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In this Letter, the single-element Maxwell model is generalized with respect to the wave vector and extended
with a correction function that measures the reduced viscous response. This model has only two free parameters
and avoids the attenuation-frequency locking present in the original model. Through molecular simulations it
is shown that the model satisfactory predicts the transverse dynamics of the binary Lennard-Jones system at
different temperatures, as well as water and toluene at ambient conditions. The correction function shows that
the viscous response is significantly reduced compared to the predictions of the original Maxwell model and that
there exists a characteristic length scale of minimum dissipation.
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It is fascinating how well continuum hydrodynamics can
describe the dynamics of fluid systems on small length scales
[1–3]. The limitations of hydrodynamics depend on the spe-
cific dynamical properties, the fluid system one studies, as
well as the set of constitutive models applied [4–6]. An ex-
ample of the latter is that Newton’s law of viscosity for the
fluid stress cannot predict the viscoelastic behavior observed
for even simple fluid systems on sufficiently small length
scales [7,8]. A natural extension to the hydrodynamic de-
scription is to apply generalized hydrodynamics (possibly in
the Zwanzig-Mori framework), where the viscosity is wave-
vector and frequency dependent [9,10], or use a viscoelastic
constitutive model for the stress, for example, Maxwell’s
model [5,11].

It is interesting to note that Boltzmann criticized the
Maxwell model and proposed the generalized hydrodynamic
framework, which has since been used with great success (see,
e.g., Ref. [5]). Despite this criticism the Maxwell model pro-
vides a clear interpretation of the underlying processes giving
valuable insight into the physics of fluids, and it is therefore
still relevant.

The Maxwell model states that the total strain rate γ̇ at a
point is the sum of the viscous strain rate σ/η0 and elastic
strain rate σ̇ /G, where σ is the stress, η0 the shear viscosity,
and G the shear modulus (or modulus of rigidity). The stan-
dard dot notation is here used to denote the time derivative.
Rewriting this sum, Maxwell’s model can be expressed as

η0γ̇ = (1 + τM∂t )σ, (1)

where τM = η0/G defines the Maxwell time. The simple inter-
polation between a purely viscous response (dissipation) and
purely elastic response (energy storage) will here be denoted
the ideal mixing of viscosity and elasticity (or dissipation
and storage). Note, recently, Zaccone showed [12] from non-
affine molecular motion the microscopic mechanisms for the
two extremes, giving a foundation for the interpolation. It is
also important to mention that the fractional viscosity model
(FVM) is another way of mixing the viscous and elastic re-
sponses (see Refs. [13,14]).

In a mechanical network representation, the Maxwell
element is a dashpot (with viscosity η0) serially connected to a
spring (with characteristic time τM). The Maxwell model itself
can of course also be extended in different ways, for example,
one can introduce a set of Maxwell elements connected in par-
allel (a Maxwell-Weichert element) [15]; each element is then
characterized by a viscosity and characteristic time. This leads
to a larger parameter space, which is necessary in order to
capture the multiple relaxation times present in many fluid
systems. The Maxwell-Weichert element is sometimes
referred to as a generalized viscoelastic model, however,
this term will be reserved for another modeling strategy as
explained in the following. The single-element Maxwell
model can be generalized by allowing both η0 and τM to be
functions of wave vectors, that is, the viscous and elastic
responses become length scale dependent. Mizuno and
Yamamoto [16] introduced a combination of two parallel
Maxwell elements with wave-vector-dependent viscosities
and Maxwell times. They showed that by introducing the
concepts of slow and fast relaxations their four-parameter
model featured good agreement with molecular dynamics
data for a viscous model system.

In this Letter, it is shown that the generalized, i.e., wave-
vector-dependent, single-element Maxwell model fails to
predict the correct transverse hydrodynamics for even simple
systems in the viscoelastic regime. The deviation from simu-
lation data is quantified by simply relaxing the ideal mixing
rule through a correction function. The physical interpretation
of this function is that the fluid viscous property is not deter-
mined by the zero-frequency viscosity, but also by other en-
ergy storage processes than what the Maxwell time includes.
This picture is in line with Boltzmann’s generalized Newto-
nian viscosity law, but different from the Maxwell-Weichert
element. The inclusion of a correction function then leads to
an extended single-element generalized Maxwell model with
only two free-fitting parameters at a given characteristic wave
vector. The focus here is not on the dynamics of supercooled
liquids or glasses (see, e.g., Refs. [17,18] for more advanced
theories), but on less viscous fluid systems where application
of the Maxwell model is meaningful in the first place.
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The hydrodynamic function we study is the trans-
verse velocity autocorrelation function (TVACF) defined by
C⊥

uu(k, t ) = 1
V 〈̃u(ky, t )̃u(−ky, 0)〉, where V is the system vol-

ume, ũ is the Fourier coefficient of the velocity x component,
and ky the y component of the wave vector k = (0, ky, 0). 〈· · ·〉
denotes the ensemble average of different uncorrelated initial
conditions. Notice that to first order in the density fluctua-
tions C⊥

uu is related to the often used transverse momentum
autocorrelation function C⊥

j j , by C⊥
j j = ρ2C⊥

uu, where ρ is the
average density. In the following we omit the subscript on the
wave-vector y component and set k = ky.

For completeness the TVACF is derived here, and to this
end we first write the momentum balance equation in Fourier
space for k = (0, k, 0), and since we investigate equilibrium
relaxations we can assume zero advection, thus,

ρ∂t ũ = ikσ̃ . (2)

The Maxwell model introduces a characteristic elastic time
and we only generalize with respect to wave vector and not
frequency. Moreover, in what follows we only consider ho-
mogeneous and isotropic systems. In real space and using the
Leibniz integration rule, the generalized Maxwell model reads

η0

∫ ∞

−∞
f (y − y′)∂y′u dy′

= σ (y, t ) + τM∂t

∫ ∞

−∞
g(y − y′)σ (y′, t )dy′, (3)

where we denote f and g the shear viscosity kernel and
Maxwell time kernel, respectively. The kernels have di-
mensions of inverse length and must fulfill that

∫ ∞
−∞ f (y −

y′)dy′ = ∫ ∞
−∞ g(y − y′)dy′ = 1. Newton’s law of viscosity is

recaptured by ignoring both the elastic component, τM = 0, as
well as the spatial correlations, that is, f (y − y′) = δ(y − y′),
where δ is the Dirac delta. Applying the convolution theorem
the generalized Maxwell model reads, in Fourier space,

iη0k f̃ (k )̃u(k) = [1 + τMg̃(k)∂t ]σ̃ (k, t ), (4)

with f̃ (0) = g̃(0) = 1. From the momentum balance equation,
Eq. (2), we get for the velocity Fourier coefficients

∂2
t ũ + 1

τ̃
∂t ũ + k2η̃

ρτ̃
ũ = 0, (5)

where we have used the shorthand notation η̃ = η0 f̃ (k) and
τ̃ = τMg̃(k). Introducing the shear wave speed cT (k) as c2

T =
η̃/ρτ̃ , multiplying by ũ(−k, 0), and ensemble averaging, we
get the dynamical equation for the TVACF,

∂2
t C⊥

uu + 1

τ̃
∂tC

⊥
uu + c2

T k2C⊥
uu = 0, (6)

for any wave vector k. The eigenvalues (or modes) to this
problem are

ω1,2 = −1/(2̃τ ) ±
√

1/(2̃τ )2 − (cT k)2. (7)

In the viscoelastic regime 1/̃τ 2 < 4(cT k)2, or equivalently
1/̃τ < 4̃ηk2/ρ, the solution reads

C⊥
uu(k, t ) = kBT

ρ
e−
t cos (ω0t ) (8)

by application of the equipartition theorem, and where we
define the attenuation coefficient 
 = 1/(2̃τ ) and frequency
ω2

0 = |1/(2̃τ )2 − (cT k)2|. It is clear that the frequency can be
written as functions of τ̃ , or equivalently, via the attenuation
coefficient

ω2
0 = 4
|
 − 2̃ηk2/ρ|. (9)

If η̃ = η0 f̃ is known, we obtain a single-parameter model, and
in this case the attenuation determines the frequency, thus, the
Maxwell model exhibits attenuation-frequency locking.

There is an important point worth highlighting: In the
viscous regime 1/̃τ > 4̃ηk2/ρ, the solution to Eq. (6) is topo-
logically different from Eq. (8) [19]. In particular, we have the
general solution C⊥

uu(k, t ) = C1eω1t + C2eω2t , where C1 and
C2 are integration constants, and ω1 ≈ −1/τM + η0k2/ρ and
ω2 ≈ −η0k2/ρ. Now, since limk→0 C⊥

uu = kBT/ρ for all t we
must have that C1 = 0 and C2 = kBT/ρ. This means that we
recapture the Newtonian model as k → 0 [3], which is iden-
tical to a nonfractional viscosity model. In the following we
focus on the viscoelastic regime alone.

The locking phenomenon is not in agreement with ob-
servations. This can clearly be illustrated through a set of
standard molecular dynamics simulations of a simple binary
fluid. The cubic periodic three-dimensional system is com-
posed of 8000 A and B particles with a mixing ratio 80:20,
respectively. The A and B particles have different interaction
parameters which avoid crystallization—see Refs. [20,21] and
Ref. [22], respectively, for details. The simulation is carried
out using the simulation package MOLSIM [23] in the canonical
ensemble in the temperature range 0.45–1.0ε/kB, where kB

is Boltzmann’s constant and ε the simulation energy scale.
The mass density is the standard 1.2m/σ 3, where m and
σ are the simulation mass and length scales. From hereon
all quantities are given in terms of ε, m, and σ ; as usual,
we omit writing these dimensions explicitly. The viscosity
ranges from 15.3 at T = 1 to approximately 3571 at T =
0.45. The TVACF is calculated directly from the microscopic
definition of the streaming velocity, which to first order in den-
sity fluctuations reads ũ(k, t ) = m/ρ

∑
i vi(t )e−ikyi (t ), where

vi is the particle velocity x component and yi the particle
y position [3]. It is important to state that the TVACF has
been compared to the results from the momentum current
autocorrelation function, justifying the first-order fluctua-
tion approximation (at least away from the critical point
in the thermodynamic phase space). We only use τ̃ as the
fitting parameter (see below), and note that the viscosity
kernel η̃ = η0 f̃ (k) can be calculated from the wave-vector-
dependent stress or the TVACF itself (see Ref. [24]). Here,
the latter method is used, and to highlight that it is the
TVACF from the simulation, we use the subscript MD rather
than uu, i.e.,

η0 f̂ (k, ω) = ρ

k2

C⊥
MD(k, t = 0) − iωĈ⊥

MD(k, ω)

Ĉ⊥
MD(k, ω)

, (10)

where Ĉ⊥
MD = ∫ ∞

0 C⊥
MD(k, t )e−iωt dt ; we have f̃ (k) =

limω→0 f̂ (k, ω). At each temperature the system is initially
equilibrated for 108 time steps; after the equilibration the
system is simulated further using 5 × 108 integrator time
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FIG. 1. (a) The TVACF for the binary Lennard-Jones system at
T = 1.0. Circles connected with lines represent simulation data and
solid lines the least-squares fit of Eq. (8) using τ̃ as the fitting param-
eter. The inset shows the system viscosity kernel η(k) = η0 f̃ (k), and
the black diamond at k = 0 represents the Green-Kubo shear viscos-
ity value. (b) Same as in (a), but for T = 0.45 and only k = 0.67.

steps divided into five blocks of 108 time steps in order to
perform simple statistics and check the system equilibration.

Figure 1(a) shows the least-squares fit of Eq. (8) to the
averaged simulation data at T = 1.0. The viscosity kernel
used as the input is shown in the figure inset; the kernel
result is checked against the standard Green-Kubo integral of
the stress autocorrelation function η0 = V

kBT

∫ ∞
0 〈σ (t )σ (0)〉 dt .

It is clear that the wave-vector-dependent Maxwell model
cannot capture the correct relaxation dynamics, partly due to
the locking. The effect of the locking becomes even more
extreme as we approach the supercooled regime as shown
in Fig. 1(b).

Recall the definition of the Maxwell time τM = η0/G.
Since the viscosity kernel has reached the Green-Kubo limit at
around k = 0.33, one can expect the system to be wave-vector
independent for k � 0.33. The fit in Fig. 1(a) to the TVACF
data yields a Maxwell relaxation time τM ≈ τMg(k = 0.33) =
0.85, whereas estimating this value from the stress autocor-
relation function τM = η0/G with G = V/kBT 〈Pxy(0)Pxy(0)〉
(see Refs. [25,26]) gives 0.24 [27]. This further highlights
the failure of the Maxwell model and why the Maxwell
time is here found from fitting rather than from indepen-
dent methods. Despite the large quantitative discrepancy
between the model and the simulation data, the relax-
ation is dominated by a damped harmonic oscillation, and
this motivates an extension of the generalized one-element
Maxwell model.

As stated above, we introduce a correction function w,
which is a measure of the deviation from the ideal mixing;
specifically, it will measure the system’s reduced viscous re-
sponse. In the general case, we must expect that the deviation
is length-scale dependent, i.e., w is wave-vector dependent,
and we get η̃ = η0w(k) f̃ (k). Notice that in real space w is a
kernel itself. The TVACF has the same form as Eq. (8), but
now with frequency

ω2
0 = 4
|
 − 2wη̃k2/ρ|. (11)

For a given wave vector this results in a two-parameter
model if we know the viscosity kernel. Only the real-valued

FIG. 2. (a) Real part of the TVACF spectrum for the binary
Lennard-Jones system at T = 0.45. Symbols connected with lines
represent simulation data (Fourier-Laplace transformed) and solid
lines the least-squares fit of Eq. (12). (b) Dispersion plot for 
 and
ω0. (c) and (d) The correction function and Maxwell relaxation time
as functions of wave vector and at different temperatures.

correction is considered, and since we expect additional
energy storage processes we also expect the bounds 0 <

w < 1. In particular, as we approach the highly elastic
regime, w ≈ 0.

Following the literature [9,10,16], we fit the corrected
model to the real part of the corresponding TVACF spectrum;
this enhances the deviation between theory and data. The
spectrum is in terms of attenuation and frequency,

Ĉ⊥
uu(k, ω) = kBT

ρ

iω + 
(k)

[iω + 
(k)]2 + ω2
0(k)

. (12)

Figure 2(a) shows the least-squares fit of the real part of
Eq. (12) to simulation data for the binary Lennard-Jones
system at T = 0.45. The fitting parameters used are τ̃ and
w. Again, η̃ is found independently from Eq. (10). As one
expects, the agreement is not perfect, however, the corrected
model does capture the main relaxation dynamics. The inset
shows the TVACF for the largest wave vector studied, namely
k = 3.33; this corresponds to a characteristic length scale of
just 1.89 or below two particle diameters. In Fig. 2(b) the
dispersion plots for the frequency and attenuation coefficients
are shown. The linear dispersion for ω0 follows the results
from Mizuno and Yamamoto [16]. The squared wave-vector
dependency reported for 
 is less clear with the wave vectors
studied here. This indicates that this two-parameter model
also captures the correct multiscale dynamics. Figure 2(c)
shows that w decreases as the temperature decreases; this is
in agreement with the expectation above, namely, that the
viscous response is reduced compared to the ideal mixing
case. Interestingly, the correction function features a mini-
mum which shifts towards lower k values as the temperature
decreases. For T = 0.45 the minimum is located at approxi-
mately k = 1, corresponding to a length scale of around six
particle diameters. This indicates the existence of a character-
istic length scale of minimum energy dissipation, taking the
usual wave-vector-dependent viscosity into account. For com-
pleteness, the wave-vector-dependent Maxwell time τ̃ is also
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FIG. 3. (a) Real part of the TVACF spectrum for water. The inset
shows the dispersion relation for ω0. (b) As in (a), but for liquid
toluene. The inset shows the TVACF (time domain) for k = 0.28 Å.
In both (a) and (b) circles with lines represent data and the solid line
fits to Eq. (12). k1 is the fundamental wave vector (black) and the
data/fits the subsequent modes.

plotted [Fig. 2(d)]. This shows the well-known “anomaly”:
The attenuation is very small (the Maxwell time is large) on
large length scales, but decreases abruptly on the microscopic
scale.

The corrected model is tested for water [Fig. 3(a)] and
liquid toluene [Fig. 3(b)] at ambient conditions. The water
model, the SPC/Fw model, is a flexible version of the sim-
ple point charge model (see Ref. [28]) where the Coulomb
interactions are evaluated with the cut and shifted method
[29], and the toluene model is a united-atomic-unit model [6].

Again the reader is referred to the Supplemental Material [22]
for more details. Clearly, the corrected model also performs
well for these fluid systems, in particular, the linear dispersion
relation for ω0 is present (shown for water). For water the
viscous corrections vary from 0.54 to 0.34 in the wave-vector
range k = 0.16–0.8 Å−1, indicating that the viscous response
is significantly reduced for these more realistic model systems
as well.

In conclusion, the single-element Maxwell model was
extended using a correction function that, phenomenolog-
ically, includes the reduced viscous response not captured
by the original model. It was shown that with only two
fitting parameters, namely, the Maxwell relaxation time and
the correction function, the model predictions agreed very
well with data for the TVACF of different fluid systems. The
dispersion curve of the frequency followed previous results by
Mizuno and Yamamoto [16]. From the correction function it
is concluded that the system viscous response is significantly
reduced when comparing to the predictions from the original
model. This reduction increases with decreasing temperature
as expected and the reduction features a minimum for low
temperatures defining a length scale of minimum dissipation.
It can be concluded that the damped oscillations observed
in the TVACF for the model systems studied here (binary
fluid, water, and toluene) follow to a good approximation
the functional form predicted by the single-element Maxwell
model [Eqs. (8) and (12)], and a better quantitative agreement
is achieved by simply relaxing ideal mixing. Naturally,
this cannot be concluded for complex and viscous liquids
where the mechanical spectra differ qualitatively from the
single-element Maxwell predictions (see, e.g., Ref. [30]).

The author wishes to thank Jeppe Dyre and Ulf Rørbæk
Pedersen for valuable discussions.
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