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Dynamic thermal expansivity of liquids near the glass transition
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Based on previous works on polymers by Bauer et al. [Phys. Rev. E 61, 1755 (2000)], this paper describes a
capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented
for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704) in the ultraviscous regime. Compared to
the method of Bauer et al., the dynamical range has been extended by making time-domain experiments and by
making very small and fast temperature steps. The modeling of the experiment presented in this paper includes
the situation in which the capacitor is not full because the liquid contracts when cooling from room temperature
down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather
than a polymer.
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The glass transition occurs when the configurational
degrees of freedom of a liquid are frozen in. Below the
glass-transition temperature, Tg , only isostructural contraction
takes place as temperature is decreased further. The measured
thermal-expansion coefficient αp (and heat capacity cp) are
therefore lower in the glass than in the equilibrium liquid.
This change of the thermal-expansion coefficient (and the heat
capacity) is probably the most classical signature of the glass
transition, and a figure illustrating this change (see Fig. 1) is
almost inevitably the starting point of introductory talks or
texts on the glass transition (see, e.g., Refs. [1] and [2]).

The change in the heat capacity at the glass transition,
�cp = cp,liq − cp,glass, has been studied extensively and is
widely believed to play a role for the dynamics of liquids close
to the glass transition. The change in expansion coefficient,
�αp = αp,liq − αp,glass, has received less attention but is of
similar importance. This is seen, for instance, in the literature
related to the Prigogine-Defay ratio, a dimensionless number
characterizing the glass transition [3–7].

The glass is an out-of-equilibrium state and therefore the
values of the thermodynamic derivatives are not rigorously
well defined. They depend on cooling rate and also on the time
spent in the glassy state. Contrary to this, the linear response
of the metastable equilibrium liquid state is well-defined and
history-independent [7]. The linear expansion coefficient of
a viscous liquid close to its glass transition is dynamic, that
is, time- (or frequency-) dependent, with short times giving a
low (glasslike) value, αp,fast, while long times give a higher
liquid value, αp,slow. The difference between these two levels,
�αp,lin = αp,slow − αp,fast, thus gives well-defined informa-
tion on the configurational part of the expansion coefficient.
Likewise, �cp,lin = cp,slow − cp,fast is well-defined.

The relaxation between the fast and the slow response takes
place on a certain time scale which is temperature-dependent.
Considered in this way, the measurement of the expansion
coefficient, just like the heat capacity [8,9], can be viewed as
a type of spectroscopy, which gives both a relaxation time and
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a spectral shape analogous to other methods such as dielectric
spectroscopy or mechanical spectroscopy. The study of the
temperature dependence of relaxation times and of the spectral
shape of different response functions is vital for understanding
the viscous slowing down. There is a general belief that
the liquid has a relaxation time that is fairly well-defined
independent of probe, but there are also suggestions that
different processes may decouple from each other at low
temperatures [10].

There are good scientific reasons to study the dynamic
linear expansion coefficient, but almost no data of this
type are to be found in the literature. The time-dependent
expansion coefficient can be found by studying the change in
volume as a function of time after a temperature step. Such
volume relaxation experiments are very classic in glass science
and are still important [11–14]. However, volume relaxation
experiments are traditionally performed as nonlinear aging
experiments, i.e., with large amplitudes in the temperature
jump. This type of experiment gives information on the
relaxation of the configurational degrees of freedom, but
the expansion coefficient and its characteristic time scale
cannot be determined because the results depend on the
amplitude and sign of the temperature jump. For sufficiently
small temperature steps, this is not the case; this defines the
linear-response regime.

The only linear dynamic data of which we are aware
were reported about a decade ago by Bauer et al. [15,16]
followed by a paper by Fukao and Miyamoto [17]. These
papers reported frequency-domain measurements on thin
polymer films, performed with temperature scans at a couple
of fixed frequencies, covering 1.5 decades of the dynamics.
The measurements were pioneering, but 1.5 decades is not
very much for studying relaxation in viscous liquids because
the relaxation is extremely temperature-dependent and quite
“stretched,” which means that even at one fixed temperature
the relaxation covers several decades.

The technique developed by Bauer et al. is based on a
principle by which the sample is placed in a parallel plate
capacitor such that it is the sample that maintains the spacing
between the plates. Thus a change in sample volume in
response to temperature change leads to a change of the
capacitance. This principle is also used in the present work.
The advantage of this technique is that capacitance can be
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FIG. 1. Illustration of the temperature dependence of the volume
and expansion coefficient of a liquid in the vicinity of the glass
transition. Upon cooling, the expansivity decreases abruptly at
the glass transition. This gives rise to a kink in the temperature
dependence of the volume. These features are the original signatures
of the glass transition.

measured with high accuracy, and it is this accuracy that makes
linear experiments possible.

The use of sample-filled capacitors for measuring an
expansion coefficient is not unique, and it has been done by
others before and after Bauer et al. (see, e.g., Refs. [18–21]) in
capacitative scanning dilatometry, i.e., working in a tempera-
ture ramping mode. To the best of our knowledge, capacitative
scanning dilatometry has never been used on simple liquids. It
is particularly useful for studying thin polymer films because
the signal gets better with a thin sample. The technique has
been used for determining the glass-transition temperature, for
example as a function of film thickness [19,20] or as a function
of cooling rate [18]. The main focus of these papers is on the
temperature dependence of the expansion coefficient, while
little attention is given to the absolute values. There have been
no studies of the dynamics since the pioneering work of Bauer
and no attempts to extend the dynamical range.

To the best of our knowledge, there are no measurements of
the dynamic linear expansion coefficient of molecular liquids.
The reported data from scanning dilatometry and nonlinear
volume relaxation are also mainly for polymers, while data
on molecular liquids are relatively scarce. This may be due

to the higher technological importance of polymers. It is
probably also related to the fact that working with molecular
liquids requires other experimental conditions, meaning that
techniques developed for polymers are not always directly
applicable to liquids.

This paper gives a description of an experimental method
developed for measuring the dynamical expansion coefficient
of a viscous liquid. As mentioned, the principle is based on
the capacitive technique by Bauer et al. [15,16]. The method
is modified in three respects compared to the work of Bauer
et al.: (i) The modeling takes into account the situation in which
the capacitor is not full, which is relevant when measuring
on a molecular liquid rather than on a polymer. (ii) The
experiment is performed in the time domain using a very
fast temperature regulation, which gives a dynamical range
of more than four decades. (iii) The sensitivity is enhanced
by using a capacitance bridge with a very high resolution.
This makes it possible to measure the response following very
small temperature steps, ensuring that the response is close
to perfectly linear. As an application of the technique, the
paper presents data on the glass-forming liquid tetramethyl
tetraphenyl trisiloxane (DC704) in the ultraviscous regime.

I. RESPONSE FUNCTIONS WITH
CONSISTENT DIMENSIONS

In a linear-response experiment, the response of a system
to an external perturbation is studied. If the perturbation is
small, the output is assumed to be linearly dependent on the
input. The formalism to describe this is well known. However,
different formulations can be used, and the version used in this
work when converting the measured time-domain response to
the frequency-domain response function may not be the most
common one. The formalism used here has the advantage that
the time-domain response function and the frequency-domain
response function have the same dimension and there is
no differentiation involved when transforming between the
two. This section gives a summary of the response function
formalism used, including a comparison to the standard
formalism.

The fundamental assumption is that the output depends
linearly on the input. The most general statement is that the
change in input dI (t ′) at time t ′ leads to a contribution in
output dO(t) at time t :

dO(t) = R(t − t ′)dI (t ′). (1)

It is assumed here that the change in output only depends on
the time difference (t − t ′). Causality implies that

R(t) = 0 for t < 0. (2)

Integrating on both sides of Eq. (1),

O(t) =
∫ t

−∞
R(t − t ′)dI (t ′),

and substituting t ′′ = t − t ′ and writing İ (t) = dI (t)

dt
,

O(t) = −
∫ 0

∞
R(t ′′)İ (t − t ′′)dt ′′.
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Changing t ′′ to t ′,

O(t) =
∫ ∞

0
R(t ′)İ (t − t ′)dt ′. (3)

If the input is a Heaviside function,

I (t) = I0H (t) = I0

{
0 for t � 0,

1 for t > 0,

then

O(t) = I0

∫ ∞

0
R(t ′)δ(t − t ′)dt ′ = I0R(t), (4)

and it is seen that R(t) is the output from a Heaviside step
input.

Linear response can also be studied in the frequency
domain. In the case of a harmonic-oscillating input I (t) =
I0e

i(ωt+φI ), the output O(t) = O0e
i(ωt+φO ) will be a periodic

signal with the same frequency ω, but there will be a phase
shift of the output relative to the input. From Eq. (3), the output
is

O(t) =
∫ ∞

0
R(t ′)iωI0e

iφI eiω(t−t ′)dt ′

= I0e
iωt eiφI iω

∫ ∞

0
R(t ′)e−iωt ′dt ′ = I (t)R(ω),

where R(ω) is the frequency domain response function, which
is given by the Laplace transform of R(t) times iω:

R(ω) = iω

∫ ∞

0
R(t ′)e−iωt ′dt ′. (5)

The linear-response relation is often expressed in an alternative
formulation, where the linearity assumption is expressed by

O(t) =
∫ t

−∞
μ(t − t ′)I (t ′)dt ′,

where μ is sometimes called the memory function, but it is also
sometimes called the response function. The use of the term
“response function’ for μ(t) is somewhat inconvenient because
it has a different dimension compared to the frequency-domain
response function R(ω). Substituting again (t ′′ = t − t ′) and
changing t ′′ to t ′,

O(t) =
∫ ∞

0
μ(t ′)I (t − t ′)dt ′.

Applying a Heaviside input again,

O(t) =
∫ ∞

0
μ(t ′)IoH (t − t ′)dt ′ = I0

∫ t

0
μ(t ′)dt ′. (6)

From Eqs. (4) and (6), we have

R(t) =
∫ t

0
μ(t ′)dt ′,

and therefore
dR(t)

dt
= μ(t). (7)

In the memory function formalism, the frequency-domain
response is again found by inserting a harmonic-oscillating
input. In this case, the result becomes

R(ω) =
∫ ∞

0
μ(t ′)e−iωt ′dt ′ =

∫ ∞

0

dR(t ′)
dt ′

e−iωt ′dt ′,

where the last equality comes from inserting Eq. (7). This
expression is formally equivalent to Eq. (5), which can be
shown by integration by parts and by invoking R(t = 0) = 0.
However, when converting data in practice, Eq. (5) has the
advantages that differentiation of the time-domain data is
avoided. It is always good to avoid differentiation of numerical
data because it introduces increased noise. Moreover, if we in-
troduce an “instantaneous” response in terms of R(t → 0) �= 0
corresponding to very short times where we cannot measure
the time dependence of the response, then this information
would be lost by differentiation.

II. PRINCIPLE, DESIGN, AND PROCEDURE

The method requires that there is a simple relation between
sample density and dielectric constant. The dielectric constant
in general has two contributions: atomic polarization and
rotational polarization [22]. The atomic polarization is due
to the displacement of the electron cloud upon application
of a field. This contribution is governed by the microscopic
polarizability of the molecule, x (usually called α, but α

is reserved for the expansivity in this paper). The atomic
polarizability can be assumed to be temperature- and density-
independent in the relevant range. This means that the desired
simple relation between density and dielectric constant can be
obtained when the atomic polarization is the only contribution.

The rotational polarization is due to rotation of the per-
manent dipoles in the sample. This contribution is relevant
when the liquid has a permanent dipole moment and mainly at
frequencies lower than or comparable to the inverse relaxation
time of the liquid. The rotational contribution gives the
dielectric signal monitored in standard dielectric spectroscopy.
The rotational polarization is temperature-, density-, and
frequency-dependent, and it is therefore nontrivial to relate the
density to the dielectric constant when rotational polarization
is present. Therefore, in capacitative dilatometry it is a
contribution one would like to avoid. It is sometimes assumed
that the high-frequency plateau value of the dielectric constant
measured in dielectric spectroscopy contains only atomic
polarization and that it corresponds to the square of the
refraction index n2. However, there is also a fast (“glasslike”)
contribution to the rotational part of the polarization. The
fast rotational contribution will dominate over the geometric
effects even at high frequencies if the sample has a high dipole
moment. This was demonstrated in Ref. [23]. To minimize the
rotational contribution, two things are done: (i) Only liquids
with very small dipole moment are studied, i.e., liquids in
which the atomic polarization is dominant at all frequencies
and temperatures. (ii) These liquids are only studied at
frequencies much higher than the inverse relaxation time. In
the data reported in this paper, the measuring frequency is
10 kHz and the relaxation time is 100 s or more.

The cell is a capacitor made of circular copper plates of
1 cm diameter and 1 mm thickness, with a 50-μm spacing. The
separation is kept by four 0.5 mm × 0.5 mm and 50-μm-thick
Kapton spacers. The spacing between the capacitor plates is
filled with the sample liquid. The thin spacing results in a
reasonably large dielectric signal (empty capacitance is 14 pF)
despite the small size. The thin spacing moreover makes it
possible to heat or cool the sample fast, even though the heat

041501-3



NISS, GUNDERMANN, CHRISTENSEN, AND DYRE PHYSICAL REVIEW E 85, 041501 (2012)

Microregulator

Control System

TemperaturePeltier element

Dielectric cell
+

Copper base

Electrode pin NTC thermistor

−

PEEK posts

DC current

FIG. 2. (Color) Schematic drawing of the dielectric measuring
cell with the microregulator. The liquid is deposited in the 50 μm
gap between the disks of the dielectric cell. The Peltier element
heats or cools the dielectric cell, depending on the direction of the
electrical current powering the element. The current is controlled
by an analog temperature-control system that receives temperature
feedback information from an NTC thermistor embedded in one disc
of the dielectric cell (reproduced from Ref. [25]).

diffusion in the sample liquid is slow compared to the heat
diffusion in the copper plates.

The cell is integrated with a microregulator, which is a tiny
temperature regulator based on an NTC thermistor (placed in
the lower copper plate of the capacitor cell), a Peltier element
acting as a local source of heating and cooling, and an analog
proportional-integral-derivative (PID) control. The integrated
cell and microregulator are placed in our main cryostat. With
this setup, the temperature of the sample can be changed by
steps of up to 2 K within less than 10 s and the temperature
can be kept stable within a few micro Kelvin over days and
weeks. The cell is shown in Fig. 2 and the whole system of the
main cryostat and the microregulator is described in detail in
Ref. [24].

The temperature of the microregulated cell is calibrated
to the average temperature of the main cryostat. This is
done by adjusting the microregulator’s set point until the
regulation power of the microregulator fluctuates around zero.
The temperature is moreover measured with the thermistor
bead both before and after turning on the microregulator, and
finally the calibration is verified by checking that the dielectric
response of the sample does not change by turning on the
microregulator.

The principle of the experiment is to make an “instan-
taneous” step in temperature and subsequently measure the
capacitance at a fixed frequency as a function of time. From
the capacitance we calculate the time-dependent expansion
coefficient. In order for the temperature step to be “instanta-
neous” compared to the time scale of the relaxation, we need
the relaxation time to be 100 s or longer. This means that
the measurements are performed at or below the conventional
glass-transition temperature. Nevertheless, it is important to
emphasize that the liquid is in equilibrium when the exper-
iment is performed because we wait at least five relaxation
times whenever stepping to a new temperature before making
a measurement. The measurements themselves also must be
carried out over five relaxation times in order to obtain the
relaxation curve all the way to equilibrium. Altogether, it
takes days and sometimes even weeks to take a spectrum at a
given temperature. This means that the experiment would be
impossible without the stable temperature control ensured by
the microregulator.

The relaxation time of viscous liquids close to the glass
transition is extremely temperature-dependent. We therefore
need to make small temperature steps in order for the measured
response to be linear. This means that the change in volume and
thereby the measured capacitance is very small; the relative
changes in capacitance dC/C are of order 10−4. We use
an AH2700A Andeen Hagerling ultraprecision capacitance
bridge, which measures capacitance with an accuracy of
5 ppm and true resolution of 0.5 aF in the frequency range
50 Hz–20 kHz. The capacitance is measured every second at
10 kHz.

The sample used is liquid at room temperature and
the capacitor is filled by letting the liquid imbibe using the
capillary effect. Complete filling is checked by measuring the
capacitance before and after filling, comparing to the measured
dielectric constant measured at the same temperature with a
larger capacitor (which is easy to fill).

III. GEOMETRY AND BOUNDARY CONDITIONS

In order to model the relation between the measured
change in capacitance and the expansion coefficient, some
assumptions must be made regarding the behavior of the
liquid during the experiment. In this section, we describe these
assumptions and the arguments on which they are based.

The capacitor is filled completely at room temperature with
a low-viscosity molecular liquid. The measuring temperatures
(close to and below the conventional glass-transition tempera-
ture) are typically around 100 degrees below room temperature
for these types of liquids. The cooling makes the liquid contract
in the radial direction because the distance between the plates
is maintained by the spacers (which have a much smaller
expansion coefficient). This has the consequence that the
capacitor is not completely filled at the temperatures where
the measurements take place. This gives rise to a difference
compared to the measurements done on polymers in earlier
work [15,16], a difference which is taken into account when
calculating the relation between the expansion coefficient and
the change in capacitance in the following section.

The liquid contracts (expands) radially as long as it has
low viscosity, but the situation changes when the liquid
becomes ultraviscous. At high viscosities, the liquid gets
clamped between the plates due to the small distance between
them. This has the consequence that the liquid can no longer
contract (expand) upon cooling (heating) by flowing radially,
but will contract (expand) vertically and pull (push) the plates,
changing the distance between them. This effect is the basis
for the measurement, because the vertical expansion makes
the capacitance change, and we calculate the expansion from
the change in capacitance.

The distance between the plates is kept by the Kapton
spacers at high temperatures (and long times) when the sample
liquid flows. However, at times when the sample cannot flow,
it is the sample, not the Kapton spacers, that determines the
distance. This is true because Kapton has a stiffness [26] of
the same order of magnitude as the sample (in the GPa range),
but only takes up approximately 1% of the area between the
plates.

The temperature change gives rise to an internal pressure,
which is released by pressure diffusion via viscous flow. The
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characteristic time τflow of the radial flow between two plates
of fixed distance l can be estimated by the following argument.
A temperature step of �T initiates an internal pressure
�p = KT αp�T in the liquid. This creates a radial flow that
eventually discharges the surplus volume �V = �T αpπR2l.
Although the volume flows in the radial direction, we may
take as a crude estimation the volume velocity V̇ of planar
Pouiseuille flow [27], V̇ = �p

12ηL
Wl3, where L (the dimension

in the direction of the flow) can be taken as R, and W

(the dimension perpendicular to the flow) can be taken as
2πR. The characteristic discharge flow time then becomes
τflow = �V

V̇
= 6 η

KT
(R

l
)2. The high-frequency shear modulus

is of the same order of magnitude as the bulk modulus. It
follows that the Maxwell relaxation time, τM is roughly given
by τM = η/G∞ � η/KT and that τflow ∝ (R/l)2τM. In the
experiment, we have l = 50 μm and R = 5 mm, from which
it follows that the radial flow time is 10 000 times longer
than the Maxwell time. The α relaxation time is roughly given
by the Maxwell time; the flow time will be more than ten
days when the α relaxation time is 100 s. This means that the
liquid can be considered as radially clamped in the region we
study (where all relaxation times are longer than 100 s). The
transition between the radial flow and the clamped situation
can be seen in the capacitance when it is measured as a function
of temperature, and the observed behavior is consistent with
the above estimate.

The expansion coefficient we study with the boundary
conditions described above is not the conventional isobaric
expansion coefficient, αp = 1

V
∂V
∂T

|p, because the liquid is
clamped in two directions and only free to move in one
direction. We call this expansion coefficient the longitudi-
nal expansion coefficient, in analogy with the longitudinal
modulus (another name for it could be the iso-area expansion
coefficient). It is expressed by αl = 1

V
∂V
∂T

|A = 1
l

∂l
∂T

|A, where
A is the constant area and l is the dimension, which is free to
respond to the temperature change. The longitudinal expansion
coefficient is related to the isobaric expansion coefficient αp

via the following relation:

αl(ω) = 1

1 + 4G(ω)
3KT (ω)

αp(ω),

where G is the shear modulus and KT is the isothermal bulk
modulus, which are both dynamic, i.e., frequency- or time-
dependent, as are the thermal-expansion coefficients.

From this expression, we see that αl is smaller than αp,
except at low frequencies (long times or high temperatures),
where G = 0, which implies αl = αp. This expression for the
longitudinal expansion coefficient is given (but not derived)
in another equivalent form in terms of Poisson’s ratio in
Refs. [15,19,28] and can be derived from row 3 of Eq. (53)
in Ref. [29]. Also note that there is a total lack of standard
notation. Bauer et al. use αp to note the linear expansion
coefficient, which is the quantity often used to express the
volume expansion of solids. That is, their αp is 1/3 of our
αp. The linear expansion coefficient is called αL by Wallace
et al. [28], while Fukao et al. [19] call it α∞. The quantity we
call the longitudinal expansion coefficient αl is denoted αCA

(CA denotes clamped area) by Bauer, αN by Wallace, and αn

by Fukao (n denotes normal).

IV. RELATING THE MEASURED CHANGE
IN CAPACITANCE TO αl

A. Deriving the relation

In the measurement, we perform a small temperature
step δT and subsequently measure the capacitance Cm as
a function of time. From the measurements, we find the
time-dependent quantity 1

Cm

�Cm

�T
(t). In this section, we show

that this quantity is proportional to the expansion coefficient,
αl(t), with a proportionality consant, P, that depends on the
high frequency dielectric constant, ε∞, and the degree of filling
of the capacitor, f , but not on the geometrical capacitance or
the distance between the plates.

The starting point is that the only contribution to the high-
frequency dielectric constant, ε∞, is the atomic polarizability
(Sec. II). Moreover, we use the Lorentz field [22] from
which it follows that the dielectric constant is given by the
Clausius-Mossotti relation:

ε∞ − 1

ε∞ + 2
= n

3ε0
x,

where x is the polarizability of a single molecule, n is
the number density of molecules, and ε0 is the vacuum
permeability.

Moreover, we assume that we have a parallel plate capacitor
which is partially filled with a dielectric liquid. The degree of
filling is denoted by f and the measured capacitance is given
by

Cm = f ε∞
Aε0

l
+ (1 − f )

Aε0

l
= [f ε∞ + (1 − f )] Cg, (8)

where Cg = Aε0
l

is the geometrical capacitance of the empty
capacitor at the given temperature.

The derivative with respect to temperature is now given by

dCm

dT
= [f ε∞ + (1 − f )]

dCg

dT
+ Cgf

dε∞
dT

. (9)

Here it is assumed that the liquid does not contract radially
at the temperatures (and on the time scale) we consider (see
Sec. III), thus df/dT = 0. The next step is to calculate dCg

dT

and dε∞
dT

under the assumption that the area is constant. This
was done by Bauer [15,16]. For completeness, we include a
detailed derivation as an Appendix. The result is

dε∞
dT

= −K(ε∞)αl, (10)

where K(ε∞) is given by K(ε∞) = (ε∞ − 1)(ε∞ + 2)/3 and

dCg

dT
= −Cgαl . (11)

Inserting Eqs. (10) and (11) into Eq. (9) yields

dCm

dT
= [f ε∞ + (1 − f )](−Cgαl) − Cgf K(ε∞)αl

= −Cg[f ε∞ + (1 − f ) + f K(ε∞)]αl .

Inserting Cg = Cm/ [f ε∞ + (1 − f )] and dividing by Cm

leads to

1

Cm

dCm

dT
= −f ε∞ + (1 − f ) + f K(ε∞)

f ε∞ + (1 − f )
αl . (12)
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Finally, isolating αl gives

αl = − f ε∞ + (1 − f )

f ε∞ + (1 − f ) + f K(ε∞)

1

Cm

dCm

dT
,

(13)

αl = P (f,ε∞)
1

Cm

dCm

dT
,

where

P (f,ε∞) = − f ε∞ + (1 − f )

f ε∞ + (1 − f ) + f K(ε∞)
.

B. The absolute value of αl

The determination of αl and also the uncertainties of
the measured value depend on determining correctly the
proportionality constant P (f,ε∞). In order to do so, we need
to determine the relevant values of f and ε∞. To find f we use
the expansion coefficient, and to find the dielectric constant
ε∞ we use the measured empty capacitance along with the
measured full capacitance.

The high-temperature expansion coefficient is found by
standard dilatometry [30] to be 0.7 × 10−3 K−1; at low
temperatures we find [31] that it is around 0.5 × 10−3 K−1

in the long-time limit. We use 0.6 × 10−3 K−1 as an average
value, and we find from this that the degree of filling is
f = 0.95 if the liquid is assumed to contract radially down
to 213 K, where the relaxation time is 100 s. The choice of
expansion coefficient in the range (0.5–0.7)×10−3 K−1 and
final temperatures in the range 210–215 K makes f change
with ±1%. The effect of changing f within this range leads
only to ±0.5% changes in P (f,ε∞).

Isolating the dielectric constant from Eq. (8) gives

ε∞ = Cm − Cg(1 − f )

f Cg

. (14)

From this it is seen that the uncertainty in f also gives an
uncertainty in ε∞, and this actually has a greater impact on the
uncertainty of P than the direct effect of the uncertainty on
f . Including this effect, the uncertainty in P due to uncertain
degree on filling is still only ±1%.

In order to determine ε∞ from Eq. (14) we need to know the
geometric capacitance, Cg . This is found from measurements
on the empty capacitor at the measuring temperature. We
estimate that the uncertainty is ±2% on Cg . This estimate
is made by comparing measurements made on the capacitor
after assembling it anew. The total uncertainty on ε∞ is roughly
±3%, which leads to an uncertainty on P of ±2%.

Altogether, the uncertainty on P (f,ε∞) and therefore on the
absolute value of αl is about ±3%. It should be emphasized
that this uncertainty has no effect on the shape or the time
scale of the measured relaxation. This is so as long as we stick
to linear experiments. For larger temperature steps, there will
be (at least in principle) some second-order effects making
P (f,ε∞) change during the relaxation because of the change
in ε∞.

In the modeling of the connection between measured
change in capacitance to αl , we have not considered the
radial expansion of the electrode plates. Including this (in
the simplest possible way) gives rise to an extra additive term

1
Cm

ε0
l

dA
dT

in Eq. (12). The size of this term will be given by the

linear expansion coefficient of the electrodes. In this case they
are made of copper, which at the relevant temperature has a
linear expansion of approximately 15 × 10−6 K−1. The total
measured change in the capacitance is about 50–100 times
bigger, thus the effect is small. However, the time dependence
is different, therefore it could be relevant to include this effect
in the future. Alternatively, we also consider shifting to an
electrode material with an even smaller expansion coefficient
in order to avoid the effect altogether.

The parasite capacitance from the edge is not considered in
the modeling described above. An upper bound on the parasite
capacitance is estimated by using the expression for the edge
effect of an empty circular capacitor (found in Ref. [32]),
and assuming that the edge capacitance is unaffected by the
dielectric liquid between the plates. The maximal effect of the
edge on the measured 1

Cm

�Cm

�T
(t) is 1%, and it is something

that should be considered if further refinements are made on
the technique. This could be handled, for instance, by using
different spacer thicknesses.

It should be kept in mind that we have used the Lorentz field.
This is an important assumption, and the use of another local
field when connecting the density with the dielectric constant
will change the result. Using the macroscopic Maxwell field
will yield the same everywhere, except for K(ε∞) in Eq. (10),
which will be given by KMax(ε∞) = (ε∞ − 1) instead of
KLor(ε∞) = (ε∞ − 1)(ε∞ + 2)/3. This leads to a 20% increase
in P and the calculated numerical value of αl . Again we stress
that using another local field will change the absolute values,
but it will not change the time scale or shape of the measured
relaxation.

While none of the above-mentioned factors affect the time
scale or the spectral shape of the measured relaxation, the
temperature dependence of ε∞ could in principle affect the
temperature dependence of the calculated αl . However, this
effect is negligible over the 6 degree range studied in this
work, and P will be considered constant.

To summarize, the problems discussed in this section can
lead to an unknown temperature- and frequency-independent
scaling of all the measured αl values.

C. The shape of the relaxation curve

In the following, we describe the measuring protocol in
detail and a correction made to the data. Moreover, we use
this to give an estimate of the uncertainty on the shape of the
relaxation curves reported.

A main issue is, of course, the first part of the measuring
curve where the temperature reaches in equilibrium. Figure 3
shows details of a single temperature step. It is clearly seen
how the target temperature is achieved within less than 10 s,
corresponding to a characteristic time of 2 s.

Figure 4(a) shows a typical set of temperature steps: a series
of up and down jumps are made at the same temperature, with
variable amplitude.

Figure 4(b) shows the raw measured capacitance corre-
sponding to the temperature steps in Fig. 4(a). Two things
are worth noticing. First, we see the expected rise in
capacitance when temperature is decreased. Secondly, we see
a long-time drift of the equilibrium level. At low temperatures
where the liquid cannot contract radially, it contracts vertically.
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FIG. 3. (Color) Zoom on the temperature monitored in the NTC
bead in the lower capacitor plate during the first 40 s of a temperature
step.

Comparing measurements on the empty capacitor with liquid
filled measurements, we estimate that the expansion coefficient
of the liquid is roughly 10 times larger than that of the
Kapton spacers. This means that the liquid compresses the
Kapton. However, on very long times it will be the Kapton
that dominates (because the liquid flows), and the Kapton
will therefore slowly relax and press the electrodes apart. We
believe that this effect is what leads to the long-time drift seen
in Fig. 4(b). The drift is subtracted before treating the data, as
illustrated in Figs. 4(c) and 5.

We make both up jumps and down jumps in temperature,
and the subtraction of the drift has an opposite effect on the two.
We can therefore check that the subtraction is made correctly
by comparing up jumps and down jumps. This is illustrated
in Fig. 6. The superposition of data obtained in up and down
jumps also demonstrates that the experiment is linear and gives
a general estimate of how precise the determination of the
curve shape is.

The relaxation time is strongly temperature-dependent
when the liquid is close to the glass transition, and therefore

−1 0 1 2 3 4 5

35.760

35.762

35.764

35.766

35.768

35.770

log
10

(t) [s]

C
′ [

pF
]

FIG. 5. (Color) The corrected measured capacitance shown on a
logarithmic time scale with the temperature change as starting time.
The temperature steps with the same final temperature (shown in
black and blue) all have the same final value of the capacitance. The
data shown here correspond to the last eight steps in Fig. 4.

the steps have to be very small in order to maintain linear
behavior. Smaller steps can be made as well, and the shape
of the relaxation is maintained, but the curve starts to get
noisy because the signal is very small. When we make larger
temperature steps, we begin to get typical nonlinear aging
behavior. That is, the relaxation is slower for down jumps than
for up jumps when the final temperature is the same. The setup
is actually well-suited for nonlinear experiments also; because
of the extremely high resolution of the measured quantity,
we get very well-defined curves and we can clearly see the
nonlinear behavior already at steps of 1 degree. We plan to use
the setup for these types of studies as well, but we focus in this
paper on the linear results.

V. DATA

Figure 7 shows the expansion coefficient as a function of
time at four different temperatures. The data are shown for
steps made with ≈0.1 K, except the data at 211 K, which are

0 0.5 1 1.5 2 2.5

x 10
5

208.8

208.9

209.0

209.1

209.2
(a)

t [s]

T
 [K

]

0 0.5 1 1.5 2 2.5

x 10
5

35.760

35.762

35.764

35.766

35.768

35.770 (b)

t [s]

C
′ [

pF
]

0 0.5 1 1.5 2 2.5

x 10
5

35.760
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35.764

35.766

35.768

35.770

t [s]

C
′ [

pF
]

(c)

FIG. 4. (Color) (a) Example of a temperature protocol. A series of up and down jumps with different amplitudes are made at the same
reference temperature. The temperatures shown are those measured with the NTC bead in the lower capacitor plate. Notice that the smallest
jumps are 0.01 K. (b) The measured capacitance (blue points). Notice that the relative changes in capacitance (dC/C) for the small jumps
are less than 10−4 and can still be measured precisely. There is a long time drift in the measured capacitance. The dashed line illustrates this
background drift and this slope is subtracted from the data before further treatment. (c) The measured capacitance after subtraction of the drift.
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FIG. 6. (Color) The relative change in C divided by the size
of the temperature step. The data shown are the same data as in
Fig. 5, and the colors used for each curve are the same. All the
curves superpose, which demonstrates that the experiment is linear.
Moreover, it demonstrates that the subtraction of the background drift
is successful.

taken with a temperature step of ≈0.01 K. This is why there
is more noise on this data set.

Figure 8 shows all the data from Fig. 7 normalized and
superimposed. This illustrates that the measured relaxation
obeys time-temperature superposition (TTS) within the stud-
ied (relatively narrow) temperature range. The fit shown in
Fig. 7 is a fit to the superimposed curve obtained from the data
sets at T = 205 and 211 K.

The function used to fit the data is a modified stretched
exponential [33] given by

αl(t) = α∞ + �α

{
1 − exp

[
− k

(
t

τ

)β

− t

τ

]}
. (15)

In the fit to the data, we get β = 0.6 and k = 2.6. The quality of
the fit is so good that we have used it as an interpolation of the
data and to calculate the frequency-domain response, which
is given by the transformation in Eq. (5). The transformation
is made by making a discrete Fourier transform (using the
FFT procedure from MATLAB) on the fit of the normalized
curve evaluated in a number of points. The transformed
normalized curve is shown in Fig. 9. Here we also show an
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3  K
−

1 ]
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0
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0.4

FIG. 7. (Color) The measured time-dependent expansion coeffi-
cient of tetramethyl tetraphenyl trisiloxane at T = 205, 209, 210, and
211 K. At the lowest temperature we also show a fit to the modified
stretched exponential Eq. (15).
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FIG. 8. (Color) The data from Fig. 7 normalized and plotted vs
time scaled with the relaxation time (as defined from the fit to the
modified stretched exponential). The figure demonstrates that the data
obey time-temperature superposition (TTS).

exponential relaxation which has been transformed using the
same algorithm along with the analytical Laplace transform.
Moreover, the high-frequency power law, which corresponds
to the exponent of the fit, is also shown.

In Fig. 10, we show the Laplace transformed fit rescaled
with amplitudes and time scales in order to show the
temperature dependence of the frequency-dependent thermal-
expansion coefficient.

The expansion coefficient spectra have a behavior similar
to that of other response functions measured in this sample. It
is beyond the scope of this paper to go into a detailed analysis
of the results. We use and discuss the data in relation to other
response functions in Refs. [34] and [35]. The time scale is
about half a decade slower than that of the dielectric response,
but its temperature dependence is the same. The time scale
of different response functions of this sample is discussed in
detail in Ref. [34]. The shape of the relaxation curve appears
to be a little more stretched than what we see in other response
functions [36,37].

VI. SUMMARY AND OUTLOOK

We have presented a technique for measuring the dynamical
expansion coefficient α(t) for a glass-forming liquid in the
ultraviscous range. The experiment is performed on a setup
which follows the capacitative principle suggested by Bauer
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FIG. 9. (Color) Illustration of the Laplace transform. Cyan
diamonds: Laplace transform of the normalized data (found by brute
force numerical integration of the measured points). Blue: Laplace
transform of the normalized fit (see text for details). Red: Exponential
relaxation which has been transformed using the same algorithm as
that used for the fit. Black dashed line: analytical Laplace transform
of exponential relaxation. Blue dashed-dotted line: power law, which
corresponds to the exponent of the fit.
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FIG. 10. (Color) Laplace transformed fits (see the text for details).
The curves are shown in the dynamical range that roughly corresponds
to the measurement.

et al. [15]. The dynamical range has been extended from
1.5 decades to more than 4 decades by making time-domain
experiments, and by making very small and fast temperature
steps. The modeling of the experiment has moreover been
developed. Data are presented on the molecular glass-former
tetramethyl tetraphenyl trisiloxane (DC704). This data set is,
to the best of our knowledge, the first data on the dynamical
expansion coefficient of a molecular liquid.

The technique presented in this paper is based on a principle
by which the sample is placed in a parallel plate capacitor
such that the sample maintains the spacing between the plates.
Thus a change in sample volume in response to a temperature
change leads to a change of the capacitance. The advantage
of this technique is that capacitances can be measured with
very high precision, and the small density changes associated
with linear experiments can therefore be determined reliably.
One limitation of the technique is that it only works on time
scales larger than 10 s. This could possibly be overcome by
smaller samples and thereby faster temperature control. A
more intrinsic limitation is that the technique only works for
samples with a very small dipole moment. For samples with
a large dipole moment, therefore, we need a complementary
technique.

The measurements of the thermal expansivity is part of a
general ambition in the “Glass and Time” group to measure
different response functions of viscous liquids. A unique
feature of our techniques is that the measuring devices all fit
into the same type of cryostat [24], ensuring that the absolute
temperature of the liquid is the same for all measurements.
The thermal-expansion measurements described in this paper
are thus performed in the same cryostat as our shear mechan-
ical spectroscopy [38], bulk mechanical spectroscopy [39],
specific-heat spectroscopy [40], and dielectric spectroscopy
[41]. The properties of liquids close to the glass transition are
extremely temperature-dependent, and small differences in the
temperature calibration can lead to rather large differences in
the results. Measuring different response functions at the exact
same conditions, therefore, makes it possible to analyze new
aspects of the viscous slowing down and the glass transition.
In recent papers, we used this to compare time scales of all the

different response functions [34], to relate linear response to
density scaling, and to determine the linear Prigogine Defay
ratio [35].
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APPENDIX A

The relation between the temperature derivative of the
dielectric constant and of the geometrical capacitance with
the longitudinal expansion coefficient was derived by Bauer
[15,16]. For completeness, we include a detailed derivation in
this Appendix.

The longitudinal expansion coefficient is defined by

αl = 1

l

(
∂l

∂T

)
A

. (A1)

We start with the temperature derivative of ε∞, which in
this situation is given by

∂ε∞
∂T

=
(

∂ε∞
∂l

)
A

(
∂l

∂T

)
A

, (A2)

so we need an expression for the first term, ( ∂ε∞
∂l

)A. The
Clausius-Mossotti relation gives

xN

3ε0Al
= (ε∞ − 1)

(ε∞ + 2)
, (A3)

where N is the total number of molecules, A is the area, and
l is the thickness, such that N/(Al) is the number density
of molecules and x is the microscopic polarizability of the
molecule.

We rewrite this to get

ε∞ = xN

3ε0Al
(ε∞ + 2) + 1

and take the derivative with respect to l at constant A,(
∂ε∞
∂l

)
A

= xN

3ε0Al

(
∂ε∞
∂l

)
A

− (ε∞ + 2)
xN

3ε0Al2
,

which, by reinserting Eq. (A3), gives(
∂ε∞
∂l

)
A

= (ε∞ − 1)

(ε∞ + 2)

(
∂ε∞
∂l

)
A

− (ε∞ + 2)
1

l

(ε∞ − 1)

(ε∞ + 2)
.

We now isolate ( ∂ε∞
∂l

)A in this expression and get(
∂ε∞
∂l

)
A

= −1

l

(ε∞ − 1)(ε∞ + 2)

3
.

Inserting this in Eq. (A2), we get(
∂ε∞
∂T

)
T

= − (ε∞ − 1)(ε∞ + 2)

3

1

l

(
∂l

∂T

)
A

,
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which, when comparing to the definition of the longitudinal
expansion coefficient in Eq. (A1), can be rewritten as(

∂ε∞
∂T

)
T

= − (ε∞ − 1)(ε∞ + 2)

3
αl = −K(ε∞)αl,

where the last equality comes from defining K(ε∞) =
(ε∞−1)(ε∞+2)

3 .
Now we move on to the temperature derivative of the

geometrical capacitance, Cg , which in this situation is given
by

∂Cg

∂T
=

(
∂Cg

∂l

)
A

(
∂l

∂T

)
A

. (A4)

The geometrical capacitance itself is given by

Cg = Aε0

l
,

giving (
∂Cg

∂l

)
A

= −Aε0

l2
= −1

l
Cg,

which, when inserted in Eq. (A4) and combined with the
definition of the longitudinal expansion coefficient, gives(

∂Cg

∂T

)
A

= −Cgαl. (A5)

APPENDIX B: FD THEOREM AND
THE EXPANSION COEFFICIENT

This appendix gives a formal definition of the dynamic
expansion coefficient, including how it relates to fluctuations
and how the frequency-domain response is related to the
measured time-domain response. This is an extension of the
presentation in Ref. [15]. However, Ref. [15] contains a typo
as well as some definitions which are not precise regarding
the absolute levels of the response functions. The precise
definitions are important for our use of the data in Ref. [35].

The measured response to an external field, whether in the
time domain or in the frequency domain, is directly related
to the equilibrium thermal fluctuations of the system. This is
expressed formally through the fluctuation dissipation theorem
(FDT), which when expressed in the time domain is [42,43]

dR(t)

dt
= − 1

kBT

d

dt
〈�A(t)�B(0)〉. (B1)

Here R(t) is the response function (see Sec. I for a definition),
and angular brackets denote ensemble averages. A is the
measured physical quantity [that is, the output O(t) in Sec. I]
and B is conjugated to the applied input/field, which is called
I (t) in Sec. I. The function 〈�A(t)�B(0)〉 is the correlation
function. In the simple case in which A = B, it reduces to the
autocorrelation function.

Integrating on both sides of Eq. (B1) and inserting R(t =
0) = 0 gives the time-domain response function:∫ t

0

dR(t ′)
dt

dt ′ = −
∫ t

0

1

kBT

d

dt ′
〈�A(t ′)�B(0)〉dt ′,

(B2)

R(t) = 1

kBT
[〈�A(0)�B(0)〉 − 〈�A(t)�B(0)〉],

from which it is seen that R(t = 0) = 0, as it should be. The
frequency-domain response function is given by the Laplace
transform of R(t) times iω:

R(ω) = iω

∫ ∞

0
R(t ′)e−iωt ′dt ′. (B3)

Combining this with Eq. (B2) gives the FDT in the frequency
domain:

R(ω) = − iω

kBT

∫ ∞

0
〈�A(t)�B(0)〉 − 〈�A(0)�B(0)〉e−iωtdt

= 1

kBT
〈�A(0)�B(0)〉 − iω

kBT

∫ ∞

0
〈�A(t)�B(0)〉

× e−iωt dt. (B4)

Consider now a linear experiment in which a small
temperature step δT is applied to a system at constant pressure
at t = 0. Its volume response is subsequently measured as a
function of time:

δV (t) = R(t − t ′)δT (t ′). (B5)

Then the response function R(t) is given by R(t) = δV (t)
δT

(see Sec. I for more details on the linear-response formal-
ism). The time-dependent isobaric expansion coefficient is
defined by

αp(t) = 1

V

δV (t)

δT
= R(t)

V
. (B6)

In terms of the FDT [Eq. (B2)], the relevant fluctuations for
αp(t) are volume and entropy, and the expansion coefficient
can therefore be expressed in the following way:

αp(t) = 1

V kbT
[〈�V (0)�S(0)〉 − 〈�V (t)�S(0)〉]. (B7)

The frequency-domain response function αp(ω) is then [from
Eq. (B4)]

αP (ω) = 1

V kBT
〈�V (0)�S(0)〉

− iω

V kBT

∫ ∞

0
〈�V (t)�S(0)〉e−iωtdt. (B8)
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