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Nanoscale Turing structures
Piotr Dziekan,1,2,a) J. S. Hansen,3 and Bogdan Nowakowski1,4

1Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
2Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Université Pierre et Marie Curie –
Paris 06, 4 place Jussieu, case courrier 121, 75252 Paris cedex 05, France and CNRS UMR 7600, LPTMC,
Paris, France
3The Department of Science, Systems and Models, Roskilde University, DNRF Centre “Glass and Time,”
Universitetsvej 1, bygn. 27, DK-4000, Roskilde, Denmark
4Physics Laboratory, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159,
02-776 Warsaw, Poland

(Received 18 June 2014; accepted 5 September 2014; published online 23 September 2014)

Formation of Turing patterns of nanoscopic length scale is simulated using molecular dynamics.
Based on Fourier spectra of the concentrations of species, we compare stabilities of the structures of
different wavelengths and for different intermolecular potentials. Long range attraction is shown to
oppose the formation of structures. Our simulations suggest that Turing patterns can be a method of
self-organization at a length scale of down to 20 molecular diameters. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4895907]

I. INTRODUCTION

Alan Turing showed that a spatially uniform stationary
state of a nonlinear chemical system can be unstable to
nonuniform perturbations if the diffusivities of the reactants
are different.1 This diffusion-driven instability leads to a
spontaneous formation of stable structures of the reactant
concentrations. The mechanism is believed to be responsible
for the formation of numerous types of patterns observed
in biology2 and has also been reproduced in chemical
experiments.3 Wavelengths of Turing patterns considered
usually start from the micrometer range. On the other hand,
phenomena typical for nonlinear reaction-diffusion systems,
like bistability, wave propagation and pattern formation, are
observed at the nanoscale in systems with heterogeneous
catalysis.4–7 These phenomena were analyzed theoretically
using kinetic and master equations.8, 9 In addition, reaction-
diffusion systems were used to fabricate nanoscopic materials
by imposing specific initial conditions.10

Our goal is to see if nanoscopic patterns can sponta-
neously form through the Turing mechanism. To this end, we
present for the first time molecular dynamics (MD) simula-
tions of Turing patterns. We already performed simulations
of Turing patterns at the mesoscopic level11 and at the micro-
scopic level in rarefied media.12 The MD method is suitable
for dense media, and closely models real system dynamics.
MD is useful in both explaining experimental results and as a
reference for other methods. MD simulations intrinsically in-
clude internal fluctuations, do not rely on macroscopic param-
eters, like diffusivities, and capture the non-Markovian nature
of collisions, as well as long range correlations. Use of other
methods, like the master or kinetic equations, which require
additional approximations, has to be justified by comparison

a)Author to whom correspondence should be addressed. Electronic mail:
pdziekan@ichf.edu.pl. Tel.: +48 22 343 3314.

with microscopic simulations, if no experimental results are
available.

Using MD simulations we show that, despite fluctua-
tions, Turing patterns can develop with as little as 20 particles
per wavelength. Therefore, the Turing mechanism can be re-
garded as a method of self-organization of molecules at the
nanoscale. It is not an equilibrium phase separation resulting
from intermolecular interactions, but a consequence of sys-
tem dynamics and can be seen only if the system is far from
equilibrium. If one would like to manufacture a nanostruc-
tured material, the method would require an additional step,
e.g., photopolymerization, that would bind molecules and pre-
serve positional inhomogeneity of the dissipative structure.
An advantage of this method is that the Turing mechanism
is known to produce many different types of structures, so
a variety of shapes could be obtained by changing reaction
conditions. Furthermore, we show that although formation of
Turing patterns requires a specific type of reactions between
two species, using one pair of such reactants it would be pos-
sible to generate structures of other particle types.

II. MODEL

We use a simple reaction scheme in which Turing pat-
terns can be observed:

A
k1−→ R1, (1)

2A + B
k2−→ 3A, (2)

B
k3
⇀↽
k′
−3

R2. (3)

R2 is a substrate and R1 a product of the reaction. Their
concentrations are kept constant by appropriate feeding and
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removal, which keeps the system out of equilibrium. Macro-
scopically, the model is equivalent to the Gray–Scott model,
as the equations governing evolution of concentrations are the
same in both cases and have the form13

∂tA(r, t) = k2A(r, t)2B(r, t) − k1A(r, t)

+DA�A(r, t), (4)

∂tB(r, t) = −k2A(r, t)2B(r, t) − k3B(r, t) + k−3

+DB�B(r, t), (5)

where k−3 = k′
−3R2, DA and DB are the diffusion coefficients

and � is the Laplacian.
In case of a homogeneous system, there may be three sta-

tionary states: (A0 = 0, B0), (A−, B−), and (A+, B+). The latter
two states can be obtained by solving the equation

A2 − k−3

k1

A + k3

k2

= 0 (6)

and using B = k1
k2A

.

The state (A0 = 0, B0) is always a stable node and the
state (A−, B−) is a saddle point. The third state (A+, B+) can
be either stable or unstable and it is the state from which Tur-
ing pattern can develop. Linear stability analysis towards spa-
tially harmonic perturbations shows that, if diffusion coeffi-
cients of A and B are sufficiently different, there can be a
range of growing modes. The smallest λmin and largest λmax
possible wavelengths of the spatial structure can be calcu-
lated, as well as the fastest growing wavelength λ0, where
λmin < λ0 < λmax. In finite systems, boundary conditions re-
strict the allowed modes. In the long time limit the allowed
mode with highest growth rate should dominate, but in some
cases a transient structure of different wavelength is seen.12

III. SIMULATION METHOD

The major difficulty in simulating Turing structures us-
ing MD lies in obtaining sufficiently different diffusion coef-
ficients for A and B. In our previous paper,12 we described a
method to simulate Turing patterns in rarefied media. Particles
were assumed to have different sizes, which results in differ-
ent mobilities. However, in dense media this simple mech-
anism of abrupt change of size cannot be used as it would
lead to particles overlapping. Therefore, in the MD simu-
lations we limit mobility of one species by binding it to a
third type of particle, which is heavy, nonreactive, and la-
beled H. This way of imposing different diffusivities is in-
spired by the chlorite-iodide-malonic acid (CIMA) reaction,
where inhibitor molecules bind to micelles.14 To analyse ef-
fects of intermolecular attraction we perform simulations for
both the Lennard-Jones (LJ) and Weeks-Chandler-Andersen
(WCA) potentials.15, 16

There are four types of particles in the system: A, B, R,
and H. The R species act as both the R1 and R2 species in
the reaction scheme. All particles have same sizes. The reac-
tive A, B, and R particles also have the same, unit masses.
We use the usual reduced MD units.17 Type H particles are
much heavier (their mass is denoted by mH, in most cases we
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FIG. 1. Intermolecular potentials used. The dashed line is the standard
Lennard-Jones potential, with σ = 1 and ε = 1. The solid line is the bond
potential with parameters σ 2

b = 0.5, εb = 66.67, and rb = 0.95. The dotted
line is a sum of both potentials.

use mH = 104) and do not take part in the reaction scheme,
but are able to bind type A molecules. The bond between A
and H is formed whenever the distance between particles is
in the range rb ± 0.01, where rb = 0.95 is the bond length.
The bond is broken if the particles become separated by more
than 1.25. At one time, a single bond between A and H parti-
cles can be formed. Whenever reaction turns a bonded A into
a B, the bond is broken. Formation and breaking of bonds
this way does not conserve energy. Therefore, temperature
is controlled by a Nose–Hoover thermostat at T = 2.65, the
Boltzmann constant is set to 1 and simulation time step to �t
= 2.1 × 10−3. The bound particles interact with an additional
Gaussian potential well

Vbond (r) = −εb exp

[
− (r − rb)2

2σ 2
b

]
. (7)

The pair potentials are shown in Fig. 1.
Initially, all particles are equally spaced on a cubic ar-

rangement with spacing �l = ρ−1/3, where ρ = 0.7 is the
density. This density corresponds to a supercritical LJ fluid.
Number of particles in each direction is denoted by nx, ny,
and nz. Therefore, dimensions of the simulation box are lx
= nx�l, ly = ny�l, and lz = nz�l. Since we are interested in
simulating 1D patterns, lz is set to be larger, while lx and ly
to be smaller than minimal wavelength λmin. We use periodic
boundary conditions.

The number of particles to react according to the uni-
molecular reactions (1) and (3) is sampled from the bino-
mial distribution at each time step. Then, random particles
of respective species have their types changed. To simulate
a constant concentration of R, rate of reverse reaction (3) is
constant and equal to k−3V . Moreover, it has to be the same
throughout the system, independent of local number of R par-
ticles. Therefore, sampling and selection of particles to react
is performed independently for each subvolume of length �l
along the z axis.

The trimolecular reactions are performed according to a
distance criterion. It occurs whenever the distance of each of
the appropriate three molecules from their center of mass is
shorter than rr. This parameter is used to control value of the
rate constant k2.

We expect to observe a spatial structure in concentrations
of species A and B. Consequently, we want to simulate as
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many particles of these types as possible. However, a cou-
ple of constraints have to be considered when setting initial
concentrations of the species. First, the number of H particles
has to be high, to ensure that every newly created A particle
is quickly bonded. Then, population of R particles cannot be
too low, because they are needed to perform reverse reaction
(3) uniformly throughout the system.

After the system size, initial species concentrations and
reaction distance rr are defined, a preliminary simulation is
carried out to estimate the effective diffusion coefficients and
the trimolecular reaction rate k2 for homogeneous system in
the initial state. Having these values, we impose that the ini-
tial species concentrations correspond to the stationary state
(A+, B+) of the system of equations (4) and (5). Then, the
unimolecular reaction rate k1 is obtained from Eq. (4):

k1 = k2A+B+. (8)

From the free term of Eq. (6) follows an expression for k3:

k3 = k2A+A−. (9)

This equation includes the position A− of the saddle point
along A axis of phase space, which will be considered as one
of the parameters of the model. Then, expression for the last
rate constant is readily obtained from Eq. (5):

k−3 = k2A
2+B+ + k3B+. (10)

The simulation program was based on the seplib
library.18

IV. RESULTS

Our first goal was to obtain spatial structures and confirm
that they are formed by the Turing mechanism. To this end
we performed simulations for parameters deep in the Turing
region using the WCA potential. The effect of intermolecular
attraction will be discussed later. Turing structure wavelength
is defined solely by values of rate constants and diffusivities
and is independent of the system dimensions, if one disre-
gards effects of boundary conditions. Therefore, increasing
length of the system by two should yield a structure of the
same wavelength.

Simulation box size in the directions perpendicular to
main axis z was set to lx = ly = 12�l. The initial concentra-
tions of species were: Ainit = A+ = 0.15ρ, Binit = B+ = 0.23ρ,
Rinit = 0.12ρ, Hinit = 0.5ρ, and we fix the saddle point posi-
tion at A− = 1.5 × 10−2. The parameter values given above
were the same for all simulations presented in this paper. This
choice of parameters results in a condition for diffusivities
DB/DA > 3.57 and also implies that the stationary state (A+,
B+) is an unstable focus. Integration of the deterministic equa-
tions (4) and (5) shows that if the diffusivities do not fulfill the
condition DB/DA > 3.57, the system will develop towards ho-
mogeneous (A0, B0) state, but for diffusivities satisfying it, a
periodic structure should emerge.

Moreover, to confirm that the A-H bonds do not impose
any spatial structure and to calculate diffusion coefficients at
the stationary state we performed simulations with bond for-
mation, but without chemical reactions. The system remained
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FIG. 2. Space-time plots showing evolution of concentration A (color grada-
tion) along axis z for WCA potential and parameters that give λ0 ≈ 31.5.
Figures 2(a)–2(e) show results of simulations for progressively longer
systems.

homogeneous and the observed diffusivities of species were
DA ≈ 7.6 × 10−3 and DB ≈ 7.5 × 10−2. Then we started sim-
ulations with chemical reactions. We set the reaction distance
to rr = 0.56, which gives an average trimolecular rate constant
k2 ≈ 7.2 × 10−2. That gives possible structure wavelengths in
the range from λmin ≈ 17 to λmax ≈ 61 with a fastest growing
mode for λ0 ≈ 31.5. The observed diffusivities and rate con-
stants from all simulations are summarized in Table I of the
Appendix.

After estimating the expected wavelength of the struc-
ture, we performed simulations for different values of nz that
give system lengths that are close to the multiples of the
fastest growing mode: nz = 31, 62, 93, 124, 155, mean-

ing:
l
z

λ0
≈ 1.1, 2.2, 3.3, 4.4, 5.5. Figure 2 presents space-time

plots depicting the evolution of concentration of A for these
cases.

Clearly, a spatial structure with well defined wavelength,
which can be read from the space-time plots, forms in the sys-
tem. Wavelength of the structure does not depend on system
size and is close to the analytical prediction. In some cases
fluctuations cause the structure to shift along the z axis. Since
the structure is formed from a focus, there are temporal os-
cillations of concentration of A. We observe that in the larger
systems (d) and (e), the time it takes for the fastest growing
mode to emerge can be quite long and, before that, transient
structures of different wavelengths are seen. In addition, tran-
sitions between different wavelengths can happen even later
as seen in the case (e). Initially, mode with spatial wavelength
λ = 43.6 dominates, but soon, around t = 5 × 104, there is a
transition to λ = 34.9. Later, at t ≈ 11 × 104, there is another
transition to the mode λ = 29.1, which then returns to the
previous mode with larger wavelength at t ≈ 15 × 104. Tran-
sitions between these two modes would probably continue,
because they both have very similar eigenvalues. Probability
of these transitions could be reduced in a system with larger
λ0, that would contain more particles and where fluctuations
would not be significant.
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FIG. 3. Same as Fig. 2(b), but for DB/DA ≈ 1.5, i.e., below Turing
bifurcation.

Next, we run some reference simulations under similar
conditions, but parameters that are not in the Turing region,
i.e., in a case when structure should not develop. The idea
is to decrease the ratio of diffusivities below the Turing con-
dition. We do it in two different ways. One is to reduce the
mass of H particles to mH = 1, which has almost no effect
on the trimolecular reaction rate, but change the ratio of dif-
fusion coefficients to DB/DA ≈ 1.5. Because the reaction dy-
namics is not changed, the initial stationary state is again an
unstable focus and we observe oscillatory transition to the
state (A0, B0), as expected. This dynamics is shown in Fig. 3.
The other way of imposing similar diffusivities is to keep
mH = 104, but remove formation of A-H bonds. Then, the
effective trimolecular rate constant is k2 ≈ 0.15 and the ratio
of diffusivities DB/DA ≈ 1. Since we do not change the uni-
molecular rate constants, the stationary state is now a stable
focus (A+ ≈ 0.114, B+ ≈ 0.066). In simulations, the system
reaches this state and remains homogeneous.

To rigorously check which modes are excited and quan-
titatively compare stabilities of structures from different sim-
ulations, we perform Fourier analysis of the concentration of
A along z axis. Positions of particles in the directions x and
y are disregarded, since the system remains homogeneous in
these directions as lx and ly are smaller than λmin. Because, as
seen on the space-time plots, the structure can shift along the
z axis, we calculate discrete Fourier transforms separately for
instantaneous concentration histograms at short time intervals
104�t. The final Fourier spectrum is obtained by averaging
these intermediate transforms. Figure 4 shows the spectra of
the simulations discussed so far.

For all the simulations in the Turing region, the spectrum
has a maximum in the expected wavenumber range. For the
three shorter systems studied, there is a single strongly ex-
cited mode. In the longer systems, more modes are allowed
by boundary conditions and differences between their eigen-
values are smaller. In that case we observe that more than one
mode is excited. This is in agreement with our observations
from the space-time plots, that initially a transient structure
is formed, which has a longer wavelength than λ0. For pa-
rameters outside of the Turing region the spectrum does not
have any maximum above the noise level of thermal fluctu-
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FIG. 4. Complex modulus |F| of discrete Fourier transform versus wave
number k = 2π /λ for WCA potential. Spectra of the results from Fig. 2 are:
(a) black, (b) red, (c) dark blue, (d) pink, (e) light blue. For reference we
also show spectra of cases when Turing pattern does not develop: without
reactions (bronze), without A-H bonds (salmon) and for mH = 1 (grey). The
spectra are scaled to obtain

∑|Fi| = lz/2π . Average concentration was sub-
tracted from the profile before Fourier analysis in order to obtain |F0| = 0.
The spectra are calculated over the time interval [1, 12] × 104. The inset
shows part of the spectrum around the maxima. The green dashed line is the
scaled dispersion relation Re(ω(k)) × 350, where ω(k) is the eigenvalue of
mode k predicted by the macroscopic theory.

ations. We observe that in all cases, except the one without
any reactions, the mode with smallest non-zero wavenumber
is slightly excited.

Next, to test how intermolecular attraction affects struc-
ture formation, we run simulations using the LJ potential in-
stead of WCA. The parameter that is affected the most is
the trimolecular reaction rate, for rr = 0.56 we got k2 ≈ 2.1
× 10−2. The diffusivities are smaller than in WCA simula-
tions: DA ≈ 6.9 × 10−3 and DB ≈ 7.2 × 10−2. For these
values the possible wavelengths are in the range from λmin
≈ 30 to λmax ≈ 111 with a fastest growing mode for λ0
≈ 56.1. Again, we performed simulations for different sys-

tem lengths
l
z

λ0
≈ 1, 2, 3, 4, i.e., for nz = 50, 100, 150, 200.

The space-time plots are shown in Fig. 5.
The structure is not as well defined as in WCA simula-

tions and as shown in the space-time plots, it is hard to de-
termine the dominating mode, especially in longer systems.
Still, it can be seen that the structure shifts along z axis and
that there are temporal oscillations of concentrations, like in
WCA simulations. The Fourier spectra of results of LJ simu-
lations are shown in Fig. 6.
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FIG. 5. Same as Fig. 2, but for LJ potential and λ0 ≈ 56.1.
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FIG. 6. Same as Fig. 4, but for simulations with LJ potential presented in
Fig. 5: (a) black, (b) red, (c) dark blue, and (d) pink. The light blue line is
for LJ potential, but without chemical reactions. The brown dashed line in
the inset is the scaled dispersion relation Re(ω(k)) × 8000. The spectra are
calculated over the time interval [1, 16] × 104.

Like in the WCA case, the spectra have maxima in the
low wavenumber range, which are not seen in simulations
without reactions. These maxima have lower values than in
WCA simulations and, as seen in the inset, there is a broader
range of excited modes. The tendency is that modes with
longer wavelengths than predicted by dispersion relation are
excited. This may be caused by relatively lower stability of
shorter wavelength structures outside the linear regime.

Next, we tested how stability of the structures is affected
by the wavelength and see how short a stable structure can be.
When decreasing the wavelength we are limited by the size of
the system in directions perpendicular to the z axis, because
the minimal structure wavelength has to be larger than lx and
ly in order to get a one-dimensional structure. Therefore, we
run a simulation for the WCA potential using same conditions
as in Fig. 2, but for nz = 17. Hence, the system length is close
to the minimal allowed wavelength and we expect a single
wavelength structure. Fig. 7 shows a space-time plot of the
result.

The predicted structure develops similarly to the case
with longer system size, but around t ≈ 8.5 × 104 there is
a transition to the homogeneous state (A0, B0). Probability
of such fluctuations-induced transition depends on the total
number of particles in the system, so it should be possible to
obtain stable structures with wavelength of this order, but in

0 0.5 1

lz/λmin

0

5

t/
10

4

0 0.25

FIG. 7. Same as Fig. 2, but for short system length, close to λmin.
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FIG. 8. Comparison of Fourier spectra for different λ0 and different inter-
molecular potentials. The blue line is for WCA potential and λ0 ≈ 31.5, the
pink for WCA and λmin ≈ 18 (case from Fig. 7), the red for LJ potential and
λ0 ≈ 40 and the black for LJ and λ0 ≈ 28. The spectra were calculated the
same way as in Fig. 4, but over the time interval [1, 8.5] × 104. System length
in each case fitted only one wavelength.

larger systems fitting more wavelengths. We do not simulate
this case due to long computation times and since it would
generate a three-dimensional structure.

To test the stability of the structures of different wave-
lengths, we ran simulations using the LJ potential for two sets
of parameters that give λ0 ≈ 28 and λ0 ≈ 40, each time with
system length equal to λ0. The Fourier spectra for different
wavelengths are compared in Fig. 8.

It is seen that the maxima are higher for longer wave-
lengths. This is because for short-scaled structures fluctua-
tions have stronger effect and they broaden and decrease the
spectrum around its maximum. Similarly, the maxima are bet-
ter defined when using WCA potential instead of LJ potential.
To directly determine the effect of intermolecular potentials
on structure stability, we compare spectra obtained from LJ
and WCA simulations done with equal rate constants, i.e., for
same dispersion relations. As stated before, LJ simulations
for rr = 0.56 result in effective trimolecular rate constant k2
≈ 2.1 × 10−2. When using WCA potential, we obtain approx-
imately the same value for rr = 0.55. We choose to compare
a case of lz ≈ 3λ0. Evolution of A concentration is shown in
Figs. 5(c) and 9 for LJ and WCA simulations, respectively.

A two-period structure emerges and is stable in WCA
simulations, instead of a three-period one predicted by the
theoretical analysis. In previous WCA simulations with
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FIG. 9. Same as Fig. 2(c), but for parameters that give λ0 ≈ 56.
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FIG. 10. Comparison of Fourier spectra for different λ0 and different inter-
molecular potentials. The black line is for LJ potential with λ0 ≈ 56, the
red is for the same λ0, but for WCA potential, and the blue line is for WCA
potential and λ0 ≈ 31.5. The spectra were calculated the same way as in
Fig. 4, but over the time interval [1, 14] × 104. System length in each case
fitted three wavelengths.

λ0 ≈ 31.5 we observed that initially a mode with longer wave-
length emerges and later, there is a transition to the expected
mode with the highest eigenvalue. We suspect that for λ0
≈ 56 such initial structure with λ > λ0 may dominate the
system for a long time, because the internal fluctuations are
smaller than for shorter wavelengths. Fourier spectra from
these simulations are presented in Fig. 10. For comparison,
spectrum for a WCA run with λ0 ≈ 31.5 and a three-period
structure is also plotted.

These spectra confirm that the structure is more stable if
the intermolecular attraction is not included and that struc-
tures with longer wavelengths are more stable.

So far we have been analysing spatial structures of con-
centration of one of the reactive species, A. Yet the Turing
structure of A and B species also imposes spatial inhomo-
geneities in concentrations of other species, including species
H that are not part of the Gray–Scott reactions scheme. This
observation could have important practical consequences. In
an experiment, using a single pair of A and B chemicals, one
could produce structures of many different molecules playing
the role of H. The condition is that these molecules diffuse
more slowly and are functionalised to bind A molecules.

V. CONCLUSIONS

Using molecular dynamics simulations we showed that
Turing patterns of characteristic length of nanometers can

form in bulk chemical reactions, despite strong fluctua-
tions. We obtained structures that have as little as 17 parti-
cles/wavelength, but as the wavelength decreases, the pattern
becomes less stable. We find that patterns are better defined
when using WCA instead of LJ potential, which means that
intermolecular attraction has a tendency to prevent formation
of structures. Therefore, formation of nanoscale Turing pat-
terns in real systems is more probable in higher temperatures,
where repulsive forces become more important.

The formation of Turing patterns requires a specific type
of reactions between A and B. Therefore, this mechanism
may not seem a robust method for pattern formation at the
nanoscale. However, as presented here, the A and B reactions
also induce a pattern in the concentration of H molecules,
which are not part of the Gray–Scott reactions scheme. There-
fore, having a single pair of reactants that can form a Tur-
ing pattern, patterns of any large heavy molecules can be ob-
tained if only those molecules are functionalised to bind A
molecules.

We observed that initially a structure with longer wave-
length than expected from linear stability analysis develops,
but after some time there can be a fluctuation-induced tran-
sition to the expected mode. Probability of this transition de-
creases with system size, because fluctuations in larger do-
mains are smaller. Moreover, fluctuations can cause a random
shift of the structure in space in the course of time.

The results of this study clearly indicate that the Turing
mechanism could be used to produce nanoscale patterns of
chemical concentrations.
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APPENDIX: MEASURED MACROSCOPIC CONSTANTS
FOR DIFFERENT MICROSCOPIC PARAMETERS

TABLE I. The observed diffusivities of species A and B and observed rate constant k2 of the trimolecular reaction for different parameters used. The diffu-
sivities were calculated from the mean square displacement of molecules in a homogeneous system in the state (A+, B+) without chemical reactions. The rate
constant was also calculated for a homogeneous system in this state. Rate constants of other reactions follow from Eqs. (8)–(10). The allowed modes and the
fastest growing mode were calculated by linear stability analysis. The cases are ordered as they appear in the text.

Potential rr mH k2 DA DB λ range λ0

WCA 0.56 104 7.2 × 10−2 7.6 × 10−3 7.5 × 10−2 (17, 61) 31.5
WCA 0.56 1 7.1 × 10−2 3.5 × 10−1 5.3 × 10−1 None . . .
WCA 0.56 104 no bonds 1.5 × 10−1 8.4 × 10−2 8.4 × 10−2 None . . .
LJ 0.56 104 2.1 × 10−2 6.9 × 10−3 7.2 × 10−2 (30, 111) 56.1
LJ 0.575 104 8.7 × 10−2 6.9 × 10−3 7.2 × 10−2 (18, 51) 28
LJ 0.566 104 3.6 × 10−2 6.9 × 10−3 7.2 × 10−2 (25, 89) 40
WCA 0.55 104 1.9 × 10−2 7.6 × 10−3 7.5 × 10−2 (34, 121) 60
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