ is obtained by fitting the high-temperature
data to an Arrhenius equation. As expected, the onset of two-step
relaxation is accompanied by the appearance of super-Arrhenius
temperature dependence at TA. We find that TA is slightly higher
than To and is sensitive to the range of the Arrhenius fit, which holds
anyway only approximately at high temperatures.25

We now turn to the relation between the onset of glassiness
and crystallization. In Ref. 16, Pedersen et al. studied the phase dia-
gram of the KA mixture and computed the freezing (or “liquidus”)
line, below which the liquid crystallizes at least partially.26 The stable
crystalline phases for x → 0 and x → 0.5 are fcc and CsCl, respec-
tively. At the fcc–CsCl eutectic composition x = 0.25, however, the
stable crystalline phase has a PuBr3 symmetry16 and coexists with
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the liquid in a narrow range of compositions. As shown in the
supplementary material, this implies the presence of two very close
eutectic points. We reproduce these results for P = 10.19 as thick
solid lines in Fig. 2. From the location of the eutectic points and
using the Gibbs phase rule,27 we infer the melting (or “solidus”)
lines of the underlying phase-separated crystals: above these lines,
the ordered phases melt at least partially. The phase diagram at low
temperatures is instead unknown. We superpose on the phase dia-
gram the onset temperatures obtained from the protocol described
above. The shaded area indicates the range of onsets correspond-
ing to k values around the first peak of SAA(k), i.e., from k = 5 to
10, while the filled points are for k = 7.2. It is clear that To does not
track the freezing temperature Tf: while the latter displays the typ-
ical V-shape of eutectic mixtures, To does not show any systematic
variation with x. Similar results are observed for the B-particles and
when using correlation functions probing collective dynamics; see
the supplementary material. The corresponding onset temperatures
lie within the shaded area indicated in Fig. 2.

The qualitatively different trends of To and Tf demonstrate that
the onset of glassiness and freezing are disconnected: the liquid can
be thermodynamically metastable without displaying glassy dynam-
ics. Surprisingly, however, the onset of glassiness closely follows the
melting line, which runs horizontally in the phase diagram. At this
stage, we emphasize that the correspondence of To with the melt-
ing of the underlying stable crystals could be coincidental. Proving a
causal connection would require a direct determination of the crys-
talline precursors in the metastable liquid—we will come back to this
point in the closing paragraphs.

The results shown in Fig. 2 also allow us to dissipate a possi-
ble source of confusion. Analyzing data at x = 0.2, Pederesen et al.16

found an “identity between onset and melting temperatures,” with
the former defined as the appearance of super-Arrhenius behavior.18

FIG. 2. Onset temperatures To for N = 500 (circles) and N = 8000 (squares) as a
function of x at P = 10.19. The shaded area indicates the range of To obtained for
values of k in the interval 5 ≤ k ≤ 10. The lines are the phase boundaries inferred
from Ref. 16. The thick and thin solid lines indicate the freezing and melting lines,
respectively. The dashed lines represent estimates of the stability limits of the solid
solutions.

We note, however, that the word melting was used in Ref. 16 to
indicate freezing. As we can see from Fig. 2, Tm ≈ Tf ≈ To around
the eutectic compositions, but deviations are found for other val-
ues of x. An approximate identity between To and Tm holds in the
KA mixture, but for a different reason from the one implied by
Ref. 16. The absence of a direct connection between Tf and To
may be partly inferred from the trends of the iso-diffusivity lines
shown in Ref. 16, which only show a weak, monotonic depen-
dence on x. We obtained, indeed, similar results for the relaxation
time itself. However, transport coefficients per se do not provide
direct information about the shape of time-dependent correlation
functions.

Even though the freezing line does not track the onset of glassi-
ness in the T–x diagram, Tf and To scale similarly as a function of
pressure. This is shown in Fig. 3 for selected compositions. We used
a constant wavenumber k = 7.2 for the calculation of the onset tem-
perature, independent of composition and pressure. Interestingly,
it is possible to accurately predict the pressure dependence of both
quantities using the isomorph theory.28 By assuming that they both
follow an isomorph, we predict Tf(P) and To(P) at any fixed x from
the sole knowledge of thermodynamic properties at Tf(P0 = 10.19)
and To(P0 = 10.0), respectively. See Refs. 16, 29, and 30 and the
supplementary material for more details. The agreement is excellent
for To, while some discrepancies are seen for Tf at x = 0.362; see also
Ref. 16. This is consistent with the observation that the freezing line
is an isomorph only approximately.31

Our results indicate that the changes in the onset temperature
are closely connected to those of the excess entropy Sex, which is
defined as the difference between the total entropy and its ideal gas
contribution17,32 and is constant along an isomorph. Previous stud-
ies have also connected To to a change in the n-body contributions
to the excess entropy per particle sex = Sex/N. More precisely, the

FIG. 3. Pressure dependence of the freezing temperature T f (open circles) and
the onset temperature To (filled circles) for (a) x = 0.362, (b) x = 0.255, (c)
x = 0.2, and (d) x = 0.1354. The theoretical predictions of the isomorph theory
for T f and To are shown as dashed and solid lines, respectively. The arrows mark
the reference states used for the predictions.
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FIG. 4. Excess entropy measures in the T–x diagram along (a) isobars at
P = 10.19 and (b) isochores at densities corresponding to freezing, ρ(T = T f,
P = 10.19, x). The temperatures at which sex = const and Δs = 0 are indicated
as open circles and crosses, respectively. The onset temperatures are shown as
in Fig. 2.

residual many-body entropy is defined as Δs = sex − s2, where s2 is
the two-body approximation to sex.33 It was found that Δs changes
sign, in the KA mixture, at a temperature slightly lower than To.32

Note that Δs = 0 has also been proposed as an empirical criterion for
freezing in one-component liquids.34,35

To perform a stringent test of these ideas, we compute sex and s2
over a range of compositions. We carry out thermodynamic integra-
tion from a low-density, high-temperature state (ρ = 10−4, T = 5),
where we assume that the system behaves like an ideal gas.32 To
determine sex along the isobar P = 10.19, we first follow an isotherm
at T = 5 up to density ρ(T = 5, P = 10.19) and then proceed with
batches of small isothermal and isochoric paths, keeping the system
along the selected isobar; see the supplementary material. We also
compute sex along isochores for each composition, fixing the density
at ρ(T = Tf, P = 10.19). Our results for sex agree within error bars
with those of Bell et al.17

Excess entropy data are shown in Fig. 4. Interestingly, the lines
of constant sex display the same qualitative behavior as the onset
of glassiness: they vary weakly with x at constant pressure and are
non-monotonic along isochoric paths, with a maximum around the
eutectic compositions. We also found that the reduced structural
relaxation times for different x collapse on a master curve when
shown as a function of the excess entropy, see the supplementary
material, in line with the concept of quasi-universality put forth
by Bell et al.17 The value of sex at To lies between −4.7 and −4.9.
Combining these observations with those inferred from Fig. 2, we
conclude that melting occurs in this same range of excess entropies
and could be a quasi-universal property in the sense of Ref. 17.

From Fig. 4, we also see that the locus of points where Δs = 0
has a non-monotonic behavior, with a minimum around the eutec-
tic compositions. This trend is thus qualitatively similar to the one
of the freezing line, cf. Fig. 2, but Δs vanishes at a temperature
lower than Tf by 10%–50% depending on composition. It is also
clear that Δs = 0 does not provide a sound criterion for the onset
of glassiness, which occurs, instead, around the same temperature

irrespective of x. Similar discrepancies are observed on paths at con-
stant density [see panel (b)]: the non-monotonic behavior of To is
well reproduced by the lines of constant sex, while those at which
Δs = 0 display a qualitatively different trend. Therefore, the split-
ting of sex into two-body and many-body contributions does not
bear any clear connection with the onset of glassiness in the KA
mixture.

One conclusion to be drawn from our work is the lack of a
general connection between thermodynamic metastability and the
onset of glassiness. Not only a liquid can be highly viscous with-
out being metastable, as is the case for silica: the large gap between
Tf and To seen in Fig. 2 shows that a liquid can be metastable
without displaying yet any glassy feature. Key to this observation
is the distinction between freezing and melting, which was not
duly taken into account in previous computational studies of the
KA mixture. The second main result is that the onset of glassi-
ness occurs close to the solidus line, which marks the melting of
the underlying crystalline phases. The generality of this connec-
tion can now be tested straightforwardly for computational models
whose phase diagram is known.36–38 We did preliminary calcula-
tions for the Wahnström LJ mixture, whose phase diagram has been
determined recently,39 and we found very similar results to those
presented therein: To and Tm are very close to each other. Our
method to determine To can, in principle, be adapted to the analysis
of dynamic susceptibilities relevant to experiments,40 where precise
measurements of the onset temperature are rare; see Ref. 41 for an
exception.

The apparent correspondence between Tm and To motivates
a critical reassessment of the role of locally favored structures in
glass-forming liquids.42–44 It has been argued that the competition
between crystalline precursors corresponding to different crystalline
phases can contribute to stabilize the metastable liquid.37 In this
respect, it would be interesting to identify precursors of the PuBr3
phase in the KA mixture, as this is the stable phase close to the eutec-
tic compositions. This crystalline phase contains bicapped trigonal
prisms, akin to some of the locally favored structures of the model
at the canonical composition,45 and has been so far overlooked in
the crystallization studies of the KA model.46–48 We emphasize that
the connection between melting and the onset of glassiness could be
specific to liquids that “borrow” their local structure from the under-
lying stable crystal.49 Structural analyses across the melting line will
provide a crucial test of the role of crystalline precursors.

Predicting when liquids first start to show glassy behavior is a
well-defined open problem and currently a challenge for the theo-
ries of the glass transition that rely on structure or thermodynamics.
Our work lays down the basis to address this problem quantitatively
and shortlists some of the proposed solutions, starting from entropy-
based approaches. Among the outstanding approaches, we expect
mode-coupling theory50,51 and its extensions52,53 to provide at least
qualitatively correct predictions. Another promising approach to
predict the onset of glassiness from first principles builds on the rela-
tionship between the caging dynamics and the local curvature of the
potential energy surface; see Refs. 54 and 55 for recent work in this
direction.

The supplementary material includes additional details on
methods and analysis, as well as tabulated results.
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