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Abstract We analyze the dynamics of a gas particle moving through a nanopore of ad-
justable width with particular emphasis on ergodicity. We give a measure of the portion of
phase space that is characterized by quasiperiodic trajectories which break ergodicity. The
interactions between particle and wall atoms are mediated by a Lennard-Jones potential, so
that an analytical treatment of the dynamics is not feasible, but making the system more
physically realistic. In view of recent studies, which proved non-ergodicity for systems with
scatterers interacting via smooth potentials, we find that the non-ergodic component of the
phase space for energy levels typical of experiments, is surprisingly small, i.e. we conclude
that the ergodic hypothesis is a reasonable approximation even for a single particle trapped
in a nanopore. Due to the numerical scope of this work, our focus will be the onset of er-
godic behavior which is evident on time scales accessible to simulations and experimental
observations rather than ergodicity in the infinite time limit.
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1 Introduction

The ergodic hypothesis equates the long time average of a physical observable B to its
ensemble average [1], which means that a phase space trajectory will spend in each phase
space volume of equal probability (measure), an equal amount of time. This can be written as

1 t

lim — [ B(T())dt = / B(T) f(I)dT, (1)

t—oot Jo r
where T'(t) = [r(¢), p(t)]” is a point in the phase space at time ¢, and f(T) is the phase
space distribution function. Alternatively we can say that, given the phase-space domain X
of a system, the transformation that generates its dynamics is ergodic with respect to the in-
variant measure dyu = f(I')dT if, for all measurable invariant sets A C X, either u(A) =0
or u(X\A)=0/[2,3].

Even though it is known that most systems of physical interest violate ergodicity, it is
still assumed valid for practical purposes when computing phase variables of interest such
as temperature and pressure. This is also the case for systems which are away from the
thermodynamic limit or which are not strictly thermodynamic, i.e. the physical properties
depend on the geometry of the system boundary [4].

Many studies have been done on ergodicity of hard spheres trapped by billiards [5-7]
or moving around a periodic array of scatterers. Varying the nature of the scatterers i.e.
spherical for a Lorentz gas [8, 9] or square for the Ehrenfest wind-tree model [10] and the
boundary conditions [11, 12], chaotic motion and a range of transport properties can be ob-
served. The appeal of these systems rests on the possibility of an analytical treatment, which
may lead to definitive proofs, something rarely possible in systems with soft potentials.

In the last few decades progress has been made in the treatment of generalized Sinai bil-
liards [11, 13] which parametrize the interactions mediated by steep and smooth potentials.
In these systems, one accounts for the portion of a particle’s trajectory which is curved by
the action of the scatterer’s potential (at distances shorter than the interaction cutoff), by in-
troducing an angle of rotation around the scatterer itself. Typically, to prove the occurrence
of ergodicity-breaking, a periodic orbit is identified in the system, it is then proven to be el-
liptic due to the focusing effect of the potential under proper conditions, and finally invoking
the non-degeneracy condition of KAM theory [14], it is proven to be stable (i.e. the KAM
tori have non-zero measure).

Other studies, similar in essence, looked at systems with steep repulsive potentials, where
the geometrical displacement of the scatterers allowed their potential clouds to overlap and
form a corner at the meeting point [15, 16]. These corners, named corner polygons, occur
for example along atomic wall layers at nanochannel boundaries. Studying the stability of
the return map for a periodic orbit it is possible to prove ergodicity-breaking. These stud-
ies focus on the local structures which give rise to such behavior, but they do not provide
information on how relevant non-ergodicity is when these configurations are embedded in
more extended systems. Also the complete or partial extension of these results to encom-
pass a more broader class of geometries might prove difficult, and in these cases a numer-
ical approach is needed. Recent works have also investigated the connection between the
dynamics at the microscopic level and macroscopic transport properties, in particular how
transport takes place in chaotic and non-chaotic systems [17, 18], or the identification of
several transport regimes (e.g. diffusive, superdiffusive, ezc.) in polygonal channels [19].

An alternative approach proposed by Khinchin [3] avoids invoking ergodic theorems
to equate time and ensemble averages. In his argument, Khinchin suggests that one can,
for a special class of functions (sum-functions), approximate the phase average to the time
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average to a given accuracy in the thermodynamic limit. Loosely speaking, because sum-
functions depend on the sum of functions of single phase space coordinates, they assume
the expected value almost everywhere when the number of degrees of freedom is large.
However, when one deals with small systems, e.g. a nanopore as in the present work, and
therefore characterized by few degrees of freedom, sum-functions can show large fluctua-
tions from the expected value and Kinchin’s argument will not apply.

When forces are included in the models and the bounding geometry becomes irregular
the answer to the fundamental question of ergodicity becomes elusive. Even for the sim-
ple system considered herein, the amount of time required to follow the gas particle while
wandering the whole phase space is inaccessible to simulations. We therefore focus on the
short time scales accessible to simulations in order to investigate if a violation of ergodicity
occurs. Many studies of practical interest, in fact, look at properties (e.g. single particle or
molecule diffusion in nanopores [20, 21] or pattern recognition in nanochannels [22]) which
reveal themselves on these time scales and which are naturally connected to the ergodic
hypothesis. This work will also be relevant for these short time experiments.

We shall here characterize the dynamical properties of a simple system, focusing in par-
ticular on ergodicity. We study a single particle trapped in a nanopore and, by letting the
particle interact with the atomistic walls through a soft potential, we try to retain as much
details as possible in order to improve the connection with real models. Since the system
under study is composed of soft disks (wall particles and gas particle), one could expect
that for high enough energies, the defocussing nature of the collisions with the walls would
dominate and, as in dispersing billiards [23], quickly bring the particle to wander the whole
phase space available. However, as we will show, this is not always the case. In fact, the
areas where the ergodic hypothesis is not valid are scattered throughout the entire phase
space.

2 Model

We will now describe the model in detail. A particle moving in two dimensions, with
phase space variables r(¢) = (x(¢), y(t)) and p(t) = (px(t), py(¢)), is confined between
two perfectly rigid atomistic walls, where the position of each wall atom is kept fixed at
all times. The equations of motion for the system are obtained from its Hamiltionian [24],
H :R* > R, which reads

2 Nw
p

H(r,p)=— U(lr—r;]). 2

(r.p) 2m+§ (It =) @)

Here m is the particle mass, N, is the number of wall particles and U (|r —r;|) is the potential

(or configurational) contribution to the total energy, r; being the position vector of the ith

wall atom. The functional form of U is given by the truncated and shifted Lennard-Jones

potential [25]
o\ 12 o\
vie-mh=ver=i(2) - (2)]-ven

where € and o define interaction and length scale, respectively, r; = |r — r;| is the distance
between the particle and the ith wall atom and r, = 2.50. Any quantity is expressed in
reduced units of m, € and o with m =€ = o =1, see Ref. [25], and we will, as is common
practice, omit writing these units explicitly throughout the paper. Each wall consists of two

@ Springer



Ergodicity of a Single Particle Confined in a Nanopore 1159

Fig. 1 Schematic illustration of
the system. White circles O O O O O 3%

represent the fixed wall atoms
and the black circle the mobile O O O O
particle. x is a lattice constant
with value xg = 0.5557 and y is
a variable parameter that 2yo (
determines the width of the
channel
X

Cx© O O O

atomic layers which are separated by V3xg, with xg = 0.5557, as illustrated in Fig. 1. The
layers facing the channel are separated by 2y,, where y, represent a control parameter that
can be varied, and in each wall layer the distance in the x direction between the atoms is set
to 2xo. This arrangement ensures that the walls are impenetrable and has a direct effect on
the shape of periodic oscillations displayed by the system as we will see later. The truncation
ensures that, for any position of the particle and for any channel width, the force exerted on
the particle is restricted to the interactions between the particle and no more than six wall
particles. Also, note that the system is periodic in the x direction and N,, = 20 are used to
avoid any size effect due to the periodic boundary conditions.

The system is non-integrable [26], in the sense that only the Hamiltonian is a constant of
motion, thus the dynamics is confined to a three dimensional hypersurface and chaotic dy-
namics can be present [26]. It is possible to rewrite the governing differential equations such
that the phase space is three dimensional, however, we will simply use Hamiltonian equa-
tions of motion since they have a clear physical interpretation. Standard molecular dynamics
(MD) simulations were used to generate the dynamics, where the equations of motion were
integrated forward in time using a second-order symplectic leap-frog integration scheme
[27], with time step At = 0.002.

3 Results and Discussion
3.1 Basic Analysis of the Dynamics

The potential energy surface provides information about the dynamics and the locations
of the fixed points: from the Hamiltonian equations of motion, it can be seen that at any
fixed point the particle has a zero momentum, p(¢) = 0, hence the fixed points are given by
(r5, 0), where ry = (xy, y,) is found from the extrema of U. This in turn means that the fixed
points are given by the zeros of the force F : R? — R2. Sections of the contour plots for the
potential energy surfaces, U : R? — R, for four different channel widths, are shown in Fig. 2.
The regions surrounding the wall atoms where the potential energy increases dramatically
are indicated by the white areas.

The crosses represents saddle points and the circles center points: these are the only
two types of fixed points that can exist [26]. Given the geometry of the channel, these
always occur along two fixed directions at constant x, with coordinates x;; = 2nxy and
Xso = (2n+ Dxo withn =0, 1,2, ... (see Fig. 1). To determine which channel widths to in-
vestigate, a one parameter bifurcation analysis was carried out using the width y as the con-
tinuation parameter. For a full account of the procedure, the reader is referred to Ref. [28].
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- b)

Fig. 2 Potential energy contour plots in a region of the domain. The superimposed symbols indicate the
fixed points in the (x, y) plane: x saddle point; o center point. (a) yg = 1.4, (b) yo = 1.228, (¢) yg = 1.21,
(d) yg = 1.1. Blue contour isolines correspond to lowest potential energy and red to highest potential en-
ergy. White regions at the boundaries indicate the areas where the potential energy tends to infinite and goes
off-scale (Color figure online)

Fig. 3 Poincaré section in the 0.4
(x, px) plane for y = v/3xg + 1
and yg =2.5 and E = —2.0. To r 1
reveal the finer details we have
plotted the points with three 02r 1
different colors (Color figure | |
online)
S 1
-0.2 ¢ 1
-04

0.44 0.49 0.54 0.59 0.64 0.69
T

For reasons of brevity, suffice it to say that a term can be added to the equations of motion
and that this term is a function of the first integrals of Eq. (2). This addition transforms the
system into a dissipative one, and allows to find changes in the extrema as the parameter y,
varies. Thus, by looking at the bifurcations that occur along the two directions x;; and x,;,
regions of interest can be identified. The bifurcation plots for both x;; and xy, are clearly
pitchfork diagrams, which, given their simplicity, are not shown. This can also be inferred
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Fig. 4 Power spectra (arbitrary units) for £ = —2 (a) and E = —1 (b) where yg = 2.5. The two main
frequencies for E = —2 are given by f] and f, (Color figure online)

by looking at Fig. 2, where, for example, the direction x;; shows first one center at low
yo = 1.1 (figure d), then it bifurcates into three points (pitchfork) for larger widths y, (fig-
ures ¢, b and a). A similar fate happens for points belonging to x;,. Essentially, considering
the bifurcations that occur along the x;; and x,, directions, we have chosen to investigate
the ergodicity of the system for values yO = 1.1, 1.21, 1.228 and 1.4, since they capture the
relevant variations for the fixed points in the channel in line with the bifurcation analysis.

If the initial conditions are given as (x(0), y(0)) = (2nxg, y(0)) and (p,(0), p,(0)) =
(0, p,(0)) the dynamics is analogous to the unforced frictionless Duffing oscillator [29] due
to the symmetry of the system. Also, if the system possesses sufficiently low energy the
particle may perform a periodic motion in one of the potential energy wells surrounding
one of the center points in the secondary sections (see Fig. 2). To study the phase space
trajectories further, Poincaré sections have been investigated for energies £ < —2, i.e. in
the regime where the particle is confined to one of the potential wells. In Fig. 3 we plot
a Poincaré section in the (x(¢), p.(#)) plane for y = V3x9+ 1 and E = —2, where we
observe dense, confined and chaotic regions. The Poincaré sections are symmetric about
x &~ 2xp and p, = 0.0 and confined to a relatively small region as is expected in the low
energy regime. We have only included a single initial condition as well as excluded every
second intersection for clarity: the full projection can simply be generated by symmetry
considerations. The island chain [26] in Fig. 3 survives at E = —1.9 but is destroyed as
E increases further: for E > —1.5 the chaotic region fills out the entire region leaving no
distinguishable structures.

For these small energies we also expect the presence of KAM tori [26] as well as the
chaotic regions that are limited between such tori. The existence of the tori for low energies
is indicated in Fig. 4(a), where the power spectrum of the dynamical variable y(z) is shown
for E = —2. Two main frequencies, f; and f, are present with f; = 1.6 x 10* and f, =
1.14 x 10*. The rotation number, R = f/f», is around 1.14, i.e. the particle undergoes
quasiperiodic motion. For higher energies, Fig. 4(b), an analysis of the power spectrum
reveals large effects from a broad spectrum of frequencies which is a signature of chaotic
motion.

The system is clearly not ergodic for such low energies, therefore in the analysis that will
follow, we will only consider energies high enough to ensure that a particle is potentially able
to travel through the pore without being trapped by the minima. We would like to note that
the presence of trivial regular orbits is to be expected even for higher energies and different
channel widths, due to the presence of symmetries in our system’s geometry. However what
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is going to be relevant to this work is the stability (measure) of these and of other non-trivial
islands.

3.2 Characterization of Ergodicity and Chaos Through Lyapunov Exponents

In this section we carry out an analysis of the system’s ergodicity through a study of the
Lyapunov exponents for energies E > —1. Essentially, if small perturbations of initial con-
ditions grow exponentially with time, the system exhibits chaos as quantified by one or more
positive Lyapunov exponents. We would like to stress that the Lyapunov analysis presented
in this work is only a means to an end, i.e. we are not trying to characterize the chaoticity of
the channel as already done in previous works [30, 31], but only to determine and quantify
its ergodicity using the Lyapunov exponents as a tool.
We can write the equations of motion in the form

I'=G(,1). 4)

The evolution of a displacement vector 6T, i.e. the distance between two close points in the
phase space, can be written, in the vanishing limit, as

sT(t)=T-4T, 3)

where T is the Jacobian (or stability) matrix T = 8T /9T . The solution for the tangent vector
is therefore

oI (t) =L()-6T(0) withL(z) =exp, (/ dsT(s)), (6)
0

where L(?) is the propagator and exp, is the left-ordered exponential. The Lyapunov expo-
nents can be defined as [32]

i . 1
A :llirgoilnﬂ(t) wl, (7

where u; are the eigenvectors of the matrix L7 (f) - L(¢). A more practical definition for the
evaluation of Lyapunov exponents using MD simulation is given by [33]

A= lim lim l1n<|5r.(t)|), ®)
=00 870 ¢ |8T7(0)]

where |8T7 ()| is the length of the ith orthogonal displacement vector at time ¢, and i =
1,...,4. Benettin et al. [34-36] used this definition to implement a “classic” algorithm that
can be adapted to MD, and which is used in this work. A set of 4 displacement vectors 8T';
is generated at time # = 0 and evolved forward in time with the use of the Jacobian matrix
and maintained orthonormal performing a Gram-Schmidt procedure at a fixed number of
time steps nAt. Alternative methods have also been proposed by Hoover and Posch [37]
and independently by Goldhirsch et al. [38].

It is worth noting that the multiplicative theorem of Oseledec [39] assures that the matrix

A= lim A(r) = lim [L" (1) - L(t)]zl_’, &)

is well defined in that the limit exists (except for a set of zero measure), but makes no
assumptions on the ergodicity of the system. However, if the system is ergodic, the limit is
unique and the Lyapunov exponents will not depend on the particular initial condition that
we choose for our trajectory. Different values of the Lyapunov exponents for different initial
conditions can therefore prove the non-ergodicity of our system.
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We would also like to argue that, due to the convex, and therefore defocussing, nature of
the collisions between gas and wall particles, the possibility of sub-exponential separation
for an ergodic trajectory in phase space should be precluded. Trajectories at the bound-
aries of elliptic islands could have sub-exponential separation for some time, e.g. a trajec-
tory bouncing against a corner polygon [15, 16], however if these trajectories are to be
ergodic, they are bound to collide with the convex surface of wall atoms, and this unstable
dynamics (i.e. exponential instability) would quickly dominate. Dynamics characterized by
sub-exponential growth is said to present “weak-chaos” (e.g. as it can be found in some
polygonal billiard systems) which could still give rise to ergodic dynamics [19]. Therefore,
in our system, a zero Lyapunov exponent would indicate the presence of periodic orbits and
a non-chaotic dynamics.

The phenomenon of weak-chaos has attracted wide interest in recent years mainly as-
sociated to anomalous diffusion and intermittency particularly in low-dimensional maps
[40-42]. These systems are said to give rise to weak ergodicity breaking, referring to the
fact that, even though the systems are still ergodic, they can occasionally enter a phase space
area where they will spend a large amount of time, so that the ergodic invariant measure is
infinite [43], i.e. non-normalizable.

Because we deal with an Hamiltonian system, the Lyapunov exponents will sum to zero
[44] (i.e. for each positive Lyapunov exponent there must exist an exponent equal in mag-
nitude, but opposite in sign), which also reflects the property of Hamiltonian systems to
be phase space volume preserving. We will therefore concentrate our attention only on the
largest, and for our purpose most important, of the four Lyapunov exponents.

Every trajectory was followed for a time #* = 2000 in reduced units. This time was cho-
sen to ensure the convergence of the exponents which, given the small size of the channel,
was quickly reached. It is, however, not possible to ensure that the gas particle at some later
time ¢ > t* will not wander off what appears to be a periodic orbit and starts to travel the
whole phase space. Therefore, as already mentioned in the introduction, with this study we
can not prove if the system is or is not ergodic in the infinite time limit, but rather if the on-
set of ergodic behavior is evident on time scales accessible to simulations and experimental
observations [45].

Our interest lies in measuring the portions of phase space characterized by positive and
zero Lyapunov exponents, in order to give a measure for the ergodic and non-ergodic com-
ponents of phase space respectively. We will use a phase function B(T') to decompose the
phase space in two areas, assuming for example the value 41 for areas of positive expo-
nents A*, and —1 for areas of zero exponents A%, i.e. [B(I'*) = +1 if A(T'*) > 0] where IT'*
refers to the starting point of a particular trajectory. We then compute the ensemble average
of B and normalize it to generate a measure.

The microcanonical ensemble can be defined in two ways, the shell microcanonical en-
semble and the surface microcanonical ensemble [25]. In MD simulations, the phase space
trajectory never leaves the surface of constant energy, therefore it seems more natural to use
the probability distribution function of the surface microcanonical ensemble

SHD—E)  wim

f:z(E) §(H(I) — E)drl fS(E) VHl(l“)dSE,
where S(E) represents the isosurface and V H (I') is the weight that accounts for the thick-

ness of the energy shell between E and E + AE. We can therefore write the ensemble
average of an observable as

fr)=

(10)

(B)=/B(l")f([‘)dl":ZB(F,»)w(I',-), (11)
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where w(I';) represents a weighting function to be associated to each point I'; in an actual
simulation. We need now to appropriately sample the phase space in order to choose the
initial conditions for the gas particle. Many methods have been proposed in the past for the
sampling of the microcanonical ensemble for molecular systems [46—49], and we used the
one by Severin et al. [48], which we only outline briefly. The idea behind the Severin method
is to rewrite the distribution function as

J(EIT) =g(EIQh(E|Q. P), (12)

where Q and P represent the configurational and momentum space respectively, g is the
configurational space probability density and 4 is the conditional momentum space density
given Q. It is easy to show that the configurational density is proportional to the momentum
density

gEIQ=C[E-U@Q]**", U@ <E, (13)

where C is a constant and S represents the independent momentum coordinates, which in
our system are S = 2. Once a point Q is chosen with the proper weight, we can proceed
to sample the momenta randomly, for example by picking a vector on a circumference of
radius [E — V(Q)]. In our system g is unity, so no weight is needed. We can picture this
maybe surprising result if we think that a longer amount of time spent by the particle close
to the walls is counter balanced by a lower momenta density.

The contour plots of Fig. 5 show how the Lyapunov exponents are distributed across the
channel y; = 1.1. They were obtained by sampling 1 x 10% positions and choosing the mo-
menta accordingly. The contour at a particular position in the channel was computed from
the exponent value generated by the trajectory starting at that point and corresponding to
one random velocity direction. Lyapunov exponents are a property of the trajectory. Ideally,
if the system is ergodic the whole phase space is filled by the same trajectory, to which every
point will belong, giving as a result the same Lyapunov exponent for all the points in the
channel. The contour plots show that some sets of points are associated to different Lya-
punov exponents values, and therefore they belong to different trajectories proving that the
system is not ergodic. A Lyapunov exponent was regarded to be zero below the threshold
value of A < 0.01. This value was chosen taking into consideration the inaccuracy due to
the limited amount of simulation time. Also we note from the histograms in Figs. 6, that the
transition between chaotic and non-chaotic regions, i.e. between non-zero and close-to-zero
Lyapunov exponents, is sharp, making the identification of a threshold value less arbitrary.
In chaotic systems the property of a trajectory to spend long times around the border of
stable islands before entering the chaotic sea (i.e. stickiness), can hinder the convergence of
dynamical properties. Stickiness is mainly due to the presence of cantori (broken KAM tori)
which create a barrier difficult to cross [50, 51]. It can delay the convergence of dynamical
properties, e.g. Lyapunov exponents, and its strength is a property of the system under con-
sideration. In Fig. 7 we show the convergence of the maximum Lyapunov exponents for 5
trajectories for the channel with yp = 1.1 and E = —1.0. It can be seen that the convergence
is nearly instantaneous, with respect to the timescales of interest in this work, demonstrating
that stickiness plays little role in our system. Some of the trajectories characterized by zero
exponents could require longer time scales to separate, however as pointed out earlier, an
experiment could not distinguish between the latter case and one in which the trajectories
genuinely belong to stable regular islands.

The contour plots represent only slices of the phase space and do not take into account the
momenta space, therefore in Fig. 6 we also show the exponents’ distribution at 2 randomly
chosen points in configurational space for 2 x 10* uniformly distributed velocity directions.
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Fig. 5 Surface contour plots of the Lyapunov exponents across the channel of width yy = 1.1 for 2 values
of energy shell E = —1.0 and £ = +5.0. Image obtained with 1 x 100 sampling points. The black lines
demarcate isolines of the norm of the Hamiltonian gradient. In Fig. (b) we also plot an inset to show at a finer
detail, the distribution of zero exponents in a small area of the channel (same color gradient as the main plot)
(Color figure online)

Figures 5 and 6 complement each other and give us a clear view of a non-ergodic phase
space.

In Fig. 8 we show a surface contour plot of the Lyapunov exponents across the channel
of width yp = 1.1. The black lines are the isolines of the potential energy while the red lines
the isolines of the Lyapunov exponents value. These were computed at each point in the
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Fig. 6 Histograms of Lyapunov exponent values for 2 x 10* initial momenta direction at 2, randomly chosen
initial positions. Channel width yy = 1.1 and energy shell E = —1.0 (Color figure online)
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Fig.7 Convergence over t* = 200 time units of 5 Lyapunov exponents for 5 different trajectories. Channel’s
width yg = 1.1 and energy shell £ = —1.0. We do not plot more than 5 exponents (relative to one parameter’s
choice) for presentation clarity. The convergence is nearly instantaneous showing that stickiness does not play
a big role in our system (Color figure online)

channel from the trajectory generated by “dropping” the particle in that location without
kinetic energy. This means that the Lyapunov exponents belong to different energy shells.
Lack of ergodicity in this case can be observed by following an energy isoline and noting
that it cuts across different values of Lyapunov exponents, i.e. if the system was ergodic,
trajectories on the same energy shell would give the same Lyapunov exponent following
what has been discussed earlier. In particular, the protruding periodic island (bordered by
the zero valued exponent isoline) in the bottom left corner of the plot is very interesting.
Even though the island passes through several energy shells, the size of its width might
suggests the presence of focusing collisions (elliptic periodic orbits) in small areas of the
channel.

As a final result, in Table 1 we give a normalized measure to the portion of phase space
associated with positive and zero exponents for the 4 channels widths y, and the 2 energy
shells E = —1.0 and E = +5.0. The measure of non-ergodic phase space is, if not zero, very
small in all cases, suggesting that the assumption of ergodicity for confined pores might
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Fig. 8 Surface contour plots of the Lyapunov exponents across the channel of width yy = 1.1. Image ob-
tained with 1 x 100 sampling points. The black lines demarcate isolines of the potential energy, the red lines
the isolines of the Lyapunov exponent values. The particle was “dropped” in the channel without kinetic en-
ergy, therefore even though the Lyapunov exponents refer to different energy shells, lack of ergodicity can be
seen by following black isolines of same energy which cut across different values of Lyapunov exponents. In
particular it is interesting to see a periodic island delimited by the zero valued exponent isoline, protruding
towards the bottom left corner of the plot (Color figure online)

Table 1 Portion of phase space

characterized by positive (A1) Channel width yg Energy level At 20

and zero (AO) Lyapunov

exponents for 4 channel width L1 -1.0 0.97727 0.02273

and 2 energy shell each. We note 1.1 +2.0 0.99389 0.00611

that the measure of non-ergodic 11 150 0.99742 0.00258

phase space does not seem to

follow any particular trend based 1.21 —~1.0 0.99991 0.00009

on the value of the energy and the

channel width 1.21 +2.0 0.99933 0.00067
1.21 +5.0 0.99916 0.00084
1.228 -1.0 1.00000 0.00000
1.228 +2.0 0.99928 0.00072
1.228 +5.0 0.99969 0.00031
1.4 -1.0 1.00000 0.00000
1.4 +2.0 1.00000 0.00000
1.4 +5.0 0.99992 0.00008

be justified. It is worth repeating that these values are not very sensitive from the chosen
threshold value of A. The sharp transition from chaotic to non-chaotic dynamics could be
due to the ease with which trajectories depart from a neighboring elliptic orbit even on these
short time scales. We would like to point out that, even though Table 1 may look “scarce”,
its purpose is to show that while it is possible to have systems interacting via soft potentials,
whose geometries admit the existence of stable periodic orbits, their non-ergodic measure is
however irrelevant for experimental purposes. The parameters chosen are illustrative of the
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possible energy landscape and energies one can have in a slit pore. A statistically relevant
study of the state points allowed by the system, would also be computationally prohibitive.

4 Conclusion

In this study we analyzed the dynamical properties of a system composed of a particle
trapped in a nanopore interacting with the confining atomistic walls via a soft potential. We
focused our analysis on the timescales typically accessible to experimental observations (e.g.
the time to observe diffusion of individual molecules through nanopores in membranes). The
results suggest that the ergodic hypothesis is valid for a wide range of energies and channel
widths, and even when not strictly valid, the measure of non-ergodic phase space is too small
to be of any practical relevance. This result is significant in light of the increasing efforts
being focused at the nanoscale, where the ergodic hypothesis is commonly assumed in order
to apply statistical mechanics.
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