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Estimating the density-scaling exponent of a monatomic liquid

from its pair potential
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This paper investigates two conjectures for calculating the density dependence of the density-scaling
exponent y of a single-component, pair-potential liquid with strong virial potential-energy cor-
relations. The first conjecture gives an analytical expression for y directly in terms of the pair
potential. The second conjecture is a refined version of this involving the most likely nearest-
neighbor distance determined from the pair-correlation function. The conjectures are tested by sim-
ulations of three systems, one of which is the standard Lennard-Jones liquid. While both expres-
sions give qualitatively correct results, the second is more accurate. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4869114]

. INTRODUCTION

Temperature is the standard parameter varied in experi-
ments investigating a liquid’s structure, dynamics, and ther-
modynamics. The thermodynamic phase diagram is not one-
but two-dimensional, however, so liquid properties can only
be mapped out completely by probing also high-pressure
states. In the study of glass-forming liquids, in particular,
high-pressure experiments have led to important new insights.
Thus in the last decade a regularity termed “density scaling”
has been convincingly established for a large class of glass-
forming liquids,'~® a scaling that also applies for less-viscous
“ordinary” liquids if proper reduced units are used.’ If T'is the
temperature and p the density, a liquid obeys density scaling
if its relaxation time—or, equivalently, viscosity—is a func-
tion of p?/T for some exponent . An important insight from
the discovery of density scaling is that density, not pressure,
is the relevant thermodynamic variable for understanding the
dynamics of liquids. The most widely investigated systems
in experiments are organic liquids and polymers. It has been
found that van der Waals bonded systems obey density scaling
to a good approximation, whereas hydrogen-bonded liquids
like glycerol often disobey density scaling.*'-1!

The isomorph theory provides a theoretical framework
for understanding the origin of density scaling for a large class
of systems.'?!* According to this theory, a liquid obeys den-
sity scaling whenever it has strong correlations between its
virial and potential-energy thermal equilibrium fluctuations at
constant volume. We originally called such liquids “strongly
correlating.” Many people inferred a connection to strongly
correlated quantum systems, however, so we now refer to the
relevant class as “Roskilde-simple liquids.” This name re-
flects the fact that these liquids are in many respects simpler
than other liquids'# (the term “simple liquid” is traditionally
used for all monatomic pair-potential systems, but some of
them do not have strong correlations and, on the other hand,
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many molecular systems do). It appears that most or all van
der Waals and metallic liquids are Roskilde simple, whereas
covalently- and hydrogen-bonded liquids, due to their direc-
tional bonding, are not. Likewise, systems with strong ionic
or dipolar interactions are generally not strongly correlating,
but systems with weaker such interactions may well be. Much
more work is needed to get the full overview of the class of
Roskilde-simple systems which, incidentally, includes solids
as well.

A Roskilde-simple liquid has isomorphs in its thermody-
namic phase diagram. These are curves along which a number
of structural, dynamic, and thermodynamic properties are in-
variant in reduced units.'”> In particular, the excess entropy
Sex (the entropy minus that of an ideal gas at the same den-
sity and temperature) is an isomorph invariant. Since the ex-
cess entropy is the entropy of the configurational degrees of
freedom, isomorphs are configurational adiabats. The oppo-
site does not apply in general, however, because all systems
have configurational adiabats.

According to the isomorph theory the density-scaling ex-
ponent y generally varies with the thermodynamic state point,
but only as a function of the density: y = y(p). The simu-
lations presented below confirm that density is the dominat-
ing factor. In experiments density often does not vary much
(5%-10%) and assuming a constant y usually works well.*
Recently it was shown, however, that for larger density varia-
tions y is not constant.'®> Isomorph scaling applies also in this
more general case.'

The present paper extends and tests recent results of
ours'® on approximations for calculating the density-scaling
exponent of single-component systems with pairwise additive
interactions. In contrast to the case of molecular liquids for
which there is still no theory for y, we show that one can
arrive at a reasonably good understanding of the scaling prop-
erties of monatomic pair-force liquids. Section II gives the
necessary theoretical background and arrives at two approx-
imate expressions for the density-scaling exponent, Sec. III
presents the three systems studied numerically, and Sec. IV
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compares simulation results to the predictions of the two
approximations. Finally, Sec. V shows that the approxima-
tions are equivalent to postulating isomorph invariance of the
effective Einstein frequency of the pair interaction at a certain
distance.

Il. THEORETICAL BACKGROUND

This section gives the background and motivation for
the simulations presented in Sec. III. Much of the mate-
rial in Secs. II A and II B is based on previous papers
(Refs. 14, 17, and 18) and may be skipped by readers familiar
with these works. Section II C arrives at the two conjectures
tested in the simulations.

A. Basics

We consider a classical-mechanical system of N particles
of mass m in volume V with density p = N/V. If the par-
ticle positions are denoted by ry, ..., ry, the collective 3N-
dimensional position vector is defined by R = (ry, ..., ry).
“Reduced units” refer to the unit system in which the length
unit is p~'3, the energy unit is kg7 where kg is Boltzmann’s
constant, and the time unit is p~'/3/m/kgT.

By uniform scaling of all coordinates a given microcon-
figuration of a thermodynamic state point corresponds to a mi-
croconfiguration at another density. By definition,!? two state
points (o1, T1) and (p,, T>) are isomorphic if a constant Cy;
exists such that the following applies: whenever two physi-
cally relevant microconfigurations of the state points, R; €
(p1, T1) and Ry € (p3, T>), have the same reduced coordi-
nates, i.e., o, " R| = ,021/3R2, one has

UR)\ _ U(Ro)
exp (‘k—r) = Coexp (‘k—r) - W

This defines a mathematical equivalence relation in the
thermodynamic phase diagram, the equivalence classes of
which are the system’s “isomorphs.” It is straightforward to
show that for an Euler-homogeneous potential-energy func-
tion of order —n, two state points are isomorphic whenever
p'f/3/T1 = ,o;/3/T2. In this case Cy, = 1, but for realistic sys-
tems Cip # 1 (in which case the reduced-unit free energy is
not constant along an isomorph).

The identity Eq. (1) implies that several quantities are
isomorph invariant when given in reduced units.'”> Examples
are the excess entropy, the isochoric specific heat, the instan-
taneous shear modulus, the diffusion constant, the viscosity,
etc. In fact, the entire reduced-unit microscopic dynamics is
predicted to be invariant along an isomorph, and so are all
structural measures, including higher-order spatial correlation
functions. Of course, since isomorphs are approximate, iso-
morph invariance is not exact.

Recall that the virial W(R) = (—1/3)R - VU(R) gives
the contribution to the pressure p from the interactions,'®2
which means that the average virial (W) modifies the ideal-
gas equation into pV = NkgT + (W). The Pearson correla-
tion coefficient R of the equilibrium, constant-volume WU
(virial potential-energy) fluctuations is defined by (where the
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brackets denote constant-volume canonical averages)

(AWAU)

R = .
VAW ((AU)?)

The criterion R > 0.9 provides a pragmatic delimitation of the
class of Roskilde-simple liquids.?!

Few if any systems with attractions have isomorphs
in their entire phase diagram. Computer simulations have
shown!? 14182225 that a typical Roskilde-simple liquid has
good isomorphs throughout its condensed liquid phase and
the entire crystalline phase.”® When the critical point and
the gas phase are approached, however, the isomorph the-
ory breaks down. High-pressure, high-temperature supercrit-
ical state points have good isomorphs when these are not too
far from the solid-liquid coexistence curve. Incidentally, this
curve is an isomorph, a fact that explains the many invariants
along the melting curve identified throughout the years (see,
e.g., Refs. 12, 27, and 28 and their references).

Several liquids have been found in simulations to be
Roskilde-simple, for instance:!#-21-23-25.29 The Lennard-Jones
(LJ) system® and its generalizations to mixtures and to
other exponents than 6 and 12, simple molecular liquids like
the asymmetric dumbbell or the Lewis-Wahnstrom ortho-
terphenyl (OTP) model,*' the Buckingham liquid with an ex-
ponentially repulsive term,*? the “Repulsive” LJ system (with
plus instead of minus between the two terms).'® Recently it
was shown that even the 10-bead rigid-bond, flexible LJ chain
has good isomorphs,? providing a highly nontrivial example
of a Roskilde-simple liquid. As mentioned, the theory works
well for the crystalline phase; thus a (classical) LJ crystal has
R > 0.99.17:26 In all cases the theory was checked by tracing
out isomorphs in the thermodynamic phase diagram and test-
ing for the predicted invariants. The different methods that can
be used for generating isomorphs in simulations have been de-
tailed elsewhere.'> 1833

Roskilde-simple liquids have simple thermodynamics. If
Sex 1s the excess entropy per particle, temperature factorizes
as follows'® kzT = fisex)h(p). Since excess entropy is an iso-
morph invariant, the isomorphs are consequently given by

2

—— = Const. 3
T ons 3)

B. The density-scaling exponent

The density-scaling exponent y is defined here by'?

_(9InT @
"=\ 9mp o

In experiment one would define y by keeping constant not the
excess entropy, but the relaxation time, defining a so-called
isochrone in the thermodynamic phase diagram. In practice
there is little difference between these definitions, because
according to the isomorph theory both entropy and reduced
relaxation time are constant along an isomorph.'? For the
systems for which density scaling has been most thoroughly
studied in experiment—supercooled liquids and polymers—
the difference between real and reduced relaxation time is
insignificant because the dramatic density and temperature
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dependence of the relaxation time totally dominates over the
factor which converts to reduced units. Recent works, in-
cluding also data for less-viscous liquids show, however, the
importance of working with reduced units to get the proper
density-scaling exponent.”3*

Whenever the right-hand side of Eq. (4) is constant, the
isomorphs are given by the well-known density-scaling ex-
pression p”/T = Const.* As mentioned, the density-scaling
exponent is usually identified in experiments by tracing out
the isochrones, for instance from the dielectric loss-peak fre-
quency’s variation with temperature and density.* In computer
simulations y is identified from NV T fluctuations using the
identity'?

(AUAW)

—_— 5
((AU)) ®

)/:

If v(r) = Zn en(r/o)™", the function h(p) inherits this
analytical structure in the sense that

h(p) =) anen(po’)'”? ©)

is a sum over the same n as appearing in v(r) (where o,
are constants).'>'® In combination with Eq. (3) this expres-
sion provides a convenient recipe for tracing out isomorphs in
the phase diagram. Moreover, this provides an expression for
y (p) because Egs. (3) and (4) imply

_dlnh
y_dln,o'

The analyticity property of h(p) does not allow for a unique
determination of y(p) from wv(r), however, because (ex-
cept for inverse-power law (IPL) systems) the function
h(p) involves one or more parameters determined from
simulations.'>'® It is the purpose of the present paper to in-
vestigate to which extent one can estimate y (o) more directly
from v(r).

(N

C. The elPL approximation and two conjectures
for estimating the density-scaling exponent

For an IPL pair potential, v(r) = e(r/o)™", the density-
scaling exponent is constant throughout the phase diagram
and given by

v=3- ®)

This follows from Eqs. (6) and (7) since h(p) o p">. The
question is how to generalize this result to realistic potentials.
One way ahead starts from the fact that for an IPL pair po-
tential o« ¥~" the ratio of the (p + 1)th and pth derivatives
obeys vV () /vP(r) = —(n + p)/r. This reasoning led us
in 2008 to define for any pair potential an effective, distance-
dependent approximate IPL exponent n” (r)!7 by

v(pﬂ)(,)

(p) = _—p—yp—o 7
nP) = —p ==

)
which for the IPL case reduces to n(r) = n for all p and r. If
one wishes to use Eq. (9) for determining the density-scaling
exponent via Eq. (8) for general pair potentials, the following
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questions arise: (1) Which value of p is to be used? (2) At
which distance should n”(r) be evaluated and how to relate
this distance to the density?

To address these questions we recall the “extended IPL
pair potential” (eIPL) defined'” by vepr(r) = a(r/o)™ + b
+ c(r/o). As shown in Ref. 17, this potential gives an ex-
cellent fit to the LJ pair potential over the entire first coordi-
nation shell if one chooses an exponent n = 18. This is far
from the value n = 12 one would naively expect from the
repulsive r~!2-term of the LJ potential. The reason is the of-
ten overlooked fact that due to the attractive term of the LJ
pair potential, the repulsive part of the potential (i.e., below
its minimum) is considerably steeper than predicted from the
repulsive 712 term alone.'”-2:35-38 At very high densities, of
course, the physics is given by the r~'2-term.

In Ref. 17 it was argued that the term c(r/o) contributes
little to the fluctuations of virial and potential energy in
the NVT ensemble. The reason is that a given particle is
surrounded by many others; if the particle is moved, some
nearest-neighbor distances increase and others decrease, and
the sum of all nearest-neighbor distances remains almost con-
stant. Consequently, as regards the potential-energy fluctua-
tions, the LJ system behaves largely as an IPL system with
an exponent close to 18; the same applies for the virial
fluctuations.!” The eIPL approximation, however, misses the
finer details of how and why the density-scaling exponent
varies throughout the thermodynamic phase diagram; we here
refer to it mainly as a source of inspiration.

Substituting verpr () into Eq. (9) for p = 2 yields n®(r)
= n for all . With this in mind, the eIPL potential suggests us-
ing n®(r) for generally estimating the effective IPL exponent
of a general pair potential of a Roskilde-simple liquid."”

At which distance should n®(7) be evaluated? One ex-
pects that the relevant distance is close to the typical nearest-
neighbor distance. All distances scale with density as oc p~/3,
so we estimate the density-scaling exponent from (compare

Eq. (8))

n®(r)

y(p) = (10)

3 r=Ap-1/3

It is straightforward to show that this expression implies
the above-mentioned analyticity property of h(p) when
v(r) =Y, e.(r/o)". The value A = 216 corresponds to the
nearest-neighbor distance of an FCC crystal as pointed out by
Lennard-Jones and Devonshire long ago.>* Equation (10) is
the first of the two expressions tested below by simulations.

There is no reason to believe, however, that the cor-
rect distance to use is the same for all thermodynamic state
points.'® A more realistic choice is the distance corresponding
to the most likely nearest-neighbor distance, i.e., the distance
at which rzg(r) obtains its maximum, where g(7) is the radial
distribution function (RDF). Since structure is invariant along
an isomorph, this implies the more general expression with r
= Ase)p™ "

n®(r)
3

V(0 Sex) = (11

r=AGe)p™ 1 P=p;
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In this case y is not a function exclusively of density as pre-
dicted by the isomorph theory.!? Note that the dimensionless
number A(sex) is the reduced value of the r giving the maxi-
mum of r2g(r).

lll. THE SYSTEMS STUDIED BY SIMULATION

In order to investigate how useful the above approxima-
tions are for estimating the density-scaling exponent we stud-
ied numerically three systems defined by the following pair

potentials:
[ o
() = % {(2)12 + (2)6} : (13)
wo=e |60 (O] o

The first function is the standard LJ potential, which is nor-
malized to have minimum value —e. The second function
is the “repulsive LJ” pair potential, which is normalized to
have the value € at r = . The negative term in v3(r) notwith-
standing, the LJ potential v;(r) is the only one with attractive
forces. These three systems are studied because, on the one
hand, they are simple in their definition, while on the other
hand they have qualitatively different behavior regarding the
density-scaling exponent’s variation with density (compare
Figs. 4 and 5 below).

The simulations were performed with the RUMD GPU-
based molecular dynamics package.** The NV T ensemble
with a Nose-Hoover thermostat was used throughout. All sim-
ulations involved 1000 particles. A shifted-force cutoff was
employed with r¢, = 3.50 for the LJ system and 7, = 2.50
for the two other systems.

In order to investigate the usefulness also of Eq. (11), we
simulated for each system a number of thermodynamic state
points along four isomorphs. The isomorphs were generated
using Eq. (3). According to the isomorph theory, this equa-
tion involves a unique function 4(p).'® However, since we are
here also interested in investigating possible variations going
from one isomorph to another, we determined one function
h(p) for each isomorph. Thus, following Ref. 15 each iso-
morph was generated via Eq. (3) from a h(p) function calcu-
lated at the reference state point defined by p = 1 (in units of
o) and a reference temperature via the correlation functions
(AU,AU), in which AU, is the fluctuation of the n—IPL term
of v(r).”

All LJ state points [v,(r)] simulated obey R > 0.91, all
repulsive LJ state points [v,(r)] simulated obey R > 0.99, and
all 3-IPL system state points [v3(r)] simulated obey R > 0.93
(Fig. 1). Figures 2(a)-2(c) show the radial distribution func-
tions at p = 1 at the reference temperatures from which the
isomorphs were generated. Clearly, the state points simulated
involve a considerable variation in structure.

Before proceeding to test the two proposed expressions
for the density-scaling exponent Eqgs. (10) and (11), we
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FIG. 1. The virial potential-energy correlation coefficient R of Eq. (2) as a
function of density for the state points simulated. The colors correspond to
the different isomorphs studied; the same color coding is used in the other
figures.
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FIG. 2. Radial distribution functions of the three systems at unit density and
the reference temperatures defining the different isomorphs studied.
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FIG. 3. Reduced-unit radial distribution functions g(r) and mean-square displacements along the lowest-temperature isomorphs, one for each of the three
systems. (a) The LJ system has a density range from 0.85 to 8.00, (b) the repulsive LJ system densities range from 0.1 to 8, and (c) the 3-IPL system has the
same density range. Given the considerable density variation, all three isomorphs are seen to have invariant structure to a good approximation. For the 3-IPL
system, however, the data bunch into a low- and a high-density set; the broken curve indicated with an arrow is at p = 0.70 where the system is in between the
low- and high-density “wings” of the potential. The mean-square displacements for the same state points are plotted in (d), (e), and (f), respectively—these are

all invariant to a very good approximation.

checked the isomorph invariance of structure and dynamics.
Figures 3(a)-3(c) give the radial distribution functions along
the lowest-temperature isomorph studied for each system (the
numbers in the legend represent 100 times the reference tem-
perature at density 1.00, so, for instance, IM040 means that
the isomorph was started at temperature 0.40, in the unit sys-
tem defined by the os and €s of Eqs. (12)-(14)). Given the
large density range studied, the predicted isomorph invariance
of structure and dynamics in reduced units is well obeyed.
Notably, the dynamics is more isomorph invariant than the
structure, something we have often observed and interpret as
follows. The pair potential is not an isomorph invariant, even
in reduced units. Thus, since the probability of close encoun-
ters is proportional to exp(—v(r)/kpgT) for r — 0, the way
g(r) goes to zero at small distances cannot be isomorph invari-
ant (even in reduced units). This affects the radial distribution
function below the first peak of g(r) and often also the peak
height, which is what one observes in Fig. 3. Interestingly, we
find both here and in previous simulations that this deviation
from isomorph invariance of structure does not affect the in-
variance of the dynamics—collective as well as individual—
an observation that, incidentally, explains the successful use
of the hard-sphere model for reproducing the dynamics of LJ-
type liquids.*!

Another notable point is that for the 3-IPL-term system
the RDFs cluster into two sets, one for low densities and

one for high (Fig. 3(c)). The low-density cluster is where the
n = 6 IPL term dominates, the high-density cluster is
where the n = 18 term dominates. This deviation from
perfect isomorph scaling is an expression of violations of
quasiuniversality:?® if the physics of the n = 6 and the n
= 18 systems were identical, there would be perfect collapse;
this is not the case, in part for the above discussed reason that
some deviations must occur.

IV. COMPARING THE CONJECTURES
FOR THE DENSITY-SCALING EXPONENT
TO SIMULATION RESULTS

We first compare the prediction for the density-scaling
exponent Eq. (10) to simulations for which y was calculated
at each state point using Eq. (5). The results are shown as
functions of density in Fig. 4 with one color for each iso-
morph. The full curve gives the prediction of Eq. (10) with
A = 1, the dashed curve with A = 26, We note the fol-
lowing. First, the three systems have quite different varia-
tions of y with density. Second, the isomorph-theory predic-
tion that y depends only on density is roughly obeyed. Third,
Eq. (10) gives a qualitatively correct representation of data for
all systems; in particular the significant differences between
the three systems are captured by this expression. Overall, the
pragmatic choice A = 1 works best, but it should be noted that
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FIG. 4. The density-scaling exponent y calculated from Eq. (5) as a function
of the density (one color for each isomorph) compared to the predictions of
Eq. (10) in which the full curves represent A = 1 and the dashed curve A
=216 (corresponding to the nearest-neighbor distance of an FCC crystal).

as temperature is lowered, the data move towards the density-
scaling exponent predicted for A = 26 This makes good
sense, because at lower temperatures the local structure is ex-
pected to be more like that of an FCC crystal (for which A
= 21/6) than at higher temperatures.

We proceed to compare the simulation data to the pre-
diction of the more general Eq. (11), for which A = A(sex)
determines the most likely nearest-neighbor distance as equal
to Ap~ ' at the reference temperature of the given isomorph;
perfect isomorph invariance of the structure would imply that
A is constant along an isomorph, which indeed applies to a
very good approximation (data not shown). The comparison
to Eq. (11) is shown in Fig. 5. In order to represent Eq. (11) as
a single curve for the different isomorphs the x-axis has been
redefined to the quantity p, = A~3p. Comparing to Fig. 4
it is clear that Eq. (11) provides a better fit to the data than
Eq. (10).

V. DISCUSSION

Our simulations show that Eq. (10) provides a qualita-
tively correct analytical estimate of the density-scaling expo-
nent from the pair potential. The simulations moreover show
that the (minor) deviations from the isomorph-theory predic-
tion that y depends only on density to some degree can be ra-
tionalized by assuming that the scaling factor converting den-
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FIG. 5. Same simulation data as Fig. 4, but here compared to the prediction
of Eq. (11) (full curve), in which A for each isomorph is determined from
the position of the most likely nearest-neighbor distance. The x-axis variable
is defined by p, = A~3p. Within our resolution (0.005) the A values were
found to be identical in (a) and (b).

sity to a distance varies slightly from one isomorph to another
(Eq. (11)). That such a variation must be allowed for in order
to get a more accurate prediction for y is not surprising, given
the fact that the isomorph theory is only approximate and that
the structure varies between different isomorphs.

In the isomorph theory y is given by Eq. (7) in which &
depends only on the density. Having in mind the more general
expression Eq. (11), we can generalize Eq. (7) by proceed-
ing as follows. First one notes that Eq. (9) for p = 2 can be
written as n®(r) = —d In[r>v"(r)]/d Inr. Thus, since dlnr
= —dIn p/3, Egs. (4) and (11) imply

(31nT> _ <8 ln[rzv”(r)]|,_/\(sex)p1/3) . (15)

dlnp dlnp

Integrating this leads to In7 = ln[rzv”(r)]|r=A(S‘ Yo 113
+ K (sex) for some function K(sex). This means that one can
write kgT = f(Sex)1(0, Sex) for some function f(s.x) and

h(p, sex) = Ap~ 20" ()] r=Agsp 15+ (16)

Here A is an (arbitrary) multiplicative constant; it can be cho-
sen such that % is unity at a reference density on a given iso-
morph. Note that given A(sex), Which can be determined from
a single simulation at the reference density of a given iso-
morph, Eq. (16) provides a convenient way of tracing out the
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entire isomorph via

M Se) gt (17)
T
This generalizes the isomorph theory’s recipe Eq. (3).
Choosing for now A = 1, in terms of reduced
coordinates'? one has
% = 7Pl (18)

Physically this corresponds to the square of an effective, re-
duced “Einstein” frequency of a single particle pair. It makes
good sense that the relevant reduced distance A at which to
evaluate this quantity corresponds to the most likely (reduced)
nearest-neighbor distance. We emphasize that isomorph in-
variance of t”)”('r“)|F= Alsen) is not a consequence of the iso-
morph theory. In fact, the statement that this expression is iso-
morph invariant expresses in a concise way the main findings
of this paper.

All together we conclude that the scaling properties of
monatomic Roskilde-simple liquids are now fairly well un-
derstood. A similarly good understanding applies for neither
multicomponent atomic nor molecular Roskilde-simple sys-
tems. These are large and important classes of systems that
represent important challenges for future work.
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