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ABSTRACT
A comparison is made between three simple approximate formulas for the configurational adiabat (i.e., constant excess entropy, sex) lines
in a Lennard-Jones (LJ) fluid, one of which is an analytic formula based on a harmonic approximation, which was derived by Heyes et al.
[J. Chem. Phys. 159, 224504 (2023)] (analytic isomorph line, AIL). Another is where the density is normalized by the freezing density at
that temperature (freezing isomorph line, FIL). It is found that the AIL formula and the average of the freezing density and the melting
density (“FMIL”) are configurational adiabats at all densities essentially down to the liquid–vapor binodal. The FIL approximation departs
from a configurational adiabat in the vicinity of the liquid–vapor binodal close to the freezing line. The self-diffusion coefficient, D, shear
viscosity, ηs, and thermal conductivity, λ, in macroscopic reduced units are essentially constant along the AIL and FMIL at all fluid densities
and temperatures, but departures from this trend are found along the FIL at high liquid state densities near the liquid–vapor binodal. This
supports growing evidence that for simple model systems with no or few internal degrees of freedom, isodynes are lines of constant excess
entropy. It is shown that for the LJ fluid, ηs and D can be predicted accurately by an essentially analytic procedure from the high temperature
limiting inverse power fluid values (apart from at very low densities), and this is demonstrated quite well also for the experimental argon
viscosity.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0225650

I. INTRODUCTION

The excess entropy, sex, of a system is the difference between
the total entropy from what would be the ideal gas value at the same
temperature and density and can be defined at all points on a fluid
phase diagram. A line of constant sex on a phase diagram is called a
“configurational adiabat.” Each fluid state point falls on one of the
many configurational adiabats, which cover the entire fluid phase.

In Ref. 1, Rosenfeld showed strong evidence that sex is a
predictor for the dynamics of simple systems and he formulated the
so-called excess entropy scaling of transport coefficients. This obser-
vation can be rationalized in the high density region of the phase

diagram by the isomorph theory. An “isomorph” is a configurational
adiabat (CA) where the correlation coefficient, R, between the virial
and potential energy is close to unity (typically R > 0.9 is taken).2
This condition is satisfied for fluids that are not too far from the
freezing line but breaks down progressively at densities near the crit-
ical density and for lower values. Along an isomorph, a property
expressed in “isomorph” or macroscopic (MU) reduced units has
(to a good approximation) a constant value.2 Some properties may
satisfy this behavior, while others may not, along the same line. The
invariance of structure when density scaled, for example, the radial
distribution function and percolation threshold distance,3 is a key
signature of an isomorph.2,4–7
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Only the hard sphere and inverse power potential (i.e.,∼ r−n,
where r is the pair separation and n > 3 is the potential steepness
exponent) (IPL) fluids form perfect isomorphs, and this condition
is only approximately satisfied for other types of model and exper-
imental system. An isomorph is a configurational adiabat, but a
configurational adiabat is not necessarily an isomorph. There are
also so-called “isodynes” where there is a MU collapse of the trans-
port coefficients and some other dynamical properties, but not of
the structure. An example of this has recently been reported for
a model low temperature ionic liquid.8,9 In fact, the current evi-
dence is that isodynes are probably more common than isomorphs
in real chemical liquid systems which have many internal degrees of
freedom.9

The isomorph–isodyne treatment may be considered to be a
“top down” thermodynamic-based theoretical approach, as the spe-
cific nature of the molecular level structural evolution and dynamics
is not considered. While there are many “bottom up” theories of liq-
uids in the literature, which start from a molecular level foundation,
they require approximations when the molecular level many-body
processes need to be included in the theory. Both approaches are
complementary, and combined can be used to quantify dynamical
and transport processes in liquids, which discriminate between
different chemical systems. Unlike the van der Waals equation of
state scaling, which uses constants based on the interaction pair
potential to collapse the data, the MU scaling is carried out with
state point dependent parameters that are independent of the pair
potential.

The Lennard-Jones (LJ) pair potential has been widely used to
represent generically some of the important aspects of the interac-
tion between small molecules. The LJ expression is composed of
a repulsive r−12 and an attractive r−6 IPL term, ϕ(r) = 4ε[(σ/r)12

− (σ/r)6], where ε and σ set the interparticle energy and length
scales, respectively. The shear viscosity, ηs, self-diffusion coefficient,
D, and thermal conductivity, λ, of the LJ fluid not too far from
the freezing line show good MU isomorph collapse, while the bulk
viscosity, ηb, does not.3 This may be attributed in part to the fact that
while the LJ structure is essentially invariant when density-scaled
along the isomorph, the relative contributions to the thermody-
namic properties from the two parts of the potential scale differently
with density, and ηb is defined in terms of the system’s total pres-
sure fluctuations, which do not exhibit isomorphic collapse. In
general, quantities that are obtained from the free energy as volume
derivatives are not expected to be isomorph invariant.

In Ref. 10 (referred to as P1 herein), the isomorph MU scaling
of the LJ shear viscosity, self-diffusion coefficient, and thermal con-
ductivity was investigated. In addition, the isomorph collapse of the
radial distribution function and its various derivatives were covered.
This was followed in Ref. 11 (referred to as P2) by an investigation
of simple analytic formulas for the CA lines, mainly based around
forces and a harmonic model. The ability of liquid state perturbation
theory to account for the variation in thermodynamic properties
in the high temperature CA limit at reasonably high densities was
demonstrated in P2.

In the present work, the behavior of the freezing density
scaling discussed in P1 and the simple analytic form for a CA based
on a harmonic model of the liquid of P2 are investigated further. A
more accurate variant of freezing density scaling in the liquid part
of the fluid phase diagram is proposed and verified using molecular

dynamics (MD) simulation data of the excess entropy and transport
coefficients.

One of the main themes of this work is to determine lines of
constant excess entropy of the LJ fluid and to explore the behavior of
key transport coefficients along these lines. It is also shown that the
high temperature (i.e., IPL) limit of the CA can be used to predict
the LJ transport coefficients from relatively simple parameterized
expressions.

Section II presents various approximate formulas for the
configurational adiabat and isomorph lines, which for the LJ system
are completely analytic. A new variant of the fluid–solid coexis-
tence density scaling approach is proposed. The harmonic model
invented in P2 is used to predict sex of an arbitrary LJ fluid state
point. Section III shows the excess entropy derived from MD sim-
ulations along some predicted CA lines at temperatures below
T = 2.0, which includes the liquid–vapor domain and the lower part
of the supercritical region. Section IV investigates how two of the LJ
transport coefficients vary along the configurational adiabat lines,
and the shear viscosity data for experimental argon are analyzed
using the same procedure. Conclusions from this work are made in
Sec. V.

Section II discusses a series of expressions that could be used to
represent configurational adiabats of the LJ fluid.

II. ANALYTIC EXPRESSIONS
FOR THE CONFIGURATIONAL ADIABAT LINES

First, as a point of definition, the inverse power potential with
exponent, n = 12, ϕipl4 = 4ε(σ/r)12, used in this work is referred to as
“IPL4” to make it clear that the factor of 4 is present in its definition,
which is inherited from the definition of the LJ potential. IPL4 has
often been used in perturbation theories of the LJ system, notably
by Hansen,12 which was based on the partition function expansion
procedure of Zwanzig.13 This perturbation theory was employed by
the present authors in P2 to explain the high temperature limiting
behavior of the LJ fluid along any of its configurational adiabats.

Analytic expressions of lines on the temperature–density plane
that satisfy for fluids the sex = const. condition are proposed and
investigated in this section. LJ units of ε for energy, σ for length
and the particle mass, and m for mass are used throughout this
work [e.g., time, t, is in units of σ(m/ε)1/2], apart from where the
quantities are further nondimensionalized into MU.

A. Coexisting fluid–solid density based models
It was shown by Khrapak and Khrapak that the transport coeffi-

cients of a range of model and experimental fluid systems expressed
in MU units collapse very well as a function of ρ/ρ fr , the ratio of
the number density divided by the (temperature dependent) freezing
density, ρ fr ,14–18 which was also confirmed by the present authors
in P1. The ratio ρ/ρ fr provides a convenient procedure to compare
the behavior of fluid systems at different temperatures and could
be viewed as a surrogate for the excess entropy. This procedure is
referred to as Freezing Density Scaling (FDS). A list of the acronyms
used in this work is given in Table I in the Appendix. This simple
procedure scales out the effects of temperature for a number of LJ
transport properties to a very good approximation, meaning that the
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density dependence of the transport coefficients becomes essentially
a line rather than a two-dimensional surface of values.10,11

Within this approximation, an isomorph line passing through
the fluid state point, T0, ρ0, is “parallel” to the freezing line. The
freezing isomorph line (“FIL”) is defined as follows. If ρ fr(T) is the
density of the fluid along the freezing line,

R fr =
ρ0

ρ fr(T0)
, ρFIL(T) = R frρ fr(T), (1)

where R fr is the ratio of the reference density, ρ0, in the fluid region
of the phase diagram divided by the density along the freezing line at
the same temperature (i.e., T = T0). There is an accurate fitted ana-
lytic formula for the LJ freezing line, ρ fr(T),

19,20 which can be used,
making the FIL analytic in practice.

Equation (1) implies that the freezing line is a single isomorph
from the triple point to infinitely high temperature for the LJ system.
It is known, however, that this is not the case, and corrections have to
be made in the liquid part of the phase diagram and at slightly higher
temperatures.21–23 This suggests that freezing density scaling using
the FIL formula of Eq. (1) may not give accurate configurational
adiabats and isomorphs in the liquid region.

Two variants of Eq. (1) are considered in this work using dif-
ferent aspects of fluid–solid coexistence. These employ the melting
line (“MIL”), which is at higher density, and the average of these
two (“FMIL”). If ρm(T) is the density along the melting line, the
corresponding formulas for these two lines are

Rm =
ρ0

ρm(T0)
, ρMIL(T) = Rmρm(T),

Rfrm =
ρ0

ρfrm(T0)
, ρFMIL(T) = Rfrmρfrm(T),

(2)

where ρ frm(T) = [ρ fr(T) + ρm(T)]/2. The ρFIL(T), ρMIL(T), and
ρFMIL(T) lines are generically denoted by the ratio, ρ/ρ fm.

The FMIL formula is an arithmetic mean of the freezing and
melting densities and is therefore a hypothetical state point in the
metastable solid–fluid coexistence region, which is in the same tradi-
tion as the law of rectilinear diameters for liquid–vapor coexistence.
Despite the fact that the symmetries of the fluid and solid phases are
different, it has been speculated that in some systems, the fluid–solid
transition may manifest a critical point.24 Consequently, the arith-
metic mean of the freezing and melting densities seems an obvious
first choice for such a hybrid case.

An alternative choice for a configurational adiabat line that
does not depend on knowledge of the fluid–solid coexistence lines
is described next.

B. Harmonic model
Rosenfeld pioneered a theoretical construction that expressed

the thermodynamic and transport properties of the LJ system and
even the freezing and melting transition in terms of the sum of two
contributions, one derived from the r−12 part of the potential and
the other from the attractive part, r−6,1,25–27 with importantly no
“cross” term, which simplifies the analytic formulation immensely.
Rosenfeld proposed that for the freezing and melting curves,
T = α12ρ4 − α6ρ2, where α6 and α12 are positive constants,25 which
was subsequently employed by Khrapak et al.28

This feature is prominent in isomorph theory and was
employed in P2 where a simple mean field harmonic model for a
LJ isomorph line was developed, which only requires calculating the
repulsive and attractive components of the potential energy at a sin-
gle state point to parameterize it. This approach is an approximation
to a rigorous formula involving the heat capacities of the repulsive
and attractive parts of the potential,5,15,29,30 but, nevertheless, leads
to a formula with the same generic analytic form as the exact treat-
ment. Let T = T/T0, ρ = ρ/ρ0, and u = ur + ua be the total potential
energy per particle, where ur and ua are the repulsive and attractive
parts, respectively. Then,

T = Aρ 4 − Bρ 2, A = 132ur,0

132ur,0 + 30ua,0
, B = − 30ua,0

132ur,0 + 30ua,0
,

(3)

where ur,0 and ua,0 are the average repulsive (r−12) and attractive
(r−6) parts of the LJ potential energy per particle at a reference state
point, ρ0, T0. Note that A − B = 1 and the value of A depends on
the two variables, ρ0 and T0. It was shown in P2 that a single value
of these two quantities gives a good representation of a complete
isomorph, providing that the reference temperature is chosen at an
appropriate intermediate temperature, typically along an isotherm a
little above the critical point value. Then, the reference state point is
in the transition regime from liquid-like to supercritical IPL domi-
nated qualitative behavior. This was based on a few isomorphs, and
a more comprehensive investigation of these preliminary results is
made here.

The expression in Eq. (3) is here referred to as the analytic
isomorph line (AIL).

C. Determining the A parameter
The A parameter in Eq. (3) depends on the repulsive and

attractive parts of the potential energy per particle at the ref-
erence state point, ρ0, T0, which can be determined directly by
MD or from a parameterized equation of state (PEOS) of the
excess (i.e., configurational) part of the pressure Pex using the
formula Pex = ρ(4ur + 2ua). This leads to ur = Pex/2ρ − u and
ua = 2u − Pex/2ρ, as u = ur + ua (both u and Pex can be obtained
directly from the PEOS). The modified Benedict–Webb–Rubin
(MBWR) analytic equation of state,32 with the parameters applica-
ble to the LJ fluid region given in Ref. 31, was used in the present
study.

Figure 1 shows the A parameter as a function of ρ0 for three
representative values of T0 using the LJ PEOS from Refs. 31 and
33. For T0 = 2, the values obtained directly by MD are also shown.
The MD simulations were conducted with the Verlet leapfrog algo-
rithm,34 using velocity scaling,35 and the Nosé–Hoover thermostat
to control the temperature.36

As a precursor to the following analysis, it is convenient to
parameterize A(ρ0, T0) in terms of a low order polynomial in ρ0 for
a fixed value of T0. MD LJ simulations were conducted at a series
of densities, ρ0, along an isotherm, and A was determined from the
potential energy components using the second line expression in
Eq. (3). A least squares fit to the A(ρ0, T0) values for T0 = 2 was
made using the function

A(ρ0, T0) = a0 + b0ρ0 + c0ρ2
0 + d0ρ3

0, (4)
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FIG. 1. The dependence of the A parameter defined in Eq. (3) as a function of
ρ0 along several isotherms, T0 = 1.35, 2.0, and 5.0 calculated using the LJ PEOS
as described in the main text, which are shown as continuous lines. The symbols
are derived by carrying out MD simulations along the chosen isotherm and using
the definition of A in terms of Eq. (3), which requires the MD-determined, ur ,0 and
ua,0.31 The fit formula in Eq. (4) is indicated by “A fit” in the figure.

where a0, b0, c0, and d0 are 2.022 63,−0.171 304,−0.627 794, and
0.259 057, respectively. Figure 1 shows that the fit formula in Eq. (4)
cannot be distinguished from the corresponding PEOS line. The A
parameter is seen to be greater than unity in Fig. 1 and A→ 1 in the
high temperature limit. In the ρ0 → 0 limit, A = 2.09, 2.04, and 1.69
for T0 = 1.35, 2.0, and 5.0, respectively. These constants depend on
T0, and T0 = 2 was used for the rest of this work. In the high tem-
perature (density) limit along a configurational adiabat, the system
tends to that of the IPL4 potential,

T
T0
= A( ρ

ρ0
)

4

, (5)

which gives ρ = A−1/4ρ0 when T = T0. As A ≥ 1, the high tempera-
ture limiting IPL crosses the T0 line at a lower density than that of
the LJ isomorph itself (i.e., ρ0). The LJ line is

T
T0
= A( ρ

ρ0
)

4

+ (1 − A)( ρ
ρ0
)

2

. (6)

Equation (6) is of a form found in the literature, where in the
isomorph region the parameter A is replaced by γ0/2 − 1 and γ0
is the so-called density-scaling exponent at a reference density and
temperature.5,37 Hence, from Eq. (6), the temperature dependence
of ρ is

ρ 2 =
(A − 1) +

√
(1 − A)2 + 4AT
2A

, (7)

and A→ 1 in the T0 →∞ limit as then ∣ua,0/ur,0∣→ 0. In that limit,
the expression in Eq. (7) reduces to ρ 4/T = 1, which defines the

IPL4 density–temperature relationship. The density–temperature
line defined through Eq. (7) is referred to as ρAIL = ρρ0.

Figure 2 compares the FIL, MIL, FMIL, and AIL, each of which
passes through eight reference state points, ρ0, T0, where T0 = 2 in
each case. The lines terminate on the vapor or liquid part of the
vapor–liquid binodal. Above about the critical temperature on the
scale of Fig. 2, there is hardly any difference between the proposed
isomorph lines of AIL, FIL, MIL, and FMIL, but there are notice-
able differences in the liquid part of the phase diagram. Figure 2
shows that the FILs terminate on the binodal at a lower density
than those of AIL, while the MILs have the highest density. The
FMIL and AIL are hardly distinguishable in Fig. 2 at any density and
temperature.

Figure 2 also shows that the differences between the four types
of curve decrease as ρ0 decreases, and they tend to a vertical line (i.e.,
an isochore) on the scale of Fig. 2 in the low reference density ρ0
region in the ρ0 → 0 limit for T < T0. Even in this low ρ0 limit, these
curves will bend over to the right in the high temperature IPL4 limit
for T ≫ T0.

This T < T0 behavior in the low density limit may be rational-
ized as follows. In the limit, ρ0 → 0, for T0 = 2, A ≃ 2.0, and B→ 1,
when Eqs. (6) and (7) become

T ≃ 2ρ 4 − ρ 2, ρ(T) ≃ ρ0
⎛
⎝

1 +
√

1 + 8T
4

⎞
⎠

1/2

, (8)

FIG. 2. Four types of predicted configurational adiabat lines according to various
prescriptions discussed in the main text. On the right of the figure, the freezing den-
sity line is denoted by “freeze,” the melting density line is “melting,” and the average
of these two lines is referred to as “FM.” The freezing isomorph line (“FIL”) is using
the expression in Eq. (1), the melting isomorph line (“MIL”) is from Eq. (2), the
freezing–melting isomorph line (“FMIL”) is also defined in Eq. (2), and the analytic
isomorph line (“AIL”) is from Eq. (3). Examples of the four lines that pass through
the points ρ0 = 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, or 1.0 and T0 = 2 are presented.

The line “formula” is
√

2ρ(T) from the last expression of Eq. (8), where ρ0 = 0.1.
The horizontal red line at T = 2 and terminating at ρ0, T0 = 0.8, 2.0 illustrates the
isotherm (TIP) stage used in the sex determination. The horizontal black line marks
the boundary between the vapor and liquid state points and the supercritical fluid.
The binodal curve is taken from Refs. 31 and 38.
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where noting that ρ = ρ0 when T = 1 and ρ(T)→ ρ0/
√

2 in the
zero T limit (the analytic solution, not taking account of the
binodal metastable region). Therefore, for T0 = 2 and ρ0 = 0.1,
ρ = 0.092 when T = 1.2, and for ρ0 = 1, then ρ = 0.92. The magnitude
of the temperature shift is smaller for low values of ρ0 (which makes
them appear vertical), even though the ratio ρ/ρ0 is the same in both
cases. This results in the trend that as the density of the isomorph
shifts to lower values, the curve appears more vertical in Fig. 2. In
fact, for the hard sphere system, all of the isomorph-CA lines are
vertical, which suggests that in the low density region, the hard
sphere system could be considered to be a useful approximation to
or reference for the LJ system, apart from inside the LJ binodal (see
Ref. 39 for further discussion of this correspondence).

The configurational adiabat which an arbitrary LJ fluid state
point, ρ, T, is on (within the AIL approximation) requires the A
parameter defined in Eq. (3) for that isomorph to be determined.
This involves first calculating the associated reference state point,
ρ0, T0. From Eq. (3), the starting point is

T
T0
= A(ρ0, T0)(

ρ
ρ0
)

4

+ [1 − A(ρ0, T0)](
ρ
ρ0
)

2

. (9)

The parameter A can be calculated by solving numerically the
expression in Eq. (9) using the predetermined function defined in
Eq. (4).

Let Tipl4 and ρipl4 in LJ units be the temperature and density of
the AIL in the IPL4 limit. The limiting IPL4 configurational adiabat
in the high temperature (density) limit is given by

T
T0
→ A(ρ0, T0)(

ρ
ρ0
)

4

≡ const.,
ρ4

ipl4

Tipl4
→ 1

A(ρ0, T0)
ρ4

0

T0
≡ Y.

(10)

From Ref. 11, we can propose that the excess entropy along the LJ
AIL is constant and equal to its value in the IPL4 limit. The quantity,
Y , on the right-hand side of the expression on the last line of Eq. (10)
defines which IPL4 configurational adiabat the LJ system at ρ, T
tends to in the high temperature limit, within the AIL approx-
imation. Therefore, any analytic formula for sex along that AIL
LJ isomorph must be a unique function of Y . A simplification of
Eq. (10) is

ρ4
ipl4

Tipl4
=

ρ4
ipl4,0

Tipl4,0
, (11)

where ρipl4,0 = ρ0/A
1/4. As A ≥ 1, the IPL4 isomorph of interest

passes through ρ = ρipl4,0 at T = T0 = Tipl4, which is to the left of ρ0.

D. Relationship between the AIL, FIL, and MIL
procedures

In Fig. 2, the LJ coexisting fluid-phase boundaries given by the
essentially exact expressions by Schultz and Kofke are presented.19,20

There are also approximate expressions for the LJ freezing and melt-
ing lines in the literature,15,23 which take the form T = Aρ4 − Bρ2.
This simple analytic form is only approximate because the freezing
and melting lines are already known not to form a single CA,
especially for temperatures below about 2.21,22 Nevertheless, it is

FIG. 3. The ratios ρAIL/ρ fr (“Freezing”), ρAIL/ρm (“Melting”), and their arithmetic
mean [“(F + M)/2”] as a function of temperature are shown. The parameters are
T0 = 2 and ρ0 = 0.8, 0.9, and 1.0, which are indicated in the figure. The equa-
tion AIL constants are A = 1.614 79, 1.546 41, and 1.483 40, respectively (note
B = A-1). The symbols are using the freezing and melting line expressions of
Schultz and Kofke,19,20 and the solid lines are using T = Aρ4 − Bρ2, where A and
B are 2.27 and 0.80 for freezing and 1.76 and 0.69 for melting.23

of interest to compare the performance of these two formulations
for the freezing and melting lines because of the importance of the
similar AIL expression for the CA within the fluid phase.

Figure 3 presents the density ratios for the AILs, which pass
through [ρ0, T0] of [1.0, 2.0], [0.9, 2.0], and [0.8, 2.0], respectively.
They all terminate on the liquid side of the vapor–liquid binodal.
Note that the melting and freezing lines splay out in opposite direc-
tions below a temperature of about 2.0 (see also Fig. 2 in P1).
Although there are some differences between the curves derived
from the two sources of the freezing and melting lines, which might
be expected, their average for the two prescriptions agrees sur-
prisingly well and is relatively flat across the whole temperature
range particularly as ρ0 tends closer to the freezing line. This obser-
vation complements and substantiates the conclusions above that
an average of the freezing and melting line data mirrors the AIL
configurational adiabat line trends quite well.

III. EXCESS ENTROPY DETERMINATION
This section covers the methodology used in this study to deter-

mine the excess entropy by molecular dynamics simulation along the
AIL, FIL, MIL, and FMIL.

A. Widom’s method
The excess entropy per particle, sex, is defined in terms of u, the

excess (“residual”) chemical potential, μex, or alternatively the excess
Helmholtz free energy per particle, aex, from Ref. 40,

sex

kB
= βu − βμex + Z − 1

= βu − βaex, (12)
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where β = 1/kBT and the total compressibility factor Z = P/ρkBT
(P is the pressure and kB is Boltzmann’s constant). Molecular
dynamics simulation can be used to compute u and P as ensemble
averages, and it therefore remains to determine μex or aex in order to
obtain sex.

Widom’s particle insertion method (WM)41–44 can be used in
an NVT MD or Monte Carlo simulation to determine μex. Let the
interaction energy of a virtual test particle randomly inserted into
the N particles in the simulated system be ΔU+, where both test and
host fluid particles interact with the same pair potential. Then,

βμex = − ln⟨exp (−βΔU+)⟩, (13)

which together with Eq. (12) can be used to calculate sex.
As is well-known, the WM is most efficient at fluid densities

away from the freezing line, as the probability of inserting a particle
becomes less likely with increasing density.

B. Thermodynamic integration
Thermodynamic integration (TI) included in molecular

dynamics simulation is another widely used route to obtain free
energy and entropy differences [using Eq. (12)], which is computa-
tionally efficient for the fluid up to the freezing line. To formulate
this method in the most general way, it is convenient to define
the quantity Πex = Pex/ρ2 =W/ρ, where W is the virial. Largely
following the procedure of van der Hoef in Ref. 45, the starting point
of the present treatment is

(∂βaex

∂β
)

ρ
= u(ρ, β),(∂aex

∂ρ
)

β
= Πex(ρ, β). (14)

The value of aex at any fluid state point ρ, β can be obtained from its
value at ρ0, β0 using

βaex(ρ, β) = β0aex(ρ0, β0) + ∫
β

β0

u(ρ, β′)dβ′

+ ∫
ρ

ρ0

β0Πex(ρ′, β0)dρ′, (15)

which has separate isochore and isotherm stages. The expression in
Eq. (15) can be evaluated numerically by carrying out a series of
molecular dynamics simulations for closely spaced values of ρ and
β. The combination of isochore (“TIU”) and isotherm (“TIP”) stages
between two arbitrary density and temperature state points, given in
Eq. (15), is in this work referred to as the “TIPU” procedure.

From Eq. (15), the desired quantity, βaex(ρ, β), can be obtained
by integrating along an isotherm from zero density to ρ,40,46–48

βaex(ρ, β) = ∫
ρ

0
βΠex(ρ′, β)dρ′

= ∫
ρ

0

[Z(ρ′, β) − 1]
ρ′

dρ′, (16)

where note that [Z(ρ′, β) − 1]/ρ′ → b2 as ρ′ → 0 and b2 is the
second virial coefficient. The ln ρ term resulting from the integral
in the second line of Eq. (16) subtracts off the ideal gas contribution
to the Helmholtz free energy.

Both βu and βaex tend to zero in the ρ→ 0 limit for any T. In
the high temperature limit, the LJ second virial coefficient converges
to that of the IPL4 system, b2 = 23/2πΓ[3/4]β1/4/3,12 where Γ[x] is
the gamma function of x. All the LJ virial coefficients tend to zero in
the β→ 0 limit.

A practical approach that can be used in molecular dynamics
simulation to calculate sex in the liquid region of the phase diagram
is to adopt a combination of first (a) the isotherm (TIP) and then
the (b) isochore–isotherm (TIPU) route, the latter in simultaneous
small steps of density and temperature, as presented in Eqs. (16)
and (15), respectively. The TIPU part traces out the isomorph,
while the TIP is employed to determine the excess Helmholtz free
energy of the reference state point, ρ0, T0, from the ρ→ 0 limit.
The isotherm approach is used at a temperature T > Tc (the criti-
cal point temperature) to a density relevant to the liquid region, and
then, the isochore–isotherm method is pursued to lower densities,
decreasing T (increasing β) into the liquid region using one of the
analytic equations put forward in Sec. II. This procedure bypasses
the liquid–vapor metastable coexistence region and is illustrated
in Fig. 2, which shows the isotherm step at T = 2 terminating at
ρ0 ≡ ρ = 0.8. The TIPU method is then continued to lower tem-
perature and density until it terminates on the liquid side of the
liquid–vapor binodal. The predicted liquid part of the CA is the
TIPU part of this path. The extent to which each of these ana-
lytic lines satisfies the condition of constant excess entropy was
determined from these TI MD simulations.

This combined TIP and TIPU strategy was implemented along
the FIL, FMIL, and AIL. The three lines are completely analytic, and
they all pass through the same set of ρ0 and T0 on the phase diagram,
each of which specifies a potential configurational adiabat.

Following the approximations of Zwanzig [Eq. (26) in Ref. 13],
it can be shown that both βu and βaex (and hence sex) vary as ∼ ρβ1/4

in the β→ 0 limit. We note also that in the high temperature limit,
the one component plasma (OCP) where there are r−1 interactions,
βu, and inverse power potential systems have been found to have
a leading β1/4 dependence in the β→ 0 limit.49–52 Therefore, βu and
βaex tend to zero (i.e., the ideal gas limit) at constant density as ∼ β1/4

in the high temperature limit. Another way of calculating the excess
entropy change across an isochore is to fit a set of βu values from
MD simulations carried out at a set of temperatures to a low order
polynomial in powers of β1/4, for example,

βu = Asβ1/4 + Bsβ1/2 + Csβ3/4 +Dsβ,

βaex = ∫
β

0
u(β′)dβ′ = 4Asβ1/4 + 2Bsβ1/2 + 4

3
Csβ3/4 +Dsβ,

sex(β) = βu − βaex = −3Asβ1/4 − Bsβ1/2 − Cs

3
β3/4.

(17)

The constants As, Bs, Cs, and Ds contain the density dependence and
are obtained at each isochore density. Figure 4 shows the values of
sex for four values of ρ0 at T0 = 2 determined using Eq. (17). For
the number of temperatures used in the simulations, the value of sex
from the potential energy fit was found to be sensitive to the temper-
ature range employed but was typically close to the values obtained
by the other methods.

These values are statistically indistinguishable from the values
obtained by the TIP route, which are also shown in Fig. 4.
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FIG. 4. sex produced for the three pairs of lines presented in Fig. 2. The various
curves pass through the state points ρ0 = 0.7, 0.8, 0.9, and 1.0, and T0 = 2. The
curved envelope line in the figure traces out the isotherm part of the simulation
sequences, and the roughly horizontal lines are the sex values for the state points
presented in Fig. 2, traced out using the TIPU procedure of Eq. (15), and where
ρ0 ≥ 0.7. “PEOS 1” and “PEOS 2” are independent implementations of the param-
eterized equation of the state method.31 Some data points for the WM (“Widom”)
are shown. The crosses (“x”) labeled “u fit” are from Eq. (17) fitted to the MD
simulation potential energy values for temperatures below 80, 16, 16, and 43 at
isochore densities 0.7, 0.8, 0.9, and 1.0, respectively. The number of particles in
the simulation cell for this and subsequent figures was 500.

In the past, many of the state points used to test the isomorph
scaling have been in the supercritical region, which has tended to
obscure any deficiency of FDS for liquid state points. Consequently,
the results of simulations presented in this section are in or close to
the liquid part of the LJ phase diagram.

Figure 4 compares the sex values for the three pairs of lines
presented in Fig. 2. They start at a density ρ = ρ0 and terminate on
the liquid side of the liquid–vapor binodal. The excess entropy val-
ues decrease in magnitude as temperature decreases for the FIL case,
whereas it is statistically almost constant and the same for the FMIL
and AIL. This result indicates that in the liquid part of the phase
diagram and the nearby supercritical region, the AIL and FMIL are
noticeably closer to being configurational adiabats than those using
the freezing density scaling FIL route.

Figure 4 also presents sex values calculated by Widom’s particle
insertion method and the PEOS routes. These are along the T = 2
isotherm, which forms the envelope of ρ0 starting state points for
the TIPU segments. They are in very good agreement, indicating
that the PEOS is sufficiently accurate to explore configurational
adiabat and isomorph aspects of the fluid phase diagram within its
parameterized temperature and density range.

The format of the sex data in Fig. 4 is not suitable for
revealing the trends exhibited by the FIL, FMIL, and AIL when
ρ0 is less than about the critical point density because they are
almost vertical. Figure 5 gives instead the sex data as a function of
[T − Tmin]/[T0 − Tmin], where Tmin is the temperature where the
line intersects the liquid–vapor binodal. This quantity ranges from
0 to 1 as T increases from the binodal temperature to T0. Figure 5
shows that the FIL sex for ρ0 close to the freezing boundary increases

FIG. 5. The sex values as a function of [T − Tmin]/[T0 − Tmin], where Tmin
is the temperature at which each line intersects the liquid–vapor binodal enve-
lope. The three pairs of line types presented in Fig. 2 are employed with
ρ0 = 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, and 1.0 from top to bottom. Several values of
ρ0 are shown in the figure, above the associated data in each case. The PEOS31

predictions along the TIP isotherm part are also shown.

slightly as the binodal boundary is approached. The sex FMIL and
AIL are hardly distinguishable within the simulation (standard
error) statistics. As the reference density, ρ0, decreases, the three
types of line converge on the scale of Fig. 5. For densities lower than
about 0.4, they all show a trend where sex decreases marginally in
magnitude as temperature reduces. It can be concluded that to a
good approximation, all the lines in Fig. 5 covering a wide density
range are close to being configurational adiabats, as is the case for
hard spheres. The similarity between the behavior of hard spheres
and the LJ system in the ρ0 → 0 limit has also been noted recently in
Ref. 39.

To summarize this section, it is shown that the AIL formula
given in Eq. (3) that employs a single value of ρ0 along the T0 = 2
isotherm specifies the whole of a configurational adiabat line to a
good approximation. The AIL ρ(T) curve gives a nearly constant
value of sex along its entire length and performs significantly better in
the liquid part of the phase diagram than the FIL formula. The aver-
age of the freezing and melting densities at each temperature also
gives comparable accuracy to AIL. Both AIL and FMIL give better
CA in the liquid part of the phase diagram than freezing density scal-
ing. The three methods are as good as each other for temperatures
in excess of about 2 encompassing the gradual transition to the IPL4
limit. The FMIL procedure may be applicable to other model and
experimental systems if their freezing and melting lines are known,
in contrast to AIL, which in its present form at least, is based on the
LJ potential and more generally is not formally dependent on the
freezing or melting curves.

C. Analytic formulas from the high temperature
AIL limit

It was shown in P2 that in the high temperature limit, the AIL
converges to that of the n = 12 IPL4 configurational adiabat. The
contributions to sex arising from the repulsive and attractive parts

J. Chem. Phys. 161, 084502 (2024); doi: 10.1063/5.0225650 161, 084502-7

© Author(s) 2024

 28 August 2024 18:36:51

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

of the potential scale as ∼ T−1/2 and cancel each other out in that
limit, so sex is almost constant, as was demonstrated by the MD
simulations carried out in P2. As the excess entropy is taken (by
definition) to be constant along the AIL, it is only necessary for it
to be calculated at one point, which is conveniently chosen to be in
the high temperature or “IPL4” limit (if another, lower temperature
state point were to be used, another set of A and B parameters would
be required, which would unnecessarily complicate the analysis).

The excess entropy of the IPL4 system can be determined using
the basic thermodynamic definition given in Eq. (12). The quantity
βaex was obtained by TIP using Eq. (16) and fitted to the analytic
formula used by Hansen12 and Rosenfeld.1 The excess entropy in
units of kB is

− sex,ipl4 = h1x + h2x2 + h3x3 − h10x10, (18)

where x = ρ/T1/4 ≡ ρ0/[A(ρ0, T0)T0]1/4 and h1, h2, h3, and h10
are 2.754 91, 1.858 91, 0.753 956, and 0.192 422, respectively. This
expression using Hansen’s numerical data12 gives 2.721 75, 1.816
025, 0.874 367, and 0.652 857, respectively, for these constants. A
generalization of the Hansen–Rosenfeld formula is

sex,ipl4 =
k

∑
i=1

Qixi, (19)

where k is the number of terms in the series.
As the IPL4 potential is purely repulsive and reasonably steep,

it might be anticipated that an analytic expression for the excess
entropy of hard spheres might form the basis for one applicable to
the IPL4 system. These MD TI data were also fitted to a generaliza-
tion of the Carnahan–Starling (CS) formula for the excess entropy
of hard spheres,53 where the two volume fraction coefficients were
treated as adjustable parameters,

sex,ipl4 = −
aiplκ − biplκ2

(1 − κ)2 , (20)

where κ = πρipl4T−1/4
ipl4 /6 ≡ πρ0/6[A(ρ0, T0)T0]1/4, which follows

from Eq. (10). The effective volume fraction, κ, has a temperature
dependence, which follows that of an effective hard sphere diameter
using Boltzmann’s criterion.54 The constants aipl = 5.628 54 and
bipl = 6.161 85 were determined by least squares fitting of MD IPL4
ρ data up to the freezing density along the T = 1 isotherm.

Equations (18)–(20) reproduce the MD data very well, as may
be seen in Fig. 6. Many different functional forms could therefore
probably fit the MD data with sufficient accuracy to have practical
use because the excess entropy is a relatively weak and monotoni-
cally varying function of density. The CS formula given in Eq. (20)
is adopted for further use in this work because, although it does not
fit the MD data quite as well as the polynomial formulas (see the
upper magnified lines in Fig. 6), it has fewer parameters, and as it is
adapted from a formula used for hard spheres, it could be claimed
to have a more physical basis, which is a great advantage in analytic
treatments.

The steps to obtain sex at an arbitrary LJ fluid state point, ρ, T,
are as follows. It is assumed that this state point lies on an AIL
isomorph. First, it is necessary to determine the parameter A of
this line, using Eqs. (9) and (10). This is achieved numerically by

FIG. 6. The excess entropy of the IPL4 system at T = 1 obtained by the TIP
MD method of Eq. (16) as open circles. The Hansen–Rosenfeld expression of
Eq. (18) is “Hansen.” The polynomial formula of Eq. (19) for k = 4 (“Poly 4”) has
the parameters Q1 ⋅ ⋅ ⋅Q4, which are −2.785 47,−1.587 85,−1.4613, and 0.570
85, respectively. The k = 5 (“Poly 5”) case of Eq. (19) is where Q1 ⋅ ⋅ ⋅Q5 are
−2.788 85,−1.549 91,−1.598 34, 0.768 826, and −0.099 302 7, respectively. The
generalized Carnahan–Starling formula “CS” is the expression in Eq. (20). The
lines near the y = 0 axis are differences between these analytic fit formulas and
the MD values, multiplied by 5.

scanning through the potential ρ0 range and determining the A para-
meter for each value of ρ0 using Eq. (4). The value of A chosen is
that which predicts the value of density nearest to ρ at the temper-
ature, T, within a predetermined resolution. The next stage assigns
that state point’s excess entropy by equating it to that of the limiting
IPL4 system, where sex is given within the AIL approximation by

sex,ipl4
⎛
⎝

ρ4
ipl4

Tipl4

⎞
⎠
= sex,ipl4(

1
A(ρ0, T0)

ρ4
0

T0
)

= sex,LJ(ρ, T). (21)

This procedure is illustrated schematically in Fig. 7. Therefore,
Eq. (20) gives the excess entropy of any LJ ρ, T fluid state point,
within the AIL approximation, once T0 is defined and the associated
ρ0 and A(ρ0, T0) values are determined. The freezing and melting
densities of the LJ system at T = T0 = 2 are 1.063 76 and 1.133 05,
respectively.19,20 These are significant values as the AIL reference
state points are chosen to be at this temperature.

Figure 8 presents the value of sex for an evenly distributed selec-
tion of LJ fluid state points in the liquid and supercritical fluid
regions using the AIL procedure just described, i.e., by identifying
which configurational adiabat each LJ point is on and then determin-
ing its excess entropy by assigning it to that of the high temperature
limiting IPL4 fluid. The state points were those used by Meier
to calculate LJ transport coefficients.55 The densities are plotted
normalized by the freezing density at each temperature, ρ/ρ fr(T).
Figure 8 shows that the AIL procedure for calculating sex(ρ, T) for
this dataset obeys well the expression in Eq. (20), which can there-
fore be considered to be a generally accurate representation of the
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FIG. 7. Schematic diagram illustrating the three stages path on the ρ, T plane
used to assign a value of sex to a point in the ρ, T plane via the AIL procedure.
The first stage (“1” in the figure) is to assign a value of ρ0 and A(ρ0, T0) on the
T = T0 isotherm. The second stage (“2”) is to assign the value of sex of that AIL
by equating it to that of the IPL4 or T →∞ LJ AIL limit. Within this approximation,
the state point ρ, T also has the same value of the excess entropy, as indicated by
the assignment labeled “3” on the figure. The three filled circle symbols are on the
same configurational adiabat.

FIG. 8. The dependence of sex on ρ/ρ fr using the Meier ρ, T data points, which
are distributed in the liquid and supercritical regions.55 The sex values are obtained
using Eqs. (9), (10), and (21). The continuous black line is Eq. (20) taking T0 = 2.

excess entropy over the fluid phase. Figure 8 also shows that for the
LJ fluid, the excess entropy and ρ/ρ fr are strongly correlated, as was
also shown in Ref. 17.

IV. ISODYNES
It is shown in Figs. 4 and 5 that the AIL and FMIL formulas give

essentially perfect configurational adiabats in the liquid region, but
FIL does not. It is of interest to compare the transport coefficients
along these lines. It might be expected that, for example, the shear
viscosity, ηs, in MU should be constant along the AIL and FMIL but
not those using the FIL prescription.

FIG. 9. Comparison of the scaling of the shear viscosity above (“SCF”) and
below (“LIQUID”) the critical temperature. Freezing (“F”) and freezing–melting
[“(F + M)/2”] density scaling datasets are presented, where ρ frm = (ρ fr + ρm)/2.
The solid lines are η̃s,ip(ρ) from Eq. (23). The black line is with the (F + M)/2
scaling, and the red line is density normalized using the F scaling. The MD shear
viscosity data were taken from various sources.56–60

Figure 9 presents the reduced shear viscosity in MU,
η̃s = ηsρ−2/3T−1/2, against the scaled density, using the freezing den-
sity (FIL) and the arithmetic mean of the freezing and melting
(FMIL) normalization of the density. The datasets taken from the
literature are separated into two parts, one for state points in the liq-
uid region (i.e., below the Tc) and those in the supercritical fluid part.
Figure 9 shows that η̃s are statistically the same above and below the
critical temperature using FMIL, but they are systematically lower
in the liquid region when FIL scaling is used, especially close to
freezing. This indicates that the FIL reduced density scaling leads
to different η̃s curves above and below the critical temperature.

A more systematic investigation of these differences was made
here by carrying out equilibrium MD simulations of the shear vis-
cosity, ηs, self-diffusion coefficient, D, and thermal conductivity,
λ, along the AIL, FMIL, and FIL for T < 2 with the state points
employed in Figs. 4 and 5 for some of the values of ρ0.

Figure 10 shows the MU-scaled transport coefficients, η̃s,
D̃ = Dρ1/3T−1/2, and thermal conductivity, λ̃ = λρ−2/3T−1/2, against
the temperature measure of the state point used in Fig. 5.
The reference state point ρ0 = 1.0 and T0 = 2.0 are not far
from the freezing line. The data shown are the average of the
Einstein–Kubo–Helfand61,62 and Green–Kubo3 values. The data in
Fig. 10 are the block averages of five independent simulations each
of 2 × 106 time steps, with N = 1000.

Figure 10 reveals that the AIL and FMIL transport coefficients
are in very good agreement and constant in MU reduced units along
this part of the isomorph. In contrast for FIL, the diffusion coeffi-
cient increases and the shear viscosity decreases as the temperature
decreases toward the liquid–vapor binodal curve. This is as might be
expected as the density of the system decreases to a greater extent
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FIG. 10. The D̃, η̃s, and λ̃ values as a function of [T − Tmin]/[T0 − Tmin] are plot-
ted, where Tmin is the temperature where each line intersects with the liquid–vapor
binodal curve. The three pairs of lines presented in Fig. 2 using ρ0 = 1.0 are pre-
sented. Every symbol is the average of five MD simulations each of 2 × 106 time
steps using N = 1000.

than along the AIL and FMIL, which are statistically indistinguish-
able in that respect. The thermal conductivity trends in Fig. 10 also
show a more constant MU-reduced value along the AIL and FMIL,
although the differences from the FIL scaled data are not so pro-
nounced as for the other two transport coefficients. It has already
been noted that the thermal conductivity is mainly determined by
the density [see, for example, Fig. 13(a) in Ref. 3] and to a greater
extent than for ηs and D. This relative insensitivity to local structure
(which might be caused by temperature changes) is also consistent
with the fact that Enskog’s theory for hard sphere fluids applies
remarkably well for the λ of crystalline solids.63

Therefore, there is a strong correlation between lines of con-
stant excess entropy and lines of constant transport coefficient when
cast in MU reduced units, which supports the conclusion that, to
a good approximation, isodynes are also lines of constant excess
entropy. This holds for the simple LJ model system, but is not
valid for more complex molecular systems with thermally accessible
internal degrees of freedom.9

A. Prediction of LJ ηs and D from IPL4
First, consider the issue of units. If ρipl = (N/V)σ3

ipl and
ρLJ = (N/V)σ

3, the relationship between quantities in IPL and
LJ units is for the number density, ρ ≡ ρLJ = ρipl/

√
2, for time,

tLJ = tipl/21/6, for the shear viscosity, ηs,LJ = ηs,ipl/2
1/3, for the self-

diffusion coefficient, DLJ = 21/6Dipl, and for the thermal conductiv-
ity, λLJ = λipl/21/3. These differences are a consequence of factor 4 in
front of ε in the definition of the LJ potential.

It is of interest to investigate to what extent the transport
coefficients of a wide range of equilibrium LJ fluid state points in the
liquid and supercritical regions obtained by MD can be predicted
from those of the IPL4 system.

The assumption is that along a LJ configurational adiabat for
the transport coefficient, X, the value of X̃ is a constant, which is,
therefore, also equal to that of the IPL4 system to which the LJ system
tends to at high temperature. Section III C describes the procedure
for identifying the IPL4 limit for any LJ state point ρ, T. Then, for
the shear viscosity in LJ units,

ηs(ρ, T) = η̃sρ2/3T1/2

≃ η̃s,ipl4ρ2/3T1/2

= η̃s,ipl4ρ2/3
0 T1/2

⎛
⎜
⎝
(A − 1) +

√
(1 − A)2 + 4AT/T0

2A

⎞
⎟
⎠

1/3

,

(22)

where η̃s,ipl4 [from Eq. (21)] is a function of ρ0 and T0 and is, there-
fore, a function of the AIL parameter A, ρ, and T. Equation (7) has
been used to remove ρ in the second line to give the expression on
lines 3 and 4 of the above equation. The shear viscosity in LJ MU
at the IPL4 state point, (ρipl4, Tipl4), is η̃s,ipl4, and as T0 = 2 is used
throughout this work, the A fit parameters given below Eq. (4) can
be used. A similar formula was applied in Ref. 23 to the shear viscos-
ity along the LJ freezing line, where η̃s,ipl4 in the last line of Eq. (22)
was replaced by a constant value of η̃s and the freezing line was
represented by the formula T = Aρ4 − Bρ2.

Figure 11 shows the density dependence of the IPL4 fluid
system shear viscosity when T = 1. The shear viscosity was obtained
in MD simulation using the Green–Kubo method. These data apply
to arbitrary IPL4 state points by replacing ρipl4 on the abscissa of

Fig. 11 by x ≡ ρipl4/T1/4
ipl4 . Figure 11 also shows a least squares fit to

these data using the functional forms

FIG. 11. The density dependence of the IPL4 n = 12 fluid system shear viscosity,
ηs,ipl4, in LJ units, when T ipl4 = 1. The shear viscosity was obtained in MD simula-
tion using the Green–Kubo method. A least squares fit to these data using Eq. (23)
is also shown, where av,0 ⋅ ⋅ ⋅ av,5 are −0.385 945,−0.732 810,−0.582 181, 0.531
448, 0.964 694, and 1.578 649. The MD simulations on N = 2048 particles were
typically for 2800 LJ time units.
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ηs,ipl4(x) = av,0 + av,1x + av,2x2 + av,3[1 − av,4x]−av,5 ,

η̃s,ipl4 = ηs,ipl4(ρipl4, Tipl4)/ρ2/3
ipl4T1/2

ipl4 ,
(23)

where all quantities are in LJ units. The quantity η̃s,ipl4 defined in
Eq. (23) is a constant for a given AIL and is used in Eq. (22). The
ρipl4 density is a function of Tipl4, ρ0, and T0. The fit function in
Eq. (23) [which is inspired by Eq. (19) in Ref. 66] is only meant to
represent the MD simulation data for x > 0. The values of the con-
stants (given in the caption of Fig. 11) have no intended physical
significance.

Therefore, the procedure for assigning a predicted value for the
shear viscosity at an arbitrary LJ fluid state point (ρ, T) is first to
determine the parameter A and hence the high temperature limiting
IPL4 state. Then, the viscosity ηs,ipl4 of the IPL4 system in LJ units
is determined using Eq. (23) and finally ηs(ρ, T) for the LJ system
using the approximation given in the second line of Eq. (22).

Figure 12 presents a correlation plot of the values of ηs(ρ, T)
for the LJ system using Eq. (22) on the ordinate axis and the values
determined directly from MD with the Green–Kubo method.
Figure 12 shows that there is a reasonably good one-to-one cor-
relation between the two viscosities, which indicates that the MD
LJ shear viscosity values at any part of the fluid phase dia-
gram can be determined to within several percent by this analytic
procedure without recourse to MD simulation. This applies to both
supercritical fluids and the liquid state points.

Figure 12 also shows an application of the same procedure
based on the IPL4 viscosity to predict experimental data for fluid

FIG. 12. The predicted ηs(ρ, T) for the LJ system using Eq. (22) on the ordinate
axis compared to the MD values on the abscissa, which are those taken from the
MD simulations in Ref. 55 and the simulation data points used to produce Fig. 10.
Data for argon from the parameterized fit to experimental viscosity values in Ref.
64 are shown as orange symbols (“Argon”). The LJ state points are converted to
equivalent real unit values for experimental argon, as explained in the main text.
The experimental viscosity is then converted to LJ units using ε/kB = 120 K and
σ = 0.3405 nm,65 which are the constants used in MD simulations, and these
predicted argon viscosity values are presented in the figure. The linear regression
fit to the LJ data (blue symbols) has an intercept and slopes of −0.007(9) and
0.991(2).

argon using the fit to literature experimental viscosities by Youn-
glove and Hanley (YH).64 The LJ state points were mapped onto
equivalent ones for experimental argon in real units. This was
conducted using the respective critical point parameters in their
own units ρAr = ρLJρAr,c/ρLJ,c and TAr = TLJTAr,c/TLJ,c. Then, the
argon experimental viscosities from the YH fit formula at these
“experimental” state points were converted back to LJ units using LJ
parameters (see the caption of Fig. 12) for liquid argon employed
in simulations. The agreement between the two sets of viscosity
data, one based on simulation and the other based on the experi-
ment, is very good from low near gas-like densities to liquid density
states (from left to right in Fig. 12). There are a few outlier points,
which are systematically low, which may be due to deficiencies
in the state point mapping procedure as the LJ and argon phase
diagrams will not be exactly superimposable. The LJ parameters are
for an effective potential, and also, there may have been regions of
the phase diagram where the experimental viscosity data were more
limited, which would have adversely affected the quality of the fit in
those regions. It might also be related to the fact that LJ is pairwise,
while for real argon, higher-order terms in the interactions could be
relevant.

There are departures from the linear correspondence between
predicted and MD viscosity at low densities, as may be seen in
Fig. 13, which shows the same LJ data on a log–log scale. The IPL4
data deviate from the straight line and tend to a limiting value given
by kinetic theory for a dilute IPL4 gas with n = 12. This deviation
from the linear relationship between the viscosities of the IPL4 and
LJ systems at low densities is a consequence of the different limit-
ing dilute gas viscosities for the IPL4 and LJ systems as they have a
different temperature dependence. The experimental argon viscosity
data in Fig. 13 are hardly distinguishable from those of the model LJ
particles and notably follow the leveling off of the values in the zero
density limit where classical kinetic theory dominates.

The formulas in Eq. (23) used in conjunction with the freez-
ing and melting line densities are the continuous lines in Fig. (9).
The prediction is reasonably good although not as good as might

FIG. 13. The same as Fig. 12, except that the data are given on a log–log scale.
The black horizontal line is the predicted kinetic theory IPL4 viscosity in the zero
density limit, η0.67
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have been expected from AIL MD correlation shown in Fig. 12. The
freezing–melting [“(F +M)/2”] density scaled datasets from MD are
higher than the predictions of Eq. (23) at the highest densities. This
discrepancy is presumable because there is an additional approxi-
mation required in treating the MD data in Fig. (9) compared with
the analysis of Fig. 12, i.e., that the LJ MD state point densities
are normalized by the freezing or mean freezing–melting densities.
The advantage of using the AIL-based viscosity predictive method
of Fig. 12 is that it is not reliant on fluid–solid coexistence density
scaling.

The corresponding procedure for the LJ self-diffusion coeffi-
cient, D, is

D(ρ, T) = D̃ρ−1/3T1/2 ≃ D̃ipl4ρ−1/3T1/2,

D(ρ, T) ≃ D̃ipl4ρ−1/3
0 T1/2

⎛
⎜
⎝
(A − 1) +

√
(1 − A)2 + 4AT/T0

2A

⎞
⎟
⎠

−1/6

,

(24)

where D̃ipl4 is the self-diffusion coefficient of the limiting IPL4
system in MU. Figure 14 shows the IPL4 D−1

ipl4 obtained by Tipl4 = 1

(i.e., ρipl4/T1/4
ipl4 ≡ ρipl4) Green–Kubo MD and a least squares fit of the

analytic form

D−1
ipl4 = ad,0 + ad,1x + ad,2x2 + ad,3[1 − ad,4x]−ad,5 ,

D̃ipl4 = Dipl4(ρip)ρ1/3
ip /T

1/2
ipl4 ,

(25)

where ηs,ipl4 in Eq. (23) is replaced by 1/Dipl4. In Fig. 14, 1/Dipl4

is plotted as a function of ρipl4 for the temperature Tipl4 = 1.0.
The substitution of the shear viscosity by the inverse self-diffusion

FIG. 14. The density dependence of the IPL4 n = 12 fluid system inverse self-
diffusion coefficient, D−1

ipl4, when T ipl4 = 1 and where ρ ≡ ρipl4. Dipl4 was obtained
in MD simulation using the Green–Kubo method. A least squares fit to these data
using Eq. (25) is also shown, where ad,0 ⋅ ⋅ ⋅ ad,5 are−5.608 19,−0.587 79,−9.488
86, 5.608 19, 0.959 87, and 1.359 55, respectively.

coefficient has often been made in the literature, and it is also quali-
tatively consistent with the Stokes–Einstein relationship at constant
temperature.

The D values were not corrected for system size dependence.63

Very large systems are required to ensure a reliable extrapolation
to the limit of an infinite number of particles, N, in the simulation
cell.63 Yeh and Hummer derived an expression based on hydrody-
namic arguments for the system size dependence of the self-diffusion
coefficient of molecular liquids, which they tested for model water
and LJ fluids68 and which was also used in a recent work on D(N)
of model water by Khrapak.69 In the present context, the diffusion
coefficient for LJ systems is predicted from an “equivalent” IPL4 sys-
tem both using N ≃ 2000 in the MD simulations. It is reasonable
to assume that the N-correction factor should be similar in the two
cases.

The values of the constant formulas in Eqs. (23) (viscosity) and
(25) (inverse self-diffusion coefficient) are given in the captions of
Figs. 11 and 14, respectively. The last term in each expression is the
dominant one as it captures the rapid increase in ηs and 1/D (respec-
tively) close to the freezing density. One may consider the effect of
the negative constant terms in these formulas to compensate for
the effects of the dominant term at low densities. These formulas
were developed to represent the IPL simulation data by an analytic
expression to be used in the IPL4 to LJ mapping procedure.

Figure 15 shows that correlation between the IPL4 predicted
and actual MD derived (inverse) self-diffusion coefficient is very
good. This form of presentation is also a useful way of isolating out-
lier MD points (e.g., the two high density points at the top right-hand
corner of Fig. 15), which might be difficult to discern in other ways
of presenting such data.

Some of the MD transport coefficient data evaluated for this
work and used in Figs. 10–15 are given in the supplementary
material.

It was shown by Costigliola et al. in Ref. 70 that for a LJ fluid
system in the vicinity of the freezing line, the product D̃η̃s, which is
the Stokes–Einstein relation not based on a hydrodynamic diameter,

FIG. 15. The same as Fig. 12, except that the inverse diffusion coefficient is
considered.
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FIG. 16. Test of the Stokes–Einstein relation not based on a hydrodynamic dia-
meter for the IPL4 data given in Figs. 11 and 14 for self-diffusion and shear
viscosity, respectively. The quantities expressed in MU, D̃η̃s = Dηs/ρ1/3T , are
plotted (blue symbols). The continuous black curve is the same quantity derived
from the least squares fits to the MD data specified in Eqs. (23) and (25). The
horizontal red line denotes a typical literature value for this quantity near freezing.
The vertical red line denotes the freezing density boundary.

converges to a value ∼0.15 [see Figs. 2(c) and 2(d) in that publica-
tion]. This was shown by others in subsequent publications to be
obeyed for a diverse range of model fluids.9,71 Figure 16 presents the
dependence of this quantity as a function of density for the IPL4
fluid system. The self-diffusion and shear viscosity values shown are
those taken from Figs. 11 and 14, respectively. Figure 16 confirms
that the IPL4 D and ηs MD data of this work are consistent with the
Stokes–Einstein relation expressed in MU.

Figure 16 demonstrates that the quantity D̃η̃s is in the range
0.15 ± 0.1 in the medium to high density range, which agrees with
the previous publication conclusions. There is some scatter in indi-
vidual data points, which comes mainly from the viscosity values, as
the statistics are better for the self-diffusion coefficient. There is evi-
dence that for this model system, the product gradually increases as
the system passes through the freezing transition into the metastable
fluid region.

B. Origins of the configurational adiabat
ηs and D scaling

It is shown here that the AIL LJ lines are to a good approxima-
tion also lines of constant excess entropy and isodynes (i.e., constant
ηs and D in MU). In addition, the properties of the high temperature
(density) IPL4 system give the sex, η̃s, and D̃ values along the AIL
(e.g., see Fig. 15). This indicates that the limiting (purely repulsive)
part of the LJ potential and its properties are sufficient to predict
sex, η̃s, and D̃ in the supercritical LJ fluid and liquid state regions to a
good approximation, except if the density is essentially in the gas-like
regime where systematic deviations are seen (see Fig. 13). The FMIL
formulas also serve the same function, as the freezing and melting
densities tend to those of the same IPL4 system at high temperature.

This behavior applies even at quite low densities (but not too
low), much less than the critical point density, where the system is

not strongly correlated (i.e., where the virial-potential energy corre-
lation coefficient is much less than 12) and a harmonic cell model
approximation might not be expected to apply well either.

At low densities, in addition to the particle diameter, another
length scale (the mean distance between collisions) enters the
description. The statistical thermodynamics and transport behav-
ior in this density region become more determined by the repulsive
part of the potential, while the contribution from the attractive part
of the potential could be approximated by a uniform background,
which does not affect the dynamics of the particles significantly. This
trend was also noted in Ref. 39 in which the isodyne behavior of hard
spheres and the Lennard-Jones fluids was compared. The transport
coefficients of IPL fluids at low density can be represented well using
Enskog theory expressed in terms of a temperature dependent effec-
tive hard sphere diameter, which is weakly dependent on the IPL
exponent, n.67 Note that for the hard sphere system, configurational
adiabats are isochores.

At high densities, the particles are closely packed together and
perturbation theories (PTs) of the liquid state may explain why
sex, η̃s, and D̃ are constant along the AIL and FMIL in that part
of the fluid phase diagram. A perturbation theory of the liquid
state assumes that the structure of the liquid is determined by the
repulsive part of the pair potential, and the contribution from any
attractive part can be added on in an approximate way by calcu-
lating its contribution from the liquid structure (e.g., via the radial
distribution function) generated solely by the repulsive part of the
potential.72 From Eq. (12), we have sex/kB = βu − βaex, and there-
fore, within the PT framework, βaex = βar,ex + βua,r , where ua,r is the
attractive (“a”) part of the potential from a system generated from
the repulsive (“r”) part. The repulsive part of the LJ potential is used
as the reference system. Bearing in mind these are approximations,
for the LJ system,

sex/kB = βu − βaex

= βur + βua,r − [βar,ex + βua,r]
= βur − βar,ex, (26)

which shows that within the PT approximation, the excess entropy
of the LJ system only depends on the properties of the purely repul-
sive reference state [i.e., here that of the high temperature (density)
limiting IPL4 fluid]. This approximation, as discovered, is quite well
obeyed along the FMIL and AIL, in the liquid part of the phase dia-
gram. In contrast, other PT defined quantities such as u and aex have
a contribution from the attractive part of the potential, making sex
unique in this respect.

C. Rosenfeld excess entropy scaling theory
This strong correlation between transport coefficients and

excess entropy is already well-known in another context, as is
demonstrated in the Rosenfeld plots given in Fig. 17 using the MD
data of Meier.55 The reduced transport coefficients X̃ ≡ D̃−1, η̃s, and
λ̃ are presented, which show a transition from gas- to liquid-like
behavior from left to right on either side of the minimum.10 The data
in the high density regime limit comply well with the relationship
X̃ = A exp (−bsex) with constants for each transport coefficient
given in the caption of Fig. 17. The literature b values of −0.8 (for D̃),
0.8, and 0.5, respectively,67,73 are statistically close to those given in
the caption of Fig. 17. Figure 17 highlights the similarity in the excess
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FIG. 17. The dependence of the three transport coefficients in MU units, X̃ ≡ D̃, η̃s

and λ̃, obtained by MD,55 on excess entropy for the LJ system. The quantity D̃−1

is plotted instead of D̃. These data were fitted to the data for −sex ≥ 2 using
Rosenfeld’s analytic form given in the main text. The constants for A and b are
0.714 and −0.812(4) for D, 0.209 and 0.815(6) for η̃s, and 2.111 and 0.415(6)
for λ̃.

entropy dependence of D̃−1 and η̃s. The viscosity and thermal con-
ductivity coefficients at sex ≃ −0.7 correspond to a crossover between
gas-like and liquid-like regions on the phase diagram, which has
been discussed previously in the literature.16,74

Bell et al. carried out a comprehensive investigation of the
dependence of the LJ transport coefficients on the excess entropy.75

Simulation data for the transport coefficients were plotted as a
function of sex derived from a parameterized LJ equation of state.
Correlations typical of the Rosenfeld form were found to agree in
certain regions of the fluid phase diagram. We consider that the
AIL method is particularly accurate in this general field and has the
advantage that it bypasses the need to compute the excess entropy,
which is generally a time consuming activity (the Lennard-Jones
system is particularly fortunate in this respect as there are many
accurate analytic equations of state for the fluid phase). The present
AIL method extracts the LJ transport coefficient from an already
determined IPL value using a formal mapping procedure. The trans-
port coefficients of one model system are mapped onto those of
another without explicitly employing the excess entropy (although it
is implicitly involved in the underpinning theoretical formulation).

V. CONCLUSIONS
It is shown in this study that the harmonic model line (AIL)

on the fluid phase diagram of the Lennard-Jones fluid, proposed
in P2, and a variant of freezing density scaling, where the average
of the freezing and melting densities (FMIL) is taken instead, give
essentially the same constant value for the excess entropy sex even
down to the liquid–vapor binodal. The AIL method has the advan-
tage that the excess entropy of the LJ system is essentially analytic
when the excess entropy of the high temperature (density) limiting
inverse power value is incorporated in the treatment. The freezing
density scaling (FIL) lines do not exhibit constant excess entropy

to the same extent in the liquid region, particularly when close to
the freezing line and the liquid binodal boundary. The three lines at
all densities converge to essentially the same line for temperatures
much in excess of the critical temperature.

The self-diffusion coefficient, shear viscosity, and thermal con-
ductivity of the Lennard-Jones fluid in the liquid and supercritical
regions when expressed in macroscopic units are constant to a good
approximation along each configurational adiabat. This observation
is consistent with the classical perturbation theory of liquids, at least
at high density.76

A practical outcome of this work is that it has been shown
that the self-diffusion coefficient and shear viscosity of the Lennard-
Jones fluid at essentially any state point (apart from at extremely
low densities where the system is described well by kinetic theory)
can be predicted quite well from their high temperature (density)
configurational adiabat limits, which can be represented well by
those of the associated inverse power potential system. Owing to
the system parameterization formulations generated in this work,
this assignment is now largely an analytic exercise, without requir-
ing any further simulations. Figure 12 demonstrates that the same
correlation exists between the IPL viscosity and experimental argon
viscosity data, which suggests that the IPL prediction scheme could
be reasonably accurate for other small molecule fluids, which can be
represented quite well by the Lennard-Jones potential.

Another potentially useful practical feature of this work is the
formula for the excess entropy along a LJ configurational adiabat,
which is taken to be that of the high temperature limiting IPL sex
system. This is stated in Eq. (21). The IPL sex can be parameter-
ized independently by simulations along one of its isotherms, for
example.

The advantage of the isomorph–isodyne description of liquids
is that its coarse-grained or “top down” quasi-thermodynamic basis
means that, in principle, it could be applied to a wide range of fluids
without requiring any specific molecular level detail for each chem-
ical system. It is generic in that respect. There may be applications
of the treatments in this work in the fields of geology, rheology,
and tribology, for example, particularly where high temperatures
and pressures are involved (when the system is closer to the inverse
power configurational adiabat limit). The analysis and theoretical
description of the observed phenomena could then possibly be sim-
plified, for example, the analytic description might be reduced in
dimensionality.

SUPPLEMENTARY MATERIAL

The supplementary material contains the molecular dynamics
simulation thermodynamic and transport coefficient data used to
generate some of the figures in this work.
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tualization (equal); Formal analysis (equal); Investigation (equal);
Methodology (equal); Validation (equal); Writing – original draft
(equal). L. Costigliola: Conceptualization (equal); Formal analy-
sis (equal); Investigation (equal); Methodology (equal); Writing –
original draft (equal).

DATA AVAILABILITY
The data that support the findings of this study can be obtained

from the corresponding author upon reasonable request.

APPENDIX: SUMMARY OF ACRONYMS
USED IN THIS WORK

Table I gives a list of the acronyms used in the text and what
they stand for.

TABLE I. A list of the acronyms and their definitions used in this work.

Acronym Definition

CA Configurational adiabat
MD Molecular dynamics
MU Macroscopic reduced units
IPL Inverse power potential
IPL4 IPL with 4 prefactor and n = 12
WM Widom’s method
LJ Lennard-Jones
PT Perturbation theory
TI Thermodynamic integration
TIP TI pressure isotherm route
TIU TI potential energy isochore route
TIPU TI pressure isochore–isotherm route
FDS Freezing density scaling
FIL Freezing CA line
MIL Melting CA line
FMIL Freezing–melting CA line
AIL Analytic isomorph line
PEOS Parameterized equation of state
MBWR Modified Benedict–Webb–Rubin PEOS
YH Younglove and Hanley
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(2023).
11D. M. Heyes, D. Dini, S. Pieprzyk, and A. C. Brańka, J. Chem. Phys. 159, 224504
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(2009).
53D. M. Heyes, M. Cass, J. G. Powles, and W. A. B. Evans, J. Phys. Chem. B 111,
1455 (2007).
54E. Attia, J. C. Dyre, and U. R. Pedersen, J. Chem. Phys. 157, 034502 (2022).
55K. Meier, “Computer simulation and interpretation of the transport coefficients
of the Lennard-Jones model fluid,” Ph.D. thesis, University of the Federal Armed
Forces Hamburg, 2002.
56K. Meier, A. Laesecke, and S. Kabelac, J. Chem. Phys. 121, 3671 (2004).
57R. L. Rowley and M. M. Painter, Int. J. Thermophys. 18, 1109 (1997).
58D. M. Heyes, Phys. Rev. B 37, 5677 (1988).
59G. Galliéro, C. Boned, and A. Baylaucq, Ind. Eng. Chem. Res. 44, 6963 (2005).

60M. P. Lautenschlaeger and H. Hasse, Fluid Phase Equilib. 482, 38 (2019).
61S. Hess and D. J. Evans, Phys. Rev. E 64, 011207 (2001).
62S. Viscardy, J. Servantie, and P. Gaspard, J. Chem. Phys. 126, 184513 (2007).
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