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ABSTRACT
In this work, we propose a generic and simple definition of a line separating gas-like and liquid-like fluid behaviors from the standpoint of
shear viscosity. This definition is valid even for fluids such as the hard sphere and the inverse power law that exhibit a unique fluid phase. We
argue that this line is defined by the location of the minimum of the macroscopically scaled viscosity when plotted as a function of the excess
entropy, which differs from the popular Widom lines. For hard sphere, Lennard-Jones, and inverse-power-law fluids, such a line is located at
an excess entropy approximately equal to −2/3 times Boltzmann’s constant and corresponds to points in the thermodynamic phase diagram
for which the kinetic contribution to viscosity is approximately half of the total viscosity. For flexible Lennard-Jones chains, the excess entropy
at the minimum is a linear function of the chain length. This definition opens a straightforward route to classify the dynamical behavior of
fluids from a single thermodynamic quantity obtainable from high-accuracy thermodynamic models.

https://doi.org/10.1063/1.5143854., s

BACKGROUND

There is a long history of interest in supercritical fluid behav-
ior, going back to Andrews’ experiments with CO2 in 1869.1,2 The
question of defining a metric that can be used to differentiate a gas-
like behavior from a liquid-like behavior has seen significant interest
in the intervening years. Common means of identifying the change
between gas-like and liquid-like behaviors are the Widom line,3–5
extrema in thermal diffusivity and kinematic viscosity,6–8 and the
Frenkel line,9–12 though each of these definitions has deficiencies.

In this work, a rather different approach for demarcating gas-
and liquid-like behaviors is presented and applied to hard-sphere,
inverse-power-law (IPL), Lennard-Jones, and flexible Lennard-
Jones chain model fluids. We begin by considering the macroscop-
ically scaled viscosity13 for a number of atomic fluids and note

that their scaled viscosity minima occur in a remarkably narrow
range of excess entropy. From that insight, we proceed to inves-
tigate the cause of this similarity, identifying connections between
excess entropy and the kinetic and configurational contributions to
the viscosity. The analysis for atomic fluids has a direct extension to
molecules. Put simply, the excess entropy can be used to demarcate
gas-like and liquid-like behaviors.

ENTROPY SCALING

Rosenfeld13 laid the foundation for the field of entropy scaling
of transport properties with his work four decades ago. This work
has received revived interest in recent years as evidenced by a recent
review on the topic.14 The salient part of Rosenfeld’s thesis is that the
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transport properties, when scaled by the appropriate macroscopic
dimensions,15 should be a function only of the excess entropy. This
conclusion was formed based on the analysis of a rather small set of
molecular dynamics simulations available at the time.

The first version of isomorph theory,16–20 which is closely
related to entropy scaling,14 states that if there are isomorphs (curves
along which the macroscopically scaled structure and dynamics are
invariant), then certain properties are constant along these curves,
among which are the macroscopically scaled viscosity, the excess
entropy, and so on;18 not all scaled properties are isomorph invari-
ants.21 Furthermore, according to the isomorph theory, the causality
does not go the other way; a line of constant excess entropy is not
necessarily a line along which the macroscopically scaled viscosity is
invariant.

Here, we define the excess entropy by

sex(T, ρN) ≡ s(T, ρN) − s(0)(T, ρN), (1)

where sex is the excess entropy per particle, s is the entropy per
particle, s(0) is the ideal gas entropy per particle, T is the temper-
ature, and ρN is the number density. The evaluation of the excess
entropy for a given fluid or model potential is described below.
The excess entropy can be understood as the change in the number
of accessible microstates caused by interactions between the par-
ticles.22 The interactions tend to reduce the number of accessible
microstates compared with that of the ideal gas at the same temper-
ature and density, and therefore, the excess entropy is negative. The
causal link between excess entropy and self-diffusion may be some-
what comprehensible,22 and the fluidity (reciprocal of viscosity) is
proportional to self-diffusion when the Stokes–Einstein relation is
applicable.23

For simplification of the nomenclature, we define the variable
s+ ≡ −sex/kB, which is a non-dimensional entropy term (kB is Boltz-
mann’s constant24) and has the feature that it becomes more positive
as the “structure” of the fluid is increased (possible microstates are
reduced compared to those of the ideal gas at the same temperature
and density).

The macroscopically scaled viscosity η̃ is given by13,15

η̃ ≡ η
ρ2�3N
√
mkBT

, (2)

in which η is the shear viscosity, ρN is the number density (particles
per volume), m is the mass of one particle, and T is the tempera-
ture. The macroscopically scaled viscosity is a dimensionless quan-
tity and was previously considered for a range of model potentials
and selected molecular fluids.25 In this work, we extend that anal-
ysis to a more quantitative analysis of this scaling approach and
place our focus on the nature of the minima of the scaled viscosity.
The location of the minima of the macroscopically scaled viscos-
ity is not coincident with the minima of the shear viscosity along
an isobar.9

Figure 1 shows selected data previously published25 as well as a
more comprehensive set of data for the inverse-power-law poten-
tials of different hardness generated in this work. In plotting the
scaled viscosity data as a function of excess entropy, the minima of
η̃ consistently occur near the value s+ = 2/3. This holds true even for
rather soft inverse-power-law potentials, the Lennard-Jones fluid,
and argon data covering a broad range of temperatures.25

FIG. 1. Overlay of the macroscopically reduced viscosity η̃ data for argon (see
Ref. 25), for the hard sphere from Enskog theory (HS), inverse-power-law (IPL) of
hardness nIPL from 6 to 52, and Lennard-Jones 12-6 (LJ) potentials at reduced
temperature T∗ from 1.35 to 6 studied in this work. For LJ, the curves were
fit to each nominal isotherm from Ref. 26. The IPL data are provided in the
supplementary material.

ATOMIC FLUID VISCOSITY

Hard sphere

The hard sphere system is one of the most well-studied model
potentials and it forms the basis of a large body of transport prop-
erty modeling as described in the review of Ref. 27, and of two of
the most popular approaches for connecting the viscosity of hard
spheres with that of real fluids.28–33 From the correlations obtained
from Enskog theory for the hard sphere provided by Chapman and
Cowling34(pp. 306), the viscosity values divided by the values from
the fourth-order-corrected dilute-gas viscosity34 yield (the underset
annotations kk, kc, and cc indicate the three contributions described
in the section titled Viscosity contributions)

η∗[η∗ρ→0]4 =
1

g(σ)�
kk

+
16ζ
5�
kc

+
1
25
�4 + 48

f4π
�(4ζ)2g(σ)

�������������������������������������������������������������������������������������������������������������������������������������
cc

, (3)

where η∗ = ησ2�√mε, [η∗ρ→0]4 is the dilute gas viscosity with fourth-
order corrections, σ is the hard sphere diameter, ε is the energy
scale, the packing fraction is defined by ζ = πρNσ3/6, f 4 = 1.016
for the fourth-order correction (Ref. 34, pp. 169), and g(σ) is the
radial distribution function at contact. The hard sphere analysis is
described in detail in Sec. 1 of the supplementary material, as well
as a summary of some typographical errors in the literature and
a more concise definition of the packing fraction as a function of
excess entropy. Combining the transport and thermodynamic rela-
tionships together, values of η̃ as a function of s+ are shown in Fig. 2.
The minimum of η̃ occurs at s+ = 0.668 ≈ 2/3.
Lennard-Jones 12-6

For the Lennard-Jones 12-6 fluid, there are more than two
thousand data points for viscosity from molecular simulation,35 and
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FIG. 2. Upper panel: values of macroscopically reduced viscosity η̃ for the hard
sphere fluid from Enskog theory (thick dashed green curve) and the data for the
Lennard-Jones 12-6 fluid (and the empirical curves used to locate the minima)
from the equilibrium molecular dynamics simulations of Ref. 26 for the nominal
isotherms of T∗ = (1.35, 1.5, 1.8, 2.1, 2.5, 3, 4, 6). The reduced temperature T∗ is
defined by T∗ = kBT /ε. The values of η̃ for the Lennard-Jones fluid are vertically
shifted by T∗/2 so that the curves can be distinguished. Lower panel: value of s+

at the minimum of η̃ for each nominal isotherm.

for our purposes, the most useful dataset is that of Ref. 26. In that
study, simulation data were available along nominal isotherms, and
for each nominal isotherm, we calculated s+ from the empirical
equation of state (EOS) of Ref. 36 and applied modified entropy
scaling35 to obtain an empirical representation of η̃; we obtained the
minimum value of η̃ along each isotherm from the empirical model.
The values of η̃ and s+ at the minima of η̃ are shown in Fig. 2. The
values of s+ at theminima of η̃ are within the range s+ = 0.666± 0.044≈ 2/3, with a slight temperature dependence.

Inverse-power-law

For the inverse power law potential V IPL ≡ ε(σ/r)n, where n is
the hardness of the potential, molecular dynamics simulations were
carried out in order to evaluate η∗. The viscosity was evaluated with
the SLLOD algorithm37 implemented in RUMD.38 Values of s+ are
calculated from virial expansions,39 as described in the SI of Ref. 25.
The IPL family includes the hard sphere in its limit of n→∞15 and
it is a common means of probing the impact of ranged repulsive
interactions.

Figure 3 shows the scaled simulation results for the IPL poten-
tials calculated in this work as a function of s+ for a range of hard-
nesses n. The η̃ minima occur at values of s+ within 10% of the
hard-sphere limiting value of 2/3. In the supplementary material
(Fig. S1), the values of s+ at the minima of η̃ as a function of 1/n
are shown, together with the appropriate extrapolation to the hard
sphere limit.

FIG. 3. Values of macroscopically reduced viscosity η̃ for the IPL potentials of
hardness n = (6, 9, 12, 15, 18, 24, 36, 48, 52) (indicated by selected labels) as a
function of s+. Diamonds indicate the interpolated minima for each hardness.

VISCOSITY CONTRIBUTIONS

In order to understand why the minima of η̃ consistently
occur near s+ = 2/3, we start with two of the best-studied model
systems: the hard sphere fluid and the Lennard-Jones 12-6 fluid.
The shear viscosity can be decomposed into kinetic–kinetic (kk),
kinetic–configurational (kc), and configurational–configurational
(cc) contributions according to time correlation theory.26 In some
cases, the kinetic term is described as translational in the litera-
ture and the configurational term as potential, but the definitions
are identical.

For the hard sphere, the kk, kc, and cc contributions can be eval-
uated individually from Enskog theory [as indicated in Eq. (3)], and
their relative contributions are overlaid in Fig. 4 (dashed curves)
as a function of excess entropy. At zero density, the kk contribu-
tion is equal to the dilute-gas contribution and decays to zero as
s+ increases. The relative contribution from cc increases monoton-
ically, and the coupling term has a maximum in the vicinity of
s+ = 1. The value of s+ = 2/3 corresponds to the condition that the
kk contribution represents 46.9% (nearly 50%) of the total shear
viscosity.

FIG. 4. Relative contributions to the scaled viscosity for the hard sphere fluid
from Enskog theory (thick dashed curves) and results from Ref. 26 for the
Lennard-Jones 12-6 fluid [straight line segments connecting data points along the
T∗ = (1.35, 1.5, 1.8, 2.1, 2.5, 3, 4, and 6) nominal isotherms]. The kinetic–kinetic
kk term is in red, the configurational–configurational cc term is in blue, and the
kinetic–configurational kc term is in green.
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For the Lennard-Jones 12-6 fluid, the simulations of Ref. 26
provided values for the individual contributions η∗kk, η∗kc, and η∗cc
to the total shear viscosity η∗ from the application of the Einstein
formalism. Figure 4 shows the relative contribution to the total shear
viscosity from each term. In Ref. 26, the contributions were plotted
as a function of temperature or density, resulting in a set of curves,
one curve for each isotherm/isochore. The use of s+ as the indepen-
dent variable (as opposed to T or ρN) collapses each contribution to
a single master curve. This highlights the importance of s+ not only
to the shear viscosity η∗ but also to its contributions independently.
Similar to the hard sphere, the value of s+ = 2/3 corresponds to the
relative contribution from η∗kk being approximately 50% of η∗. At
larger values of s+, the quantitative behavior is somewhat different
from that of the hard sphere system.

COMPARISON WITH OTHER LINES

The so-called “Widom line” has many definitions in the lit-
erature (see, for instance, Refs. 3, 5, 9, 12, and 40–42). The most
common definition of the Widom line (here identified by WLCP)
is the loci of the local maxima of the isobaric specific heat cp orig-
inating at the critical point. One problem with this definition of a
line separating the “gas” and “liquid” domains is that the Widom
line terminates: the maximum disappears at temperatures that are a
few times the critical temperature (e.g., see Fig. 4 of Ref. 43). Another
limitation of this approach is that these maxima only occur for fluids
with attraction; fully repulsive potentials have no critical point. One
convenient feature of the WLCP is that it can be calculated from a
thermodynamic equation of state. There have been efforts to evalu-
ate the location of the Widom line from scattering experiments.8 An
alternative definition of the “Widom line,” also applicable to fluids
without attraction, is the loci of the local minima of the kinematic
viscosity or thermal diffusivity along isotherms.6–8

The “Frenkel line”9–12 has been proposed as a variety of intrin-
sically inconsistent definitions of curves separating liquid-like and
gas-like dynamics. These multiple definitions of the “Frenkel line”
define at best a region, not a curve. Within its range of applicabil-
ity, isomorph theory makes clear that at least two of the definitions
of Frenkel lines are inconsistent: isomorph scaling predicts invari-
ant dynamics along an isomorph, but cv,ex is only constant along an
isomorph to the first order.44 The theoretical underpinnings of the
“Frenkel line” have been questioned in recent years.45–47

Figure 5 plots the curve s+ = 2/3, the Widom line based upon
the local maxima of the specific heat, and the curve of constant s+
passing through the critical point. For all the calculations, the equa-
tion of state (EOS) of Ref. 36 was used, which is for the untruncated
Lennard-Jones potential. This EOS is valid for temperatures up to
T∗ = 9.24, and the behavior above this limit represents extrapola-
tion of the equation of state. The interpolated values of ρ∗ at the
minima of ν∗ = η∗/ρ∗ along the nominal isotherms of Meier et al.26
were also plotted, as well as interpolated minima of the thermal dif-
fusivity DT [DT = λ/(ρcp), where λ is the thermal conductivity and cp
is the constant pressure specific heat] according to the simulations
of Ref. 48.

The minima of η̃ fall closely along the line s+ = 2/3 (see also
Fig. 2). As highlighted above (Fig. 1), the location of the minima
of η̃ occurs at roughly the same value of s+ for potentials with and

FIG. 5. Curves s+ = 2/3, s+crit, and WLCP for the full L-J (Lennard-Jones) fluid,
each evaluated from the EOS of Thol et al.36 (with T∗crit = 1.32 and ρ∗crit = 0.31)
in T-ρ (upper) and p-T (lower) coordinates. The thick black curve is the binodal,
and the gray line is a smoothed curve fit to the interpolated R = 0.9 points. The
minima of η̃ and ν∗ are taken from interpolations of the equilibrium molecular
dynamics simulations of Ref. 26 for the nominal isotherms of T∗ = (1.35, 1.5, 1.8,
2.1, 2.5, 3, 4, 6), and from non-equilibrium simulations in this work for T∗ = (6,
10) (tabular results in the supplementary material, Table S3). The minima of DT
are taken from the non-equilibrium simulations of Ref. 48 for nominal isotherms of
T∗ = (2, 3, 4, 6).

without attraction. This curve of s+ = 2/3 arrives at the critical tem-
perature at a density lower than that of the critical point. This is a
philosophically unsatisfying result because the Lennard-Jones fluid
has attractions between particles, and the critical point should intu-
itively be where the demarcation curve emanates from. On the other
hand, the rule-of-thumb for application of isomorph theory is that
the Pearson correlation between potential energy and virial energy
should be greater than 0.9, a line also shown in Fig. 5 (interpo-
lated from results along isochores for the Lennard-Jones potential,35
truncated at 2.5σ). The points at lower temperatures than the curve
of R = 0.9 represent, at least approximately, state points for which
isomorph theory is not expected to apply. The higher temperature
points (circa T∗ > 5) along s+ = 2/3 extrapolate linearly toward
the critical point. Furthermore, the location of the critical point is

J. Chem. Phys. 152, 191102 (2020); doi: 10.1063/1.5143854 152, 191102-4



The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

sensitive to the truncation of the potential; the critical temperature
of the truncated and shifted Lennard-Jones fluid is approximately
80% that of the full Lennard-Jones potential.49

The minima of thermal diffusivity and kinematic viscosity fall
very closely along the line of excess entropy passing through the
critical point s+crit but are not co-incident. While the WLCP takes
a different course, all the curves at least show a qualitatively simi-
lar behavior—they track a curve of constant s+. In a temperature–
density representation, the distinction among the “Widom lines” is
clear, whereas in a temperature–pressure plot (see also Ref. 7), this
distinction is more difficult to make out.

The macroscopically reduced viscosity η̃ is an appealing quan-
tity to consider because it is non-dimensional and is the scaled vis-
cosity used in the isomorph theory. The difference in excess entropy
between the minima of ν∗ and those of η̃ is approximately con-
stant for all temperatures, which is an interesting feature indicat-
ing a relationship between these two definitions. Isomorph theory
and transport property minima appear to be intertwined at a more
fundamental level than previously understood.

POLYATOMIC FLUIDS

The pair potentials described above are frequently considered
models for the behavior of atomic fluids; molecular fluids have addi-
tional internal degrees of freedom. One model system that can cap-
ture (imperfectly) the impact of intramolecular degrees of freedom
is the freely jointed Lennard-Jones 12-6 chain (LJC) even if its fully
flexible bonds are not physically realistic. The transport properties
of this fluid have been previously studied,48,50,51 and an equation of
state is available for this system52 (in combination with the appro-
priate monomer EOS53). The fully flexible Lennard-Jones chains
have been shown to have isomorphs,54,55 so one should expect that
their transport properties should also follow entropy scaling for a
significant portion of their phase diagram.

Figure 6 shows the simulated values of the macroscopi-
cally scaled transport properties along the T∗ = 3 isotherm.

FIG. 6. Values of η̃ along the T∗ = 3 isotherm for the freely jointed Lennard-Jones
chains with M segments. The solid curves indicate the modified entropy scaling
curves used to obtain the minima, and the diamonds indicate the interpolated
minima.

A description of how the variables are defined and evaluated for the
LJC is given in the supplementary material (Sec. 4.1); they are based
on the mass and number density of the chains in Eq. (2). The new
simulations for the LJC in this work (expanding on Ref. 50) are avail-
able in the tabular form in the supplementary material (Sec. 4.2),
as well as simulations along the T∗ = 4 isotherm and verification
simulations at T∗ = 1 and low density to reproduce the simulations
of Ref. 56. Molecular dynamics computations of the LJC viscosity
have been performed with an in-house code already validated51 with
the reverse non-equilibrium molecular dynamics scheme of Müller-
Plathe and co-workers;57 numerical details are provided in Hoang
et al.58 In order to obtain the location of the minima, a polynomial
was fit to ln(η̃ × (s+)2�3) for each chain (application of modified
entropy scaling proposed in Ref. 35), and the empirical function was
then used to locate the minimum of η̃.

Figure 7 shows the values of the excess entropy at theminima of
η̃ for each chain length M. While there is some noise caused by the
interpolation scheme (and the simulations themselves), the excess
entropy values at the minima of η̃ are nearly a linear function of
the chain lengthM. Unfortunately, simulation data passing through
the minima are only available for the T∗ = 3 and T∗ = 4 isotherms
(simulation data at higher densities for a wider range of tempera-
tures are available in Ref. 51). In other words, the LJC model fluid
shows that there is a linear relationship between the molecular size
of the fluid and the excess entropy at which the change between gas-
like and liquid-like behaviors occurs. This notion aligns with the link
between excess entropy and lacunarity (roughly speaking, lacunarity
is a quantification of the amount of void space within a continuous
medium).59,60

In Fig. 7, the values of s+ calculated at the critical points were
also overlaid in order to demonstrate corresponding states between
the minima of η̃ and the values of s+ calculated at the critical points.
We calculated vapor–liquid equilibria from the equation of state (see
the supplementary material, Fig. S2) from which we calculated criti-
cal points consistent with the thermodynamic model. Other critical

FIG. 7. Upper panel: values of s+ at the minima of η̃ for the freely jointed Lennard-
Jones chains with M segments along T∗ = 3 (filled circles) and at the respective
critical point for the LJ chains (filled triangles). The slopes of each curve are indi-
cated by the number above the slope symbol. Lower panel: values of the minima
of η̃ for the LJ chains with M segments along T∗ = 3.
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points are given in Refs. 58 and 61, but they do not provide values of
s+. Aside from the monomer/polymer jump (M going from 1 to 2),
the s+ values at the minima of η̃ shift systematically with the values
of s+ calculated at the critical points.

For the LJC, the values of the minima along isotherms follow
the empirical scaling min(η̃) ∝ M−1�6, where the proportionality
constant is the value of min(η̃) for the monomer. This exponent
of –1/6 on M is unlike the Rouse62 or Zimm63 models; the differ-
ence is related to the use of macroscopic scaling, which introduces
a factor of M in the number density term of η̃. The dilute-gas vis-
cosity scales withM−1/2,50 and that of the liquid, according to Rouse
scaling, scales with M; therefore, consequently the behavior at the
minima is intermediate between these two limits.

CONCLUSIONS

In this work, we showed that excess entropy has an even more
intimate connection with themacroscopically scaled transport prop-
erties than previously described. The line s+ = 2/3 for atomic fluids
can be straightforwardly calculated from a thermodynamic equation
of state and corresponds to the case that the kinetic–kinetic contri-
bution to viscosity is approximately equal to one half of the total
viscosity. For all fluids, lines of constant s+ can be unambiguously
evaluated from an equation of state or from molecular dynamics
simulations and can be used as a demarcating curve between gas-
like and liquid-like behaviors. Indeed, they can be used to define
a demarcation line between gas-like and liquid-like fluid behaviors
for fluids possessing, or not, attractive interactions. Furthermore, we
show that the minima of kinematic viscosity and thermal diffusivity
track closely the curve of constant excess entropy passing through
the critical point, providing further evidence for the importance of
the excess entropy to the dynamics.

Considering the modified entropy scaling in Ref. 35 for the
Lennard-Jones fluid, it seems highly likely that a similar analogy can
be made to thermal conductivity and self-diffusion. Viscosity is sim-
pler than other transport properties in some regards, as it does not
have the complication of a meaningful critical enhancement (as in
the case of thermal conductivity), and the scaled dilute gas values are
much smaller in magnitude than those of the liquid phase (unlike
self-diffusion). A consideration of these other transport properties
in the same framework is merited.

SUPPLEMENTARY MATERIAL

The supplementary material includes mathematical derivations
that complement the analysis in this manuscript, tabular simulation
results, and additional figures for completeness.
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