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This paper presents accurate data for the physical aging of organic glasses just below the glass
transition probed by monitoring the following quantities after temperature up and down jumps:
the shear-mechanical resonance frequency (∼360 kHz), the dielectric loss at 1 Hz, the real part
of the dielectric constant at 10 kHz, and the loss-peak frequency of the dielectric beta process
(∼10 kHz). The setup used allows for keeping temperature constant within 100 µK and for thermal
equilibration within a few seconds after a temperature jump. The data conform to a new simplified
version of the classical Tool-Narayanaswamy aging formalism, which makes it possible to calculate
one relaxation curve directly from another without any fitting to analytical functions. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4923000]

Gradual changes of material properties are referred to as
aging. These are often caused by slow chemical reactions,
but in some cases they reflect the so-called physical aging,
which results exclusively from changes in atomic or molec-
ular positions.1–14 For applications, it is important to be able
to predict how fast material properties change over time, as
well as in production.15–20 For instance, the performance of a
smartphone’s display glass is governed by the volume relax-
ation taking place when the glass is cooled through the glass
transition.21

Physical aging has been studied in publications dealing
with the aging of, e.g., oxide glasses,4–7 polymers,3,8,16,17,19,22

metallic glasses,23,24 spin glasses,25,26 relaxor ferroelectrics,27

and soft glassy materials like colloids and gels.28,29 Quan-
tities probed to monitor aging are, e.g., density,3,30 enthalpy,4,5

Young’s modulus,23 gas permeability,31 high-frequency me-
chanicalmoduli,32,33 dcconductivity,8 frequency-dependentdi-
electric constant,34–37 X-ray photon correlation spectroscopy-
probed structure,38 and non-linear dielectric susceptibility.39

Physical aging is generally nonexponential in time and
nonlinear in temperature variation. The focus below is on
the aging of glasses just below their glass transition temper-
ature, which is characterized by self-retardation for tempera-
ture down jumps and self-acceleration for up jumps.10,19,40–42

The standard aging formalism is due to Narayanaswamy, an
engineer at Ford Motor Company who back in 1970 needed
a theory for predicting how the frozen-in stresses in a wind-
shield depend on the glass’ thermal history. The resulting
so-called Tool-Narayanaswamy (TN) theory accounts for the
nonexponential and nonlinear nature of aging, as well as the
crossover (Kovacs) effect reflecting memory of the thermal
history.10,43 The TN trick is to assume the existence of an “inner
clock” that defines a so-called material time.44–47 This is like
the proper-time concept of the theory of relativity giving the
time measured on a clock traveling with the observer. During
aging, the clock rate itself ages, which causes nonlinearity in
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temperature variation. A crucial assumption of the TN theory
is that the “fictive temperature” controls both the clock rate and
the quantity being monitored. This single-parameter assump-
tion is usually tested by fitting data to analytical functions;
below, we develop a simplified TN theory that may be tested
directly from data without any fitting.

This paper presents accurate aging data for organic glasses
obtained by monitoring the following four quantities after
temperature jumps: the high-frequency shear-mechanical reso-
nance frequency,32 the low-frequency dielectric loss (data
from Ref. 48),34,49 the high-frequency real part of the dielectric
constant,49 and the dielectric loss-peak frequency of the beta
process (data partly published in Ref. 50). The setup used
is described in Refs. 51 and 52. It is based on a custom-
made cryostat capable of keeping temperature constant within
100 µK for the first three quantities and within 1 mK for
the fourth. A Peltier element is used for the cryostat’s inner
temperature control, and the time constant for equilibration
of the setup after a temperature jump is only 2 s. The dielec-
tric measurements were made with a homebuilt setup that
uses a digital frequency generator below 100 Hz producing a
sinusoidal signal with voltages reproducible within 10 ppm;
at higher frequencies, a standard LCR meter is used. The
mechanical resonance measurements were carried out using a
one-disc version of our piezo-ceramic shear transducer.53 See
the supplementary material for more details.54

The three liquids studied are tetramethyl-tetraphenyl-
trisiloxane (DC704), 5-polyphenyl-4-ether (5PPE), and
tripropylene glycol (TPG). Examples of the measurements
behind the aging analysis are given in Fig. 1 (for a more
thorough discussion please refer to Ref. 54). Figure 2 shows
how the monitored quantity X(t) equilibrates upon temperature
up and down jumps (black and light blue symbols). There is
always a rapid change of X . The subsequent aging starts from
a short-time plateau, which is most clearly visible for the up-
jump data points.

Consider a temperature jump initiated at t = 0, which is
studied by monitoring the subsequent time development of X .
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FIG. 1. Spectra illustrating the different types of measurements used for
probing physical aging. The intersections between the grey dashed lines and
the spectra show the quantities monitored. (a) Mechanical resonance of a
piezo-electric disc; (b) dielectric loss; (c) real part of the dielectric constant
at a high frequency, which at the aging temperatures is much above the alpha
relaxation frequency; and (d) dielectric beta relaxation loss-peak frequency
(raw loss-peak frequency with no correction for the alpha process.

The jump starts from equilibrium at temperature T0 + ∆T and
ends in equilibrium at T0 at which the equilibrium value of
X is denoted by Xeq. Following the convention of the aging
literature, the time-dependent variation of X after the jump is
denoted by ∆X(t) ≡ X(t) − Xeq. Thus, ∆X(t) goes from ∆X(0)
to zero as t → ∞ and equilibrium at T0 is attained.

The material time of the TN formalism, denoted by ξ,
is defined from the rate γ(t) of the system’s “inner clock” as
follows:

dξ = γ(t) dt . (1)

The TN formalism implies that for the general temperature
variation T0 + ∆T(t), the quantity ∆X(t) can be written as an
instantaneous contribution plus a material-time convolution
integral,4

∆X(ξ) = C∆T(ξ) −
 ξ

−∞
M(ξ − ξ ′) d∆T

dξ ′
(ξ ′) dξ ′. (2)

Here, ξ = ξ(t) is found by integration of Eq. (1). After a jump
at t = 0 from T0 + ∆T to T0, it follows from Eq. (2) that ∆X(t)
= ∆T(−C + M(ξ)).

We study jumps small enough that the jump magnitude
obeys ∆X(0) ∝ ∆T . In terms of the dimensionless function
φ(ξ) ≡ (dT/dX)(−C + M(ξ)), one has ∆X(t) = ∆X(0) φ(ξ)
with φ(0) = 1. Defining the normalized relaxation function
R(t) by

R(t) ≡ ∆X(t)
∆X(0) , (3)

for any temperature jump, we thus have

R(t) = φ(ξ). (4)

FIG. 2. Aging data for temperature jumps for the different quantities probed.
Each panel shows a pair of ∆T up and down jumps to the same temperature
T0. Up jumps are shown in black and have the characteristic self-accelerated
shape, down jumps in light blue display self-retarded behavior. (a) Mechani-
cal resonance frequency; (b) logarithm of the dielectric loss at 1 Hz; (c) real
part of the dielectric constant at 10 kHz; and (d) loss-peak frequency of the
dielectric beta relaxation.

Having so far followed Narayanaswamy’s seminal 1971
paper,4 we proceed to convert Eq. (4) into a differential equa-
tion. Since dξ/dt = γ(t), the time derivative of R is given by
Ṙ = φ′(ξ)γ(t). Equation (4) implies that ξ is a unique function
of R; thus, φ′(ξ) is also a unique function of R. Denoting this
(negative) function by −F(R) leads to

Ṙ = −F(R) γ(t). (5)
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Suppose a single parameter Q controls both X and the
clock rate. The physical nature of Q is irrelevant.50,55 For small
temperature jumps, it is reasonable to assume that one can
expand X to first order in Q : ∆X ≡ X − Xeq = c1(Q −Qeq) in
which Qeq is the equilibrium value of Q at T0.50 The clock rate
is determined by barriers to be overcome and their activation
energies, so one likewise expects a first-order expansion of the
form ln γ − ln γeq = c2(Q −Qeq) to apply. Eliminating Q −Qeq
leads to ln γ = ln γeq + a∆X/Xeq in which a ≡ c2Xeq/c1 is
a dimensionless constant. Introducing the time dependence
explicitly via Eq. (3), we have40,56

γ(t) = γeq exp
(
a
∆X(0)

Xeq
R(t)

)
. (6)

Substituting this into Eq. (5) leads to the differential equation
for single-parameter aging following a temperature jump,

Ṙ = −γeq F(R) exp
(
a
∆X(0)

Xeq
R
)
. (7)

The important advance of Narayanaswamy in 1971 was to
replace that time’s nonlinear aging differential equations by a
linear convolution integral. It may seem surprising that we now
propose stepping back to a differential equation.57 Consistency
with the TN formalism is ensured, however, by the fact that
Eq. (7) only applies for temperature jumps. In contrast, the ag-
ing differential equations of Tool and others of the form d(X −
Xeq(T))/dt = −(X − Xeq(T))/τ(X,T)40,43 were constructed to
describe general temperature histories T(t). Such equations
lead to simple exponential relaxation in the linear aging limit
(∆T → 0), which is rarely observed, and they cannot account
for the crossover effect.10

Before proceeding we note the following.

1. In the limit ∆T → 0 Eq. (7) becomes Ṙ = −γeqF(R). This
describes a small temperature jump for which aging is a
linear-response phenomenon and the material time reduces
to ordinary time. This differential equation determines the
convolution kernel of the general aging equation (2). Thus,
linear aging determines the general, nonlinear aging.

2. In the long-time limit one has R(t) → 0, Ṙ(t) → 0, and
γ(t) → γeq. Equation (7) here also reduces to the linear-
limit aging equation, Ṙ = −γeqF(R). Clearly, F(R) → 0 for
R → 0. The generic analytic case is F(R) ∝ R for R → 0,
which leads to simple exponential relaxation in the long-
time limit. The stretched-exponential relaxation function,
on the other hand, which is often used to fit aging data,
corresponds to a non-analytic F(R) function.

3. If F(R) = CR for all R, Eq. (7) may be rewritten to become
a differential equation for ∆X(t). This is a special case of
the above-mentioned Tool-type aging equation.

Equation (7) may be tested without fitting data to analyt-
ical functions or knowing F(R). Taking the logarithm of Eq. (7)
leads to

ln
(
− Ṙ
γeq

)
− a
∆X(0)

Xeq
R = ln (F(R)) . (8)

For any temperature jump, the left-hand side is predicted to
be a function of R that is independent of the jump magnitude
∆X(0). This is tested in Fig. 3 by plotting the left-hand side

FIG. 3. Test of Eq. (8) for the Fig. 2 data by plotting its left-hand side (except
for the factor γeq) as a function of the normalized relaxation function R
(time unit: seconds; the four a parameters were determined from Eq. (11)).
For the first three probes the instantaneous change after a temperature jump
goes in the same direction as the subsequent aging. In contrast, the beta
loss-peak frequency initially jumps in the opposite direction, which is why
R is temporarily larger than unity for this data set (compare Fig. 4(d) below).
Data were binned and averaged over ten points, except in (d) where only
five points were binned due to scarcity of data. The large black dots give
the temperature up jumps; the down jumps are marked by a light blue curve
connecting small points.

against R for the data of Fig. 2. The four a parameters have
not been optimized for the best fit, but were determined from
Eq. (11) derived below.
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FIG. 4. Data (crosses) and predictions based on Eq. (10) (dots) for each of
the normalized Fig. 2 data sets. (a) Mechanical resonance frequency; (b) low-
frequency dielectric loss; (c) high-frequency dielectric constant; and (d) beta
loss-peak frequency. Up jumps are in black, down jumps in light blue. The
predicted curves are in the same color as the data they are calculated from.

A second test considers two temperature jumps to the
same temperature T0 (not necessarily of same magnitude). The
corresponding normalized relaxation functions are denoted by
R1(t1) and R2(t2) with inverse functions t1(R1) and t2(R2). For
times t1(R1) and t2(R2) corresponding to the same value of the
normalized relaxation functions, R1 = R2, Eq. (7) implies

dR1

dt1
exp

(
−a
∆X1(0)

Xeq
R1

)
=

dR2

dt2
exp

(
−a
∆X2(0)

Xeq
R2

)
. (9)

For time increments dt1 and dt2 leading to identical changes
dR1 = dR2, if Λ12 ≡ a(∆X1(0) − ∆X2(0))/Xeq, Eq. (9) implies
dt2 = exp(Λ12R1)dt1. By integration and identifying R ≡ R1
= R2, this leads to

t2(R) =
 t2(R)

0
dt2 =

 t1(R)

0
eΛ12R1(t1) dt1. (10)

This gives a simple recipe for calculating one normalized relax-
ation function from another. Figure 4 shows the normalized
relaxation functions R(t) of the Fig. 2 data (crosses) and those
calculated from the other data set via Eq. (10) (dots).

Equation (10) implies t2(R) − t1(R) =
 t1(R)

0 (eΛ12R1(t1)
− 1)dt1. A similar expression applies for t1(R) − t2(R). Since
Λ21 = −Λ12, adding the long-time limits of these expressions
leads to the following consistency requirement: ∞

0

�
eΛ12R1(t1) − 1

�
dt1 +

 ∞

0

�
e−Λ12R2(t2) − 1

�
dt2 = 0. (11)

Since Λ12 determines a, this provides an equation for a. The
four values thus calculated are those used in Figs. 3 and 4. The
supplementary material54 shows that the a parameters derived
in this way are consistent with extrapolations from higher-
temperature equilibrium measurements.

In summary, we have presented accurate data for tempera-
ture jumps of organic glasses and derived a simplified version
of Narayanswamy’s 1971 aging theory that allows for direct
data tests. The new tests do not involve any fitting to analyt-
ical functions. In Ref. 48, we also proposed a test of the
Narayanaswamy theory not involving such fits, but it was
more complicated and did not make predictions for how to
calculate all temperature jumps from knowledge of a single
one. Crucially, Eq. (7) involves both the normalized and the un-
normalized relaxation functions, R(t) and∆X(t) = ∆X(0) R(t).
This is necessary because a differential equation for only R(t)
cannot account for the nonlinearity, whereas a simple differen-
tial equation involving only ∆X(t) cannot lead to nonexponen-
tiality in the linear limit.

There are other approaches to describing physical ag-
ing than the standard TN theory.36,57 The common “single-
parameter” assumption of all simple theories is that the quan-
tity monitored correlates to the clock rate γ. This is also the
main ingredient in the approach of Lunkenheimer et al., which
assumes a stretched-exponential aging function with a charac-
teristic inverse relaxation time that ages according to the same
stretched exponential.36,58
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