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ABSTRACT
A recent article in J. Chem. Phys. argues that the two algorithms, the velocity-Verlet and position-Verlet integrators, commonly used in
Molecular Dynamics (MD) simulations, are different [L. Ni and Z. Hu, J. Chem. Phys. 161, 226101 (2024)]. However, not only are the two
algorithms just different formulations of the same discrete algorithm, but also are other simple discrete algorithms used in MD simulations
in the natural sciences. They are all reformulations of the discrete algorithm derived by Newton in 1687 in Proposition I in the very first part
of his book Principia. The different reformulations of Newton’s algorithm for discrete dynamics lead to identical discrete dynamics with the
same invariances, momentum, angular momentum, and energy as Newton’s analytical dynamics. Hundreds of thousands of MD simulations
with Newton’s discrete dynamics have appeared but unfortunately with many recorded errors for energies, potential energies, temperatures,
and heat capacities. The public software for MD should be corrected.
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I. INTRODUCTION

A recent article in J. Chem. Phys. argues that the two simple dis-
crete algorithms, the velocity-Verlet and position-Verlet integrators,
are different.1 However, not only are the two algorithms just differ-
ent formulations of the same discrete algorithm, but also are other
simple discrete algorithms used in Molecular Dynamics (MD) sim-
ulations in the natural sciences. They are all reformulations of the
discrete algorithm derived by Newton in 1687 in Proposition I in the
very first part of his book Principia.2,3

The new position of an object in Newton’s discrete dynam-
ics, ri(t + δt), at time t + δt i with the mass mi is determined by the
force fi(t) acting on the object at the discrete position ri(t) at time
t together with the position ri(t − δt) at time t − δt as

mi
ri(t + δt) − ri(t)

δt
= mi

ri(t) − ri(t − δt)
δt

+ δtfi(t), (1)

where the velocities vi(t + δt/2) = (ri(t + δt) − ri(t))/δt and
vi(t − δt/2) = (ri(t) − ri(t − δt))/δt and the corresponding
momenta are constant in the time intervals in between the discrete
positions.

II. NEWTON’S DISCRETE ALGORITHM
Newton begins Principia by postulating Eq. (1) in Proposition I

and with Fig. 1. The English translation of Proposition I is
Of the Invention of Centripetal Forces.Proposition I. Theorem I.
The areas, which revolving bodies describe by radii drawn to an

immovable centre of force do lie in the same immovable planes, and
are proportional to the times in which they are described.

For suppose the time to be divided into equal parts, and in the
first part of time let the body by its innate force describe the right line
AB. In the second part of that time, the same would (by Law I.), if not
hindered, proceed directly to c, along the line Bc equal to AB; so that
the radii AS, BS, cS, drawn to the centre, the equal areas ASB, BSc,
would be described. But when the body is arrived at B, suppose that a
centripetal force acts at once with a great impulse, and, turning aside
the body from the right line Bc, compels it afterwards to continue its
motion along the right line BC. Draw cC parallel to BS meeting BC in
C; and at the end of the second part of the time, the body (by Cor. I
of Laws) will be found in C, in the same plane with the triangle ASB.
Join SC, and, because SB and Cs are parallel, the triangle SBC will
be equal to the triangle SBc, and therefore also to the triangle SAB.
By the like argument, if the centripetal force acts successively in C,
D, E, & c., and makes the body, in each single particle of time, to
describe the right lines CD, DE, EF, & c., they will all lie in the same
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FIG. 1. Newton’s figure at Proposition I. (a) A Newton’s figure at Proposition I
in Principia, with the formulations of the discrete dynamics. (b) Central part: A:
ri(t − δt); B: ri(t); C: ri(t + δt), etc. The deviation cC (green) from the straight

line ABc (Newton’s first law) is caused by the force fi(t) with direction
Ð→
BS at

time t.

plane; and the triangle SCD will be equal to the triangle SBC, and
SDE to SCD, and SEF to SDE. And therefore, in equal times, equal
areas are described in on immovable plane: and, by composition, any
sums SADS, SAFS, of those areas, are one to the other as the times
in which they are described. Now let the number of those triangles
be augmented; and their breadth diminished in infinitum; and (by
Cor. 4, Lem III) their ultimate perimeter ADF will be a curve line:
and therefore the centripetal force, by which the body is perpetually
drawn back from the tangent of this curve, will act continually; and
any described areas SADS, SAFS, which are always proportional to
the times of description, will, in this case also, be proportional to those
times. Q. E. D.

The central assumption . . . suppose that a centripetal force
acts at once with a great impulse in Proposition I is highlighted
here. The forces change the momenta only at discrete times, and
the dynamics is solely determined by the positions and the forces
at these discrete times. The positions with constant velocities and
momenta in between the discrete times are changed with

Ð→
AB = ri(t)

− ri(t − δt) =Ð→Bc (Newton’s first law) to
Ð→
BC = ri(t + δt) − ri(t). The

change of position is caused by the force fi(t) in the direction
Ð→
BS. Within the next times from t to t + δt, the force changes the
momentum with a total amount δtfi(t) and the position to C with
Ð→
cC = δt2fi(t)/mi, i.e.,

Ð→
BC =Ð→AB +Ð→cC, (2)

with is equal to Eq. (1). Reference 3 is a review of Newton’s discrete
dynamics.

Newton obtained his second law for classical analytic dynamics
as the limit limδt→0 of Eq. (1). At present, Newton’s second law is
formulated as an equality between the mass times the acceleration
being equal to the force acting on the object, but this formulation is
due to Euler in 1736 after Newton died in 1727.4

III. REFORMULATIONS OF NEWTON’S DISCRETE
ALGORITHM

The algorithm, Eq. (1), is usually presented as the leapfrog
algorithm,

vi(t + δt/2) = vi(t − δt/2) + δt
mi

fi(t),

ri(t + δt) = ri(t) + δtvi(t + δt/2),
(3)

where the new values vi(t + δt/2) and ri(t + δt) are obtained
from the corresponding old values vi(t − δt/2) and ri(t). The
rearrangement of Eq. (1) gives the Verlet algorithm,5,6

ri(t + δt) = 2ri(t) − ri(t − δt) + δt2

mi
fi(t). (4)

The velocity-Verlet algorithm7

ri(t + δt) = ri(t) + δtvi(t) +
δt2

2mi
fi(t), (5)

vi(t + δt) = vi(t) +
δt

2mi
[fi(t) + fi(t + δt)], (6)

with

vi(t) =
vi(t + δt/2) + vi(t − δt/2)

2
= ri(t + δt) − ri(t − δt)

2δt
(7)

is a reformulation of Newton’s discrete algorithm. It can be seen by
rearranging Eq. (5),

vi(t) =
ri(t + δt) − ri(t)

δt
− δt

2mi
fi(t), (8)

and inserting Eq. (8) in Eq. (6),

vi(t + δt) = ri(t + δt) − ri(t)
δt

+ δt
2mi

fi(t + δt), (9)
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or

ri(t + 2δt) − ri(t)
2δt

= ri(t + δt) − ri(t)
δt

+ δt
2mi

fi(t + δt), (10)

which by a rearrangement is the Verlet algorithm,

ri(t + 2δt) = 2ri(t + δt) − ri(t) +
δt2

mi
fi(t + δt). (11)

The position-Verlet algorithm, Eq. (2.22) in Ref. 8, is

vi(t + δt) = vi(t) +
δt
mi

fi(ri(t + δt/2)), (12)

ri(t + δt) = ri(t) +
δt
2
[vi(t) + vi(t + δt)], (13)

and the algorithm differs from the other discrete algorithms by that
the forces are calculated at the positions

ri(t + δt/2) = ri(t) +
δt
2

vi(t) (14)

after a half time step in between the positions ri(t) and
ri(t + δt). However, Newton’s discrete dynamics depends solely on
the momenta mivi(t̃) at the time t̃ where the forces act, so we
need to compare different algorithms with changes in velocities and
momenta at the time where they change and to change the time
when one compares the position-Verlet algorithm with the other
reformulations of Newton’s discrete algorithm. Doing so,

t̃ ≡ t + δt/2, (15)

and

ri(t̃) = ri(t + δt/2), (16)

vi(t) = vi(t̃ − δt/2), (17)

and Eq. (14) is

ri(t̃) = ri(t) +
δt
2

vi(t). (18)

The change in velocities in Eq. (12) is

vi(t̃ + δt/2) = vi(t̃ − δt/2) + δt
mi

fi(t̃). (19)

The change in the discrete positions is obtained by inserting Eq. (18)
in Eq. (13),

ri(t̃ + δt/2) = ri(t̃) +
δt
2

vi(t̃ + δt/2), (20)

and the velocities and momenta are constant in between the changes
at the discrete times, so Eq. (20) is equivalent to

ri(t̃ + δt) = ri(t̃) + δtvi(t̃ + δt/2), (21)

and Eqs. (19) and (21) are the leapfrog formulation of Newton’s
discrete algorithm.9

MD simulations with Newton’s discrete dynamics start at time
t = 0 with the following two sets of start data:

ri(−δt) and ri(0) (Verlet),

ri(0) and vi(−δt/2)= (ri(0) - ri(−δt)/δt) (leapfrog, velocity-Verlet),

and if the position-Verlet algorithm is compared with the other algo-
rithms with their start data for the force actions at time zero, one
shall start the position-Verlet algorithm with

ri(t̃ = 0) = ri(δt/2) and vi(t̃ − δt/2) = vi(−δt/2). However,
the simulations in Ref. 1 were started at x0 = y0(≡ri(−δt))
and x1 = y1(≡ri(0)) for both the velocity-Verlet and position-
Verlet algorithms.10

IV. NEWTON’S DISCRETE DYNAMICS
Newton’s discrete dynamics have the same qualities and invari-

ances as his analytic dynamics. It is time reversible, symplectic, and
with the exact conservation of momentum, angular momentum, and
energy for a conservative system. Newton’s third law ensures the first
two invariances by which pairs of force actions between two objects
cancel. The exact energy conservation, which is not obvious, can be
seen by comparing the work done by the forces in time intervals with
the corresponding change in the kinetic energy. The proof is given
in Refs. 3 and 11 and in the Appendix. The derivation of the discrete
energy conservation is in fact in close analogy with the way energy
conservation is derived for Newton’s analytic dynamics12 and to the
formulation of the first law of thermodynamics.

There is probably a remarkable connection between
Newton’s analytic and discrete dynamics: the existence of a
shadow Hamiltonian, Hshadow , nearby the Hamiltonian H for the
corresponding analytic dynamic. If the analytic dynamics with
the shadow Hamiltonian starts at the same phase point at t = t0
as Newton’s discrete dynamics, then the discrete points ri(tn) at
t0, t0 + δt, . . . , t0 + nδt, . . . are located on the analytic trajectory ri(t)
for Hshadow .3,13,14 The existence of Hshadow means no qualitative
differences exist between the two kinds of dynamics. However, if
one starts the force calculation at another position corresponding
to the position at a later time for the analytic dynamics, then the
discrete dynamics is with another nearby shadow Hamiltonian
except for monotonic forces. The linear extrapolation in the
position-Verlet dynamics of the positions from r(tn) to r(tn + δt/2)
before the forces are calculated is only valid for Hshadow for the
analytic dynamics from t = t0 for forces which also depend linearly
on the positions. For all other force fields, the trajectories will be
different. There are small numerical differences between positions
obtained by different algorithms for Newton’s discrete dynamics
due to the accumulation of different round-off errors,15 which
could be removed by performing the simulations with integer
arithmetics.16

When discussing the qualities of different reformulations of
Newton’s discrete dynamics, one must compare the dynamics from
the same starting point for force actions, as with analytic dynamics.
The exact conservation of energy implies that the discrete dynam-
ics are propagating on an energy shell in the microcanonical phase
space. The trajectories for starting points with different force actions
deviate, and this is also closely analogous to what happens if one
starts with different Hamiltonians for analytic dynamics.

Hundreds of thousands of articles with MD, and in all sub-
disciplines of natural sciences, have been published since Verlet
published his MD simulations in 1967. Almost all the simulations
are with Newton’s discrete algorithm and with the same qualities
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as Newton’s analytic dynamics. Feynman gave in 1982 a keynote
speech Simulating Physics with Computers17 in which he talked
“. . .about the possibility. . .that the computer will do exactly the
same as nature,” and his conclusion was that it is not possible.
Newton’s discrete dynamics is exact in the same sense as his ana-
lytic dynamics, but computer simulations are not exact simulations
of real systems dynamics, they contain many approximations. The
physical world is not known exactly, and it is far more complex than
any simulated systems, and no real systems have been simulated
exactly. Hence, more than forty years later, and after hundreds of
thousands of computer simulations of the physical system’s dynam-
ics, the answer to Feynman’s question is still negative. Although it is
not possible to simulate the dynamics exactly for any real systems,
simulations with Newton’s discrete algorithm have been and will be
of great use in the natural sciences.

AUTHOR DECLARATIONS
Conflict of Interest

The author has no conflicts to disclose.

Author Contributions

Søren Toxvaerd: Formal analysis (equal); Investigation (equal);
Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY
Data sharing is not applicable to this article as no new data were

created or analyzed in this study.

APPENDIX: THE ENERGY INVARIANCE IN DISCRETE
NEWTONIAN DYNAMICS

Newton’s classical discrete dynamics between N spherically
symmetrical objects with masses mN = m1, m2, . . . , mi, . . . , mN and
positions rN(t) = r1(t), r2(t), . . ., ri(t), . . ., rN(t) is obtained by
Eq. (1). Let the force, fi(t), on object i be a sum of pairwise forces
fij(t) between pairs of objects i and j,

fi(t) =
N

∑
j≠i

fij(t). (A1)

Newton’s algorithm is a symmetrical time-centered difference,
whereby the dynamics is time reversible and symplectic. The con-
servation of momentum and angular momentum for a conservative
system follows directly from Newton’s third law for the conserva-
tive system with fij(t) = −fji(t), but the energy invariance is not so
obvious.

The energy in analytic dynamics is the sum of potential energy
U(rN(t)) and kinetic energy K(t), and it is a time-invariance for
a conservative system. However, the kinetic energy in the dis-
crete dynamics with a force action at time t is not well-defined.

Traditionally, one uses Verlet’s first-order expression for the velocity
at time t,

v0,i(t) =
vi(t + δ/2) + vi(t − δ/2)

2
= ri(t + δ/2) − ri(t − δ/2)

2δt
,

(A2)
obtained by his time symmetric Taylor expansion,18 and

K0(t) =
N

∑
i

1
2

miv0,i(t)2, (A3)

E0(t) = U(rN(t)) + K0(t). (A4)

The energy E0(t) obtained by using the approximation equa-
tions (A3) and (A4) with K(t) = K0(t) for the kinetic energy and
U(rN(t)) for the potential energy of analytic dynamics fluctu-
ates with time, although it is constant averaged over long time
intervals.19

The velocities in Newton’s discrete dynamics are, however,
constant in between the discrete times with force actions, and the
energy invariance can be obtained by dividing time into time inter-
vals [tn − δt/2, tn + δt/2] with force actions at tn (n = 1, 2, . . .) and
with sub-intervals [tn − δt/2, tn] and [tn, tn + δt/2, t]. The energy
invariance, ED, in Newton’s discrete dynamics (D) can then be
obtained by considering the change in kinetic energy δKD, the work
WD done by the forces, and the change in the discrete values of the
potential energy δUD ≡ −WD in a time interval [t − δt/2, t + δt/2]
with t = tn.

The loss in potential energy, −δUD, is defined as the work done
by the forces at a move of the positions.12 The discrete force at
time t changes the position from (ri(t) + (ri(t − δt))/2 at t − δt/2
to (ri(t + δt) + ri(t))/2 at t + δt/2, and with the change δri of the
position δri = (ri(t + δt) − ri(t − δt))/2 and with

−δUD ≡WD =
N

∑
i

fi(t)δri

=
N

∑
i

fi(t)((ri(t + δt) − ri(t − δt))/2. (A5)

By rewriting Eq. (4) as

ri(t + δt) − ri(t − δt) = 2(ri(t) − ri(t − δt)) + δt2

mi
fi(t) (A6)

and inserting it in Eq. (A5), one obtains the following expression for
the total work in the time interval:

− δUD =WD =
N

∑
i
[fi(t)((ri(t) − ri(t − δt)) + δt2

2mi
fi(t)2]. (A7)

The mean kinetic energy KD of the discrete dynamics in the
time interval [t − δt/2, t + δt/2] is

KD =
1
2

N

∑
i

1
2

mi[
(ri(t + δt/2) − ri(t))2

δ(t/2)2 + (ri(t) − ri(t − δt/2))2

δ(t/2)2 ]

= 1
2

N

∑
i

1
2

mi[
(ri(t + δt) − ri(t))2

δt2 + (ri(t) − ri(t − δt))2

δt2 ],

(A8)
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and with the change

δKD =
N

∑
i

1
2

mi[
(ri(t + δt) − ri(t))2

δt2 − (ri(t) − ri(t − δt))2

δt2 ].

(A9)
By rewriting Eq. (4) as

ri(t + δt) − ri(t) = ri(t) − ri(t − δt) + δt2

mi
fi(t) (A10)

and inserting the squared expression for ri(t + δt) − ri(t) in
Eq. (A9), the change in kinetic energy is

δKD =
N

∑
i
[fi(t)(ri(t) − ri(t − δt)) + δt2

2mi
fi(t)2]. (A11)

The energy invariance at a discrete change of time from t − δt/2 to
t + δt/2 in Newton’s discrete dynamics is expressed by Eqs. (A7) and
(A11) as3

δED = δ(UD + KD) = 0. (A12)

Unfortunately, the energy ED in the MD simulations is
recorded with systematic errors. The systematic errors are partly
caused by the use of the analytical expressions for the potential ener-
gies of the discrete forces,19 by truncating the potentials and not
the forces,20 and partly by using the incorrect expression K0 for the
kinetic energy. However, the errors are typically of a few percent or
less.11
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