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Finite-size effects in a model for plasticity of amorphous composites
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We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-
like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is
considered. Numerical results show a complex size dependence of the effective flow stress of the amorphous
composite. In particular, the departure from the mixing law shows opposite trends associated to the competing
effects of the matrix and the reinforcing particles, respectively. The reinforcing mechanisms and their effects on
localization are discussed. Plastic strain is shown to gradually concentrate on the weakest band of the system.
This correlation of the plastic behavior with the material structure is used to design a simple analytical model.
The latter nicely captures reinforcement size effects in (log N/N )1/2, where N is the linear size of the system,
observed numerically. Predictions of the effective flow stress accounting for further logarithmic corrections show
a very good agreement with numerical results.
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I. INTRODUCTION

The introduction of foreign particles into an amorphous
matrix has long been used to increase the strength of disordered
materials [1]. The most classical strategy consists in adding
rigid particles or fibers in order to enhance the elastic properties
of the composite material.

An additional or alternative strategy consists in the modifi-
cation of the plastic properties. Here the effect on the overall
strength is more delicate. The introduction of hard particles
in a very ductile matrix tends to increase the effective yield
stress and hence the strength. A good illustration of this
approach can be found in the development of materials for
road pavements [2–5]: Mineral micrometer scale fillers are
introduced in a viscous bitumen to make it viscoplastic; the
obtained mastic asphalt is then reinforced through the addition
of millimetric to centimetric aggregates. More recently, the
introduction of a ductile phase has been used to reinforce
metallic glasses [6,7]. In this case, the ductility of the second
phase enables one to control the development of shear bands,
thus preventing the nucleation of cracks. A reinforcement
effect is obtained despite the fact that the effective yield stress
of the amorphous composite is lowered with respect to that of
the matrix.

The understanding of the plastic behavior of amorphous
composites thus appears to be crucial in the design of modern
materials. Efforts in theoretical and numerical modeling have
been recently performed to study the effects of microalloying
in metallic glasses [8,9] and of the addition of aggregates in
asphalt mixtures [10–12].

From the theoretical mechanics point of view, the deter-
mination of effective mechanical properties is a matter of
homogenization. While this field has been intensively explored
in the case of linear elastic properties [1], results are much
more scarce for nonlinear behaviors like fracture [13,14]
or plasticity [15–19]. In particular, standard homogenization
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approaches fail to account for size effects [15,16]. Only
the development of strain-gradient theories (relying on the
introduction of an ad hoc internal length scale) has so far
succeeded in reproducing size dependence [17]. Still, these
approaches only predict the mean behavior and cannot cope
with sample-to-sample fluctuations.

Here we develop an alternative approach, based on the
recent development of depinning-like mesoscopic models of
amorphous plasticity [20–25]. The modelling of amorphous
plasticity and rheology of complex fluids has seen much
progress in recent years [26] and a family of mesoscopic mod-
els [21,24] has emerged that rely on two main ingredients: local
plastic thresholds (amorphous plasticity results from series of
local rearrangements of the amorphous structure [27,28]) and
account of elastic interactions (local plastic events occur in a
surrounding elastic matrix and induce internal stresses [29]).
These models show scaling properties close to the effective
yield stress (here seen as a critical threshold) and thus exhibit
statistical size effects. Another useful feature of these models
is their ability to reproduce localization and shear-banding
behaviors [30,31]. The effect of crystalline inclusions in an
amorphous matrix has recently been discussed along such
lines in Ref. [32] with a particular emphasis on the localization
behavior.

Here we specialize the model recently presented in
Refs. [24,33] to the case of amorphous composites by consid-
ering a bimodal distribution of local plastic stress thresholds
to reproduce the inclusion of hard particles in an amorphous
matrix. The simplistic model presented in the following will
not be able to give a realistic account of the whole richness of
the mechanical behavior of amorphous composites. However,
results are expected to be generic for this class of materials.

The model is introduced in Sec. II. In Sec. III we present
the complex size dependence of the yield strength measured
on the amorphous matrix and amorphous composites with
a growing fraction of particles. In Sec. IV, we discuss the
hardening mechanisms at play in amorphous composites
and the localization behavior. We emphasize in particular
the interplay between the gradual localization of the plastic

2470-0045/2016/93(2)/023004(16) 023004-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.023004


TYUKODI, LEMARCHAND, HANSEN, AND VANDEMBROUCQ PHYSICAL REVIEW E 93, 023004 (2016)

deformation and the building of a strongly correlated internal
stress field. Elaborating on the numerical observations, we
present in Sec. V an analytical model that accounts quanti-
tatively for the size effects of the effective yield strength of
amorphous composites. Mathematical details of the model are
provided in a separated appendix. Our main findings are finally
summarized in Sec. VI.

II. MODELLING AMORPHOUS PLASTICITY: FROM
GLASSES TO AMORPHOUS COMPOSITES

The modeling of amorphous plasticity has recently given
rise to an increasing interest [26]. Unlike crystalline plasticity
that results from the motion of dislocations of the ordered
lattice, amorphous plasticity results from series of localized
rearrangements of the disordered structure [27,28,34]. Such
local plastic events induce internal stresses within the sur-
rounding material [35,36]. The latter can be seen as an elastic
matrix around a plastic inclusion and the stress associated to
the rearrangement computed in the spirit of the problem of the
eigenstrain early introduced by Eshelby [29].

Figure 1 illustrates the analytical solution of the Eshelby
problem in the far field. In this figure, the inclusion has
experienced a pure shear ε

pl
xx = −ε

pl
yy = ε

pl
0 . The amplitude of

the shear strain ε = εxx − εyy is represented by a color scale
on a reference undeformed grid (left column) and on a grid
deformed according to the total displacement (right column).
The first row shows the plastic strain εpl, nonzero only within
the inclusion. The second row shows the elastic strain field
εel. The latter is negative within the inclusion. Outside the
inclusion it exhibits a quadrupolar symmetry: negative along
the axes at 0◦ and 90◦ and positive along the directions at
±45◦. The third row shows the total strain ε = εpl + εel.

The precise expression of the internal stress field σ el

depends on the details of the plastic strain field and the
geometry of the rearranging region but, in the far field, the
dominant term obeys the universal form:

σ el = με
pl
0 A

cos(4θ )

r2
, (1)

where ε
pl
0 and A are the mean plastic strain experienced by the

inclusion and the area of the inclusion, respectively.

A. A mesoscopic model of amorphous plasticity

Following the model introduced in Refs. [21,24], the system
is discretized on a two-dimensional square lattice with a lattice
constant ξ . The mesoscopic length scale ξ is such that it
is larger than the typical size of the plastic reorganizations,
i.e., large enough to allow one to use linear elasticity but
small enough to get a spatially heterogeneous local plastic
field after coarse-graining. The size of the rearrangements
depends on the microstructure of the material under study. In
metallic glasses, results of atomistic simulations give a typical
estimate about 1 nm [37]. This size is expected to be larger
in polymer glasses or bitumen due to the presence of long
chains. As for the convergence from discrete to continuum
mechanics, it is much slower in amorphous materials than
in their crystalline counterparts. While in crystals, continuum
behavior is recovered after one or two interatomic distances, in

FIG. 1. Effect of a plastic inclusion in an elastic matrix submitted
to a pure shear biaxial loading � = �yy = −�xx . Only the spherical
inclusion experiences plasticity. The first row represents the plastic
strain εpl, the second row the elastic strain εel, and the third row the
total strain ε = εel + εpl. The strain fields are represented by a color
scale on the reference mesh on the left column and on a deformed
mesh on the right column. One recognizes the traditional quadrupolar
symmetry associated to the Eshelby inclusion.

model metallic glasses, one has to coarse-grain upon about 5
to 20 interatomic distances to gradually recover Hooke’s law,
isotropy, and homogeneity (see, e.g., Ref. [38] for a detailed
study). Altogether one may consider a discretization length
scale of about 10 to 20 interatomic (or -molecular or -particle)
distances, i.e., about a few nanometers for metallic glasses, a
few tens of nanometers for polymer glasses or bitumen.

The various mechanical fields are discretized at the
mesoscopic scale ξ . For each site (i,j ) one can define an
internal stress σ el

ij , a local plastic threshold σ c
ij , and a local

plastic strain ε
pl
ij . A pure shear external loading is considered:

�ext
xx = −�ext

yy = �ext. It is assumed that the reorganizations at
a microscopic scale obey the same symmetry as the external
loading, i.e., a site (i,j ) undergoes a plastic deformation in
pure shear: ε

pl
xx = −ε

pl
yy = ε

pl
ij . A local criterion of plasticity is
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considered, the elastic regime is thus defined for a site (i,j ) as:

�ext + σ el
ij � σ c

ij . (2)

Values of σ c are drawn from a random distribution. No spatial
correlations are considered. Note here that because of elastic
interactions, the plastic deformation of a site (i0,j0) occurs
when the external stress �ext reaches the effective threshold
σ c

i0j0
− σ el

i0j0
. Whenever the criterion is locally satisfied the

site undergoes an incremental plastic strain δε
pl
0 . This value

is drawn from a uniform distribution in [0,d0]. To account for
the structural change experienced by the rearranging zone, the
local plastic threshold is updated to a new value. As discussed
above, the local plastic event also induces an incremental
internal stress on every lattice site (i,j ):

δσ el
ij = Gel ∗ δε

pl
0 , (3)

where the symbol ∗ denotes the convolution operation and
Gel is a quadrupolar kernel accounting for the elastic reaction
of the matrix to a unit plastic event. Here we consider
biperiodic boundary conditions and Gel is computed from
Fourier space [24,39,40].

The system is driven with an extremal dynamics: only
one site is deformed per iteration step. An iteration step
corresponds to (i) identify the weakest site (i0,j0) for a given
configuration, i.e., the site for which the effective local stress
threshold σ c − σ el is the lowest; (ii) update the plastic strain
ε

pl
i0,j0

and the plastic threshold σ c
i0,j0

at this particular site; and
(iii) update the internal stress σ el all over the system. A new
configuration is thus obtained and the next iteration can be
performed. Extremal dynamics [21] is a way of driving the
system at a vanishing strain rate, in the spirit of the athermal
quasistatic driving used in some atomistic simulations [41,42].
Note that the same model can be driven with other kinds of
dynamics, e.g., constant stress and kinetic Monte Carlo.

A direct outcome of a simulation is the evolution of the
external stress �ext versus the average plastic strain 〈εpl〉,
where the average 〈·〉 represents the average over the different
sites at a particular iteration step. The average plastic strain
〈εpl〉 is directly proportional to the number of iteration steps
and 〈εpl〉 can be seen as a fictitious time.

Σext

ΣF

ΣY

pl pl + el

FIG. 2. Sketch of a simple plastic behavior. Plasticity sets in at
yield stress �Y, a hardening stage follows until a stress plateau is
reached. The latter stress value defines the flow stress �F. The plastic
strain εpl is defined as the total strain ε minus the elastic strain εel.

In Fig. 2 we give a sketch of a simple plastic behavior. A
typical stress-strain curve obtained upon monotonous loading
is shown. A (reversible) elastic behavior is first observed up
to the yield stress value �Y. Above this value, plasticity sets
in (a residual plastic strain is obtained upon unloading). The
following curvature of the stress-strain curve is characteristic
of a hardening behavior: If an unloading-loading cycle is
performed, a new (larger) value of the elastic limit is obtained.
A stress plateau is eventually reached that defines the ultimate
flow stress �F.

In the present framework, the external loading is not
monotonous. Rather, the external stress �ext is a fluctuating
quantity which is adapted at each iteration step so that the
criterion of the weakest site is satisfied. The macroscopic
flow stress �F of a given configuration is thus obtained as
the maximum value of the external stress over the simulation:

�F = max
t

�ext(t), (4)

where t is an iteration step. For an external loading �ext < �F,
plastic deformation will eventually stop while any loading
�ext � �F will allow it to develop indefinitely.

B. Application to amorphous composites

The model presented above can be easily applied to the
case of amorphous composites. A major hypothesis (already
performed in the bare model) consists in assuming the
homogeneity of the elastic properties. Only the effect of
a plastic disorder will be considered in the following. To
represent the amorphous composite we consider a fraction
φ of inclusions randomly distributed in an amorphous matrix.

Here the size of the inclusions is assumed to be given by
the mesh size ξ and no correlation is considered in the spatial
distribution of inclusions. The fraction of inclusions is defined
by φ = Ninc/N

2 where Ninc is the number of hard inclusions
and N the linear size of the lattice. Note that inclusions in
metallic glasses [7] or filler particles in bitumen [4] can be
significantly larger than the mesoscopic length scale ξ . A more
realistic study would require accounting for the actual size
distribution of the inclusions. However, most of the following
analysis is expected to be generic enough to remain valid in
these more complex cases.

A bimodal distribution is used to account for the respective
plastic thresholds of the matrix and the inclusions. For the
amorphous matrix, the plastic threshold is drawn from a
uniform distribution [σ c − δσ c,σ c + δσ c]. Here we choose
σ c = 1 and δσ c = 0.5. The inclusions can be either less or
more ductile than the amorphous matrix. In the cases of
interest presented above, their nature is often crystalline. We
thus assume low fluctuations of the plastic properties of the
inclusions and we consider that they are characterized by a
constant plastic threshold, σ c = �H: all inclusions get the
same yield stress and this value does not change after an
inclusion has experienced plastic deformation. Here we restrict
the scope to the case of hard particles: �H > σ c. In order to
reduce the space of parameters we also consider that the typical
plastic strain undergone by the inclusions is the same as in the
amorphous matrix.
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FIG. 3. Variation of the ultimate yield strength �F with the system
size N for a mere amorphous matrix (φ = 0) with a yield stress
σ c ∈ [0.5; 1.5]. The line corresponds to the power-law expression
�F = �∗ + A

N
. As shown in the inset this evolution is consistent with

the numerical data.

C. Overview of the simulations

Simulations were performed with sizes ranging from
N = 16 up to N = 256 and a number M = 40 of independent
realizations of the disorder. The fraction of inclusions was
varied between φ = 2.5 × 10−4 and φ = 0.99. Different val-
ues of the contrast between inclusions and matrix were used:
�H = 4,10,40 and the value �H = 108 was used to mimic
infinitely hard particles. Most of the following discussion will
focus on the case �H = 10.

III. A SIZE-DEPENDENT EFFECTIVE YIELD STRESS

A. Amorphous matrix

We first discuss size effects in the case of a mere amorphous
matrix, i.e., in the absence of hard particles. The ultimate
yield strength or flow stress �F of the material is defined as
the maximum stress experienced by the material for a given
simulation.

In Fig. 3 we show the evolution of the ultimate yield strength
with the system size. A slight decrease is observed. In the
inset, we show that the evolution is consistent with a simple
power-law dependence:

�F = �∗ + A

N
, (5)

where �∗ is the flow stress in the limit of an infinitely large
system and A is a constant. Such a power-law dependence
is consistent with the depinning-like nature of the model. In
this context [21,33,43], the plastic flow stress can be viewed
as a critical threshold between a static phase (no plasticity)
and a dynamic phase (plastic flow). The fluctuations of the
depinning threshold measured over a finite length scale here
simply reflect the divergence of the correlation length in the
vicinity of a critical threshold ξ ≈ |f − f ∗|−ν . The present
results are consistent with the rough estimate ν ≈ 1 obtained
in previous works [33,43]. Figure 4 gives another illustration
of this critical-like behavior. This figure shows the variation

1.05 1.10 1.15 1.20
ΣF

0

1×10-3

2×10-3

3×10-3

4×10-3

5×10-3

6×10-3

δΣ
F

Σ∗

FIG. 4. Variation of the standard deviation δ�F of the ultimate
yield strength �F with �F for the amorphous matrix with a yield
stress σ c ∈ [0.5; 1.5] for system sizes N = 16, 32, 64, 128, 256. The
standard deviation is obtained for 40 realizations. As expected for a
critical transition, a linear behavior is obtained. An extrapolation at
zero standard deviation gives an estimate of the critical threshold, �∗

at infinite size.

of the standard deviation δ�F with the average flow stress
�F. The variation is reasonably reproduced by an affine
relationship δ�F = a(�F − �∗). This is consistent with the
expected critical behavior (�∗ − �F) ∝ δ�F ∝ L−1/ν . The
intercept value �∗ can be seen here as the extrapolated value
of the effective flow stress at infinite size.

Note that, independently of the system size, the values of the
effective flow stress lie significantly above the simple average
of the microscopic thresholds σ c = 1.

B. Amorphous composites

Second, we discuss the dependence of the ultimate yield
strength on the fraction of inclusions and on the size of the
system.

1. Size dependence

In Fig. 5, we show the size dependence observed for
amorphous composites with volume fractions of inclusions
ranging from φ = 0 to φ = 0.16.

For low fractions of hard inclusions, the behavior is similar
to that obtained for the amorphous matrix. The yield strength
decreases with increasing system size and converges towards
a finite value for large system sizes.

Surprisingly, the behavior markedly differs for large frac-
tions of inclusions: The ultimate yield strength increases with
increasing system size. At intermediate values of the fraction
of inclusions, the evolution of the yield strength even appears
to be nonmonotonic.

2. Mixing law

In Fig. 6 we show the evolution of �F with the fraction φ

of inclusions of yield stress �H = 10 for system sizes ranging
from N = 16 to N = 256. The error bars indicate the standard

023004-4



FINITE-SIZE EFFECTS IN A MODEL FOR PLASTICITY . . . PHYSICAL REVIEW E 93, 023004 (2016)

0 64 128 192 256
N

1.0

1.2

1.4

1.6

1.8

2.0

ΣF

φ=0
φ=10-3

φ=2.5 10-3

φ=10-2

φ=3 10-2

φ=6 10-2

φ=10-1

φ=1.6 10-1

FIG. 5. Variation of the ultimate yield strength �F with the system
size N for the amorphous matrix (φ = 0) and amorphous composites
with various fractions of hard inclusions. The yield stress of the
amorphous matrix is σ c ∈ [0.5; 1.5], and the yield stress of the
inclusions is �H = 10. Depending on φ the yield strength shows
either a decreasing or an increasing trend with increasing system
size.

deviation computed on the different realizations performed for
a given pair of parameters (φ,N ).

A clear size effect is observed. The curves obtained for
different values of N do not superimpose. The larger the
system, the larger the reinforcement effect induced by the
hard inclusions and the closer the effective yield strength to
the value obtained from a simple linear mixing law:

�M(φ,N ) = (1 − φ)�A(N ) + φ�H, (6)

where �A is the ultimate yield strength of the sole amorphous
matrix and �H the yield stress of the hard sites. Note that
the value �M obtained from a linear mixing law, known

10-3 10-2 10-1 1
φ

0
2
4
6
8

10

ΣF

N = 16
N = 32
N = 64
N = 128
N = 256
ΣHφ+(1-φ) ΣA

0 0.2 0.4 0.6 0.8 1
φ

0

2

4

6

8

10

12

ΣF

FIG. 6. Variation of the ultimate yield strength �F with the
fraction φ of hard inclusions for a yield stress σ c ∈ [0.5; 1.5] of
the matrix and a yield stress �H = 10 of the hard inclusions and for
five different system sizes N = 16, N = 32, N = 64, N = 128, and
N = 256. The same data are shown in the inset in semilogarithmic
scale.

as the Voigt average in the context of homogenization, is
usually expected to be an upper bound [1]. While this
statement is true for homogenization of linear properties such
as conductivity or elasticity, it does not necessarily hold for
nonlinear properties such as fracture or plasticity. In the latter
case, out-of-equilibrium mechanisms may allow the effective
property to reach values above the Voigt bound [13,14].

Although it often fails to reproduce the experimental data
quantitatively, the simple linear mixing law [44] remains
widely used in material science to account for the effects of
plastic reinforcement [4,45,46].

Another feature, here emphasized in the inset of Fig. 6, can
be pointed out: for a given system size N , no reinforcement is
observed below a threshold value φc(N ) of the volume fraction
of hard inclusions. The larger the system size N , the smaller
the threshold value φc(N ).

Despite its simplicity (scalar model, perfect plasticity), the
present model is thus characterized by a complex behavior. In
particular, it exhibits a clear size effect that can usually only
be reproduced in the framework of more complex descriptions
of plasticity such as strain-gradient-based theories [17]. A key
ingredient is here the account of the elastic interaction induced
by the local plastic events.

IV. HARDENING AND LOCALIZATION

We now discuss in more detail the plastic behavior of the
model amorphous composites. In the following, we try to
unveil the mechanisms at play in the hardening regime. We
shall discriminate between two different effects, respectively
associated to a structural evolution of the amorphous matrix
and a concentration of the stresses on the hard particles. We
then show a gradual localization of the plastic deformation on
the weakest band of the material.

A. Stress-strain curves

Figure 7 displays the stress-strain curves obtained for
four different values of the inclusion yield stress �H =
4, 10, 40, 108 (the latter case being meant to mimic infinitely
hard inclusions) and for different volume fractions φ ranging
from 0 to 0.25. Note that in order to emphasize the hardening
regime the variation of the stress is represented versus the sole
plastic strain.

Two successive hardening regimes can be distinguished
before the stress plateau corresponding to the flow stress
is reached. The first one is related to the hardening of the
amorphous matrix. The second one is directly induced by the
presence of hard particles.

B. Statistical hardening of the amorphous matrix

In this subsection, hardening in the pure amorphous matrix
is considered. At low plastic strain, a gradual hardening of the
amorphous matrix takes place. This phenomenon which has
been discussed in Refs. [21,24] results from the progressive
exhaustion of the weakest sites of the matrix. We show in
Fig. 8 the gradual evolution of the distribution of the local
plastic thresholds P (σ c) upon deformation in the case of
the sole matrix. The larger the deformation, the narrower the
distribution and the closer the mean to the upper bound value.
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FIG. 7. Stress-strain curves for a yield stress of the matrix σ c ∈ [0.5; 1.5], a system size of N = 64, volume fractions of hard sites
φ = {0, . . . ,0.25}, and for a yield stress of the hard inclusions of �H = 4 (a), �H = 10 (b), �H = 40 (c), and �H = 108 (d). The volume
fractions which are not in the caption correspond to volume fractions below 0.06 and for which at this size the effect of adding hard inclusions
is not very obvious.

This structural evolution can be understood in the following
way. After plastic rearrangements, the sites are given a new
plastic threshold drawn from the same random distribution

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
σc

0

1

2

3

4

5

6

P(
σc )

<εpl> = 0
 <εpl> = 1/32
 <εpl> = 1/16
 <εpl> = 1/8
 <εpl> = 1/4
 <εpl> = 1/2
 <εpl> = 1
 <εpl> = 2
 <εpl> = 4
 <εpl> = 8

FIG. 8. Evolution of the distribution of local plastic thresholds
P (σ c) of the pure amorphous matrix upon plastic deformation. The
system studied here has size N = 64 and the initial yield stress of
the matrix is σ c ∈ [0.5; 1.5]. A gradual exhaustion effect is observed
until a stationary distribution is reached.

as the initial ones. The systematic bias between the weak
thresholds of the failing sites and the “normal” thresholds that
replace them after deformation induces an evolutionary-like
transient increase, reminiscent of self-organized criticality
models [47]. It can be seen in Fig. 7 that at low fractions
of inclusions, this exhaustion mechanism is the only one to
hold and hard particles do not contribute to the reinforce-
ment. Indeed the stress-strain curve at low volume fractions
of hard sites is identical to that of the pure amorphous
matrix.

A complementary view of this statistical hardening is given
in Fig. 9. Here, instead of the local plastic thresholds, we show
the evolution of the distribution of the effective thresholds
P (σ eff

c ), where σ eff
c = σ c − σ el. Indeed, following Eq. (2), the

local criterion for a given site (i,j ) can be rewritten as �ext �
σ c

ij − σ el
ij . In other terms, the local thresholds are dressed by the

internal stress. Following the evolution of the distribution upon
deformation, we recover the hardening effect. Interestingly,
even in the transient stage, one can identify a sharp front
associated to the lower bound of the distribution. This directly
corresponds to the emergence of a yield stress. The disordered
system has self-organized and in the transient stage one can
unambiguously define a yield stress that depends on an internal
variable, the cumulated plastic strain. This also shows the
dependence of the macroscopic plastic properties on the past
mechanical history.
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FIG. 9. Evolution of the distribution of effective plastic thresholds
P (σ eff

c ) of the pure amorphous matrix, where σ eff
c = σ c − σ el upon

plastic deformation. The system studied here has size N = 64 and
the initial yield stress of the matrix is σ c ∈ [0.5; 1.5]. The sharp
lower front is associated to the emergence of a global yield stress.
The latter gradually increases upon plastic deformation (hardening)
until it reaches its final value (the stress plateau of the stress-strain
curve).

C. Inclusion hardening

When hard particles are present in the amorphous matrix,
an additional hardening stage is observed. As seen in Fig. 7,
this second stage takes place at higher plastic strains than the
matrix hardening stage. As shown in Fig. 10, this inclusion
hardening regime is characterized by a linear behavior. Stress
is proportional to the plastic strain until it reaches the plateau
that defined the flow stress. We observe that the hardening
modulus (i.e., the slope of the stress-strain curve in this
hardening regime) is independent of the yield stress of the
inclusions. This is evidenced in Fig. 10 (top panel) displaying
the stress-strain curves obtained for an amorphous composite
with 12% of inclusions. The slope remains the same, but the
harder the inclusions, the longer the hardening regime. In.
Fig. 10 (lower panel), we focus on the hardening regime by
considering extremely hard inclusions. We clearly see that
the higher the fraction of inclusions, the larger the hardening
modulus. Note also that at small fractions of inclusions, the
hardening modulus is vanishingly small, i.e., no reinforcing
effect is obtained.

In comparison to the pure amorphous matrix, the initial
distribution of plastic thresholds is bimodal in a composite. In
the initial stage of the deformation, due to the high contrast
of plastic thresholds, only sites of the amorphous matrix can
experience plasticity. The plastic events induce internal stress.
Hard particles can sustain a level of internal stress much higher
than that of the amorphous matrix and act here as a kind of
internal skeleton bearing most of the stress exerted on the
structure.

Again it is of interest to follow the distribution of effective
thresholds. In Fig. 11 we show the evolution observed for
an amorphous composite with 16% of hard particles of yield
stress �H = 10. We see that upon plastic deformation, the
buildup of internal stress on hard particles has a clear effect: It
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 = 0.16
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 = 0.22
 = 0.25

ΣH = 108

<εpl>

<εpl>

FIG. 10. Top: Stress-strain curve for amorphous composites of
system size N = 64, with a fraction φ = 0.12 of hard inclusions
of yield stress �H = 4, 10, 40, 108. The harder the inclusions,
the longer the hardening regime. Bottom: Stress-strain curve for
amorphous composites with a growing fraction of extremely hard
particles. The higher the fraction, the larger the hardening slope.

tends to smear out the peak around �H = 10. In the meantime
the lower part of the distribution, in particular the sharp
front that corresponds to the global yield stress, keeps on
increasing. This second hardening stage is much longer than
the statistical hardening of the amorphous matrix. Stationarity
is eventually obtained when the second peak has entirely
disappeared.

A simple mean-field argument can help us understand the
reinforcing mechanism in the inclusion hardening regime. For
the sake of simplicity we consider here a simple bimodal
distribution with a fraction φ of hard inclusions of yield
stress �H and a fraction (1 − φ) of a soft matrix of yield
stress σ c

S . In the mean-field spirit, a site that experiences
a local plastic strain increment δε

pl
0 (t) at step t undergoes

a local stress relaxation δσ el = −μδε
pl
0 (t) where μ is the

elastic modulus while all other sites receive an additional
load δσ el = μδε

pl
0 (t)/(N2 − 1) ≈ μδε

pl
0 (t)/N2. Consider now

a series of N2 elementary events inducing a global deformation
〈
εpl〉 = ∑N2

t=1 δε
pl
0 (t)/N2, the average over all sites of the
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FIG. 11. Evolution of the distribution of effective plastic thresh-
olds P (σ eff

c ), where σ eff
c = σ c − σ el upon plastic deformation. The

system studied here has size N = 64 and corresponds to a volume
fraction φ = 0.16 of hard sites of yield stress �H = 10 and an initial
yield stress of the matrix σ c ∈ [0.5; 1.5]. The building of internal
stresses gradually smears out the peak associated with hard particles.
Conversely, the sharp front corresponding to the global yield stress
increases upon plastic deformation longer than in the case of the sole
amorphous matrix.

successive microscopic deformations. Since we assume at this
stage that only the amorphous matrix can experience plasticity,
the typical plastic strain of an amorphous site is 
εS =

〈
εpl〉/(1 − φ). This induces in the matrix a stress relaxation

σ rel

S = −μ〈
εpl〉/(1 − φ). We have to add to this contribu-
tion the effect of the mean-field interaction due to the other
sites deforming on average of the same deformation 〈
εpl〉:

σ int

S = μ〈
εpl〉/N2 × N2 = −(1 − φ)
σ rel
S . The comple-

ment is borne by the hard sites 
σ int
H = −φ
σ rel

S . Altogether
we get for a stress relaxation in the soft matrix: 
σ el

S =
−μφ/(1 − φ)〈
εpl〉 and, conversely, a stress concentration in
the hard sites. Since the local effective threshold in the matrix
is σ eff

c = σ c
S − σ el

S and the local plastic threshold σ c
S is assumed

to be constant here, we get 
σ eff
c /〈
εpl〉 = μφ/(1 − φ). We

thus recover a hardening modulus that depends only on the
elastic modulus and the fraction of hard sites. As will be shown
later, this expression gives only a qualitative account of the
dependence of the hardening modulus on φ.

D. Localization: No-slip bands

In order to reveal more details on the hardening mechanisms
induced by the hard particles, we give a closer look at the
spatial organization of the plastic strain field. In Fig. 12 we
show in the top row maps of the relative plastic strain ε

pl
i,j /〈εpl〉

obtained after a long simulation for three concentrations of
particles (φ = 10−3, 10−2, 10−1) and in the bottom row
the associated maps of plastic thresholds σ c (in the final
configuration of a long simulation) indicating the position of
the hard sites.

The low-concentration case [Figs. 12(a) and 12(d), φ =
10−3] gives a good illustration of the effect of adding hard sites

FIG. 12. [(a)–(c)] Maps of the relative plastic strain ε
pl
i,j /〈εpl〉 for a system size N = 64, a yield stress of hard sites �H = 10, and volume

fractions of hard inclusions φ = 10−3, 10−2, 10−1, respectively. The initial yield stress of the matrix is σ c ∈ [0.5; 1.5]. [(d)–(f)] Maps of the
associated final configurations of plastic thresholds σ c. The positions of hard sites are visible in dark red.
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on plastic deformation. We see that the plastic strain field is not
homogeneous. In this example where only three hard particles
are present, we observe, as expected, that the hard particles
are barely deformed. Interestingly, plastic deformation is also
small along the bands at ±45◦ that intercept the hard sites.
Plasticity is inhibited along a set of “no-slip” bands induced
by the presence of hard particles. These bands orientated at
±45◦ obviously reflect the symmetry of the quadrupolar elastic
interaction discussed above. While the low fraction of hard
inclusions shown in this example is not sufficient to induce
any reinforcement, it gives a simple clue on the strengthening
mechanism: Hard particles inhibit the natural slip systems
associated to the elastic kernel [40].

In the medium concentration case [Figs. 12(b) and 12(e),
φ = 10−2], the (relative) plastic strain field is more hetero-
geneous. One recovers patterns orientated at ±45◦ and it is
possible to distinguish between two kinds of bands: bands
containing hard sites are much less deformed than those not
containing hard sites. In other words, the lattice of no-slip
bands is much denser and only the sites not intercepted by
these bands can easily undergo plastic deformation.

In the high-concentration case [Figs. 12(c) and 12(f),
φ = 10−1], the (relative) plastic strain field is highly hetero-
geneous and highly localized. Most of the plastic deformation
concentrates onto one single band. This evolution is more
clearly shown in Fig. 13 where we represented maps of the
incremental plastic strain 
ε

pl
i,j = ε

pl
i,j (t + δt) − ε

pl
i,j (t) where

δt represents a few iteration steps such that 〈εpl〉(δt) = 2 and

〈εpl〉(t) = 10, 20, 30, 40, 50, and 60. Upon deformation, plastic
activity appears to become more and more localized.

E. Localization: The weakest band

We now try to correlate the plastic activity with the
underlying structure, here represented by the landscape of
plastic thresholds. As discussed above, plastic deformation
tends to localize along bands orientated at ±45◦ that reflect
the symmetry of the Eshelby quadrupolar elastic interaction.
Due to statistical fluctuations, not all possible slip systems
encounter the same number of hard particles. We define the
weakest band Bmin and the strongest bands Bmax as the bands
containing respectively the smallest and the largest amount of
hard particles among the 2N possible slip systems. Here we
take into account the two possible orientations. Note again that
we consider periodic boundary conditions so all slip systems
are a priori equivalent. We can now compute the fraction
of plastic activity occurring in the various bands. In order
to highlight the gradual development of the localization, we
proceed as in Sec. IV D: We consider the evolution of the
incremental plastic strain field 
ε

pl
i,j = ε

pl
i,j (t + δt) − ε

pl
i,j (t)

with δt a few iteration steps such that 〈εpl〉(δt) = 2.
In Fig. 14 we show the evolution with the cumulated

plastic strain 〈εpl〉 of the fractions fmin = ∑
i,j∈Bmin 
ε

pl
i,j /∑N−1

i,j=0 
ε
pl
i,j and fmax = ∑

i,j∈Bmax 
ε
pl
i,j /

∑N−1
i,j=0 
ε

pl
i,j of the

incremental plastic strain borne by the weakest and the

FIG. 13. Maps of incremental plastic strain 
εpl for a volume fraction of hard inclusions φ = 10−1, a system size N = 64, a yield stress
of hard sites �H = 10, and different values of the average plastic strain 〈εpl〉.
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FIG. 14. Fractions fmin and fmax of incremental plastic strain 
εpl

borne by the weakest and the strongest slip systems Bmin and Bmax

containing the smallest and the largest amount of particles, respec-
tively. The system studied here has size N = 64 and corresponds to
a yield stress of hard sites of �H = 10.

strongest bands respectively for different concentrations of
hard particles. If the plastic strain field was uniformly spread
on all bands, then one would expect fmin = fmax = 1/N (and
not 1/2N because of the redundancy between the two possible
orientations at +45◦ and −45◦).

In the case of the sole amorphous matrix, the weakest
band deforms about twice as more than the strongest band:
fmin ≈ 2fmax. For a fraction φ = 10−2, the effect is a bit more
pronounced; we observe fmin ≈ 4fmax. This ratio remains
reasonably constant upon deformation. This is consistent with
the typical heterogeneity observed in Fig. 12. Note that for such
a concentration the number of particles falls strictly below the
number of slip systems so deformation can always find a band
free of particles to develop. No significant reinforcement is
expected in this case.

Above some threshold, all slip systems are virtually blocked
by hard particles. This is the case for the two concentrations
φ = 0.01 and φ = 0.16 shown in Fig. 14. Here we see a
dramatic effect: upon deformation, the weakest band bears
a higher and higher fraction of the plastic activity. Eventually
most of the plastic strain occurs within this weakest band. We
thus observe a strong correlation between structure and plastic
behavior: Plastic deformation gradually concentrates onto the
weakest slip system, characterized by the smallest amount of
hard particles.

V. A SIMPLE ANALYTICAL MODEL

From the results above, the mechanism of reinforcement
can be understood in the following way. Hard particles inhibit
slip systems. No reinforcement occur until all slip systems
are blocked. Above the associated threshold concentration, all
slip systems are hindered by hard particles and plastic strain
gradually localizes onto the weakest one, i.e., the one that
contains the fewest hard particles. The macroscopic plastic
behavior is thus controlled by the properties of this weakest
band. In the following, we discuss these two aspects, elaborate

a simple analytical model, and compare its prediction with our
simulations. Mathematical details are presented in a separated
Appendix.

A. Percolation

As discussed above, no reinforcement is expected until all
slip systems are blocked by at least one particle. Here the
two families of slip systems associated to the two directions
at ±45◦ should a priori be considered. For the sake of
simplicity, we consider in the following only one of the two
orientations. This approximation allows us to recover a simple
one-dimensional percolation problem.

We assume here that the distribution of particles is not
spatially correlated and take the volume fraction φ as the
probability for one inclusion to be hard. The probability to have
exactly n hard inclusions in one randomly chosen diagonal is
then a binomial distribution:

P (Nd = n) =
(

N

n

)
φn(1 − φ)N−n , (7)

where Nd is the random variable counting the number of hard
sites on a diagonal, Nd = n is the event “n hard sites on a
diagonal,” and N is the number of sites in a diagonal, which is
exactly the system size in the square lattice considered here.
The probability of having at least one hard inclusion on a
diagonal is

P (Nd � 1) = 1 − (1 − φ)N . (8)

There are N diagonals with the same orientation. They are
independent. Consequently, the probability to have at least
one hard inclusion on each diagonal is

P (B) = (1 − (1 − φ)N )N, (9)

where the letter B stands for “blocked.” This probability is
the equivalent of the probability of percolation. It is plotted
for different system sizes versus the volume fraction of hard
inclusions in Fig. 15. The probability of having at least one
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P(
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N = 128
N = 1024
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FIG. 15. Variation of the probability P (B) of having at least one
hard inclusion on each diagonal, defined in Eq. (9), with the volume
fraction φ of hard inclusions for different system sizes N = 16, N =
32, N = 64, N = 128, N = 1024. Inset: Variation of the critical
fraction φc defined in Eq. (10) with the system size N .
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FIG. 16. Variation of the rescaled yield strength (�F(φ,N ) −
�A)/(�H − �A)/φc(N ) with the rescaled volume fraction φ/φc(N )
for a yield stress �H = 10 of hard inclusions and different system
sizes N = 16, 32, 64, 128, 256. Inset: Variation of [�F(φ,N ) −
�A]/(�H − �A) with φ for the same systems.

hard inclusion per diagonal increases with the volume fraction
of hard inclusions until it reaches 1.

The threshold for percolation, or here for all diagonals to
be blocked, is the volume fraction φ for which the probability
P (B) is the steepest. In other words, the threshold for the
transition corresponds to the volume fraction of hard inclusions
for which the second derivative of P (B) vanishes. This volume
fraction is called critical and denoted φc. It is equal to

φc(N ) = 1 − 1

(N + 1)1/N
. (10)

The inset of Fig. 15 shows the variation of the critical fraction
φc with the system size N .

To illustrate the thresholding effect, one can define the
rescaled flow stress σR(φ,N ) as the reinforcement factor with
respect to the flow stress of the amorphous matrix:

σR(φ,N ) = �F(φ,N ) − �A(N )

�H − �A(N )
. (11)

Figure 16 shows the ratio σR(φ,N )/φc(N ) versus the rescaled
volume fraction φ/φc(N ) for different system sizes. This plot
is to be compared with the inset of Fig. 16 showing the same
quantities without the rescaling by φc(N ). In the main plot, the
curves corresponding to different system sizes collapse onto
a single master curve, showing that our interpretation of the
transition is valid.

B. Yield stress of the weakest band

1. Restriction to elastic line depinning

In Sec. IV, plastic deformation was shown to concentrate
onto one single band, the one containing the smallest amount
of hard particles. It is thus natural to use the ultimate yield
strength of that weakest band as an estimate for the ultimate
yield strength of the whole amorphous composite. Ignoring the
residual plastic strain undergone outside the band, the problem
is thus reduced to a one-dimensional elastic depinning problem

very similar to the propagation of a crack front in a random
landscape [14,48].

Indeed, if we denote εW
i = εW(zi) the plastic strain in the

weakest band at location zi where z is the distance along
the band, then any local plastic strain increment δεW

i induces
along the band an internal stress proportional to an elastic
kernel which is nothing but the restriction on a diagonal
of the Eshelby quadrupolar stress defined in Eq. (1). More
specifically the internal stress at location zj induced by the
plastic strain increment at location zi amounts to:

δσ W
ii = −A0ε

W
i ,

(12)

δσ W
ij = A1

(zi − zj )2
εW
i , if i 	= j,

where A0 and A1 are positive constants. One recognizes
here the elastic interaction associated to the trapping of an
interfacial crack front [49].

The determination of the effective toughness of an in-
terfacial crack propagating in a random landscape (which
also amounts to the critical threshold of a long-range elas-
tic line) has recently been discussed in Ref. [14]. While
the effective toughness can significantly exceed the simple
arithmetic average of the microscopic properties when the
disorder is highly fluctuating in the direction of propagation
(strong pinning), a simple mixing law is recovered when
the microscopic toughness is only slowly varying along the
direction of propagation (weak pinning).

In the present case, the hard sites are persistent, i.e., the
value of their yield stress does not change upon deformation.
Besides, the fluctuations of the local thresholds that character-
ize the amorphous matrix are weak compared with the yield
stress of the hard sites. Weak pinning conditions can thus
be considered and a simple mixing law used to compute the
effective yield stress of the band.

2. How weak is the weakest band?

The effective yield stress of the weakest band σW
Y is thus

simply written:

�W = N − m

N
�A + m

N
�H, (13)

where �A is the yield stress of the amorphous matrix and �H

that of the hard sites and m is the number of hard sites in the
band. The estimate of the ultimate yield strength �F of the
material is given by the ensemble average:

�F = 〈�W〉 = N − 〈m〉
N

�A + 〈m〉
N

�H, (14)

where 〈m〉 is the average minimum number of hard sites on
a diagonal of size N for a fraction φ of hard sites. In the
following we define f = 〈m〉/N , the effective fraction of
hard sites in the weakest band. As it immediately appears
from Eq. (14), within the weakest band approximation, the
difference between the effective flow stress �F and the mixing
law estimate �M directly stems from the difference between
f and φ.

The distribution of the number m of hard sites is given by
the binomial distribution of parameters φ and N . An exact
formula for the average 〈m〉 of the minimal number of hard

023004-11



TYUKODI, LEMARCHAND, HANSEN, AND VANDEMBROUCQ PHYSICAL REVIEW E 93, 023004 (2016)

sites on a diagonal when N diagonals are considered is given in
the Appendix. However, this formula contains an infinite sum
and is not easy to handle. In order to estimate this minimal
value we shall resort to an argument of extremal statistics.
Depending on the value of φ, the binomial converges at large
N either to a Gaussian or to a Poisson distribution. In the
present case we are interested in the large deviations of the
binomial distribution [50]. We use recent results on the general
approximation of the binomial distribution [51,52] obtained in
the context of cryptology studies:

P (m � f N ) = φ
√

1 − f

(φ − f )
√

2πNf
e−ND(f ||φ), (15)

for N → ∞ where D(f ||φ) is the Kullback-Leibler diver-
gence defined as:

D(f ||φ) = f ln
f

φ
+ (1 − f ) ln

1 − f

1 − φ
. (16)

Here the fraction f of hard sites in the weakest band is
estimated via a simple extremal statistics argument:

P (m � f N ) ≈ 1

N
. (17)

Detailed calculations based on the asymptotic expansions
given in Ref. [52] are presented in the Appendix. They allow
us to obtain an estimate of the distance between the fraction
f (the fraction of hard sites in the weakest band) and the
parameter φ of the binomial distribution (the mean fraction of
hard sites):

f = φ −
√

2φ(1 − φ)

N
log

N√
2π

(1 + rN ), (18)

where

rN = −1

2

log(2hN )

2hN + 1
, hN = log

N√
2π

. (19)

C. Effective plastic behavior

1. Size scaling of the flow stress

This immediately sets the distance of the flow stress �F to
the mixing law value �M(φ,N ) obtained by Eq. (6):

�F(φ,N ) = �M(φ,N ) − (φ − f )[�H − �A(N )]. (20)

In particular we obtain a clear size effect: The convergence to
the mixing law scales as (log N/N )1/2. This result is illustrated
in Fig. 17 where we display the variation of the rescaled flow
stress σR(φ,N ) with (log N/N )1/2 for various values of the
fraction φ of hard sites. The rescaled flow stress σR(φ,N ) is
defined as in Eq. (21) as the reinforcement factor with respect
to the flow stress of the amorphous matrix:

σR(φ,N ) = �F(φ,N ) − �A(N )

�H − �A(N )
. (21)

In the framework of our approximation, we expect σR(φ,N ) =
f (φ,N ), where f (φ,N ) is the lowest fraction of hard inclu-
sions among all bands. In particular, following Eq. (18), we
should recover φ − σR(φ,N ) ∝ (log N/N )1/2. As shown in
Fig. 17, this scaling is nicely obeyed for moderate values of
φ. Departures from the predicted scaling behavior become
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FIG. 17. Size scaling of the rescaled flow stress σR(φ,N ), defined
in Eq. (21), of amorphous composites with concentration of hard
particles ranging from φ = 0.04 to φ = 0.5. The yield stress of hard
sites is �H = 10. Filled symbols on the vertical axis correspond to the
infinite size limit, i.e., the result of the mixing law. The lines indicate
the expected scaling behavior in (log N/N )1/2.

significant at low values of φ and N , because the analytical
estimation holds only in the limit of large N and intermediate
values of φ. A numerical estimation of the average number 〈m〉
of hard sites in the weakest band is discussed in the Appendix
and shows that the approximation holds surprisingly well even
for low values of φ and small system sizes.

Beyond the prediction of the scaling behavior, the loga-
rithmic corrections accounted for in Eq. (18) allow us to test
quantitatively our predictions for the reinforcement effect of
hard inclusions in an amorphous matrix. In Fig. 18 we compare
analytical predictions and simulation results for the rescaled
flow stress σR(φ,N ) with respect to the fraction of hard sites

0 0.2 0.4 0.6 0.8 1
φ

0

0.2

0.4

0.6

0.8

1

σ R
(φ

, N
)

N = 16
N = 32
N = 64
N = 128
N = 256
prediction N = 16
prediction N = 32
prediction N = 64
prediction N = 128
prediction N = 256
mixing law

FIG. 18. Effect of the concentration of hard particles on the
rescaled flow stress of amorphous composites for different system
sizes N = 16, 32, 64, 128, 256. The yield stress of hard sites is
�H = 10. The straight line corresponds to the mixing law expected
at infinite size. The dashed lines are the analytical predictions of
Eq. (21) accounting for logarithmic corrections.
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FIG. 19. Hardening modulus versus fraction of hard sites for
system sizes N = 64, 128, 256 (symbols). The continuous line shows
the mean-field expression M(φ) = φ/(1 − φ) and the discontinu-
ous lines the size-dependent prediction M(φ,N ) = f (φ,N )/[1 −
f (φ,N )] where f is the fraction of hard sites in the weakest band.

φ. Again, our prediction of effective flow stress happens to be
very precise for moderate values of φ and large system sizes.

2. Scaling behavior of the hardening regime

The above analysis also enables us to better understand
the hardening regime. The simple mean-field argument de-
veloped in Sec. IV gives for the hardening modulus M =
d�ext/d〈
εpl〉 = μφ/(1 − φ). As shown in Fig. 19, this
expression (that does not account for size effects) widely
overestimates numerical observations.

In order to go a step further we propose here a slightly
more elaborated argument relying again on the localization of
the plastic activity onto the weakest band. This assumption
motivates us to build a simple elastic interaction obeying a
quadrupolar symmetry. Namely, for a system of size N we
consider the following discretized kernel Gi,j on each site i,j :

G0,0 = −1

Gi,i = Gi,−i = 1

N − 1
≈ 1

N

G0,i = Gi,0 = −1

N − 1
≈ −1

N

Gi,j = −1

N2 − 4(N − 1)
≈ 1

N2
,

(22)

This kernel corresponds to a stress relaxation in the center and
in the bands at 0◦ and 90◦, to an internal stress creation in the
bands at ±45◦, and to a mean-field internal stress creation in
the rest of the system. For this simple kernel, as for the Eshelby
quadrupolar kernel, a homogeneous deformation along a line
at ±45◦ induces no internal stress, in other terms, shear bands
at ±45◦ are soft modes of the elastic kernel [40]. Along one
band one recovers a one-dimensional mean-field interaction:
a unit stress drop in the deformed site, and a constant increase
1/(N − 1) ≈ 1/N on the other sites of the band.

Let us now consider a set of N bands, each of them
experiencing a mean plastic strain εi , i ∈ [1,N ]. In the
following we consider the different bands as noninteracting,
i.e., we neglect the stress noise due to the nonhomogeneity of
the plastic strain of distant bands. The contrast between soft
and hard sites is only considered within the band of interest.
Along the band i of fraction fi of hard sites, the plastic strain
is borne only by the soft sites. The latter thus undergo a plastic
strain εi/(1 − fi). This induces in return an internal stress

σi,S in the soft sites and 
σi,H in the hard sites:


σi,S = − 1

1 − fi

μεi + μεi

= − fi

1 − fi

μεi


σi,H = μεi,

(23)

where the two contributions for the soft sites correspond
respectively to the stress relaxation and the mean-field inter-
action along the band. Along each of the bands, the soft sites
thus undergo a stress relaxation whose amplitude depends on
the fraction of hard sites fi . The lower fi , the lower the stress
relaxation and the lower the increase of the plastic criterion

(σ c

S − σi,S) = −
σi,S . Imposing an increment of external
stress 
�ext = 
(σ c

S − σi,S) we thus get in the band a plastic
strain:

εi = 1 − fi

fi

�ext

μ
. (24)

Averaging over different bands i, we get:

〈ε〉 =
〈

1 − fi

fi

〉
�ext

μ

≈ 1 − f

f

�ext

μ
if f = min(fi) 
 〈fi〉. (25)

In the vicinity of the threshold φc(N ) above which a rein-
forcement is observed, we thus expect a hardening modulus
controlled by the fraction f of hard sites in the weakest
band: M(φ,N ) = f/(1 − f ) significantly smaller than the
mean-field value φ/(1 − φ). Numerical results are compared
with these expressions for different system sizes in Fig. 19 and
show a reasonable agreement.

Finally, using the scaling of the plateau stress given in
Eq. (21) and the above estimate of the hardening modulus
we can propose an estimate for the plastic strain 〈εpl

hr〉 of the
hardening regime:

〈
ε

pl
hr

〉 = �F(φ,N ) − �A(N )

M(φ,N )

≈ �H − �A(N )

μ
[1 − f (φ,N )] (26)

and we get finally:

μ
〈
ε

pl
hr

〉
�H − �A(N )

≈ 1 − φ +
√

2φ(1 − φ)

N
log

N√
2π

, (27)

where for simplicity we did not account for the logarithmic
corrections of Eq. (18).
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VI. CONCLUSION

The plastic behavior as described in the mesoscopic
simulations shows two types of system-size dependence. The
first type corresponds to an effect of the amorphous matrix
only and results from the critical character of the yielding
transition. In this case, the ultimate yield strength decreases
with an increasing system size, as 1/N . This system-size
dependence has already been addressed in Refs. [33,43].
A similar critical behavior has recently been advocated in
the related framework of compressive strength of brittle
heterogeneous materials [53].

The second type of size effect is specific to the composite
material. Below a critical volume fraction of hard inclusions
depending on the system size, no hardening behavior of the
second type is observed. Above this critical volume fraction,
the hardening behavior depends on the system size: The
ultimate yield strength increases with an increasing system
size, as −(log N/N )1/2. We showed that the thresholding effect
observed in the simulations is close to a percolation transition.
We also showed that during this second hardening regime,
most of the plastic strain is concentrated onto the weakest
band. Therefore, we proposed a simple model to describe the
dependence of the ultimate yield strength �F on the system
size and the volume fraction. This model is based on the
assumption that the weakest band bears all the plastic strain
and governs the ultimate yield strength �F of the entire system.
The ultimate yield strength �F is then given by a combination
of the yield strength of the pure matrix and of the hard
inclusions, weighted respectively by the fraction of matrix sites
and of hard inclusions in the weakest band. Using extremal
statistics arguments, we proposed an analytical estimate of
the average number of hard inclusions in the weakest band
in the limit of large system sizes. The comparison of the
analytical estimate with the simulation results is satisfactory
and our model, consequently, makes a direct link between the
structure, represented by the plastic threshold on each site, and
the mechanical behavior.
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versity Paris Descartes for help in deriving the exact
formula of the average minimum of hard sites on a
diagonal. This work is sponsored by the Danish Council for
Independent Research | Technology and Production Science
through Grants No. 1337-00073B and No. 1335-00762B.

APPENDIX: ANALYTICAL APPROACH

1. Exact formula

To obtain an exact formula for the average minimum
number 〈m〉 of inclusions per diagonal, we use its definition:

〈m〉 =
N∑

n=0

nP (m = n),

=
N∑

n=1

nP (m = n). (A1)

The variable n in this expression can be reformulated as a sum:

〈m〉 =
N∑

n=1

n−1∑
k=0

P (m = n),

=
N−1∑
k=0

N∑
n=k+1

P (m = n), (A2)

where the indices in the two sums are enumerated in two
different and equivalent ways. The sum over the index n can
then be contracted into:

〈m〉 =
N−1∑
k=0

P (m � k + 1),

=
N∑

n=1

P (m � n),

=
N∑

n=1

(P (Nd � n))N,

=
N∑

n=1

(Iφ(n,N − n + 1))N, (A3)

where Nd is the random variable counting the number of
hard sites in a diagonal and Iφ the regularized incomplete
β function. The regularized incomplete β function is used
here to express the cumulative distribution of the binomial
distribution. The last formula of Eq. (A3) is explicit but hard
to evaluate for large values of N .

2. Analytical estimation

To obtain an analytical estimate of the average minimum
number 〈m〉 of inclusions per diagonal, we use a result from
extreme value theory on the minimum of N independent and
identically distributed random variables:

P (Nd � 〈m〉) = 1

N
, N → ∞, (A4)

where Nd is the random variable counting the number of
inclusions in any diagonal. In our case, the diagonal have
N sites. We introduce the ratio f = 〈m〉/N convenient in the
limit of large N and Eq. (A4) becomes:

P (Nd � f N) = 1

N
, N → ∞. (A5)

As the random variable Nd has a binomial distribution with
parameters N and φ, we can employ a result of cryptography
given in Refs. [51,52]:

P (Nd � f N ) = φ
√

1 − f

(φ − f )
√

2πNf
e−ND(f ||φ), (A6)

for N → ∞ where D(f ||φ) is the Kullback-Leibler diver-
gence defined as:

D(f ||φ) = f ln
f

φ
+ (1 − f ) ln

1 − f

1 − φ
. (A7)

We then introduce ε = φ − f ; and ε is expected to tend to 0
in the limit of large N , i.e., f tends to φ in the limit of large N .
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Using Eqs. (A5) and (A6) and another result from Refs. [51,52]
on the behavior of the Kullback-Leibler divergence valid for
O(ε) = O(ε/φ) = O[ε/(1 − φ)]:

D(φ − ε||φ) = ε2

2φ(1 − φ)
+ O(ε3), (A8)

we obtain:

1

N
= φ

√
1 − φ + ε

ε
√

2πN (φ − ε)
e
− Nε2

2φ(1−φ) . (A9)

To first order in ε, this becomes:

1

N
= 1√

2π

√
φ(1 − φ)/N

ε
e
− Nε2

2φ(1−φ) , (A10)

We define ε′ = ε/
√

φ(1 − φ)/N and Eq. (A10) is equivalent
to

ε′2 = 2 ln
N√
2πε′ . (A11)

To obtain an approximate solution to this transcendental
equation, we define the variable r such that:

ε′ =
√

2hN (1 + r), (A12)

where hN = ln N√
2π

. The variable r tends to 0 in the limit of
large N . We also have:

ε′2 = 2hN (1 + r)2 = 2hN (1 + 2r) + O(r2), (A13)

to first order in r . Using the transcendental equation (A11) and
iterating once in ε, we get:

ε′2 = 2 ln
N√

2π
√

2hN (1 + r)
. (A14)

Equating the right-hand sides of Eqs. (A13) and (A14) leads
to:

2hN (1 + 2r) = 2 ln
N√

2π
√

2hN (1 + r)
,

= 2 ln
N√

2π
√

2hN

− 2 ln (1 + r),

= 2 ln
N√

2π
√

2hN

− 2r, (A15)

to first order in r . The last line of Eq. (A15) is a linear equation
in r , and its solution reads:

r =
ln N√

2π
√

2hN

− hN

2hN + 1
. (A16)

Finally, the ratio f = 〈m〉/N can be expressed in terms of
r(N ):

f = φ −
√

φ(1 − φ)

N

√
2hN [1 + r(N )]. (A17)

The solution given in Eq. (A17) can be checked numerically.
The function g is defined by:

g(N ) = φ − f

1 + r(N )

1√
2hN

. (A18)

1 10 102 103 104 105

N

10-4

10-3

10-2

0.1

g(
N

)

(φ(1-φ)/N)-1/2

φ = 0.001
φ = 0.0025
φ = 0.01
φ = 0.03
φ = 0.06
φ = 0.1
φ = 0.16
φ = 0.25
φ = 0.5
φ = 0.75
φ = 0.99

FIG. 20. Variation of the function g(N ) = (φ − f )/(1 +
r(N ))/

√
2hN with N for different values of φ. The opened symbols

correspond to a numerical evaluation of g(N ) using 10 000 iterations
of N drawings from a binomial distribution with parameters N and φ.
The solid and opened symbols of the same color and shape correspond
to results for φ and (1 − φ), respectively. The solid lines correspond
to the analytical estimation given in Eq. (A19) in the limit of large N .

According to Eq. (A17), it is equal to

g(N ) =
√

φ(1 − φ)

N
. (A19)

Figure 20 displays the function g as obtained for 10 000
numerical iterations of N drawings from a binomial dis-
tribution with parameters N and φ for different values
of N and φ. The analytical estimation of g(N ) given in
Eq. (A19) works very well down to N = 16 for values of
φ in 0.1 � φ � 0.9. It is expected as we used Eq. (A8) for

A

A
A

A
A

1 10 102 103 104 105

N

10-4

10-3

10-2

0.1

g(
N

)

numerics
(φ(1-φ)/N)1/2

φ = 0.001
φ = 0.0025
φ = 0.01
φ = 0.03
φ = 0.06
φ = 0.1
φ = 0.16
φ = 0.5A

FIG. 21. Variation of the function g(N ) = (φ − σR)/[1 +
r(N )]/

√
2hN with N for different values of φ. The solid symbols

and the symbol A correspond to simulation results, with a yield stress
of hard sites of �H = 10. The opened symbols of the same color
and same shape correspond to a numerical evaluation of g(N ) using
10 000 iterations of N drawings from a binomial distribution with
parameters N and φ. The solid lines correspond to the analytical
estimation given in Eq. (A19) in the limit of large N .
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O(ε) = O(ε/φ) = O[ε/(1 − φ)]. For extreme values of φ the
analytical estimation only gives satisfactory results for very
large N . The φ-(1 − φ) symmetry is then recovered. However,
the numerical evaluation of the minimum is in very good

agreement with the simulation results for all values of φ as
is shown in Fig. 21. In this figure, the fraction f of hard sites
in the weakest band is estimated from the simulation results as
σR(φ,N ) = [�F(φ,N ) − �A(N )]/[�H − �A(N )].
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