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ABSTRACT: Polydisperse systems of particles interacting by the purely repulsive
exponential (EXP) pair potential are studied in regard to how structure and dynamics
vary along isotherms, isochores, and isomorphs. The sizable size polydispersities of 23%,
29%, 35%, and 40%, as well as energy polydispersity 35%, were considered. For each system
an isomorph was traced out covering about one decade in density. For all systems studied,
the structure and dynamics vary significantly along the isotherms and isochores but are
invariant to a good approximation along the isomorphs. We conclude that the single-
component EXP system’s hidden scale invariance (implying isomorph invariance of
structure and dynamics) is maintained even when a sizable polydispersity is introduced into
the system.

■ INTRODUCTION
The EXP pair potential is defined by the purely repulsive
exponential function

ε= σ−v r( ) e r
EXP

/
(1)

Although systems of particles interacting with this pair
potential have been studied much less than, for example, the
Lennard-Jones1−3 or inverse-power-law pair-potential sys-
tems,4 papers reporting investigations of the EXP system or,
more generally, systems that involve a repulsive EXP term in
the pair potential have appeared regularly over a period of
many years.5−18 The EXP system deserves an in-depth study
for two reasons. First, real-world systems like the low-density
limit of the Yukawa (screened Coulomb) system is well
described by the EXP pair potential, which is also an ingredient
in many empirical potentials used for describing metals.
Second, the EXP pair potential is the “mother of all pair
potentials” in a recent explanation of the quasiuniversality that
characterizes the structure and dynamics of simple liquids.19,20

Any pair potential, even an oscillatory one, that can be written
as a sum of EXP terms with coefficients much larger than kBT
defines a system in the quasiuniversality class defined by the
hard-sphere, inverse-power-law, and Lennard-Jones (LJ) type
systems.19,20 For this class the following applies: different
systems at thermodynamic state points with the same excess
entropy have virtually the same reduced-unit structure and
dynamics.19−21 Consequently, if one prefers analytic pair
potentials, the EXP pair-potential system is suited to replace
the hard-sphere system as the generic system in liquid-state
theory.20

Providing a thorough study of the single-component EXP
system motivated four recent papers.22−25 The first paper22

studied the EXP system’s isotherms and isochores in the fluid
phase. This encompasses both a typical gas-like region and a
typical liquid-like region (because the EXP system is purely
repulsive, no phase transition separates these two regions;
there is merely a gradual transition). An example of
quasiuniversality was also given in ref 22, demonstrating
almost identical reduced pair distribution function for the LJ
and the EXP systems at state points with the same reduced
diffusion coefficient. The second paper23 presented simulation
data for three isomorphs (configurational adiabats) and
showed that structure and dynamics in reduced units are
invariant along isomorphs, each of which covered one decade
of density variation, i.e., much larger than what is realistic in
experiments. This means that the EXP system obeys the
“hidden scale invariance” symmetry that effectively makes the
thermodynamic phase diagram one-dimensional instead of
two-dimensional in regard to structure and dynamics.26−28 A
third paper in the series24 presented the thermodynamic phase
diagram of the EXP system and identified its melting line,
showing that it is an approximate isomorph.26,29 That paper
also demonstrated that the solid phase has two stable
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crystalline structures, a face-centered cubic structure at low
densities and a body-centered cubic structure at higher
densities. The fourth single-component EXP paper25 studied
isomorphs in the solid phase, demonstrating isomorph
invariance of structure and dynamics in both crystalline phases.
While previous investigations of the EXP pair potential all

involved single-component systems, many experimental
samples are multicomponent systems, e.g., colloids30 and
dirty plasmas.31 Polydispersity has been discussed in
connection with the dynamics of glass-forming liquids32 and
the issue of defining configurational entropy,33 and theories
have been proposed for an effective one-component
description of the structure of a polydisperse system.30 Indeed,
from a purely theoretical point of view such systems present
interesting physics on their own; e.g., novel features in their
phase behavior34 and, for instance, melting has been studied of
a face-centered crystalline solid consisting of polydisperse LJ
spheres with Gaussian size polydispersity.35

Polydisperse systems of particles interacting by purely
repulsive inverse power-law (IPL) pair potentials ∝ r−12 have
highly nontrivial properties. Thus, in 2010 Sollich and Wilding
showed that systems of dense polydisperse IPL spheres may
phase separate into coexisting face-centered cubic phases,
tracking up to four coexisting phases depending on the degree
of polydispersity.36 Each of these phases is “fractionated” in the
sense that it involves a narrower distribution of particle sizes
than that of the overall system. This is, in fact, a common
characteristic of polydisperse systems.
More recently, polydispersity has been discussed for hard-

sphere systems37,38 and come into focus because of the
significant speedup obtained by applying the swap algorithm
for these systems.39 It is therefore of interest to investigate
whether the single-component EXP system’s hidden scale
invariance, the prerequisite for having isomorphs,20,23,26,28

survives for polydisperse systems of EXP particles. Work by
one of us on the LJ system, which also has hidden scale
invariance and thus isomorphs, showed that the LJ system’s
hidden scale invariance survives the introduction of continuous
polydispersity.40,41 In this paper we present data from
simulations of polydisperse mixtures of particles interacting
via the EXP pair potential subject to the Lorentz−Berthelot
mixing rules,42 demonstrating that the same applies for the
EXP pair-potential system. Since the EXP system as mentioned
may be regarded as the prototype liquid pair potential that
explains simple liquids’ quasiuniversality,20 this finding

suggests a possible path to understanding the quasiuniversality
of mixtures, a subject of current interest.43

Hidden scale invariance is the property that the ordering of
configurations according to their potential energy is main-
tained under a uniform compression or extension. If R is the
vector of all particle coordinates and U(R) is the potential-
energy function, the mathematical definition of hidden scale
invariance is28

λ λ< ⇒ <U U U UR R R R( ) ( ) ( ) ( )a b a b (2)

Here λ is a parameter quantifying the uniform scaling. It is
understood that the configurations Ra and Rb are of the same
density. Although no realistic system obeys eq 2 rigorously, for
many systems in the liquid and solid phases including the
Yukawa, LJ-type, and EXP systems, eq 2 applies to a good
approximation for most configurations when λ is not far from
unity. This implies that isomorphs exist in the thermodynamic
phase diagram, which are defined as lines of constant excess
entropy and characterized by the property that structure and
dynamics in reduced units are invariant along an isomorph to a
good approximation.28

A system that obeys hidden scale invariance (eq 2) to a good
approximation for most of its configurations is termed Roskilde
(R)-simple. Such systems are simple because their thermody-
namic phase diagram is effectively one-dimensional in regard
to structure and dynamics. It is believed that most metals and
van der Waals bonded systems are R-simple in their liquid and
solid phases, whereas most systems with strong directional
bonds like covalent or hydrogen-bonded systems are not. Note
that the class of R-simple systems on the one hand includes
molecular systems but on the other hand excludes some pair-
potential systems; thus this class differs from the standard
“simple liquids” defined as pair-potential systems. It should be
mentioned that, among several other regularities, isomorph
theory explains Rosenfeld’s excess-entropy scaling from
1977.21,44 For more on the isomorph theory and its validation
in computer simulations and experiments, the reader is referred
to the reviews given in refs 20, 21, 27, and 45.
The EXP system is R-simple in the entire low-temperature

part of its phase diagram.19,22 This implies good invariance of
structure and dynamics along the isomorphs. One may think of
the single-component EXP system as being well approximated
by an IPL system with an exponent that is not constant, but
increases as density is decreased.22 If the EXP potential is to be
generalized to describing mixtures and systems with non-
isotropic interactions, several EXP parameters σ and ε will

Figure 1. (a) Box distributions used in the simulations of polydisperse EXP systems where x is either σ or ε relative to its average. (b) Range of the
EXP potentials for δ = 40% size polydispersity (the figure uses MD units; see eq 8). Note the significant polydispersity with the σ of the EXP pair
potentials varying by almost a factor of 6.
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need to be involved. That a mapping to an effective IPL system
is possible for polydisperse EXP systems is not obvious, in
particular at high polydispersity, because of the dependence of
the effective IPL exponent on particle distance and thus on the
EXP interaction parameters.
To investigate whether polydisperse EXP systems maintain

the hidden-scale-invariance property of the single-component
EXP system, we present below extensive simulation data for
five polydisperse mixtures of EXP particles. The conclusion is
that isomorphs do exist for such mixtures, even at high
polydispersity. This applies for both size and energy
polydispersity. The main focus of the paper is on size
polydispersity because this is the most common form of
polydispersity realized, e.g., in colloidal suspensions and
micelles, as well as on the molecular level in polymers,
bitumen, etc. It should be noted, however, that polydisperse
systems are gaining increasing attention as models, e.g., for
biological systems.41,46

■ THEORETICAL METHODS
This section provides definitions and details of the computer
simulations.

Polydispersity. Size polydispersity involves a mixture of
particles, each of which is associated with the same energy

parameter ε (eq 1) and a potential-length parameter σ selected
from a probability distribution. In this work we use for
simplicity the uniform “box” probability distribution. One
could also have used a Gaussian parameter distribution, but
there is little reason to expect qualitative differences between
different distributions. The relevant property is how far the
system is from being monodisperse.
Following the standard convention, the polydispersity

measure δ is defined47 as the ratio between standard deviation
and average, i.e.,

δ
σ

σ
≡

⟨ Δ ⟩
⟨ ⟩

( )2

(3)

in which Δσ ≡ σ − ⟨σ⟩ and sharp brackets denote averages.
For the uniform distribution, σa < σ < σb, one finds ⟨σ⟩ = (σa +
σb)/2 and ⟨σ2⟩ = (σb

3 − σa
3)/3(σb − σa) = (σa

2 + σaσb + σb
2)/

3. Since ⟨(Δσ)2⟩ = ⟨σ2⟩ − ⟨σ⟩2, the polydispersity is given by
δ2 = ⟨σ2⟩/⟨σ⟩2 − 1 = (4/3)(σa

2 + σaσb + σb
2)/(σb + σa)

2 − 1 =
(1/3)(σb − σa)

2/(σb + σa)
2, i.e.,

δ
σ σ
σ σ

=
−
+

1
3

b a

b a (4)

It follows that the maximum polydispersity of the uniform
distribution is 1/ 3 , which is 57.7%.
Figure 1a shows the distributions of our study, while Figure

1b illustrates how different the involved EXP pair potentials are
for the highest size polydispersity studied (40%). This
polydispersity roughly sets the limit for when it is possible to
equilibrate the system.
The energy polydispersity parameter δ is defined by an

expression analogous to eq 3,

δ
ε

ε
≡

⟨ Δ ⟩
⟨ ⟩

( )2

(5)

which for the uniform distribution εa < ε < εb leads to

δ
ε ε
ε ε

=
−
+

1
3

b a

b a (6)

For both types of polydispersity, the standard Lorentz−
Berthelot mixing rules were employed,42 i.e., the interaction
between particle i and particle j is described by an EXP pair
potential with σ = (σi + σj)/2 and ε ε ε= i j .

Unit Systems. Two unit systems are used below. Isomorph
theory uses the so-called reduced units.26 If N particles in a
volume V are considered in thermal equilibrium at the
temperature T, the (number) density is defined by ρ ≡ N/V
and the length, energy, and time units are,26 respectively,

Figure 2. Example of the direct-isomorph-check method for tracing
out an isomorph. This case involves 40% polydispersity and considers
a jump from (ρ1, T1) = (10−3, 10−4) to the higher density ρ2 = 1.25 ×
10−3 for which the temperature T2 is sought such that (ρ1, T1) and
(ρ2, T2) are on the same isomorph. The dashed line gives the best fit
slope from which T2/T1 is obtained (note that the best fit line is not
supposed to pass through the origin because one may well have C12 ≠
1 in eq 9).

Table 1. Characteristics of the Five Isomorphs Studied, Four with Size Polydispersity and One with Energy Polydispersitya

polydispersity δ (%) parameter range max/min ratio reference state point figure number

23.09 0.6 < σ < 1.4 2.3 ρ = 2 × 10−4, T = 1 × 10−6 5
28.87 0.5 < σ < 1.5 3.0 ρ = 1 × 10−5, T = 1 × 10−4 6
34.64 0.4 < σ < 1.6 4.0 ρ = 1 × 10−3, T = 1 × 10−4 7
40.41 0.3 < σ < 1.7 5.7 ρ = 1 × 10−3, T = 1 × 10−4 8
34.64 0.4 < ε < 1.6 4.0 ρ = 1 × 10−3, T = 1 × 10−4 9

aIn all cases a uniform parameter distribution was invoked. The size and energy polydispersity parameter δ is defined in eq 3 and eq 5, respectively.
Isomorphs were generated by the direct-isomorph-check method based on eq 9, starting from the reference state point and moving both up and
down in density.
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ρ ρ− −k T
m

k T
, ,1/3

B
1/3

B (7)

Structure and dynamics are reported in reduced units because
the isomorph theory predicts invariance of structure and
dynamics only in these (state-point dependent) units, not in
fixed “real” or MD (molecular dynamics) units.21,26,28

MD units are used below for specifying the temperature and
density at the thermodynamic state point in question because
in reduced units ρ and T are both equal to 1. The MD length,
energy, and time units used are, respectively,

σ ε σ
ε

⟨ ⟩ ⟨ ⟩ ⟨ ⟩
⟨ ⟩
m

, ,
(8)

Here ⟨σ⟩ and ⟨ε⟩ are the averages of σ and ε. This unit system
applies in all cases studied; for instance in the case of size
polydispersity ε is constant and accordingly ⟨ε⟩ = ε. The MD
temperature unit is ⟨ε⟩/kB.
Below, quantities reported in reduced units are marked by a

tilde, e.g., the pair distance r is in reduced unit given as r ̃ ≡
ρ1/3r. Quantities without a tilde are given in MD units.

Simulation Details. The simulations employed standard
Nose-Hoover NVT molecular dynamics with periodic
boundary conditions.42 Simulations were performed by GPU
(graphics cards) computing using the open-source Roskilde
University Molecular Dynamics (RUMD) package.48 All
particle masses m were identical, with m = 1 in MD units. A
shifted-force cutoff49 at the reduced pair distance r ̃ = 8 was
used for all simulations, implying that the cutoff in MD units is
equal to 8ρ−1/3, which is a density-dependent cutoff. The
reduced-unit time step was 0.0025 in all simulations. Each state
point was simulated for at least 25 million time steps for
equilibration and a similar number of time steps for production
runs. All simulations involved N = 32 000 particles. This
relatively large number ensures that results are reproducible in
the sense that a different sample with the same parameter
distribution results in basically the same results, which is why
the reported results are for a single sample. Finite-size effects

Figure 3. Simulated isomorphs plotted in the log-scale density−
temperature phase diagram (MD units, eq 8). Even though four out of
five isomorphs are close to each other in this diagram, the physics
varies significantly from isomorph to isomorph due to the widely
varying polydispersities involved, compare Figures 6−9.

Figure 4. Virial potential-energy correlation coefficient R (eq 10) and density-scaling exponent γ (eq 11) plotted as a function of polydispersity at
selected state points. (a) and (b) show R and γ for size-polydisperse systems, while (c) and (d) show R and γ for energy-polydisperse systems. δ = 0
corresponds to the single-component EXP system, which has strong correlations in the entire low-temperature part of its phase diagram.22
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coming from variations in the distributed parameters were
observed only at very high polydispersity, and here only for
systems significantly smaller than those studied.
How Isomorphs Are Traced Out Numerically. An

isomorph is defined as a curve of constant excess entropy in
the thermodynamic phase diagram of an R-simple system.28

Different methods may be used for identifying isomorphs in a
computer simulation.26,50,51 We used the so-called direct-
isomorph-check,26 which is based on the following reasoning.
Consider two configurations R1 and R2 of density ρ1 and ρ2,
respectively, which can be scaled uniformly into one another
(ρ1

1/3R1 = ρ2
1/3R2). It can be shown from eq 2 28 that if R1 and

R2 are typical equilibrium configurations of the state points
(ρ1, T1) and (ρ2, T2), then these two configurations have
proportional canonical Boltzmann probabilities (below, C12 is a
constant determined by the state points, i.e., independent of
the configurations):

ρ ρ= =− −C R Re e ( )U k T U k TR R( )/( )
12

( )/( )
1

1/3
1 2

1/3
2

1 B 1 2 B 2

(9)

It can be shown that two state points (ρ1, T1) and (ρ2, T2)
obeying eq 9 have the same excess entropy,26 i.e., belong to the
same isomorph. Given the state point (ρ1, T1) and the density
ρ2, eq 9 provides a method for determining T2, working as
follows: From an equilibrium simulation at (ρ1, T1) several
configurations are selected. Each of these is scaled uniformly to
density ρ2. By plotting the potential energy of scaled versus
unscaled configurations, a scatter plot with strong correlations
is obtained, the slope of which according to eq 9 is T2/T1.

26 An
example is given in Figure 2.
The isomorphs studied below were generated by the direct-

isomorph-check method involving 25% density changes,
starting from a selected “reference” state point and moving
both up and down in density. The reference state points are
listed in Table 1, which also gives the polydispersity

Figure 5. Size polydispersity δ = 23.09% corresponding to the max/min size ratio 2.3 (Table 1). The reference state point is (ρ, T) = (2 × 10−4, 1
× 10−6). The radial and time coordinates are given in reduced units (eq 7). (a) and (b) give radial distribution function (RDF) and mean-square
displacement (MSD) data for the T = 1 × 10−6 isotherm. (c) and (d) give analogous data for the ρ = 2 × 10−4 isochore. (e) and (f) give data for
the reference-state-point isomorph, demonstrating a good invariance of both structure and dynamics.
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characteristics. Each isomorph covers a density variation of
almost a full decade.
Before the generation of isomorphs can be undertaken, it is

important to ensure that the system does not phase-separate or
crystallize. This was done by visual inspection of selected
configurations, as well as by monitoring the average potential
energy that drops significantly whenever a system simulated by
NVT dynamics crystallizes.

■ RESULTS AND DISCUSSION

Virial Potential-Energy Correlations and the Density-
Scaling Exponent. As mentioned already, the single-
component EXP system obeys hidden scale invariance (eq
2) in the entire low-temperature part of its phase diagram,
meaning that the system is here R-simple in the gas−liquid
(fluid) as well as solid phases. Isomorph theory applies only
when there is hidden scale invariance to a good approximation.

A measure of when this is the case is the virial potential-energy
Pearson correlation coefficient R defined52 by

≡ ⟨Δ Δ ⟩

⟨ Δ ⟩⟨ Δ ⟩
R

U W

U W( ) ( )2 2
(10)

Here U is the potential energy,W is the virial (excess-pressure)
function defined by W(R) = ∑i<jrij·Fij/3 in which rij is the
position vector from particle i to particle j and Fij is the force
with which particle i acts on particle j,2,42 Δ denotes the
quantity in question minus its state-point average, and the
sharp brackets denote NVT (canonical) averages. By
convention, a system is R-simple (“strongly correlating”)
whenever R > 0.9.52 Although this is a somewhat arbitrary
criterion, it provides a useful rule of thumb for determining
whether or not a given system has good isomorphs in the
investigated region of the phase diagram.

Figure 6. Size polydispersity δ = 28.87% corresponding to the max/min size ratio 3.0. The reference state point is (ρ, T) = (1 × 10−5, 1 × 10−4),
which is a gas-like state point. (a) and (b) show data for the T = 1 × 10−4 isotherm covering a density range of a factor of ∼8. (c) and (d) show
data for the ρ = 1 × 10−5 isochore covering a temperature range of a factor of ∼70. There is a visible variation of both structure and dynamics,
although not as significant as in Figure 5. (e) and (f) demonstrate approximate isomorph invariance of structure and dynamics for the reference-
state-point isomorph covering a density variation of ∼8 and a temperature variation of ∼600.
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If a system is R-simple and thus has isomorphs, an important
characteristic is the so-called density-scaling exponent γ that
gives the isomorph slope in the logarithmic density−temper-
ature phase diagram (see Figure 3 and eq 11).26,27,53 By
definition, isomorphs have constant excess entropy and γ is
defined26 by (in which the second equality is the generally
valid statistical-mechanical identity used to calculate γ from
constant -dens i ty canonica l -ensemble equi l ibr ium
fluctuations26)
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jjjj
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zzzzγ
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≡ ∂
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In general, γ is state-point-dependent.50,51,54,55 If γ were a
constant, however, the isomorphs would be characterized by a
constant ργ/T,53,56 which is the origin of the name “density-
scaling exponent”. A high density-scaling exponent signals
harshly repulsive forces; indeed γ = n/3 for the system of

particles interacting via pair potentials ∝ r−n in which n is the
inverse power-law exponent.4

Figure 4 shows how R and γ vary as a function of the size
((a) and (b)) and energy ((c) and (d)) polydispersity
parameter δ. Data are shown for three size and two energy
polydisperse state points. Except for the relatively high-density
and high-temperature state point data (blue stars), R and γ
vary little from their pure EXP-system (δ = 0) values and the
systems are R-simple. The blue stars show that size-
polydisperse systems stop being R-simple at large polydisper-
sity if the temperature is (relatively) high. At such high
densities and temperatures we found, in fact, that samples
often crystallized partially during the simulation for which
reason we excluded that part of the phase diagram from the
study.

Isotherms, Isochores, and Isomorphs in Four Size-
Polydisperse Systems. This section presents data for
systems with size polydispersity 23%, 29%, 35%, and 40%.
The structure is probed by the radial distribution function

Figure 7. Data for size polydispersity δ = 34.64% corresponding to the max/min size ratio 4.0. The reference state point is (ρ, T) = (1 × 10−3, 1 ×
10−4). (a) and (b) show data for the T = 1 × 10−4 isotherm covering a density range of a factor of ∼2. (c) and (d) show data for the ρ = 1 × 10−3

isochore covering a temperature range of a factor of ∼20. (e) and (f) demonstrate approximate isomorph invariance of structure and dynamics for
the reference-state-point isomorph covering a density variation of a decade and a temperature variation of ∼120.
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(RDF), which is denoted by g(r) and plotted as a function of
the reduced radial distance r ̃ ≡ ρ1/3r. The dynamics is probed
by the mean-square displacement as a function of time,
⟨Δr2(t)⟩, which is also plotted in reduced units.
For each polydispersity we selected a reference state point in

relation to which six subfigures are presented. The two top
figures give reference-state-point isotherm data at different
densities for the RDF and the MSD, respectively. The middle
two figures give reference-state-point isochore (i.e., constant-
volume) data at different temperatures for the RDF and the
MSD. The two lower figures give data for the reference-state-
point isomorph. Each isomorph covers roughly one decade of
density variation. This is much larger than in realistic
experiments, as mentioned, but it allows for a critical test of
the predicted isomorph invariance. Figure 3 shows a phase
diagram with the isomorphs studied.

Figure 5 shows data for the smallest size polydispersity, 23%,
which nevertheless corresponds to more than a factor of 10
“volume” variation between the particles (the max/min σ ratio
is 2.3, compare Table 1, which is similar to the variation among
the metallic elements). Figure 5a and Figure 5b show data for
the T = 1 × 10−6 isotherm covering a density range of ∼7 (the
symbol ∼ is here used in the meaning “roughly equal to”).
Figure 5c and Figure 5d show data for the ρ = 2 × 10−4

isochore covering a temperature range of ∼1400. In all four
cases there is a considerable variation of both structure and
dynamics. The two final figures, Figure 5e and Figure 5f,
demonstrate good isomorph invariance of structure and
dynamics in the same part of the phase diagram for similar
density and temperature variations. There is a good though not
perfect collapse of the data, reflecting the fact that the
isomorph theory is not exact except in the physically unrealistic

Figure 8. Data for size polydispersity δ = 40.41% corresponding to the max/min size ratio 5.7. The reference state point is (ρ, T) = (1 × 10−3, 1 ×
10−4). As discussed in the text, a few state points of the isotherms and isochores show qualitative deviations, reflecting phase separation and/or
crystallization. Except for this, the picture is much like that of the previous figures. (a) and (b) show data for the T = 1 × 10−4 isotherm covering a
density range of a factor of ∼14. (c) and (d) show data for the ρ = 1 × 10−3 isochore covering a temperature range of a factor of ∼200. (e) and (f)
demonstrate approximate isomorph invariance of structure and dynamics for the reference-state-point isomorph covering a density variation of ∼10
and a temperature variation of ∼600.
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case of an Euler-homogeneous potential-energy function,28 a
case that includes all inverse power-law pair potentials.
Figure 6 shows analogous data for size polydispersity 29%,

corresponding to almost a factor of 30 volume variation from
the smallest to the largest EXP particles. Compared to Figure
5, these data are taken at much lower densities and much
higher temperatures, i.e., at much more gas-like states, as
evidenced by the lack of structure in the RDF. While most R-
simple liquids, e.g., the LJ liquid, have a virial potential-energy
correlation coefficient R much below 0.9 in the gas phase and
consequently have no isomorphs here, the single-component
EXP system is an interesting exception, which has excellent
isomorphs in the entire low-temperature region, also for gas-
like state points.22,23 Figure 6 demonstrates that this applies
also for size-polydisperse EXP systems.
Figure 7 shows data for size polydispersity 35% correspond-

ing to more than a factor of 60 volume variation of the
particles. Again we find significant changes of structure and
dynamics along the isotherms and isochores but good

invariance along the isomorph. The highest density and
temperature state points on the isomorph (purple curve)
deviate in its structure from the others; this state point has the
poorest virial potential-energy correlation, compare Figure 4a.
A systematic deviation from isomorph invariance is seen for
the height of the first RDF peak (Figure 7e). This is also
observed, although to a lesser extent, for the other isomorphs
of this paper, as well as for single-component systems including
the EXP system.23 We have generally found that the first RDF
maximum always increases slightly when moving along an
isomorph in the direction of increasing γ. In our interpretation,
this is because the single-pair Boltzmann probability factor at
short distance is proportional to exp[−v(r)/(kBT)] which is
not isomorph invariant, and this Boltzmann factor is smaller
the steeper the potential is, i.e., the larger γ is. As a
consequence, if the total area under the first RDF peak is
isomorph invariant reflecting an isomorph-invariant coordina-
tion number, in order to compensate for the short-distance

Figure 9. Energy polydispersity δ = 34.64% corresponding to max/min energy ratio of 4.0. The reference state point is (ρ, T) = (1 × 10−3, 1 ×
10−4). (a) and (b) show data for the T = 1 × 10−4 isotherm covering a density range of a factor ∼5. (c) and (d) show data for the ρ = 1 × 10−3

isochore covering a temperature range of a factor of ∼50. (e) and (f) demonstrate approximate isomorph invariance of structure and dynamics for
the reference-state-point approximate isomorph covering a density variation of ∼10 and a temperature variation of ∼200.
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“loss”, the RDF peak value can be expected to increase with
increasing γ.
The final size-polydispersity figure is for δ = 40% (Figure 8),

corresponding to a factor of ∼200 volume variation among the
particles. The data follow the same picture as for smaller
polydispersities, although we now find signs of a phase
separation at the highest density isothermal state points
(Figure 8a) and of crystallization at the lowest temperature
isochoric state point (indicated by the constant MSD in Figure
8d). Overall, the RDF is still isomorph invariant, although to a
lesser extent than for systems with smaller polydispersity. The
polydispersity under study here, however, goes much beyond
normal experimental conditions. The fact that invariance is
observed even at such extreme polydispersity illustrates the
robustness of isomorph theory.
Results for an Energy-Polydisperse System. As

mentioned in the Introduction, varying the particle size is
most relevant for modeling realistic experimental mixtures. For
completeness, however, we have also simulated an EXP energy-
polydisperse system. Reference 41 showed that isomorph
theory applies for energy polydisperse LJ mixtures. Figure 9
shows EXP energy polydispersity data plotted in the same way
as for the size polydisperse systems. Also in this case the
simulations demonstrate approximate isomorph invariance of
structure and dynamics. The data show changes along both the
isotherms and the isochores, which are larger than for the size-
polydisperse system with the same δ (Figure 7). This reflects
the significantly larger density and temperature variations.

■ CONCLUSIONS

This paper has demonstrated that polydisperse systems of EXP
particles are R-simple and have good isomorph invariance of
both structure and dynamics. This means that the single-
component EXP system’s hidden scale invariance demon-
strated in ref 23 applies also if size or energy variations are
introduced, even if these are quite significant. This finding is
not trivial because the effective inverse-power-law exponent
describing the EXP pair potential depends on the distance
relative to σ (increasing as the pair distance increases), which
implies that size-polydisperse mixtures involve a range of
effective inverse power-law interactions. Previous results by
one of us dealing with the LJ system demonstrated that
introducing either size40 or energy41 polydispersity did not ruin
the hidden scale invariance of the standard LJ system. In view
of the above demonstration that the same applies for the EXP
system, we conclude that the hidden-scale-invariance property
is robust to polydispersity. As mentioned, this is far from
trivial, and it would be desirable to have a better analytical
understanding of this fact. Thus, while methods exist for
estimating the density-scaling exponent γ from the pair
potential of R-simple single-component pair-potential sys-
tems,51,57 for polydisperse systems there is no theory or even
approximate analytical method for estimating the virial
potential-energy correlation coefficient R and the density-
scaling exponent γ. The fact that γ does not change much with
polydispersity (Figure 4) indicates that the same theory might
be applied; validating this presents an important challenge for
future work.
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