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ABSTRACT
Recent experimental results for the structure in the ionic liquid PYR+14 TFSI− have shown invariance in the main structure factor peak along
curves of equal electrical conductivity [Hansen et al., Phys. Chem. Chem. Phys. 22, 14169 (2020)]. The charge peak decreases slightly with
increasing temperature at fixed conductivity, however. For simple liquids, curves with invariant dynamics and structure, known as isomorphs,
can be identified as configurational adiabats. While liquids with strong-Coulomb interactions do not have good isomorphs, ionic liquids could
be an intermediate case with approximate isomorphs along which some aspects of structure and dynamics are invariant. We study a simple
molten salt model using molecular dynamics simulations to test this hypothesis. Simple measures of structure and dynamics are investigated
along with one transport property, the shear viscosity. We find that there is a substantial degree of invariance of the self-intermediate scattering
function, the mean square displacement, and the viscosity along configurational adiabats over a wide range of densities for the three adiabats
simulated. The density range studied is more than a factor of two and extends from the strong-Coulomb regime at low densities to the weak-
Coulomb regime at high densities. The structure is not invariant over the full range of density, but in the weak-Coulomb regime, we see
behavior similar to that seen experimentally over density changes of order 15%. In view of the limited structural invariance but substantial
dynamical invariance, we designate the configurational adiabats as isodynes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055794

I. INTRODUCTION

There is growing interest in using room temperature ionic liq-
uids (ILs), e.g., as electrolytes in lithium batteries to make them more
stable and safe to use. This is because ILs can be designed with pro-
perties such as low vapor pressure and low flammability, which are
desirable for a solvent.1–3 Modern ionic liquids (from now on, the
qualifier “room temperature” is to be understood) are salts that are
molten at room temperature, typically combining a large organic
cation, such as imidazolium, pyridinium, and pyrrolidinium, with
an inorganic anion, such as PF6, BF4, or N(CF3SO2)2. The flexibility
in the choice of the ions enables the optimization of a range of phys-
ical properties providing functionality. This has resulted in great
interest in ILs for a range of different applications, including electro-
chemistry,4 lubrication,5 catalysis,6 bio-preservation,7 and materials
synthesis.8 As a relatively new class of materials, it is important to

carry out extensive studies in order to gain knowledge about their
properties in a wide range of thermodynamic conditions. The pro-
perties of interest include (1) structural properties that are important
for understanding a material’s behavior under different conditions;
(2) microscopic dynamics, for example, the self-diffusion coefficient
that is related to the conductivity and as such clearly important for
battery materials; and (3) transport coefficients such as viscosity,
which is relevant generally for technological uses of liquids and also
because it correlates with diffusivity.

There is a long history of investigating “classical” molten salts,
such as the alkali halides (e.g., NaCl) both theoretically and with
simulations, and it has long been understood that in these cases,
charge ordering plays an important role, leading to the suppression
of concentration fluctuations compared to non-charged mixtures at
long wavelengths and effective screening of the Coulomb interac-
tions at long ranges.9–11 There have also been many attempts in the
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literature to understand the dynamics and transport properties of
molten salts using the so-called “corresponding states” principle, by
which systems can be mapped to a reference system usually involv-
ing scaling by the density and temperature of the critical point (or
triple point).12–14

While measurements at ambient pressure would seem to be
sufficient for materials that are intended for applications at that pres-
sure, greater insight can often be obtained by varying pressure as
well as temperature. An example of this is the phenomenon of den-
sity scaling, whereby dynamical properties are found to be a function
not of pressure p and temperature T separately or of (number) den-
sity (ρ) and temperature (T) separately but of the combined variable
ργ
/T, where the density scaling exponent γ is often taken to be a

material dependent constant.15–17 The insight arising from density
scaling is twofold: (1) The phase diagram is simpler than otherwise
would be considered, being effectively one-dimensional instead of
two-dimensional, at fixed composition, and (2) the density (or vol-
ume), rather than pressure, is shown to be a more relevant thermo-
dynamic parameter for understanding the structure and dynamics.
Density scaling may also be described by saying that one or more
dynamical or structural parameters are invariant along curves in the
phase diagram, given in the above case by T ∝ ργ.

Density scaling has been found to hold for conductivity and/or
viscosity of many different ionic liquids.18–20 Of particular interest
for this work are studies on the ionic liquid PYR+14 TFSI− [1-butyl-1-
methylpyrrolidinium bis(trifluoromethanesulfonyl)imide] where it
has been demonstrated that the viscosity, diffusion coefficient, con-
ductivity, and intermediate scattering function studied with inelastic
neutron scattering all obey density scaling with γ = 2.8.21–23 In addi-
tion to density scaling of various transport properties and dynamics,
it was shown by Hansen et al.23 that the main peak’s position and
height in the structure factor S(q) determined by x-ray scattering
also followed density scaling with γ = 2.8 when analyzed in terms
of the dimensionless wavenumber q̃ = qρ−1/3. In other words, it was
found that the main peak of S(q) was invariant along the same
curves in the phase diagram as the dynamical properties. However,
the smaller peak at a lower wavenumber, sometimes referred to as
the charge peak, was less invariant, reducing in amplitude and mov-
ing toward lower values of q̃ as temperature increased at constant
conductivity. The density change in these experiments was a little
over 2%.

The study of invariances of physical quantities along certain
curves in the phase diagram is greatly aided by the theoretical frame-
work known informally as isomorph theory. The existence of a curve
in the phase diagram along which some quantity, for example, the
conductivity, is constant is trivial: For any substance, one can iden-
tify invariant curves as contours of conductivity. What is non-trivial
is when the contours of one physical quantity coincide with those of
another. For certain systems, termed R-simple systems, the contours
of many structural and dynamical quantities coincide and these
curves are then designated as isomorphs. The theory specifies that
to see the invariances, it is essential to compare the correctly scaled
dimensionless versions of physical quantities, referred to as putting
them in “reduced units.” The theory also is quite precise about which
physical quantities should be invariant in reduced units.24

In the formal development of isomorph theory,25 iso-
morphs are defined as curves of constant excess entropy Sex(ρ, T)
≡ S(ρ, T) − SIG(ρ, T), the entropy after subtracting the ideal gas

contribution for the same density and temperature. These so-called
configurational adiabats can be readily identified in computer simu-
lations, as explained in Sec. II. R-simple systems are understood, as a
rule, to be those dominated by van der Waals or metallic bonding.26

Strongly directional bonding and strong Coulomb interactions26–28

are known to spoil R-simplicity. Since Coulomb interactions are
important in ionic liquids, it is not a priori clear that these liquids
have good isomorphs. However, the experimental results of Hansen
et al.23 suggest that an analysis in terms of isomorphs could be fruit-
ful. Indeed, the coincidence of the invariant main peak in S(q) and
the invariance of conductivity points strongly toward the existence
of underlying approximate isomorphs. We say approximate because
the charge peak in S(q) was not observed to be invariant.

A possible interpretation of these results is that the Coulomb
interactions play a limited role in determining the structure as given
by the main peak of S(q) and a limited role in determining the
dynamical and transport properties. Therefore, approximate iso-
morphs exist along which these quantities are nearly invariant. On
the other hand, the charge peak, which is ascribed to charge ordering
and therefore is solely due to the Coulomb interactions, is somehow
decoupled from the interactions that determine the main structural
and dynamical properties.

In systems that do not have good isomorphs or have at best
approximate isomorphs, we can still identify configurational adi-
abats and investigate structural and dynamical invariances along
them. However, it is not appropriate to refer to them as isomorphs.
In this work, we will therefore refer to the identified curves as adi-
abats for correctness (the qualifier “configurational” will always be
understood if omitted).

Our goal is to get a better understanding of this behavior—
substantial, but not complete invariance of structure and dynamics
along the same curves in the phase diagram of an ionic liquid—by
studying a simple model system using computer simulations. For
this, we have used the simple salt model of Hansen and McDonald,29

which contains two types of spherical particles differing only in
the sign of their charge. This model, described more completely in
Sec. III, is designed to be the simplest possible model of an ionic liq-
uid. It consists of point particles interacting via a short-range repul-
sive inverse power law (IPL) together with Coulomb interactions
that are repulsive or attractive for like or unlike particles, respec-
tively. The IPL term by itself would give perfect isomorphs due to
the well-known scaling properties of power law functions.30 The
Coulomb interactions, as argued above and in previous work, tend
to spoil the pressure–energy correlations that give rise to isomorphs.
Inspired by the experimental results, we hypothesize that in this
model, there is a similar division into structural [main peak of S(q)]
and dynamical properties, which are insensitive to the Coulomb
interaction, and structural properties [the “charge peak” in S(q)],
which are sensitive to the Coulomb interaction. We will argue below
that because the exponent of the Coulomb interaction (n = 1) is
much smaller than that of the short-range repulsive IPL (n = 9),
the charge peak should decrease as density increases along an iso-
morph (the temperature that would tend to preserve the charge peak
is lower than that which preserves the main peak, so the charge peak
experiences greater thermal disruption).

Briefly, our main results are that dynamical and transport prop-
erties are invariant along configurational adiabats over more or less
the full range of densities simulated, while structural properties vary
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substantially when the full range of simulated densities is considered.
When considering a smaller density range, around a 15% increase,
in the high density (weak-Coulomb) regime, the structure appears
more invariant; in particular, the main peak in the structure factor,
corresponding to the number fluctuations, is quite invariant, while
the charge peak, corresponding to concentration fluctuations, varies
slightly, in a manner similar to the experiments of Hansen et al.,23

getting smaller and moving toward lower reduced wavenumbers as
density increases.

II. ISOMORPH THEORY
Isomorph theory is a theoretical framework that was first pre-

sented in Ref. 24. The theory describes curves in the phase dia-
gram, called isomorphs, along which many structural and dynamical
properties are invariant when the quantities of interest are scaled
appropriately. Not all systems have isomorphs, and the theory is
only exact for systems where the potential energy between par-
ticles can be described with an inverse power law, V(r) = εr−n.
However, this does not mean that it can only describe these sys-
tems. For example, in most soft-sphere models, to avoid overlapping
particles, the potential energy between particles will monotonically
approach infinity as r goes to 0. This suggests that for small val-
ues of r the potential can be approximated with an inverse power
law. This is why we often expect isomorphs at higher densities for
these systems. A concrete way to test the “quality” of a potential
isomorph through a given state point is by calculating the Pear-
son correlation coefficient R between the potential energy and the
virial,

R =
⟨ΔWΔU⟩

√
⟨(ΔW)2⟩⟨(ΔU)2⟩

, (1)

where ΔW is the deviation of the virial from its thermodynamic
average, ΔU is the deviation in potential energy, and ⟨⋅ ⋅ ⋅⟩ denotes
the canonical (NVT) ensemble average. The R-value can be calcu-
lated for any state point, but a system is usually expected to only
have good isomorphs in parts of the phase diagram where R > 0.9.24

In order to trace the isomorph in the phase diagram, one has
to calculate another important quantity for isomorphs, the density
scaling exponent γ,

γ(ρ, T) ≡ (
d ln T
d ln ρ

)

Sex

=
⟨ΔWΔU⟩
⟨(ΔU)2⟩

, (2)

where T is the temperature, ρ is the density, and Sex is the excess
entropy.24 Thus, γ defined in this way is the slope of the configu-
rational adiabat through a given state point in a double-logarithmic
representation of the ρ, T phase diagram. This is a general statistical
mechanical identity; for systems with good isomorphs, the (configu-
rational) adiabats are the isomorphs. Moreover, if γ is independent
of density and temperature, then the adiabats have the form T ∝ ργ;
this is the case referred to in the Introduction in the context of exper-
imental results on density scaling. In computer simulations, larger
changes in ρ can be explored and γ is generally seen to depend on
it and, to a lesser extent, on T.31 By treating Eq. (2) as a first order
differential equation, we can trace adiabats in the phase diagram via
a simple Euler numerical integration,

TABLE I. Table of scaling factors for conversion to reduced units.

Name Symbol Reduced symbol Scaling factor

Distance r r̃ ρ1/3

Inverse
distance q q̃ ρ−1/3

Time t t̃ ρ1/3√kBT/m
Mean square
displacement MSD MSD (reduced) ρ2/3

Viscosity η η̃ ρ−2/3
(mkBT)−1/2

Tn+1 = Tn(
ρn+1

ρn
)

γn

. (3)

As mentioned in the beginning, the invariance in structure and
dynamics can only be seen when scaled appropriately. These scal-
ing factors are defined for the characteristic properties of the system,
such as the density ρ, the (mean) mass of the particles m, and the
temperature T. As an example, the scaled distance is r̃ ≡ ρ1/3r. A list
of the reduced units and the necessary scaling factors, which we will
use in this paper, can be seen in Table I.

III. SIMULATIONS
A. Simple salt model

We have worked with the simple salt model described in
Ref. 29. This model contains two types of spherical particles, desig-
nated A and B, which are identical except for their opposite charge.
The potential contains an inverse power law term with exponent
n = 9, which ensures that all particles are repelled at small distances.
It also contains an inverse power law term with exponent 1 that
represents the electrostatic interactions between the particles. This
means that this term is repulsive for particles of the same type and
attractive for particles of different types. The pair potential of this
model is thus given by

Vαβ(r) =
1
9
(

1
r
)

9
+ εαβ(

1
r
), (4)

where r is the distance between the particles, εAA = εBB = 1, and
εAB = εBA = −1. Due to the symmetry of this potential, we will be
referring to AA as the like-part and AB as the unlike-part.

Traditionally, in computer simulations, Coulomb interactions
have been implemented using some variant of the Ewald-summation
method in order to handle the long range part of the interactions
as efficiently as possible.32 It has been shown, however, that for
bulk systems a simpler approach, omitting the long range part of
the interactions, is sufficiently accurate.33 In particular, the use of
the so-called shifted-force cutoff, whereby a constant term is added
to the pair-force such that it vanishes at the cutoff, gives accurate
results without requiring excessively large cutoffs.34,35 This ensures
the continuity of the force at the cutoff, giving greater energy sta-
bility, although it involves changing the pair potential (by a linear
term) at distances less than the cutoff. In this work, we use a shifted-
force cutoff for the entire interaction, with a cutoff distance of rc = 6.
To confirm that this is sufficiently accurate, we have investigated the
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effect of systematically reducing the cutoff to 3 at the lowest den-
sity of ρ = 0.75 by focusing on the partial structure factors. For the
smallest cutoff values, 3 and 4, effects can be seen in the charge-
density fluctuations at low wavenumbers (see Fig. 1 of the supple-
mentary material). There is little change once the cutoff exceeds 5,
however. The graph of the potential is shown in Fig. 1. Note that
the minimum of the unlike interaction occurs at r = 1, so naïvely we
expect (Coulomb) attractions to be most relevant at densities below
approximately unity (taking the interparticle spacing to be roughly
ρ−1/3).

At short distances, the purely repulsive n = 9 term dominates
so that we expect the Coulomb interaction to play a decreasing role
as density increases. In fact, it can be shown mathematically that
reducing the contribution of the Coulomb interaction term can be
absorbed by a redefinition of length and energy scales or equiva-
lently changing temperature and density to higher values (see Sec. I
of the supplementary material). We therefore simulate a wide range
of densities, much wider than would normally be covered in a real
experiment on a given material, to probe the effect of effectively
reducing the Coulomb interactions. In experiments, one would have
to vary the charges, or more likely, vary the size of the molecule while
keeping the charges fixed, thus “diluting” their effect.

Hansen and McDonald studied their model at one particular
density, 0.3676, and one particular temperature, 0.0177. This den-
sity is significantly lower than unity and lower than the densities
we study by at least a factor of 2. When converted to real units
corresponding to NaCl, the state point is roughly in the vicinity of
the experimental triple point of NaCl (20% higher in temperature
and 10% lower in density). NaCl is of course a strongly ionic liq-
uid, where the Coulomb interaction very much dominates. In this
low density, low temperature regime (compared to the location and
depth of the attractive minimum), one expects very weak correla-
tions and no isomorphs. Our interest is inspired by room tempera-
ture ionic liquids, on the other hand, in which the Coulomb inter-
actions do not dominate so much, giving an intermediate situation
whereby a higher degree of W, U-correlation, and thereby potential
for isomorph-like invariances, can be expected. As shown below, the
part of the phase diagram we investigate covers values of the cor-
relation coefficient R ranging from low-to-intermediate (R ∼ 0.7) to
very high (R > 0.95). Since the region we simulate is well above the

FIG. 1. Potential energy between particles in the simple salt model with a shifted-
force cutoff implemented at rc = 6. Interactions between particles of the same
type, AA and BB, are identical. The minimum for the unlike interaction is at r = 1.

critical temperature and density,36 one may prefer the term
“supercritical fluid” rather than “liquid.”37 In the context of iso-
morph theory, this distinction has little physical meaning, however,
at least where good isomorphs exist, since one can follow an iso-
morph from the liquid into the supercritical fluid and observe no
essential differences at the microscopic scale; we therefore choose to
stick with the term “liquid.”

In the weak-Coulomb regime at high density, we hypothe-
size that the main effect of Coulombic interactions is to induce a
mild degree of charge ordering, while the short-range repulsive term
dominates most of the properties, including the slope of the adiabats
(that is, γ is close to 3 in this limit). For a pure Coulomb system, the
adiabats would have a much lower slope of 1/3; thus, the temperature
along the actual adiabats is “too high” for the Coulomb interac-
tions, which is expected to lead to a decrease in charge ordering with
increasing density along an adiabat.

B. Simulation details
We simulated 8000 particles in a rectangular box with sides

2L × L × L. The doubled length in the x-direction was chosen
to achieve higher resolution in the structure factor.38 Periodic
boundary conditions were implemented to create the perception of a
larger system, removing the need to define particle interactions with
walls. For simplicity, we chose the masses of both types of atoms to
be unity.

The time step was chosen to have a fixed value in reduced
units, dt̃ = 0.004, or dt = 0.004ρ−1/3

(T/m)−1/2. Keeping a fixed value
is convenient when comparing dynamical quantities along an iso-
morph, although it is not essential. For the initial configurations,
the particles were placed on an fcc lattice with types assigned ran-
domly. This lattice is not thermodynamically stable and immediately
melts at all simulated densities and temperatures. The state points
along the isotherms was simulated in parallel (at the same time)
since they are independent of each other. Each state point equili-
brated for 2 ⋅ 106 time steps before data was collected. The adiabats
on the other hand have to be run in series (in order) because the
next state point is dependent on the current one [since γ deter-
mined in one simulation determines the temperature of the next one
via Eq. (3)]. After the initial equilibration, all simulations collected
data for 217

⋅ 100 = 13 107 200 time steps. The simulations were per-
formed using RUMD (Roskilde University Molecular Dynamics),39

which is designed for a GPU-cluster.

C. Simulation protocol
Figure 2 shows all simulated points in a ρ − T phase diagram.

We choose three different adiabats to study: one going through
the point ρ = 0.75 and T = 0.1, another going through ρ = 1.00 and
T = 0.1, and finally one through ρ = 1.20 and T = 0.1. These will be
referred to as adiabats 1, 2, and 3, respectively. These three starting
densities were chosen such that the forces between unlike particles
would be mostly attractive for adiabat 1, neutral for adiabat 2, and
repulsive for adiabat 3. This can be seen in Fig. 1 by remembering
that the average distance between the particles is given approxi-
mately by ρ−1/3. All three adiabats were simulated from their starting
density to ρ = 2. The results from these adiabats will be compared
with six different isotherms T = 0.10, 0.15, 0.20, 0.30, 0.50, 1.00.
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FIG. 2. Simulated adiabats and isotherms in a ρ − T phase diagram. The state
points where crystallization was observed are marked with an X.

These temperatures were chosen to overlap with the temperature
range of the adiabats. These isotherms were simulated in a density
interval from ρ = 0.75 to 2.0 with a spacing of 0.05.

At the lowest temperatures and highest densities, crystallization
occurred; these points are indicated with a cross in Fig. 2 and omitted
from further analysis.

IV. RESULTS
Figure 3 shows R and γ for all adiabats and isotherms plot-

ted as a function of density. For both adiabats and isotherms, R
and γ increase monotonically as the density increases. In the high
density limit, they must approach 1 and 3, respectively, since the
potential is better approximated by the IPL at high densities at
which the isomorph theory is exact and for which γ is given by
one third of the exponent n = 9. In this limit, there are perfect iso-
morphs and there is no need to simulate; most of our simulated state
points (primarily those at lower densities), on the other hand, have
R < 0.9; thus, we expect less than perfect invariance, with poten-
tially some quantities more invariant than others. The fact that γ < 3
in general is not obvious a priori; indeed, for the Lennard-Jones
potential, which has the same form as the attractive (unlike parti-
cles) potential in this model, γ converges to 12/3 = 4 from above
rather than below. The dependence of γ on density will be discussed
below.

A. Dynamics and transport
As measures of microscopic dynamics, we consider the mean

square displacement (MSD) and self-intermediate scattering func-
tion, Fs(q, t). The tagged-particle MSD was calculated as an average
over particles and time-origins,

MSD(t) = ⟨∣r(t) − r(0)∣2⟩, (5)

where r(t) is the position of a particle at time t, ∣⋅ ⋅ ⋅∣ denotes the
absolute value, and ⟨⋅ ⋅ ⋅⟩ denotes the ensemble average.

Figure 4(a) shows reduced-unit MSD curves in blue for adi-
abat 1 and in red for isotherm T = 0.1. The blue curves collapse
perfectly, indicating a strong invariance of this dynamical quantity

FIG. 3. (a) Correlation coefficient R along adiabats and isotherms as a function
of density. (b) Scaling exponent γ along adiabats and isotherms as a function of
density.

along configurational adiabats. The curves show the usual transi-
tion from a ballistic regime at short times (slope 2 in a double-log
plot) to a diffusive regime (slope 1) at long times. The absence of a
plateau between these two regimes is characteristic of non-viscous
behavior. This is consistent with the relatively easy crystallization
we observe when the high density/low temperature region of the
phase diagram is simulated (the crosses in the lower right corner in
Fig. 2): The latter indicates that this model cannot be readily super-
cooled, which implies that we should not expect to find any viscous
liquid states. Because the MSD in the ballistic regime depends on
temperature and particle mass but not on the potential, it is straight-
forward to show that it is always equal to 3t̃2, and therefore, all data
must collapse trivially in that regime. The collapse of the diffusive
regime along the adiabat, on the other hand, is a non-trivial result.
To show data from all simulations in a concise way, we determine
the diffusion coefficient from a linear fit to the MSD data, shown in
Fig. 4(b) for all state points. The dynamical invariance along configu-
rational adiabats is manifested over the whole density range on each
adiabat.

The self-intermediate scattering function was calculated by

Fs(q, t) = ⟨exp[iq ⋅ (r(t) − r(0))]⟩, (6)

where r(t) is the position of a particle at time t.40 Figure 5(a) shows
the intermediate scattering function, plotted as a function of reduced
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FIG. 4. (a) Reduced MSD as a function of reduced time for all densities where
crystallization did not occur on isotherm T = 0.1 (red curves) and all state points
along adiabat 1 (blue curves). The blue curves collapse on each other. (b) Diffusion
coefficient (determined from the long time slope of the MSD) for all adiabats and
isotherms. The horizontal dashed lines at the three adiabats are to guide the eye.
They pass through the first (lowest density) point of each adiabat.

time t̃, for adiabat 1 (blue) and isotherm T = 0.1 (red). The q-value
was chosen to be 7.1ρ1/3, ensuring that it is fixed in reduced units
and close to the maximum of SNN (see Sec. IV B). At all the inves-
tigated state points, a simple, near-exponential decay is observed,
corresponding to ordinary non-viscous liquid dynamics, and con-
sistent with the absence of a plateau in the MSD data. The red
curves in Fig. 5(a) move toward longer times (slower dynamics) as
the density increases, while the blue curves collapse on each other,
showing that also this measure of dynamics is invariant along adi-
abat 1. The data for other isotherms and adiabats behave similarly
(see Figs. 2–6 of the supplementary material). In Fig. 5(b), we plot
the reduced time at which Fs has fallen to e−1, denoted as t̃1/e, as a
function of density for all adiabats and isotherms. This time scale
increases rapidly with increasing density at fixed temperature but
increases only slightly along adiabats, again indicating rather invari-
ant dynamics. This plot shows that the invariance is not perfect [the
slight deviation is hidden in panel (a) of Fig. 5 due to the logarith-
mic axis] but nevertheless impressive given the large density changes
involved. Note that the change in a real time scale over this range of
densities is about a factor of 4.5 for adiabat 1. The collapse of the
Fs curves themselves means that the invariance applies to the whole
time-dependent relaxation curve, not just the characteristic time
scale. Indeed, the shape-parameter β in the stretched-exponential fits

FIG. 5. (a) Fs plotted as a function of reduced time for all simulated densities at
T = 0.1 (red curves) and all simulated state points on adiabat 1 (blue curves).
The latter collapse almost perfectly on each other. The horizontal dashed line indi-
cates the value 1/e ≈ 0.368. (b) Reduced time at which Fs = 1/e, for all adiabats
and isotherms. The horizontal dashed lines pass through the first points (lowest
density) of the adiabats and are intended to guide the eye.

is more invariant than the characteristic time except at low densi-
ties (left panel of Fig. 9 of the supplementary material). It should be
emphasized that the approximate invariance shown by the reduced
self-intermediate scattering function applies over the whole simu-
lated range of density, even though the W, U-correlation coefficient
R is less than 0.9 for most of the density range of each adiabat, and as
such, we do not expect the configurational adiabats to be isomorphs.
Note that at smaller wavenumbers the time scale for the interme-
diate scattering function becomes more invariant (see Fig. 7 of the
supplementary material), consistent with the excellent collapse of
the diffusivity data, since diffusion is a long wavelength process.

Finally, in this section, we investigate the viscosity as an impor-
tant example of a macroscopic transport coefficient. The viscosity
was calculated using the Green–Kubo formula,32

η =
V

kBT∫
∞

0
⟨σxy(0)σxy(t)⟩dt, (7)

where V is the volume of the simulation box, kB is the Boltzmann
constant, T is the temperature, and σxy(t) is the xy component
of the stress tensor as a function of time t. The calculation of the
integral in Eq. (7) is done analytically after fitting the normalized
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autocorrelation function at short (reduced) times (t̃ ≤ 0.06) to a
polynomial a0 + a2 t̃2

+ a3 t̃3 (note that the slope must be zero at
t̃ = 0) and at longer (reduced) times (t̃ ≥ 0.06) to a sum of two expo-
nential functions. The data up to where the normalized function
first goes below 0.001 are included in the fit. Figure 6(a) shows
four examples of the normalized stress autocorrelation function
and the corresponding fits. The plot is in reduced units; the two
curves from the same adiabat are somewhat similar but not iden-
tical when plotted this way. Figure 6(b) shows the reduced viscosity
as a function of density along the isotherms and adiabats. As with
the self-intermediate scattering function and the mean squared dis-
placement, we find a striking invariance across the whole range of
densities for each of the three adiabats. Given that the two curves
in Fig. 6(a) from the same adiabat differ at long times, giving differ-
ent values for the integral of the normalized correlation function,
it is surprising that viscosity seems so invariant. The formula for
η̃ can be written as the product of the reduced infinite frequency
shear modulus G̃∞ and the integral of the normalized shear stress
autocorrelation function with respect to reduced time. Figure 10 of
the supplementary material shows G̃∞, which is not invariant but
rises noticeably with density along adiabats. This increase compen-
sates for the decrease in the integral of the normalized correlation
function, yielding a rather invariant reduced viscosity.

FIG. 6. (a) Examples of the normalized stress autocorrelation data and double-
exponential fit. The plot is in reduced units to facilitate the comparison of data from
the same adiabat. (b) Comparison of the viscosity along adiabats and isotherms.
The horizontal dashed lines at the three adiabats are to guide the eye. They pass
through the first point of each adiabat.

B. Structure
To study the structure, we consider both the radial distribution

function and the structure factor. We consider partial pair correla-
tion or radial distribution functions gαβ(r) defined in the usual way,
where the indices α and β refer to particle types A and B. Only two
of these, the AA and AB functions, are independent since the AA
and BB interactions are identical and the composition is equimo-
lar. The corresponding partial structure factors Sαβ(q), known as the
Faber–Ziman (FZ) structure factors, can be defined by Fourier trans-
forming these, but we choose a different representation known as the
Bhatia–Thornton (BT) partial structure factors (see Fig. 16 of the
supplementary material for some FZ structure factor data). These
are defined for binary mixtures38,41 as certain linear combinations of
the FZ structure factors, denoted as NN, NC, and CC, where N refers
to number density fluctuations and C refers to concentration density
fluctuations. Section II of the supplementary material explains how
this representation is equivalent to defining sum and difference vari-
ables of the Fourier components of density fluctuations.9 If cA and cB
are the concentrations of species A and B, respectively, then the BT
partial structure factors are defined by38,41

SNN(q) = c2
ASAA(q) + c2

BSBB(q) + 2cAcBSAB(q) > 0, (8)

SCC(q) = cAcB[1 + cAcB(SAA(q) + SBB(q) − 2SAB(q))] > 0, (9)

FIG. 7. Partial radial distribution functions for three state points on (a) adiabat 1
and (b) isotherm T = 1.0, plotted as functions of reduced distance r̃ .
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SNC(q) = cAcB[cA(SAA(q) − SAB(q)) − cB(SBB(q) − SAB(q))]. (10)

In our system, SAA(q) = SBB(q) and cA = cB = 0.5, and thus
SNC = 0, and we do not include it in our analysis. The utility of this
representation stems from the way in which the coherent part of the
total neutron scattering signal is written38 (taking SNC = 0),

1
N
[

dσ
dΩ
(q)]

coh

= ∣⟨b⟩∣2SNN(q) + ∣b̄A − b̄B∣
2SCC(q), (11)

where b̄α is the spin- and isotope-averaged scattering length for
species α and the angle brackets denote averaging over different
species. For x-ray scattering, the scattering lengths should include
an additional q-dependence from the atomic form factor, while
the spin-averages can be dropped (the total cross section will also
include other effects38). Thus, the NN part of the structure factor
is coupled to the mean scattering length and thus is what would be
measured by a probe insensitive to chemical species. Fischer refers
to it as the “colour-blind” scattering cross section.38 The CC part
is measured only when the scattering length differs between chem-
ical species and describes chemical ordering. For our ionic system,
we can associate the charge peak in the total scattering signal with a
peak in SCC(q). As mentioned, one can obtain the BT partial struc-
ture factors by appropriately Fourier transforming the partial pair
correlations to get the FZ structure factors. To avoid truncation

FIG. 8. Bhatia–Thornton structure factors for three state points on (a) adiabat 1
and (b) isotherm T = 1.0, plotted as functions of reduced wavenumber q̃.

of the Fourier transform, we used instead the more rigorous method
of saving Fourier components of the density fluctuations for each
species at regular intervals and then taking the relevant (co-)
variances before taking appropriate linear combinations to form the
BT partial structure factors (Sec. II of the supplementary material).
When calculating S(q) this way, only Fourier modes that fit into
the simulation box are allowed. We take the first 88 modes in the
x-direction, which gives sufficient resolution to resolve the peaks. By
considering modes that fit into the box, we have different q-values
at different densities, but the reduced-unit wavenumbers q̃ ≡ ρ−1/3q
are identical, which is necessary for isomorph-compatible compar-
ison. Note that SCC(q) tends toward the product of concentrations
cAcB = 1/4 in the limit of zero chemical ordering.

Figure 7 shows the partial radial distribution functions for
selected densities on adiabat 1 and isotherm T = 1.0, while Fig. 8
shows the BT partial structure factors on the same state points.
Reduced units r̃ and q̃ have been used in the plots for both quan-
tities. There is substantial variation in both structural measures as
the density varies, confirming that the adiabats we have simulated
are not isomorphs despite the fact that dynamical quantities are
remarkably invariant along them. The most that can be said is that
the structural measures vary less with density on adiabats than on
isotherms. A general feature for all adiabats and isotherms is that
the features in both gAA(r̃) and SNN(q̃) become more pronounced
as the density increases. Furthermore, as density increases along the

FIG. 9. Dependence of (a) the reduced-unit position and (b) the height for the first
peak of the AA partial radial distribution function on density for all six isotherms
and all three adiabats.
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adiabats, the first peak in SCC(q̃) moves to lower q̃-values and the
peak height decreases. Recalling that the CC peak can be identified
with the charge peak, this is the same behavior as seen in Ref. 23,
and it is not shared with the isotherms. Indeed, Fig. 8(b) shows that
the peak in SCC(q) is actually rather invariant along the isotherm; its
height and position depend mainly on temperature alone.

Recall that we expect more isomorph-like behavior, that is, bet-
ter invariance, in the limit of high density. To investigate how this
occurs, and to get a more simple view of how the structure changes
along the adiabats and isotherms, we have analyzed the position and
height of the first peaks in g(r̃) and S(q̃). This was done by fitting
a fourth order polynomial to data around the peak. Focusing on the
peak position and height makes it easier to analyze trends in the data
across the whole range of densities. Considering the radial distribu-
tion function first peaks, Figs. 9 and 10, both the peak position and
peak height vary significantly along adiabats, but it is also clear that
they are beginning to level off at the highest densities, whereas the
data for isotherms give no indication of leveling. The leveling off
for the adiabats is clearer for the peak positions than for the peak
heights, although we note that for gAA(r) the overall variation in
the peak position is greater for adiabats than for isotherms, which
exhibit a shallow minimum at low densities. Another feature of the
adiabats is that the AA peak position starts at values around 1.15 and
decreases to values around 1.05, while the AB peak position starts at
values below unity and increases to values just above unity. Thus,

FIG. 10. Dependence of (a) the reduced-unit position and (b) the height for the first
peak of the AB partial radial distribution function on density for all six isotherms
and all three adiabats.

for each adiabat, both peaks start significantly separated, by about
20%–30%, and converge with increasing density, being separated by
only a few percent at the highest densities shown. This convergence
is consistent with the hypothesis that charge ordering, and hence
particle identity, becomes less important as the density increases.

While both peak heights increase with density on isotherms,
which is expected, they move oppositely along adiabats, increasing
sharply for AA from low values and decreasing gently for AB from
high values. That is, they move toward each other, again reflecting
the tendency for AA and AB structures to become more alike as
charge ordering diminishes along adiabats.

We turn next to the peak analysis of the BT partial structure fac-
tors, SNN(q̃) (Fig. 11) and SCC(q̃) (Fig. 12). The leveling out observed
in the radial distribution functions is more pronounced in the NN
peak heights and positions, whereas it is less pronounced in the CC
plots. Over the last 0.5 or so of density, the relative change in the
NN peak heights is small, while the relative change in the CC peak
heights is substantial. It must be noted, however, that the absolute
value of the CC peak is initially quite small, and therefore, the abso-
lute changes in NN and CC peak heights are rather comparable.
Recall that we expect that at sufficiently high density the Coulomb
interactions become irrelevant, and therefore, charge ordering will
be negligible; as mentioned above, SCC(q) should tend toward
cAcB = 0.25, which is consistent with the observed behavior; the vari-
ation in the CC peak height is the already rather small degree of

FIG. 11. Dependence of (a) the (reduced-unit) position and (b) the height for the
first peak of the NN Bhatia–Thornton partial structure factor on density for all six
isotherms and all three adiabats.
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FIG. 12. Dependence of (a) the (reduced-unit) position and (b) the height for the
first peak of the CC Bhatia–Thornton partial structure factor on density for all six
isotherms and all three adiabats.

charge ordering getting even smaller. To illustrate the high density
behavior more directly, we show a collapse of both Bhatia–Thornton
structure factors for adiabat 2 over the density range of 1.75–2.00
in Fig. 13 and a density increase of 14%. Similar plots can be made

FIG. 13. NN (blue) and CC (red) Bhatia–Thornton partial structure factors for adia-
bat 2, including densities from 1.75 to 2.0. There are seven red curves and seven
blue curves, with the intensity of the lines increasing with increasing density. The
NN curves increase slightly but systematically in peak height with increasing den-
sity, while a slight but systematic decrease of both the CC peak height and CC
peak position is noticeable.

for the other adiabats and also over the density range of 1.5–1.75
(Figs. 13–15 of the supplementary material). The most important
point here is that the structure is in fact rather invariant over this
density range, comparable to what is seen with good isomorphs
(indeed, this density range is larger than that investigated in the first
isomorph paper24). Second, the visible deviations are very small and
confined to very top of the peak for NN, while they are more spread
out for CC, related to the fact that the CC peak varies in position as
well as height.

A more concrete way to analyze charge ordering is to deter-
mine the partial coordination numbers, i.e., the numbers of near-
neighbors of each type that a given particle has. The data for these
are presented and discussed in the supplementary material (Figs. 11
and 12 of the supplementary material) and consistent with the other
structural analyses, in that the total coordination number is rather
invariant on adiabats, while the concentration of like particles in
the neighbor shell increases toward presumably 50%, as the particle
identity becomes less relevant.

V. DISCUSSION
A. Density dependence of the density scaling
exponent

The value of the density scaling exponent γ and how it depends
on density are interesting not least because it can be directly com-
pared with experiment. Indeed, the values we observe here are
in the range (2–3.5) considered typical for ionic liquids. For R-
simple systems consisting of spherical particles interacting with
pairwise forces, γ can be straightforwardly related to derivatives of
the potential,42 but in other systems the connection to the potential
is not so straightforward. For the present system, it turns out that
the value and density dependence of γ can be essentially explained
by a single approximation, namely, that fluctuations of the Coulomb
contribution to the energy are uncorrelated with those of the IPL
contribution. Some data justifying this assumption are given in the
supplementary material (Fig. 19 of the supplementary material).
Specifically, if we write a fluctuation of potential energy as a sum
of two terms,

ΔU = ΔUIPL + ΔUC, (12)

then the corresponding fluctuation in the virial is

ΔW = ΔWIPL + ΔWC = 3ΔUIPL + (1/3)ΔUC, (13)

where we used the fact that each term separately is an IPL and there-
fore exhibits perfect W, U correlations with a coefficient given by
one third of the IPL exponent. Putting this into the expression for γ,
Eq. (2) gives

γ =
3⟨(ΔUIPL)

2
⟩ + 3 1

3 ⟨ΔUIPLΔUC⟩ +
1
3 ⟨(ΔUC)

2
⟩

⟨(ΔUIPL)2⟩ + 2⟨ΔUIPLΔUC⟩ + ⟨(ΔUC)2⟩
. (14)

Making the assumption ⟨ΔUIPLΔUC⟩ = 0, i.e., uncorrelated con-
tributions from the IPL and Coulomb terms, leads to a simpler
expression,
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γ =
3 + X/3

1 + X
, (15)

where X ≡ ⟨(ΔUC)
2
⟩/⟨(ΔUIPL)

2
⟩ is the ratio of variance of Coulomb

energy fluctuations to that of IPL energy fluctuations. In the limit of
high density, this ratio is expected to vanish, giving γ→ 3; at lower
densities, γ is less than 3. Indeed, γ rises monotonically from 1/3
at high values of X to 3 as X vanishes. Thus, the weak correlation
between fluctuations of the energy from the Coulomb term and that
from the n = 9 IPL explains both the reduction in γ and its increase
with increasing density.

B. Curves of invariant dynamics: Isodynes
This model is interesting because simply by varying the density,

it covers the range from asymptotically perfect isomorphs at high
density down to strongly ionic behavior with no isomorphs at low
density. One would expect a priori to see the approximate invari-
ance of both structural and dynamical properties in the high density,
weak-Coulomb regime, but no particular invariance at low densities
(strong-Coulomb regime). This is indeed how it appears when we
consider the structure. However, intriguingly, the dynamical quan-
tities we have investigated and the viscosity appear to be nearly
invariant on configurational adiabats throughout this density range
when expressed in reduced units. In particular, the reduced diffusiv-
ity and viscosity show little to no variation along the three adiabats,
while the time scale extracted from the self-intermediate scatter-
ing function rises slightly, showing a 10% increase in reduced units,
e.g., for adiabat 3 over the density range of 1.2–2.0 [Fig. 5(b)]. It is
worth pointing out that while the reduced-unit viscosity is invari-
ant, the real viscosity changes by a substantial factor: From Table I,
the real viscosity must be proportional to ρ2/3T1/2, giving a factor
of over 6 increase for the real viscosity along adiabat 1. This invari-
ance of a transport coefficient is consistent with Rosenfeld’s excess
entropy scaling,43 but it must be noted that the invariance of also
the time-dependent correlation functions is a stronger result than
excess entropy scaling alone implies.44 This discovery for the ionic
liquids is a strong effect, which suggests a fundamental perhaps fairly
basic origin, although we are not yet in a position to clarify what that
origin is. Investigation of different N-body structural contributions
to the excess entropy could be fruitful, however. Formally, Sex can
be written as a sum S2 + S3 + S4 + ⋅ ⋅ ⋅, where the two-body term S2
can be determined from the RDF; Dzugutov argued that it is the
most important contribution.45 A natural line of further research
would therefore be to investigate its invariance in this system and
others where the variation of structure coexists with dynamical
invariance.

It is considered a paradigm in materials science that a material’s
structure determines its properties. Therefore, it is striking to find an
example where it does not—for this model, the structure can vary
substantially along an adiabat, but the dynamical properties vary
hardly at all. This would place the current model system in a wider
class of materials than the so-called Roskilde systems (those with
good isomorphs). Similar results have been seen in Gnan et al.46

where a colloidal model was studied; they found lines of invariant
dynamics (termed isodynamics lines) in the ϕ − T phase diagram,
but structural and thermodynamic properties were not invariant
along these lines. In that work, the isodynamic lines were identified

empirically, as contours of reduced diffusivity, and it was not inves-
tigated whether they correspond to configurational adiabats. Never-
theless, their results suggest that the model colloidal system of that
work also belongs in the same class of materials as our model. As a
third example, recent unpublished simulations of a similar model to
the present one47 but using exponents 8 and 4 rather than 9 and 1
show very similar behavior48 to the present model. To denote adi-
abats having the property of approximate dynamical invariance, we
could use “isodynamics lines,” following the work of Gnan et al., but
we wish to propose the more compact term isodynes.

C. Comparison to experiment
The model studied in this work is far from a realistic model of

an ionic liquid. Nevertheless, we find a number of striking similari-
ties in the phenomenology of the model and the measured data. First
of all, the model has lines in the phase diagram along which all the
studied dynamical and transport properties are invariant. This cor-
responds to finding density scaling with the same exponent γ for all
the dynamical properties as is seen in experiment.21,23 In the simu-
lations, the value for γ changes with density, which is related to the
much larger density range explored.49 The value found for γ in the
model lies in the range of 2–2.8. These values are also typical for
experimental ionic liquids where γ is in the range of 2–3.5.18–21,23 As
explained above, the maximum value of γ in the model is 3, which
stems from the choice of an n = 9 inverse power law, while it is the
Coulomb interactions that make γ decrease below this value. Thus,
the Coulomb interactions explain why the density scaling exponents
of ionic liquids are typically smaller than the density scaling expo-
nents of van der Waals bonded liquids. However, the numerical
agreement between γ of the model and the experimental data should
not be overemphasized as it stems from the choice of the power n = 9
in the model.

In addition to density scaling being obeyed by a range of
dynamical properties, the structural behavior of the model shows
some similarity with the x-ray scattering data in Ref. 23. The rel-
atively large experimental charge peak must reflect a much larger
degree of charge ordering that we see in our model (and not, for
example, an effect of the mean scattering length being much smaller
than its difference between species, which could be possible for
neutron scattering). Nevertheless, the changes seen are reasonably
consistent with what we observe—the main structure factor peak
(the NN partial structure factor) is invariant along lines of con-
stant dynamics for moderate density changes. In the model, the
charge peak (the CC partial structure factor) is also quite invari-
ant for a moderate change in density, while it decreases in intensity
and moves to lower values of q̃ with increasing temperature in the
experimental results. For larger density changes, this behavior is also
seen for the prepeak of the model, while the main peak increases
in amplitude [see Fig. 8(a)]. In other words, the structural behav-
ior of the model and the experimental results is not exactly the
same, but the tendencies are very similar, and the surprising con-
clusion that the charge ordering does not affect the dynamics holds
in both cases. Indeed, the results from the model suggest the follow-
ing interpretation of the experimental results: The nearly invariant
main peak indicates near-isomorphic behavior when charge order-
ing is ignored, and this corresponds to invariant dynamics. At the
same time, what charge ordering there is decreases as the density

J. Chem. Phys. 155, 054506 (2021); doi: 10.1063/5.0055794 155, 054506-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

increases along the curve of invariant dynamics. One can conclude
that the charge ordering plays no role in the dynamics. Consider-
ing the model, since our main peaks increase slightly with increasing
density along adiabats, a slightly higher-temperature curve could be
found along which the main peak height is constant. Along such a
curve, the charge peak would decrease even more noticeably, and the
structure would match the experimental data even more. However,
presumably, the dynamics would be slightly less invariant, partic-
ularly the diffusivity, which is the most invariant quantity we have
investigated.

D. Comparison with corresponding states approaches
A brief comparison between the present isomorph-based

approach and traditional corresponding states approaches12–14 is
appropriate. What the approaches have in common is scaling of
the quantities of interest to a dimensionless form for comparison
with a reference system or state point. However, in corresponding
states, this scaling involves microscopic energy and length parame-
ters associated with the pair potential, while in isomorph theory, it
is the density and temperature that are used. Another important dif-
ference is that corresponding states approaches identify the critical
point (or, sometimes, the triple point) as a key state point by which
other state points can be scaled (density and temperature), while in
isomorph theory, the excess entropy is the key quantity controlling
structure and dynamics (but not the pressure, i.e., the equation of
state). Sex also plays a natural role in comparing different systems
(the quasiuniversality principle50).

VI. CONCLUSION
In our investigation of the model originally proposed by

Hansen and McDonald, we have studied higher densities than they
did in order to probe the moderate-to-weak Coulomb regime as
opposed to the strong-Coulomb regime at low density. We have
found evidence of what we call isodynes or isodynamics lines. These
are curves of constant excess entropy along which dynamical quan-
tities are remarkably invariant along a wide range of densities, while
structural features change noticeably over the same range. On the
other hand, restricting to smaller density ranges near the high den-
sity (weak-Coulomb) end gives a reasonable degree of isomorph
invariance also in the structure, with the main changes visible being
the steady reduction of the already small charge ordering. These
results are qualitatively in agreement with experimental studies of
a room temperature ionic liquid.23 Possible future work with this
model could involve continuing the investigations to lower density,
as low as the density studied by Hansen and McDonald,29 well into
the strong-Coulomb regime, in order to see whether the invariance
of dynamical quantities persists also there. An initial effort in this
direction is presented in the supplementary material where adiabat
1 has been extended down to a density of 0.3 (Figs. 17 and 18 of
the supplementary material). The dynamical invariances continue,
while the structure continues to undergo a significant change (data
not shown). Below density around 0.5, shallow minima or max-
ima appear in the dynamical quantities, but these are very small
changes. In addition, realistic models of ILs should be studied to
determine whether isodynes can also be identified more generally
in these systems.

SUPPLEMENTARY MATERIAL

The supplementary material contains some explanatory text on
charge/density scaling and the Bhatia–Thornton structure factors, as
well as additional figures and accompanying text as mentioned in the
main text.
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