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We investigate vortex pair interactions at low Reynolds numbers. We base our analysis on
the Q-criterion, where a vortex is defined as a region where the local rotation dominates
the strain, and we make use of a topological approach to describe the qualitative changes
of the vortex structure. In order to give a complete description of vortex pair interactions
we further develop a general bifurcation theory for Q-vortices and prove that a threshold
for vortex merging may occur when we allow two parameters to vary. To limit the
number of free parameters, we study the interactions with two point vortices as the initial
condition and show that the threshold is a codimension two bifurcation that appears as a
cusp singularity on a bifurcation curve. We apply the general theory to the analytically
tractable core growth model and conclude that a pair of co-rotating vortices merge only
if their strength ratio, @« = I'7/I» is less than 4.58. Below this threshold value, we
observe two different regimes in which the merging processes can be described with
different sequences of bifurcations. By comparison with Navier—Stokes simulations at
different Reynolds numbers, we conclude that the merging threshold varies only slightly
for Reynolds numbers up to 100. Furthermore, we observe an excellent agreement between
the core growth model and the numerical simulations for Reynolds numbers below 10. We
therefore conclude that, instead of solving the Navier—Stokes equation numerically we
can, for sufficiently small Reynolds numbers, apply the core growth model as a simple,
analytically tractable model with a low dimension.
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1. Introduction

Studying the fundamental interactions of vortices helps us understand the behaviour of
the complicated flows which can be encountered in nature. A simple example of an
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interaction is two-dimensional vortex merging, which is a well-studied phenomenon in
fluid mechanics. For a general review of the dynamics and instabilities of vortex pairs,
see e.g. Leweke, Le Dizés & Williamson (2016). It is sometimes possible to observe
vortex merging visually in experiments and numerical simulations, but it can be difficult to
give an accurate mathematical description of the merging process. Early studies of vortex
merging mainly focus on merging in inviscid fluids where vortices are defined as vortex
patches with constant vorticity (Overman & Zabusky 1982; Dritschel 1985). The jump
of vorticity across vortex boundaries is advected by the velocity field and the problem
effectively becomes one-dimensional. This approach, known as contour dynamics, was
originally proposed by Deem & Zabusky (1978). The conservation of vorticity ensures
that the fluid will be divided into regions of uniform vorticity for all time and, in principle,
merging is never possible. Dritschel (1986) overcomes this issue by applying contour
surgery, which is an algorithm allowing two contours enclosing the same uniform vorticity
to merge into one if they are close enough together. In this study, we will address
the problem rigorously in a viscous setting. We identify vortices by the widely used
Q-criterion (Hunt, Wray & Moin 1988). In its general form, Q is defined as the following
measure of stretching relative to rotation,

0= tqel* - s, (1.1)

where S = %(Vu + Vu’) is the symmetric strain rate tensor, = %(Vu — vu!) is the

skew-symmetric vorticity tensor and || X|| = +/tr(XXT). The Q-criterion defines a vortex
as a region with positive Q-value. In two dimensions, Q simplifies to the determinant of
the velocity gradient tensor Vu and a vortex is therefore defined as a region where

Qx,y) =det(Vu(x,y)) > 0. (1.2)

In this paper, we present a complete topological analysis of the merging of Q-vortices
in the core growth model. The main result of our analysis is that the merging process can
be divided into three different regimes depending on the strength ratio of the vortices. For
sufficiently high strength ratio, the weakest vortex is supressed by the strong vortex, and
no merging as such occurs. For lower strength ratios, there are two different bifurcation
sequences leading to merging. The core growth model has previously been used to study
vortex merging by Jing, Kanso & Newton (2012) and Andersen et al. (2019). In the
following section we review the model and show that it allows us to write an analytical
expression for Q depending on two parameters, the strength ratio of the two vortices and
the time.

We monitor the vortex interactions by looking for bifurcations of the curves bounding
the vortices, the level curves Q(x, y) = 0. Bifurcations occur when singular points appear
on these curves. An analysis of all possible perturbations of a given degenerate pattern tells
us what we might expect when a given number of parameters are allowed to vary. When
only a single parameter is varied, the bifurcations that occur in a robust way are referred
to as having codimension one. We have already formulated a complete codimension
one theory in earlier studies, see Nielsen et al. (2019) or the brief summary in § 3. Our
previous study includes an analysis of a single codimension two phenomenon, but as the
core growth model has two free parameters, it is necessary to extend the existing theory
with an analysis of another codimension two bifurcation. This further development of
the theory can be found in § 3.1. The core growth model has a built-in symmetry that
may lead to a special type of codimension two bifurcation; this case is analysed in § 3.2.
We compare the results for the core growth model with Navier—Stokes simulations in
§ 4.1, and find good agreement for low values of the Reynolds number. An analysis of the
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topological structure of vortex pairs is inextricably linked to the way we choose to define
vortices mathematically. There are many definitions of vortices available in the literature,
see Zhang et al. (2018) for a review. To our knowledge, this is the first study to analyse
vortex pair interactions based on the topology of the Q-criterion. Andersen et al. (2019)
have previously studied vortex merging from a topological point of view with vortices
defined as local extrema of vorticity. This method identifies a vortex by a feature point
that does not provide any information about the shape or size of the vortex. Applying the
Q-criterion might therefore provide some opportunities for a more elaborate analysis. In
§ 5 we comment on the importance of the vortex criterion.

2. The core growth model

We consider an incompressible fluid in an unbounded two-dimensional domain governed
by the Navier—Stokes equations. In terms of the vorticity, the Navier—Stokes equations can
be written as the vorticity transport equation,

ow

— =—u-Vo+vAw, (2.1)

ot
where w is the vorticity, v is the kinematic viscosity and u is the fluid velocity. One of the
very few known analytic solutions to (2.1) is the Lamb—Oseen vortex (Saffman 1992). In
polar coordinates (r, ) the vorticity and velocity components are

_ r 2 2 _ r 2 2
w(r,0,1) = —5 exp(=r"/o)7), up(r,0,1) = 5—(1 —exp(=r"/o()7)),

o(1)?
u(r,0,1t) =0,
(2.2a—c)
with
o (t) = V4vt. (2.3)

The Lamb-Oseen vortex is the solution corresponding to a single point vortex with
strength I as initial condition. The vorticity field w is initially concentrated at the origin
and diffuses as a Gaussian distribution. For multiple point vortices as the initial condition,
an analytic solution is not available and one would generally refer to numerical simulations
of the vorticity transport equation. Instead, we investigate the synthetic flow predicted by
the core growth model, also known as the multi-Gaussian model (Jing, Kanso & Newton
2010; Kim & Sohn 2012; Andersen et al. 2019). The model assumes that the vorticity of
each initial point vortex diffuses symmetrically as an isolated Lamb—Oseen vortex and the
centres of the Gaussian vortices move in the velocity field induced by the other diffusing
vortices. For two Gaussian vortices, initially centred at (—d, 0) and (d, 0), one can deduce
(Kim & Sohn 2012) that the distance between the centres of the two Gaussian vortices is
conserved and the vortices rotate around the a stationary centre of vorticity

d(I> —I)
w0y Ver) = | ———=,0]), 2.4
(Xevs Yev) ( rn+o ) (2.4)
with the same time-dependent angular velocity
d¢(t) Fl + FZ 2, 2
= 1— —(2d . 2.5
” 2n(2d)2( exp(—(2d)“/o7)) (2.5)
917 A11-3
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We notice that the angular velocity tends to zero as v or ¢t increases. By integrating
d¢ (t)/dt in time we obtain the direction angle as a function of time

F1+F2 0—2 0'2 2 2 2 o0 e_s
N=———+|——— —Q2d d —ds ). 2.6
¢ (1) 3 d)y (4 1 exp(—(2d)°/o7) + /(2d)2/02 S ds (2.6)

We notice that the angular velocity and the direction angle depend on the total of
vortex strength '] + I and the distance between the vortices, not on the strength ratio.
The positions of the two Gaussian vortex centres (x1(?), y1 (7)), (x2(t), y2(¢)) are given by

(2.6), 1.e.
x1(0\ _ cos ¢ (1) Xcv
(yl(t)) = (=) (sin¢<t)) * ( 0 ) : @7
x(\ _ cos ¢ (1) Xcv
(yzm) =~ (d+xa) (sin¢(t)) * ( 0 ) | @9

Since the core growth model evolves as a superposition of two Lamb—Oseen vortices,
the vorticity field is given as

I 2, 2y, 12 2, 2
wlx,y, 1) = — exp(—dy/o”) + — exp(—d;/o”), 2.9)
o o
where
di = (x = x1(0)” + (y = 1)), (2.10)
& = (x = x20)” + (y = 20))*. 2.11)
By solving the Poisson equation w = — Ay we obtain the following streamfunction in the

core growth model

I 2 * et p) 2 ® e
W(x’y’t) o (n< l)+‘/d‘%/02 B \) . n< 2>+/d‘%/o_2 s S
2.12)

The core growth model is not an exact solution to the vorticity transport equation in
(2.1). However, by inserting the synthetic flow into the equation, we can evaluate the error
we make when using the core growth model. From (2.7), (2.8), (2.9) and (2.12) all three
terms in the vorticity transport equation can be expressed analytically and by evaluating
the limit as v — 0o we obtain for a fixed 7 that

(I'f — I'}yd ( 1

0w —VAw~+u-Vo = —
! 32m2v3s3 p4

) as v — 00, (2.13)
which implies that the core growth model will be accurate for the viscosity going to
infinity, i.e. for the Reynolds number going to zero. This will be confirmed by numerical
computations in §4.3. The quality of the approximation will necessarily depend on the
value of the fixed z. For a smaller ¢ value, a lower Reynolds number is required to
achieve the given accuracy. Part of the purpose of this study is to establish an upper
limit of the Reynolds number under which it is reasonable to use the core growth
model instead of numerically solving the Navier—Stokes equation. It is worth noting
that Gallay (2011) proved that on a fixed time interval the solution to the vorticity
transport equation, with point vortices as initial conditions, converges uniformly in time
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to a superposition of Lamb—Oseen vortices as v — 0. Since the core growth model has
point vortices as the initial condition, Gallay’s result indicates that the model will be
relatively accurate also in weakly viscous flow. The model has previously been studied
for Re = (|I'1| + |132])/(2v) > 1, see Jing et al. (2012) for an example.

For simplicity, the core growth model will be studied in a co-rotating frame, such
that the centres of the Gaussian vortices are fixed at the initial positions. For a given
time ¢, the transformation from the co-rotating to the initial frame is determined by a
rigid rotation with the angle ¢(#) around the centre of vorticity. This guarantees that
the topology of the vorticity field, the streamfunction and hence also the Q-field are
unchanged when studied in the co-rotating frame. To analyse the core growth model for all
possible combinations of vortex strengths and displacements, we introduce the following
dimensionless variables (denoted with ~), ¥ =x/d, ¥ = y/d, & = wd*/ I, 6 = o/d,
V¥ = ¥d*/I» and ¥ = /. For simplicity, we drop the tildes from now on. In the
co-rotating coordinate system the dimensionless vorticity and streamfunction for the core
growth model become

o x4+ 1)2 442 1 x— 12 +42
w(x,y,a,cr):mexp (—( )ty >+n02 exp (—#) (2.14)

o2 o2
and
o S e s
Yoy 0.0) = - (In«x D249+ / < ds)
4 ((4+1)22) /02 S
1 2, 2 > e’
—— | In(x =D +y) + ——ds|, (2.15)
4 (x=1)2+y2) /02 S
where
I 4yt
o=t o= (2.16a,b)
I, d

are the strength ratio of the two vortices and a dimensionless time variable, respectively. As
a result, the Gaussian vortices are fixed at (—1, 0), (1, 0). As described in the introduction,
we will analyse the topological bifurcations of vortex pair interactions by applying the Q
criterion. Using (2.15), a closed analytical expression for Q in the co-rotating frame can
be directly computed from

32\ (92w 32y \*
) 9 = - . 217
ee e o) (ax2>(8y2> (axay) 17
In § 4.1, we will analyse the zero level curves of this function in detail. We note that the

model has a built-in symmetry. The x-axis is a line of symmetry in the streamfunction and
hence

O, —y,a,0) =0(x,y,a,0) (2.18)

for all values of x, y, « and o. Furthermore, it follows from (2.15) that

Ox,y,a,0) =aQ (—x, Y, é, cr) , (2.19)

which makes it sufficient to investigate the topological bifurcations of the zero level curves
of Q for |a| > 1.

917 Al11-5
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Figure 1. Illustration of the local changes in the structure of the Q = 0 contour curves during a (a) pinching
and a (b) punching bifurcation. The bifurcation states are depicted in red and green boxes. The dashed lines in
(a) show an example of a possible global structure during a pinching bifurcation. Note that the empty left panel
in (b) illustrates that there are no Q = 0 contour curves.

3. Bifurcation theory for Q-vortices

A general characterization of zero level curves of Q may be applied to any flow situation,
regardless of whether it arises from the core growth model or the Navier—Stokes equations.
Nielsen et al. (2019) show that there are two types of robust one-parameter bifurcations of
the level curves Q = 0, the authors denoted these as a pinching and a punching bifurcation,
see figure 1. The bifurcations occur when

0=0, 0=0, 3,0=0, (3.1a0)

under the non-degeneracy conditions

Q0 #0 (3.2)
and
H? — (gﬁjg g;’g) is non-singular. (3.3)

Here, ¢ denotes a free parameter. A pinching (punching) bifurcation occurs when HZ
is indefinite (definite), and the direction of the bifurcation depends on the sign of 9;Q.
A pinching bifurcation is the splitting or merging of two vortices while a punching
bifurcation is the creation or disappearance of a single vortex.

In general there is no simple connection between the vorticity w and the Q-value. If we
consider an incompressible fluid at a point (x, y) with @ = 0, we notice, however, that

Q = dudyv — dyudv = —(dyu)? — (yu)>. (3.4)

Since Q < 0, we conclude that a point with zero vorticity will always be located outside
or on the boundary of a Q-vortex. By continuity it is therefore impossible to have points
with opposite signs of vorticity in the interior of a single vortex. Hence, two vortices can
only merge in a pinching bifurcation if they have the same sign of vorticity in the interior.

3.1. Theoretical description of codimension two bifurcation

A flow may depend on several parameters, such as the Reynolds number or a parameter
that determines the initial geometry. In this section, we consider a flow described as a
smooth system depending on two parameters, ¢ and r. In this setting, the two generic

917 A11-6
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types of one-parameter bifurcations occur when crossing a one-dimensional bifurcation
curve in the (¢, r) parameter space. A codimension two point on one of these bifurcation
curves is a point where both parameters are required to take on particular values, so that
one of the non-degeneracy conditions in (3.2) or (3.3) are violated. The codimension two
bifurcation where 9;Q = 0 is analysed in detail in previous studies (Nielsen et al. 2019).
In this section, we will analyse the other bifurcation phenomenon that occur when HZ
is singular with 0 as a simple eigenvalue. For simplicity, we choose a coordinate system
such that the bifurcation point is located at (x, y, ¢, r) = (0,0, 0, 0) and H? is a diagonal
matrix. We consider a bifurcation point characterized by the following set of degeneracy
conditions

QO = Oa 8)CQO = 07 8yQO == O (SSG—C)

0 0 Qo anyO 0 0
H; = = , 3.6
0 (3ny0 9,00) =0 2 (36)
where subscript 0 is used to denote an evaluation at the bifurcation point (x,y,t,r) =
(0,0,0,0) and A is a non-zero parameter. To characterize the structure of the bifurcation

curves at the bifurcation point we assume some regularity in the form of the following set
of non-degeneracy conditions

and

900 #0, 9,00 #0, Qo #0, (3.7a—c)
and that
(48 45)) s -

Based on the above assumptions, we will now analyse the structure of the bifurcation
curves in a neighbourhood of the codimension two point. First we consider the following
Jacobian

dyQ Q@ 30
g2 2000000 (505 50 57o), (39)
a(y,t,r) o 09,0 90

which simplifies to

A 8thO 8yrQO
Jo=10 9xQo 0900 (3.10)
0 000 900

when it is evaluated at the bifurcation point. Since A4 # 0 it follows by the non-degeneracy
condition (3.8) that Jy is non-singular. Hence, we can apply the implicit function theorem
to conclude that there exist unique local functions y = Y(x), t = T'(x), r = R(x) satisfying

Y(0)=0, T@O) =0, R() =0, (3.11a—c)
and
0yQ(x, Y(x), T(x), R(x)) =0,
00(x, Y(x), T(x), R(x)) =0, (3.12)
O, Y(x), T(x), R(x)) =0.

The functions 7" and R give a parametric representation of the bifurcation curve in the (¢, r)
parameter space. The shape of the bifurcation curve is given by the derivatives of T and

917 Al11-7
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R at the bifurcation point x = 0. We now set out to compute these derivatives. By implicit
differentiation of the equations in (3.12), we obtain that

Y'(x) 8ny
J T/(X) =—|du0], (3.13)
R'(x) 0xQ
which evaluated in x = 0, gives us
Y’ (0) 8nyO 0
TO0) | =—d;' |00 | = | O] . (3.14)
R'(0) 9xQo 0

Since (77(0), R'(0)) = (0, 0), we have a non-regular point on the bifurcation curve. To
classify the singularity we compute the second-order derivatives, which are found by
implicitly differentiating (3.13) and evaluating the derivatives at x = 0

Y"(0) | Arry Qo Y'(0) | Axry Qo
T//(O) = _J(; Qo | + 2J6 T/(O) = _J(; Qo | » (3.15)
R"(0) 9 Qo R'(0) 0
where
J 0J + 8"Y’( ) + 8"T’( ) + 8JR’( ) 0 (3.16)
=—+=—TY X +—"T@+—FRw) = —| . .
0= \ox '~ ay a1 dr o oxly
Hence, it follows that
9,000
T'(0) = — Q000 (3.17)
0xQ00rQ0 — 9:Q00x-Qo
3;0Q00
R//(O) _ tQO xxeO (318)

8xtQOBrQO - 8thaerO '

From the non-degeneracy conditions (3.7a—c) and (3.8) it is clear that 7" (0) and R”(0)
are both well defined and non-zero and hence we have a quadratic cusp at (r, t) = (0, 0)
(see e.g. Rutter 2000). To determine the order n of the cusp we must find the first
derivatives of order n > 2, such that

™) , T"0)  3,Q0
R™W©) " R"O0)  3Qo

We will show that this holds already for n = 3, which makes the cusp singularity an
ordinary cusp. By implicitly differentiating (3.13) again we get that

(3.19)

Y"” (0) Y’ (0) axxxy QO
T70) | = —dg" |35 [ T7O) | + | BueexQ0 | | - (3.20)
R"(0) R"(0) Ixxx Q0

Hence, it follows that
—0,Q0A + 9x,Q0B
05 Q00,00 — 9:Q00xrQo ’
9:Q0A — 0, QoB
axt QO 8r QO - 8t QO 8xr QO '

T/// (0) —

(3.21)

R"(0) = (3.22)

917 Al11-8
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where

A= 38xerORU(O) + 38xxtQOTN(0) + 38}6ny0 Y” (0) + 8xxxeO,

(3.23)
B = 38erOR//(O) + 38xtQ0T//(0) + axxeO = _ZaxxeO~

The last non-degeneracy condition in (3.7a—c) then implies that B is non-zero, and hence
it follows from (3.8) that at least one of the quantities 7" (0) and R”’(0) must be non-zero
as well. Assume now that R”’(0) # 0 and consider the ratio

T"(0) _ —0,Q0A + 3v-QoB
R"(0)  3Q0A — 3xQoB

The following argument is completely identical in the case where T"(0) #0 and the
reciprocal (3.24) is considered. We now assume that

(3.24)

T//l O T// 0
© = ( ). (3.25)
R/// (0) R// (O)
However, this implies that
0xrQ09rQ0B — 9;000xQoB = 0, (326)

and since B # 0 this expression violates the non-degeneracy condition (3.8) and we can
conclude that

T/// (O) T// (O)
R///(O) 7+_ R (O) :

This argument concludes the proof that we have an ordinary cusp singularity on a
bifurcation curve in the (z, r) parameter space. Since dyQo # 0, it also follows for any x
sufficiently close to zero that the Hessian H? is definite when x has one sign, and indefinite
when x has the opposite sign. Hence, the two branches that meet at the cusp singularity are
respectively a punching bifurcation curve and a pinching bifurcation curve. A sketch of the
bifurcation diagram close to the bifurcation point is shown in figure 2. The orientation of
the cusp and the type of bifurcation on each of the two branches will depend on the signs
of the non-degenerate quantities in (3.7a—c) and (3.8).

(3.27)

3.2. Codimension two bifurcation in models with symmetry

As discussed in §2, the core growth model has the x-axis as a line of symmetry, i.e.
Q@x,y,r, t) = Q(x, —y, r, t). This symmetry may lead to a special type of codimension
two bifurcation which only occurs in such models. The reason is that the symmetry
implies, for any set of non-negative integers k, [, m and n, that

059%0"0/Q(x,0,2,r) = 0 if Iis an odd number. (3.28)

If we consider a bifurcation point satisfying the degeneracy and non-degeneracy
conditions described in § 3.1, it would in general not affect the bifurcation phenomenon
if we make the analysis in a coordinate system where the x- and y-coordinates are
interchanged. The symmetry in the core growth model implies, however, that dyy,0, 9,,0
and dy,Q are all zero at any point on the line of symmetry. The non-degeneracy conditions
in (3.7a—c) and (3.8) will therefore be violated if the codimension two point is located at
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7

O

@ )
Figure 2. Illustration of a bifurcation curve with a cusp singularity at the codimension two bifurcation point

(t, r) = (0, 0) satisfying the assumptions in (3.5a—c)—(3.8). The topological structures of the Q = 0 contour
curves are shown in the figure and the bifurcation states are depicted in red and green boxes.

— (1) =(T(), Rx))

O
O
R

———————————
-

----- t=T(0,r)
— (&, = (T(w), R(w))

Figure 3. Illustration of a bifurcation diagram in the neighbourhood of a codimension two point satisfying the
symmetry condition (3.28). The solid and dashed curves are sketches of the two bifurcation curves meeting with
a common tangent line at (¢, r) = (0, 0). The topological structures of the O = 0 contour curves are illustrated
in the figure and the bifurcation states are depicted in red and green boxes. See appendix A for further details
onT, T and R.

the line of symmetry. In appendix A we analyse this case in detail. The non-degeneracy
conditions

Qo #0, 9,00 #0 (3.29a,b)

are kept, and other conditions are imposed to ensure a certain regularity (AS5), (A6). The
analysis in appendix A shows that two distinct branches of bifurcation curves meet with a
common tangent line at the codimension two point and separate the parameter space into
three different regions. An example of a bifurcation diagram close to the codimension two
point (¢, r) = (0, 0) is shown in figure 3. The orientation of the curves and the type of
bifurcation on each part of the branches will depend on the signs of the non-degenerate
quantities.
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Figure 4. Bifurcation diagram of the merging process in the core growth model for &« > 1. The bifurcation
curves separate the (o, o) parameter plane into four distinct regions with different vortex topologies. Crossing
a green (red) part of the bifurcation curve results in a punching (pinching) bifurcation.

4. Application to vortex pair interactions
4.1. Topological bifurcations in the core growth model

Elsas & Moriconi (2017) showed that a Gaussian vorticity field has a positive Q-value
in a circular region with radius r &~ ¢/0.89. As described in § 2, the core growth model
evolves as a superposition of two Gaussian vortices, but since Q does not depend linearly
on the flow field, bifurcations in the vortex structure can occur. These bifurcations can be
tracked by solving the degeneracy conditions (3.1a—c) with Q is given by the analytical
expression in (2.17). In the case where o > 1, we obtain the bifurcation diagram shown
in figure 4 when the solution is projected onto the (o, o) parameter plane. The bifurcation
curves separate the parameter plane into four distinct regions. The vortex structure in
each region is illustrated with an example of a Q = 0 contour curve. The colour of a
bifurcation curve indicates whether a pinching or a punching bifurcation occurs when
crossing the curve. The three points (o4, o) & (1.12, 4.58), (0B, ap) =~ (0.98, 3.37) and
(oc, ac) ~ (0.72, 1) mark the places where two bifurcation curves collide. These points
divide the flow into three different a-regimes in which the vortex interactions occur
through different robust processes. The temporal evolution of the merging process within
each of the three regimes are illustrated by the examples in figure 5(b,c,d). The figure also
includes the symmetric case where « = 1. The bifurcation states depicted in the red and
green boxes correspond to the vortex structures on the bifurcation curves in figure 4. The
top—down symmetry (2.18) implies that any bifurcations away from the line of symmetry
occur simultaneously in pairs. For all values of « the initial and final vortex structures are
topologically identical but the temporal evolution is quite different. In the low «-regime,
1 < o < oy, figure 5(a,b), the merging process proceeds in two steps: first, a single
vortex with a hole is formed by two simultaneous pinching bifurcations. Subsequently, the
hole disappears in a punching bifurcation. In the intermediate o regime, ap < o < a4,
figure 5(c), the two vortices merge in a single pinching bifurcation. In the high « regime,
o > ay, figure 5(d), no merging as such occurs, but the weakest vortex is suppressed by
the strongest in a punching bifurcation.

When we turn our attention to the common initial vortex structure, we observe two zero
level curves of Q located around the Gaussian vortex centres. In addition, we notice two
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Figure 5. Evolution of the vortex structure at selected values of @ > 1. For each value of «, all the observed
topologies of the O = 0 contour curves are shown in the order of evolution. The structurally unstable bifurcation
states are depicted in red and green boxes. (@) « = 1; (b)) a =2; (c)a =4; (d) o = 6.

smaller vortices that were not immediately expected and grow very slowly in size. For
the sake of simplicity, we will only examine them, in the case where o = 1. Due to the
rotational symmetry in this case, they have a fixed location around (x, y) = (0, 1) and
the analytical expression of the Q-field can easily be evaluated

o—4/0?

00,£1,1,0) = 4.1)

B
It is clear that (x, y) = (0, =1) are singular points of Q in the initial state where ¢ = 0.
Furthermore, Q(%1, 0, 1, o) has a positive value for any o > 0 and therefore the small
vortices are indeed present from the beginning. Furthermore, we see that the value of Q
increases slower than any power of o. From the examples in figure 5 we see that the small
vortices merge with the weakest of the two main vortices in two simultaneous pinching
bifurcations that occur when crossing the far left the bifurcation curve in figure 4.

The keys to understanding the complete picture of the vortex pair interactions are
the singular points, A, B, C, on the bifurcation curves in figure 4. At these points we
observe bifurcations with higher codimension and the corresponding vortex topologies
are depicted in black boxes. At A there is a critical point on the zero level curve of Q at
(x4, ya) ~ (0.94, 0). By evaluating HZ precisely at this point, we find that the degeneracy
condition (3.6) is satisfied and we can employ our codimension two theory in § 3.1. The
two parameters ¢ and r are in this case interpreted as t = 0 — 04 and r = o — 4. Based
on theory, we conclude that the singular point at A is an ordinary cusp singularity on the
bifurcation curve and the two branches that meet at the cusp singularity are respectively a
punching bifurcation curve and a pinching bifurcation curve. This analysis is completely
consistent with the result in figure 4 and leads to the same conclusion: a pair of co-rotating
vortices merge only if their strength ratio o = I'1 /175 is less than oy = 4.58. At B there is
a critical point on the zero level curve of Q at (xp, yg) & (3.91, 0). Since this critical point
is located at the line of symmetry and Hg satisfies the degeneracy condition (A 2), we can
employ our codimension two theory in appendix A. Based on theory, we conclude that

917 All-12


https://doi.org/10.1017/jfm.2021.191
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. Roskilde University Library, on 27 Apr 2021 at 16:50:44, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2021.191

Topological bifurcations of vortex pair interactions

71 T T T T T T T T T T

2 OO a
3t i
o
4L i
5L -
76 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Figure 6. Bifurcation diagram of the merging process in the core growth model for « < —1. The green
bifurcation curve separates the (o, o) parameter plane into two distinct regions with different vortex topologies.
The topological structures are illustrated with an example of a Q = 0 contour curve within each region. On the
bifurcation curve one of the vortices disappears in a punching bifurcation.

two distinct branches of bifurcation curves meet with a common tangent at the singular
point B. Therefore, the point marks the transition between two regimes where merging
proceeds as two different sequences of bifurcations exactly as shown in figure 4. The last
singular point at C is solely due to the rotational symmetry of order 2 when & = 1 and the
point represents a global bifurcation where four distinct bifurcations are restricted to occur
simultaneously.

The bifurcation diagram in figure 4 gives us a complete picture of vortex pair
interactions when considering two co-rotating vortices. Since it is only possible to show
the diagram for a finite range of «, the upper limit of @ = 6 is an arbitrary limit. However,
by increasing « significantly, we conclude that the qualitative picture is the same for o > 6.
The limit where « is increased to infinity corresponds to a single Lamb—Oseen vortex, and
therefore we expect both bifurcation curves to approach o = 0 for « — oo. For all values
of « there is only a single vortex left for ¢ > 1.12. As proven by Gallay & Wayne (2005),
the Lamb—Oseen vortex is an attracting solution for any integrable initial vorticity field.
Therefore, we expect that the final vortex region converges to a circular region when o is
further increased.

For « < 0 the vortices have opposite signs of vorticity, and as discussed in § 3 they
cannot merge in a pinching bifurcation. This is confirmed by the bifurcation diagram for
o < —1 in figure 6. For all values of «, the only event is the disappearance of the weakest
vortex in a punching bifurcation. When o approaches —1, the time for the punching
bifurcation goes to infinity.

4.2. Navier-Stokes simulations of vortex pair interactions

We want to compare the results of the analytical core growth model with Navier—Stokes
simulations subject to the same initial condition. This is done by solving the vorticity
transport equation (2.1) numerically. Following Andersen et al. (2019) we do not
reparameterize the vorticity transport equation, but control the Reynolds number directly
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through the kinematic viscosity, v. In this study we define the Reynolds number as an
average of the individual vortex Reynolds numbers

I I’
Re:l 1+ | 2|’
2v

which is consistent with earlier studies by Andersen et al. (2019), Meunier et al. (2002)
and Jing et al. (2010). Since our system is isolated the total absolute vorticity

4.2)

/ | dxdy = |I'] + |I2] (4.3)

must be conserved. Therefore, we fix |I]| + |I2] = 10 in all simulations and control the
Reynolds number by varying v. The conservation of the total absolute vorticity is also
monitored as a check of the numerical scheme.

As discussed in § 2 we are primarily interested in comparing the models at low values of
the Reynolds number and we choose to make simulations only for Re < 100. We restrict
the computational domain to the region where (x, y) € [—9, 9] x [-9, 9]. Since Re < 100
and we have a simple square domain, a finite difference method with an explicit Euler
integrator scheme suffices (Weinan & Liu 1996a,b; Andersen et al. 2019). If the field
variable with index jj is the value at grid point (Z, j) we have the iterative scheme

a)g+1(At”) = wj; — (uZ . (Va)Z-) — sza)Z-) ALY,

i
n+1 n+1
Vzlﬁm_l — _a)f.’l.-i-l urﬁ—O—l — awij n+l _ _awij

i /A gy U ax

(4.4)

where n is the integrator iteration index and A" the time step used by the scheme at
index n. We apply an adaptive time step method, where the error estimator is given by
the supremum of the absolute differences in the vorticity field using Af" and Af*/2, i.e.

err = sup{|w;j’.(At”) — a);j’.(At” /2)|}; the relative maximum tolerance is set to 0.1 %, and

with maximum time step of 10~ in simulation time units. The spatial derivatives are
approximated by central differences using a 300 x 300 grid with grid spacing Ax = 0.06,
and we apply periodic boundary conditions. The Poisson problem is solved using the direct
method described in Hansen (2011). We note that this simple scheme has been tested
against higher-order schemes as well as for finite size effects etc. (Andersen et al. 2019).
The initial condition for the core growth model is two Dirac-delta distributions located at
(x,y) = (£1, 0). Such an initial condition cannot be handled by our mesh-based method.
Therefore, we consider an initial condition with two slightly diffused Gaussian peaks,

o i + D+ 7 1 (i — D? +7
wg = —5exp (— 5 L)+ 5 Xp ——2] , 4.5)

TCO'O GO 'J'[O'O O’O

where oy = Ax. From the a)g the streamfunction 1//3 can be found, which also gives the
initial velocity field.

4.3. Topological bifurcations in Navier—Stokes simulations

In figures 7 and 8 the topological vortex structure is shown for selected simulations with
Re = 10 and Re = 100, respectively. It is important to make clear that the simulations
are not performed in a co-rotating frame and we therefore expect the two vortices to
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Figure 7. Navier—Stokes simulations at Re = 10. The evolution of the vortex structure is shown at selected
values of o > 1. For each value of «, all the structurally stable topologies of the Q = 0 contour curve are
shown in the order of evolution. (@) « = 1; (b) x =2; (¢) x =4; (d) a = 6.
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Figure 8. Navier—Stokes simulations at Re = 100. The evolution of the vortex structure is shown at selected
values of @ > 1. For each value of «, all the structurally stable topologies of the Q = 0 contour curve are shown
in the order of evolution. () = 1; (W) a =1.2; (c)x =3; (d) x = 5.

rotate relative to each other. In both figures we observe evolution patterns that are
qualitatively similar to the ones observed in the core growth model. For « = 1, the vortex
structure still has a rotational symmetry of order two and for increasing values of o we
observe three different sequences of topological structures describing the merging process.
For the smallest values of «, the process involves forming a vortex with a hole in it.
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Figure 9. Bifurcation diagrams of the merging process in Navier—Stokes simulations with (a) Re = 10 and

(b) Re = 100. The solid curves are the bifurcation curves in the Navier—Stokes simulations. The bifurcation
curves in the core growth model are drawn as dashed lines for comparison.

For intermediate values of «, merging occurs as a single pinching bifurcation and no
merging is observed for large values of o where the weakest vortex is suppressed
in a punching bifurcation. Although there are qualitative similarities, it is clear that
the quantitative picture changes with increasing Reynolds numbers. For both values of
Reynolds number there is no line of symmetry in the topological vortex structure. The
bifurcations that occur simultaneously in the core growth model are here observed at two
distinct values of o. We notice that the symmetry is only slightly broken in the case of a
low Reynolds number.

For each of the two selected Reynolds numbers, we have performed simulations with
more than 30 different values of 1 < a < 6. From each simulation, we have marked the
observed bifurcation points in the (o, @) parameter plane and constructed the bifurcation
curves shown as the solid lines in figure 9(a,b). The colour of the bifurcation curves again
indicates the type of bifurcation. For the purpose of comparison the bifurcation curves in
the core growth are drawn as dashed lines in the background of the bifurcation diagrams.
In both cases, we observe that the codimension two point at B has disappeared. However,
this was expected as we do not have a line of symmetry in the Navier—Stokes simulations.
With the disappearance of B, a new codimension two point D has arisen in both cases.
Since a pinching and a punching bifurcation curve meet at D they must form another cusp
singularity. The break of symmetry causes the global bifurcation point at C to separate
into two singular points Cq, C» where rotational symmetry of order two is preserved.
The codimension two point at A is preserved as a cusp singularity but the exact location
varies slightly. By recalling that the cusp singularity represents the merging threshold,
we conclude that for Re = 100 vortex merging is only observed if the strength ratio, o =
I7/1> is less than oy = 4.05.

Overall, we observe the same topological structures as seen in the core growth model.
Only the bifurcations that were restricted by the built-in symmetry are qualitatively
changed. The codimension two points still divide the flow into three different o regimes:
Il <a<oap,ap <o <oy and o > 4. The examples in figures 7 and 8 are chosen to
illustrate the temporal evolution of the merging process within each of the three regimes.

We notice that the small vortices growing around the infinitely degenerate critical points
are also present in the Navier—Stokes simulations. Therefore, we conclude that they are not
just mathematical artefacts that exist in the core growth model due to a forced symmetry.
They, on the other hand, have a significant impact on the observed topological structures.
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When the small vortices merge with the weaker of the two main vortices, its structure
is deformed in a manner that enables the subsequent formation of the interesting vortex
structure with a hole inside it. One could argue that the small vortices are artefacts due
to the Q-criterion. In practice, it is common to choose a non-zero threshold to identify
the vortex boundaries. The threshold is ideally chosen such that strong vortices are
captured while small spurious vortices are ignored. Unfortunately, it is very difficult, if not
impossible, to determine a suitable threshold value a priori because the optimal threshold
value tends to be problem dependent (see Chakraborty, Balachandar & Adrian 2005; Chen
et al. 2015). From the present study it is also clear that the infinitely degenerate critical
points out of which the small vortices grow have an effect on the shape of the vortices and
we have therefore chosen to stick with the original Q-criterion as it is defined in (1.2).

5. Discussion

With a topological approach, we revisited the vortex merger problem. The final state of an
interacting pair of vortices is known Gallay & Wayne (2005) to be a single Lamb—Oseen
solution. The focus of our studies has therefore been to elucidate the dynamics that takes
place as the system evolves into the Lamb—Oseen solution. Based on the Q-criterion, we
have completed a mathematical description that tells us which topological bifurcations we
can expect when two parameters are allowed to vary. It has proven to be useful to identify
the codimension two points as they organize the bifurcation diagram and divide it into
different regimes where different sequences of bifurcations form the merging process. The
possible types of bifurcations found from theory also serve as a template that facilitate
the construction of a bifurcation diagram for a specific value of Reynolds number. As an
example, we know that a pinching and a punching bifurcation curve form a cusp singularity
where they meet. Therefore, it is possible to accurately construct the bifurcation curves in
figure 9 based on a finite number of Navier—Stokes simulations.

One of the main objectives in this study was to investigate vortex pair interactions using
the core growth model. The major advantage of the model is the possibility to determine
an analytical expression for Q in the co-rotating frame. With this expression the topology
of the Q = 0 contour curves were easily studied with a precision that made it possible to
depict the structurally unstable bifurcation states in figure 5. The utility of the model was
examined by comparing it with Navier—Stokes simulations. Except for the bifurcations
that were restricted by the built-in symmetry in the core growth model, we observe the
same topological structures in the Navier—Stokes simulations. For Reynolds numbers up
to at least 100, the qualitative picture was the same. Furthermore, we observe an excellent
quantitative agreement with simulations for Reynolds numbers below 10. Thus, depending
on the purpose, there are good opportunities to use core growth model instead of solving
the Navier—Stokes equation with low Reynolds numbers.

Most previous studies have focused on symmetric merging of two identical vortices
or, to a lesser extent, asymmetric merging with a few examples of different strength
ratios, see, among others, Melander, Zabusky & McWilliams (1988), Meunier et al.
(2002) and Dritschel (1995). In two recent studies by Jalali & Dritschel (2018, 2020)
the general inviscid interactions of vortex patches are studied with many examples over
a wide parameter space, including the ratio of sizes and vorticity. Our study is not
the first that attempts to describe all interaction scenarios in terms of different flow
regimes. Dritschel & Waugh (1992) identify five different flow regimes to characterize the
inviscid interaction of two differently sized vortex patches with equal uniform vorticity.
These different flow regimes were based on the ‘efficiency’ of the vortex interactions,
which was quantified by computing the ratio of the final to initial circulation for each of
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the vortices. Trieling, Velasco Fuentes & van Heijst (2005) show that similar flow regimes
can be used to characterize the inviscid interactions of two-dimensional vortices with a
continuous vorticity distribution. They notice, however, that the regime boundaries are
highly sensitive to the vorticity profile.

It is beyond the scope of this work to study the immediate change in the circulation
within the zero level curves of Q during a merging process. A comparison between the
initial and long term asymptotic state is, however, possible. We recall that a Gaussian
vorticity field has a positive Q-value in a circular region with radius r &~ ¢/0.89 (Elsas
& Moriconi 2017). The circulation within the Q = 0 level curve of a Gaussian vortex can
therefore be directly computed as

/0.89 o089
/ w(r)2nrdr = / —e " /%" 2mrdr ~ 0.72T, (5.1)
0 0 o

where I is the total circulation. Thus, the Q = 0 curve expands at a rate that makes the
circulation constant within the Q-vortex. For sufficiently small values of o the vorticity
field of each of our two initial vortices can be assumed to be Gaussian distributed.
Therefore, before any interaction, the circulation of the vortices must equal 0.7277 and
0.721>, respectively. Since the long time asymptotic state of interacting vortices is a single
Gaussian vortex with total circulation 7 4 I, no matter how the transient dynamics
evolves, the circulation of the final vortex must equal 0.72(17 4+ I%). Hence, the circulation
of the initial vortices is completely transferred to the final surviving vortex. Therefore,
merging of viscous Q-vortices is always completely efficient, and is complete merging in
the sense of Dritschel & Waugh (1992). Brandt & Nomura (2010) use some of the same
terms as Dritschel & Waugh (1992) to describe the flow regimes in a viscous setting at
Re = 5000. All viscous interactions between vortices will eventually result in a single
vortex, and therefore only three of the inviscid regimes are considered to occur: complete
merger, partial merger and straining out. Brandt & Nomura (2010) specify three times that
are important in the merging process, t.r,1, tcr2 and f4. 2. For vortex i, t.,.; indicates the
time where the vortex no longer diffuses as a single Gaussian vortex, i.e. the time where
the square of the core radius no longer grows linearly; #4. > is the time characterizing
the destruction of the weaker vortex 2. The weaker vortex is considered to be destroyed
when its core vorticity no longer dominates the imposed strain rate field. This is the
case when the Q-value is very small at the maximum point of vorticity for the weaker
vortex. Brandt & Nomura (2010) distinguish between two main regimes, depending on
the order of #.,2 and #4, . For large values of «, the weak vortex disappears before it
gets close to the strong vortex. This is denoted straining out by Brandt & Nomura (2010)
and characterized by 74,2 < t.r2. In our setting, this corresponds to the weakest vortex
disappearing in a punching bifurcation. If 7.2 < 4.2 the two vortices interact before
the weak one disappears. This is denoted merging, and occurs when « is close to 1. We
detect merging in this sense when the two Q = 0 curves merge in a pinching bifurcation.
In both classifications, the latter regime is further subdivided. If #., 2 ~ .1 (complete
merger), Brandt & Nomura (2010) find detrainment of vorticity from both vortices and
mutual entrainment of the core into a single vortex. If #.,» < t..1 (partial merger), there
is detrainment from both vortices, but the weaker vortex is destroyed. In our classification,
there is a regime where a hole is created inside the merged vortex, and one where there is
not.

Hence, there are many similarities between the classification by Brandt & Nomura
(2010) and the one we propose on the basis of O alone, even if the flows are studied at very
different Reynolds numbers. In the present study the physics is dominated by diffusion,
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and convection plays a very small role. In particular, there is no significant filamentation
of vorticity (Andersen et al. 2019), and denoting the high « regime where the weak vortex
disappears in a punching bifurcation straining out does not reflect the actual dynamics.
However, for higher Reynolds numbers, filamentation will also be detected by the shape
of the O = 0 contours. A first indication is visible for « = 3 in figure 8. The transition
to regimes with straining out and detrainment as the Reynolds number is increased can
possibly be characterized by further bifurcations in the Q = 0 contours. From figure 9 we
see that the point D moves to lower values of o as Re is increased. We expect that the
regime with a vortex with an inner hole may be very small or disappear completely for
higher values of Re.

The approach that is common to the studies of Dritschel & Waugh (1992), Trieling
et al. (2005) and Brandt & Nomura (2010) provides no information about the topological
vortex structure during the merging process and it does not define merging as a bifurcation
that occurs at a specific time. With our approach, we have the opportunity to connect the
process to a rigorous mathematical theory and we avoid a number of choices, such as the
need to define what the core radius is. By using the core growth model we have mapped
out all vortex pair interactions with a bifurcation diagram valid for any choice of vortex
strengths with aratio || = |11/ 13| < 6. To our knowledge, a similar bifurcation diagram
has only been established once before in a recent study by Andersen et al. (2019). Their
results are based on vortices being defined as local extrema of vorticity. Both studies agree
that the core growth model matches well with Navier—Stokes simulations for low Reynolds
numbers. It is, however, clear that the choice of vortex criterion is crucial to the analysis.
While the Q-criterion provides information on the physical extent of a vortex, the vorticity
criterion only tells us whether or not a feature point for the vortex exists. With the vorticity
criterion, it is impossible to distinguish between vortex merging and what we see in this
study as suppression of the weakest vortex. Therefore, the threshold for merging and the
observed vortex structure with a hole inside are both completely new results that have
provided new insights into the intermediate evolution of vortex merging.

Our study has only focused on mapping out all vortex pair interactions with point
vortices as the initial condition. Inspired by Folz & Nomura (2017), it would be an obvious
continuation of our study to consider two Gaussian vortices with different sizes as the
initial condition and to analyse the effect of changing the vortex area vs the vorticity
amplitude. By introducing yet another parameter, the possibility of bifurcations with a
higher codimension also arises. It is therefore possible that such a study will require new
theoretical considerations.
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Appendix A. A theoretical description of codimension two phenomena in a
symmetric model

In this appendix we analyse the codimension two bifurcation which is briefly discussed in
§ 3.2. We consider a flow with symmetry such that Q(x, y, r, t) = Q(x, —y, r, t). For any
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set of non-negative integers k, [/, m and n it then follows that
35019,"3!'Q(x,0,1,r) = 0 if [ is an odd number. (A1)

The special codimension two bifurcation will only occur on the line of symmetry,
y = 0, since the conditions in (A1) only applies at the line of symmetry. For simplicity,
we analyse the phenomenon in a coordinate system where the bifurcation point is located
at (x,y,t,r) = (0,0,0,0) and, as before, we use subscript 0 to denote evaluation at the
bifurcation point. We consider a bifurcation point that is characterized by the following set
of degeneracy conditions

Qo=0, 0&Qo=0, 900=0, (A2a—c)
combined with the non-degeneracy condition in (3.3) being violated such that
0 Qo 8nyO A 0
Hy = = , A3
0 (%% ay00) =0 0 (A3)

for some 4 #0. In this section we prove that if the bifurcation point also satisfies the
following non-degeneracy conditions

Q0 #0, 9,00 #0, (Ada,b)
8)ctQOarQO - 8)chOatQO 8rQO
dxyyQo — Oy Qo—— + 9yyrQo =0, (AS5)
o 3500300 Y900
and
(01yyQ0)*
- 3L + 8yynyO 712 0, (A6)
ax_xQO

then two distinct branches of bifurcation curves meet tangentially at (¢, r) = (0, 0), as
illustrated in figure 3.
We begin the proof by considering the following Jacobian

_0(0:0.9) (940 940
J= ax, 1) (3xQ 8IQ) ’ (A7)
which simplifies to
_ (1 Qo
J“(oa@) (A9

when it is evaluated at the bifurcation point. Since A #0 it follows from the
non-degeneracy condition (A4a,b) that Jy is non-singular. Hence, we can apply the
implicit function theorem to conclude that there exist unique local functions x =
X(y, r),t =T(y,r) satisfying

X(0,00=0, T(,0) =0, (A9a,b)
and
QX (y, r),y, T(y,r),r) =0, QOX(y,r,y, T(y,r),r)=0. (A10a,b)
Since Q, and hence also 9,Q, are symmetric functions in y, it follows that
QX (=y, 1), =y, T(=y, 1), 1) = QX(=y, 1), y, T(=y,r),r) =0,
OX(=y,r), =y, T(=y, ), 1) = QX (=y, 1), y, T(=y, 1), r) = 0.

By comparing the expressions in (A 10) and (A1l) and based on the uniqueness of X and
T we can conclude that X and T are also symmetric functions in y, i.e. X(—y, ) = X(y, r)
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and T(—y,r) = T(y, r). In order to give a parametric representation of the bifurcation
curves we must solve the equation

HhOX(y,r),y, T(y,r),r) =0 (Al2)
for y in terms of r. It follows from (A1) that
ayQ(X(O, r)7 07 T(Oa r)7 r) = 09 (A13)

for any . It follows that there exists a branch of bifurcation points which will remain on the
line of symmetry y = 0. The curve, t = T'(0, r), gives us a parametric representation of this
branch in the (¢, r) parameter space. Since 7 is a continuously differentiable function the
slope of the tangent at r = 0 can be determined by implicit differentiating (A 10), yielding

8rQO
9;0Q0 .

In figure 3 this branch of bifurcation points is illustrated by the dashed green curve. We
expect, however, that there are other solutions of (A12), where the bifurcation points leave
the line of symmetry. Since Q is a symmetric function in y, d,Q must be an antisymmetric
function in y. Hence, a Taylor expansion of the left-hand side of (A12) based at (y, r) =
(0, 0) has the form

0yQ(X(y, 1), y, T(y, 1), r) = Ayr + By’ + Cyr’ + 0(4), (A15)

where the terms of order 4 (or higher) contain only odd powers of y. The coefficients A,
B and C can be expressed solely in terms of derivatives of Q evaluated at the bifurcation
point. Only A and B will play a role and are given in (A16) and (A17). We assume they are
non-zero, and that is exactly the non-degeneracy conditions in (AS) and (A6).

8,Tg = —

(Al14)

0xrQ00rQ0 — 9+009;Q0 9,00
A = - a Y 87 09 A16
xnyO axeOGtQO y)tQO atQO + )yrQO 7E ( )
and
P 2
B= —3% + By Q0 #0. (A17)
XX

To obtain a parametric representation of the second branch of the bifurcation curve, we
put » = wy and define

OX(y, uy),y, T(y, y), 1y)
5 .
y
From this definition, we note that F'(—y, —u) = —F(y, u). Therefore, F has the following
Taylor expansion based at (y, r) = (0, 0),

F(y, ) =Apn+ By + 0(3). (A19)

Since F(0,0) = 0 and 9yF(0,0) = B #0, the implicit function theorem establishes the
existence of a unique solution y = Y (u) satisfying that Y(0) = 0,

F(Y(u), u) =0, (A20)

F(y. pn) = (A18)

and hence
F(=Y(—p), u) = =F(Y(—pn), —pn) = 0. (A21)

By comparing the expressions in (A20) and (A21) and based on the uniqueness of Y
we conclude that Y is an odd function. From the definition of Y it is clear that (y,r) =
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(Y(u), nY(w)) is a solution to the equation in (A12). A second branch of bifurcation points
in the (z, ) parameter space can therefore be determined by the parametric equations

t=T(w) = T(Y (1), LY (n), (A22)
r= R(/,L) = uY(u). (A23)

It follows from the definitions of 7" and Y that T(O) =0 and R(O) = 0. Furthermore, we
see that

T(—p) = T(Y(—p), =Y (=) = T(=Y (), nY () = T(Y (1), n¥ (1)) = T(w),
(A24)

and
R(—p) = —pY(—p) = n¥(n) = R(w). (A25)

Since both T and R are even functions, it follows that R (0) = 7/(0) = 0 and it is clear
that (¢, r) = (0, 0) must be a singular point on the curve. The parameter values 1 > 0 and
1 < 0 correspond to the two branches on either side of the singular point. Since T and R
are even functions it is clear that the two branches must coincide and (z, r) = (0, 0) is in
fact an endpoint of the parametric curve as illustrated in figure 3. The tangent to the curve
is not well defined at the endpoint but we notice that the limiting tangent direction can be
computed as

lim (T/(”“ )) _Ir'o (A26)
n=0\ R'(u) R"(0)

if R”(0) #0. Thus, we must compute the second-order derivatives of Tand R at 1 = 0.
By implicit differentiating (A20) we obtain

, A
Y'(0) = ~3 #0, (A27)
implying that
~ 2A0,Q0
T"(0) = 2Y'(0)3,Tp = ——— 0, A28
0) (0)9,To 59,00 # (A28)
D! / 2A
R7(0) =2Y(0) = ~ #0. (A29)
Summing up, we get that
249,00
T 9
lim [ 2 (ﬂ) _ Ba;Qo _ rQO’ (A30)
=0 \ R’ (1) _2A % Qo
B

which implies that both branches of the bifurcation curve share a common tangent line
in (¢, r) = (0, 0), as illustrated in figure 3. The orientation of the bifurcation curves and
the type of bifurcation on each part of the branches will depend on the signs of the
non-degenerate quantities.
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