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I. INTRODUCTION

For supercooled liquids near the glass transition changing
slightly the density F or temperature T the structural relaxation
time τα may change several orders of magnitude. In the study of
these liquids1�3 it is often found that τα does not change when
Fγ/T is kept constant, where γ is a material-specific exponent.
This phenomenon is called density scaling (or thermodynamic
scaling) and has been established for many liquids, excluding
associative liquids such as water.3 A related observation is
isochronal superposition,3�5 i.e., that supercooled state points
with identical τα have the same dielectric spectrum. A
different and at first sight unrelated concept is Rosenfeld’s
excess entropy scaling.6,7 In this procedure a relation is es-
tablished between hard-to-predict dynamic properties and
easier-to-predict thermodynamic quantities, here the excess
entropy, via a scaling of the dynamics to so-called reduced
units. Initially, this was observed for model atomic liquids,6,7

but later it was extended to model molecular liquids8�10 and
experimental liquids.11�14 The importance of using reduced
units with regards to density scaling of experimental data has
recently been pointed out.15,16

In a recent series of papers17�21 a new class of liquids was
identified. These liquids are characterized by having strong
correlation in the NVT ensemble between the equilibrium
fluctuations of the potential energy U and the virialW. Recall
that the instantaneous energy E and pressure p can be written
as a sum of a kinetic part and a configurational part: E = K + U
and pV = NkBT + W, respectively. The correlation between
U and W is quantified via the linear correlation coefficient

R defined as

R ¼ ÆΔWΔUæffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆðΔWÞ2æ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆðΔUÞ2æ

q ð1Þ

The class of strongly correlating liquids is defined by R g
0.90.17 An inverse power-law (IPL) system r�n has correla-
tion coefficient R = 1, because for all microconfigurationsW =
(n/3)U, and only IPL systems are perfectly correlating. In the
study of strongly correlating liquids it was discovered that
they obey Rosenfeld’s excess entropy scaling, isochronal
superposition, as well as density scaling.20�23 These types
of scalings can be explained in the framework of so-called
isomorphs (definition follows later).

Model systems that have been identified17,18,22,24�26 to belong
to this class of liquids include the standard single-component
Lennard-Jones liquid (SCLJ), the Kob�Andersen binary LJ
mixture27,28 (KABLJ), the asymmetric dumbbell model,22 the
Lewis�Wahnstr€om o-terphenyl model29,30 (OTP), and others.
Strong WU correlation has been experimentally verified for a
molecular van der Waals liquid31 and for supercritical argon.24

The class of strongly correlating liquids includes most or all van der
Waals and metallic liquids, whereas covalently, hydrogen-bonding,
or ionic liquids are generally not strongly correlating.17 The latter
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reflects the fact that competing interactions tend to destroy the
strong correlation.

An example of strong WU correlation is given in Figure 1 for
the asymmetric dumbbell model22 (details of this model are
provided in section III). Figure 1a shows the time evolution of
the equilibrium fluctuations ofU andW normalized to zero mean
and unity standard deviation; Figure 1b shows a scatter plot of
the corresponding values of U and W. U and W are clearly
strongly correlated in their equilibrium fluctuations.

References 17 and 18 identified the cause of strong WU
correlation in the SCLJ liquid. The LJ pair potential can be well
approximated from r = 0.95σ to r = 1.5σ (Pedersen et al.23) by a
sum of an IPL, a linear term, and a constant via the so-called
“extended IPL potential”:18 vLJ(r)≈ Ar�n + B + Cr. At moderate
pressures this covers the entire first peak of the radial distribution
function, i.e., the first coordination shell. The constraint of
constant volume in the NVT ensemble has the effect that when
one nearest neighbor distance increases, another one decreases;
upon summation the contribution from the linear term to U and
W is almost constant. The latter observation has the consequence
that some of the scaling properties of pure IPL systems are
inherited in the LJ system in the form of isomorphs.

Reference 20 introduced a new concept referring to a strongly
correlating atomic liquid’s phase diagram, namely isomorphic
curves or more briefly: isomorphs. Two state points with density
and temperature (F1, T1) and (F2, T2) are defined to be
isomorphic32 if the following holds: Whenever a configuration
of state point (1) and one of state point (2) have the same
reduced coordinates (F11/3ri(1) = F21/3ri(2) for all particles i), these
two configurations have proportional Boltzmann factors, i.e.,

e�Uðrð1Þ1 , :::, rð1ÞN Þ=kBT1 ¼ C12e
�Uðrð2Þ1 , :::, rð2ÞN Þ=kBT2 ð2Þ

Here C12 is a constant that depends only on the state points (1)
and (2). An isomorph is defined as a continuous curve of state
points that are all pairwise isomorphic. In other words, eq 2
defines an equivalence relation with the equivalence classes being
the isomorphs. Only IPL systems have exact isomorphs; these
are characterized by having Fγ/T = const where γ = n/3.
Reference 20 argued analytically and demonstrated by simula-
tions that strongly correlating atomic liquids have isomorphs to
a good approximation.

From the defining property of an isomorph (eq 2) it follows
that the structure in reduced units (~ri� F1/3ri) is invariant along
an isomorph, because the proportionality constant C12 dis-
appears when the configurational canonical probabilities are
normalized.20 Thus the reduced unit radial distribution function
and the excess entropy Sex = S � Sid are isomorph invariants,
where Sid is the ideal gas contribution to the entropy at the same
temperature and density. Isomorph invariance is, however, not
limited to static quantites; also the mean-square displacement,
time autocorrelation functions, and higher-order correlation func-
tions are invariant in reduced units along an isomorph. The reader is
referred to ref 20 for a detailed description of isomorph invariants, as
well as the proof that a liquid is strongly correlating if and only if it has
good isomorphs. A brief overview of strongly correlating liquids and
their isomorphs can be found in Pedersen et al.23

Reference 21 studied isomorphs of atomic single-component
and multi-component LJ liquids with generalized exponents m
and n. It was found that for given exponents (m, n) all isomorphs
have the same shape in the WU phase diagram; i.e., a so-called
master isomorph exists from which all isomorphs can be generated

via a simple scaling of theWU coordinates. For instance, the shape of
isomorphs in the WU phase diagram of the SCLJ liquid and the
KABLJ liquid are the same.

References 17�21 focused on understanding strong WU
correlation and its implication for atomic systems. Schrøder
et al.22 in 2008 studied two rigid molecular liquids that are
strongly correlating: the asymmetric dumbbell model and the
Lewis�Wahnstr€om OTP model (section III). At that time the
isomorph concept had not yet been developed, and state points
with the same Fγ/T, as inspired from the IPL system, were tested
for collapse of, for instance, the reduced unit radial distribution
function (note that in refs 17, 18, and 22 γ is defined slightly
different from subsequent papers). The dynamics in reduced
units was also found to be a function of Fγ/T, to a good
approximation, as is the case for IPL systems.19 Chopra et al.10

found that the Sex can be written (approximately) as a function of
Fγ/T for rigid symmetric LJ dumbbells with different bond
lengths. They also found that the reduced unit diffusion constant
and relaxation time are functions of Sex. These results suggest that
the isomorph concept is relevant also for rigidmolecular systems.
In this paper we expand on earlier results by studying in detail the
same systems as Schrøder et al.22

Figure 1. Two different ways of visualizing the strong virial/potential
energy correlation for the asymmetric dumbbell model at F = 0.932
and T = 0.465 (see section III for details of the model and the units used).
(a) Time evolution ofU (black) andW (red) per particle normalized to zero
mean and unity standard deviation. (b) Scatter plot of the instantaneous
values ofW and U per particle. The correlation coefficient R is 0.96.
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The isomorph definition eq 2 must be modified for rigid
molecules, because the bond lengths are fixed and cannot follow
the overall scaling. A simple modification of eq 2, which is
consistent with the atomic definition, is to define the map-
ping among configurations in terms of the molecular center-
of-masses, instead of the atomic positions. We thus define two
state points in the phase diagram of a liquid composed of rigid
molecules to be isomorphic if the following holds:Whenever two
configurations of the state points have identical reduced center-
of-mass coordinates for all molecules,

F1
1=3rð1ÞCM, i ¼ F2

1=3rð2ÞCM, i ð3Þ
as well as identical Eulerian angles33

ϕ
ð1Þ
i ¼ ϕ

ð2Þ
i θð1Þi ¼ θð2Þi χð1Þi ¼ χð2Þi ð4Þ

these two configurations have proportional Boltzmann factors,
i.e., [where R � (rCM,1, ϕ1, θ1, χ1, ..., rCM,N, ϕN, θN, χN)]

e�UðRð1ÞÞ=kBT1 ¼ C12e
�UðRð2ÞÞ=kBT2 ð5Þ

Again, C12 is a constant that depends only on the state points 1
and 2. An isomorph is defined as a set of state points that are
pairwise isomorphic. It should be noted that, in contrast to what
is the case for atomic systems, because the bonds do not follow
the overall scaling of the system, this definition does not imply
the existence of exact isomorphs for rigid molecules with IPL
interactions between atoms of different molecules.

Taking the logarithm of eq 5 implies

UðRð2ÞÞ ¼ T2=T1 3UðRð1ÞÞ þ kBT2 ln C12 ð6Þ
Equation 6 provides a convenient way of testing to what extent
eq 5 is obeyed for a given system: A simulation is performed at
one state point (1) and the obtained configurations are scaled to
a different density F2, where the potential energy is evaluated.
The respective potential energies of the two state points are
then plotted against each other. In the resulting plot a near
straight-line indicates, because a liquid is usually not perfectly
strongly correlating, that there exists an isomorphic state point
with density F2. The temperature T2 of the isomorphic state
point can be found from the slope of a linear regression fit. This
procedure is termed the “direct isomorph check”.20 If this test is
performed for an atomic IPL system, a correlation coefficient ofR=1
is obtained, consistent with these systems having exact isomorphs.

As an example, we perform a direct isomorph check for the
asymmetric dumbbell model in Figure 2. A correlation coefficient
of R = 0.97 is observed for a 15% density increase. Calculating the
temperature of the isomorphic state point from the linear
regression slope the result differs only 1% from the prediction
by requiring constant excess entropy (see section IV).

In the present paper we show that three model liquids
composed of simple rigid molecules have good isomorphs in
their phase diagram as defined in eqs 3�5. Section II derives
several isomorph invariants in molecular systems composed of
rigid molecules. Section III describes the simulation setup and
the investigated model systems. Section IV investigates the
existence of isomorphs for the asymmetric dumbbell, a sym-
metric IPL dumbbell, and the Lewis�Wahnstr€om OTP models.
Section V investigates the existence of a master isomorph21 for
the asymmetric dumbbell and Lewis�Wahnstr€om OTP models.
Section VI summarizes the results and presents an outlook.

II. ISOMORPH INVARIANTS IN LIQUIDS COMPOSED OF
RIGID MOLECULES

From the single assumption of curves of isomorphic state points
in an atomic liquid’s phase diagram, ref 20 derived several invariants
along an isomorph. Because we have extended this definition in
eqs 3�5 to molecular systems composed of rigid molecules, it is
natural to wonder which of these invariants can be extended to
molecular systems. The molecular isomorph concept is different
from the atomic case in that there is no “ideal” reference system (the
IPL system). Our simulations, however, show that isomorphs can
nevertheless be a useful tool for understanding such liquids.

In the following we derive several invariants from exact
isomorphs. We start by noting that the generalization of iso-
morphs to molecular systems define a bijective map among
configurations of state points (1) and (2). The NVT configura-
tional probability density for a system of N rigid molecules is
given by33 (where dR� drCM,1 dτ1 ... drCM,N dτNwith τ� (ϕ, θ,
χ) and dτ = sin θ dθ dϕ dχ33)

P̂ðRÞ ¼ e�UðRÞ=kBTZ
e�UðRÞ=kBT dR

ð7Þ

In combination with eq 5 it follows that all mapped configurations of
state points (1) and (2) have identical Boltzmann probabilities, i.e.,

P̂ðRð1ÞÞ dRð1Þ ¼ P̂ðRð2ÞÞ dRð2Þ ð8Þ
For convenience we introduce two configurational distribution
functions20,33

PðRÞ ¼ ðVΩÞNP̂ðRÞ ð9Þ

~Pð~rNCM, τNÞ ¼ e�UðF�1=3~rNCM, τ
N Þ=kBTZ

e�UðF�1=3~rNCM, τ
NÞ=kBT d~rNCM dτN

ð10Þ

Figure 2. “Direct isomorph check”20 for the asymmetric dumbbell
model. During a simulation at state point (F1, T1) = (0.868, 0.309)
the center-of-mass of each dumbbell is scaled to density F2 = 0.999,
keeping the Eulerian angles fixed. The potential energy is then evaluated
from the scaled configurations and plotted against the potential energy
of the unscaled configurations. The temperature T2(slope) of the
isomorphic state point at density F2 is calculated by multiplying the
linear regression slope with T1 (eq 6). T2(Sex) is the temperature of the
isomorphic state point calculated by keeping the excess entropy constant
(see section IV). It should be noted that the nonzero constant in the
linear regression fit reflects the fact thatC12 in general is not unity (eq 6).



1021 dx.doi.org/10.1021/jp2077402 |J. Phys. Chem. B 2012, 116, 1018–1034

The Journal of Physical Chemistry B ARTICLE

where Ω is the integral over the Eulerian angles for one molecule
(Ω =

R
dτ = 8π2 for a non-linear molecule). P has been introduced

to make P̂ dimensionless. ~P(~rCM
N ,τN) d~rCM

N dτN is the probability to
observe the system represented by a point in the volume-element
d~rCM

N dτN located at {~rCM
N ,τN}� ~R. ~P is invariant along an isomorph

and is related to P via ~P(~rCM
N ,τN) = (NΩ)�N P(R) = F�NP̂(R). We

note that the excess entropy Sex = �(∂Fex/∂T)N,V, where Fex is the
excess free energy, can be written as20

Sex ¼ � kB

Z
ðVΩÞ�N ln PðRÞ PðRÞ dR ð11Þ

Sex ¼ � kB

Z
ln ~P ~P d~rNCM dτN � kBN lnðNΩÞ ð12Þ

From the above observations we now derive a number of
isomorph invariants in liquids composed of rigid molecules.
1. The molecular center-of-mass structure in reduced units. For a

given configuration of the molecular center-of-mass struc-
ture in reduced units, all orientations of the molecules of
state points (1) and (2) by eq 8 have identical probabilities.
The reduced center-of-mass structure is thus invariant
along an isomorph.

2. Any normalized distribution function describing the (relative)
orientations of molecules with respect to the reduced center-
of-mass structure. This follows by analogy to statement 1
since all mapped configurations of state points (1) and (2)
have identical probabilities.

3. The isochoric heat capacity CV. The excess heat capacity in
the NVT ensemble is given by CV

ex = Æ(ΔU)2æ/kBT2.
Defining X = U/kBT we may write CV

ex = kBÆ(ΔX)2æ. By
eqs 6 and 8 it follows that CV

ex is invariant along an
isomorph, because the constant kBT2 ln C12 disappears
when the mean is subtracted. The ideal gas contribution to
CV is independent of state point (CV

id = 6NkB/2 for non-
linear molecule).

4. The translational two-body entropy10,34,35 St/N = �FkB/
2
R
[gCM(r) ln gCM(r)� gCM(r) + 1] dr, where gCM(r) is the

radial distribution function for the center-of-mass of the
molecules. The density dependence disappears when
switching to reduced units, and by statement 1 the molec-
ular center-of-mass structure in reduced units is invariant
along an isomorph, and thus also the radial distribution
function (in reduced units).

5. The orientational two-body entropy10,34,35 So/N = �FkB/
(2Ω2)

R
gCM(r) g(ω2|r) ln g(ω2|r) dω2 dr, where ω2

denotes a set of angles used to describe the relative
orientation of twomolecules, and g(ω2|r) is the conditional
distribution function for the relative orientation of two
molecules separated by a distance r. Applying reduced units
this invariant follows from statements 1 and 2.

6. All N-body entropy terms.34,35 The excess entropy can
be expanded as Sex = Σi=2

∞ Si. The two-body expression
S2 = St + So is given above, whereas the higher-order
terms are more involved.

7. The excess entropy Sex. The excess entropy is given by eq 12,
and because ~P is invariant along the isomorph, so is the
excess entropy. The latter also follows from statement 6,
because each term is invariant.

8. The molecular center-of-mass NVE and Nos�e�Hoover NVT
dynamics in reduced units. The reduced dynamics of the
individual atomic positions on account of the constraints is

not invariant along an isomorph. Considering instead the
molecular center-of-mass motion the constraint force dis-
appears and these equations of motion are invariant along
an isomorph in reduced units. The proof is given in
Appendix B (a brief summary of constrained dynamics is
given in Appendix A).

9. Any average molecular center-of-mass dynamic quantity
in reduced units. This follows immediately from statement
8, because the molecular center-of-mass equations of mo-
tion in reduced units are invariant along an isomorph.
In particular, this would include the reduced relaxation
time τ~α.

As detailed above, it is necessary to consider the center-of-mass
motion and the motion relative to the center-of-mass separately.
Nevertheless, during the investigation of isomorphs we will
also consider the reduced atomic quantities to examine their
“invariance”.

An additional consequence of isomorphs is that, because
by eq 8 scaled microconfigurations have identical canonical
probabilities, an instantaneous change of temperature and
density from an equilibrated state point to an isomorphic state
point does not lead to any relaxation. This is called an
isomorphic jump.20

III. SIMULATION DETAILS

We studied three model systems of rigid molecules (Figure 3):
the asymmetric dumbbell (N = 500), a symmetric IPL dumbbell
(N = 500), and the Lewis�Wahnstr€om OTP models (N = 320).
The asymmetric dumbbell and Lewis�Wahnstr€om OTP models
are composed of LJ atoms, while the symmetric IPL dumbbell
model is composed of IPL atoms.

For the LJ models the potential energy U and the virialW are
given by (equivalent expressions apply for the symmetric dumb-
bell model)

U ¼ ULJ ð13Þ

W ¼ WLJ þ WCON ð14Þ
The first term in the virial is the LJ virialWLJ, the second term is
the contribution to the virial due to the constraints (fixed bond
lengths), WCON. ULJ is a sum over intermolecular pair interac-
tions given by the (12,6)-LJ potential

uðrijÞ ¼ 4εαβ
σαβ

rij

 !12

� σαβ

rij

 !6
2
4

3
5 ð15Þ

The potential energy has no contribution from the fixed bonds.
A force smoothing procedure37 was applied from rs = 2.45σαβ to
rc = 2.50σαβ, where rc is the cut-off distance after which pair
interactions are ignored.

The bond lengths were held fixed using the Time Symmetrical
Central Difference algorithm,38,39 which is a central difference
time-discretization of the constrained equations of motion pre-
serving time-reversibility. Appendix A gives a brief summary
of constrained dynamics and the effect on the virial (see also
refs 38, 40, and 41). The simulations were performed in
the NVT ensemble applying the Nos�e�Hoover (NH)
algorithm42�44 using RUMD,45 a molecular dynamics package
optimized for state-of-the-art GPU computing.
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The NVT simulations were performed without adjusting the
time constant of theNH algorithm (see Appendix B). This choice
is not expected to influence the results over the observed density
and temperature range, because the dynamics is not particularly
sensitive to the absolute value of the NH time constant.46 The
specific details of the investigated models follow below.
A. The Asymmetric Dumbbell. The asymmetric dumbbell

model consists of a large (A) and small (B) LJ particle, rigidly
bondedwith a bonddistance of rij=0.584 (here and henceforth units
are given in LJ units referring to the A particle, σAA = 1, εAA = 1, and
mA = 1). The parameters were chosen to roughly mimic
toluene.22 The asymmetric dumbbell model can be cooled
to a highly viscous state without crystallizing, making it
feasible to study slow dynamics. The asymmetric dumbbell
model has σAB = 0.894, σBB = 0.788, εAB = 0.342, and εBB =
0.117 with mB = 0.195.
B. Symmetric IPL Dumbbell. The symmetric IPL dumbbell

model consists of two identical particles, rigidly bonded with
bond distance of rij = 0.584. The atoms in different molecules
interact via an IPL potential with exponent n = 18. The masses
and IPL parameters are set to unity and a cut-and-shifted
potential at rc = 2.50 is applied.
C. Lewis�Wahnstr€om OTP. The Lewis�Wahnstr€om OTP

model29,30 consists of three identical LJ particles rigidly bonded
together in an isosceles triangle with sides of rij = 1.000 and top-
angle of 75�, i.e., different from the 60� of the real 1,2-diphe-
nylbenzene molecule.36 All LJ parameters (including the masses)
are unity for the OTP model.

IV. NUMERICAL STUDY OF ISOMORPHS FOR THE
THREE MODEL SYSTEMS

To investigate whether the three model systems have good
isomorphs, we first describe how to generate an isomorph in a
simulation. The excess entropy Sex is invariant along an iso-
morph, and themethod for generating an isomorph is to generate
a curve of constant Sex (see section II and also refs 20 and 21). A
curve of constant excess entropy can be found by using the exact
NVT ensemble relation20

ÆΔUΔWæ
ÆðΔUÞ2æ ¼ ∂ ln T

∂ ln F

� �
Sex

� γ ð16Þ

In simulations an isomorph is generated as follows: (1) The
left-hand side is calculated from the fluctuations at a
given state point. (2) A new state point is identified by a
discretization of eq 16 changing the density by 1%, and the new

temperature is calculated from Δ ln T = γΔ ln F. (3) The
procedure is repeated and in this way an isomorph is generated in
the phase diagram.
A. Isomorphs of the Asymmetric Dumbbell Model. This

section investigates the asymmetric dumbbell model. Isomorphs were
mapped out following the procedure described above. Figure 4 shows
the AA radial distribution functions along an isomorph with 19%
density increase before (a) and after (b) scaling the distance r into

Figure 3. Sketch of the three model systems studied: The asymmetric
dumbbell, a symmetric IPL dumbbell, and the Lewis�Wahnstr€omOTP
models. The asymmetric dumbbell is a simplistic model of toluene with
the methyl side group tightly bonded to the benzene molecule. The
symmetric IPL dumbbell has the same bond length as the asymmetric
dumbbell model. The Lewis�Wahnstr€om OTP model is an isosceles
triangle with an angle of 75�, different from the 60� of the real 1,
2-diphenylbenzene molecule.36

Figure 4. Radial distribution functions for the asymmetric dumbbellmodel.
(a) AA pair-correlation function along an isomorph with 19% density
increase before scaling the distance r into reduced units. (b) AA pair-
correlation function along the same isomorph after scaling the distance r into
reduced units. (c) AA pair-correlation function along an isotherm with 12%
density increase after scaling of the distance into reduced units.
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reduced units via

~r ¼ F1=3r ð17Þ

Also shown for reference in Figure 4c is the AA radial distribution
functions along an isotherm with 12% density increase. Although
the reduced structure of the atomic positions, due to the fixed
bonds, is predicted not to be invariant along an isomorph, Figure 4
shows that it nevertheless is so to a reasonable approximation. The

reduced structure of the atomic positions is less invariant along the
isotherm. Figure 5 considers the AB radial distribution functions,
where the constrained bond distance shows up as a sharp peak.
The analogous conclusion as with the AA distribution functions is
reached, and likewise for the BB distribution functions (not shown).
Next, we consider in Figure 6 the molecular center-of-mass

radial distribution functions along the isomorph and isotherm of
Figures 4 and 5. This quantity is predicted to be invariant along

Figure 5. Radial distribution functions for the asymmetric dumbbell
model. (a) AB pair-correlation function along the isomorph of Figure 4
before scaling the distance r into reduced units. (b) AB pair-correlation
function along the same isomorph after scaling the distance r into
reduced units. (c) AB pair-correlation function along the isotherm of
Figure 4 after scaling of the distance into reduced units.

Figure 6. Molecular center-of-mass radial distribution functions for the
asymmetric dumbbell model. (a) Pair-correlation function along the
isomorph of Figures 4 and 5 before scaling the distance r into reduced units
~r = F1/3r. (b) Pair-correlation function along the same isomorph after scaling
the distance r into reduced units. (c) Pair-correlation function along the
isotherm of Figures 4 and 5 after scaling of the distance into reduced units.
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an isomorph (see section II). The molecular center-of-mass
structure is to a good approximation invariant in reduced units
along the isomorph, but this is less so along the isotherm, as can
be seen from the first and second peaks. It should, however, be
noted that beyond r ≈ 2.3 the isotherm appears more invariant
than the isomorph.
We consider in Figure 7 the dynamics in terms of the reduced

A-particle incoherent intermediate scattering function. The re-
duced dynamics of the atoms is not predicted to be invariant
along an isomorph (see Appendix B); however, the figure shows
that it is a good approximation. The same conclusion is reached
for the B-particle (not shown). In Figure 8 we consider the
reduced molecular center-of-mass self-part of the intermediate
scattering function. This quantity is predicted to be invariant
along an isomorph (see Appendix B), and Figure 8 clearly shows
this. The dynamics is not invariant along the isotherm.
We show the variation of γ, calculated from the NVT fluctua-

tions via eq 16, in Figure 9 along an isochore and along the
isomorph of Figures 4�8 in two different versions. The crosses
show γ calculated from the total virialW, and the asterisks show
γ calculated after subtracting the constraint contribution to virial,
i.e., replacing W with WLJ = W � WCON. The inset shows the
corresponding correlation coefficients R. Reference 20 predicts
that γ should be a function of density only γ = γ(F). This is seen

in Figure 9 to be a good approximation for both versions of γ,
where the crosses are the γ used to keep the excess entropy
constant. The γ calculated from the LJ virial is seen to be lower
than the γ calculated from the total virial. The γ derived from the
LJ virial is related to an effective IPL exponent that reproduces
the structure and the dynamics of the molecular liquid (see ref 47
for more details).
As mentioned in the Introduction, density scaling1�3 is the

empirical observation that the reduced relaxation time τ~α for
many viscous liquids can be written as some function τ~α =
f(Fγscale/T) where γscale in experiments is a fitting exponent. If we
assume that γ is constant along an isomorph, eq 16 implies that
Fγ/T = const describes the isomorph. In this case density scaling
will hold to a good approximation because the reduced relaxa-
tion time is an isomorph invariant; for the dumbbell system
γ changes only moderately along an isomorph and thus density
scaling is a fair approximation for this system.22 That γ for
systems with isomorphs can be identified with the density
scaling exponent γscale has very recently been verified experi-
mentially for a silicone oil.31

Starting from an equilibrated sample at some state point,
changing either temperature or density alters the equilibrium
Boltzmann distribution of states. Two isomorphic state points have
identical canonical probabilities of scaled microconfigurations

Figure 7. Reduced A-particle incoherent intermediate scattering func-
tions for the asymmetric dumbbell model keeping the reduced wave-
vector q constant. (a) Along the isotherm of Figures 4�6 with 12%
density increase. (b) Along the isomorph of Figures 4�6 with 19%
density increase.

Figure 8. Reducedmolecular center-of-mass incoherent intermediate
scattering functions for the asymmetric dumbbell model keeping the
reduced wavevector q constant. (a) Along the isotherm of Figures 4�7
with 12% density increase. (b) Along the isomorph of Figures 4�7
with 19% density increase.



1025 dx.doi.org/10.1021/jp2077402 |J. Phys. Chem. B 2012, 116, 1018–1034

The Journal of Physical Chemistry B ARTICLE

(eq 8). A sudden change of state from an equilibrated state point
to an isomorphic state point should thus not lead to any
relaxation. This is called an isomorphic jump, and the prediction
of no relaxation was shown in ref 20 to work well for the KABLJ
liquid.
A similar numerical experiment is carried out for the

asymmetric dumbbell model in Figure 10. Considering three
equilibrated, isochoric state points (1), (2), and (3), density and
temperature are instantaneously changed to a state point (4).
State point (4) is isomorphic to state point (2). The isomorph
prediction is that jumps from state points (1) and (3) show
relaxation, whereas jumps from state point (2) do not. This is
indeed the case (Figure 10a). State point (1) ages from below
because the aging scheme (1)f (4) can be described as first an
instantaneous isomorphic jump to the correct density, but a
lower temperature, and subsequently relaxation from this state
point along the isochore of state point (4).
We finally consider the excess isochoric heat capacity per

particle CV
ex/N in Figure 11 along the isomorph and isotherm of

Figures 4�8. The excess heat capacity increases less than 2%
along the isomorph, whereas the 12% density increase on the
isotherm results in a 25% increase in the excess heat capacity.
This is consistent with the prediction in section II that CV

ex/N is
an isomorph invariant.
The previous figures show that isomorphs exists to a good

approximation for the asymmetric dumbbell model. An impor-
tant question is whether the specific molecular geometry deter-
mines whether or not a particular LJ model has good isomorphs.
In Figure 12 the correlation coefficient R is given as a function
of the bond length. The correlation coefficient decreases to
R ≈ 0.65 at unity bond length, and one might be tempted to
conclude that LJ models with large bonds lengths in general do
not have good isomorphs. In section IV,C we investigate the
Lewis�Wahnstr€om OTP model that have unity bond lengths
and show that this model actually has good isomorphs. A theory
relating the variation of R to the molecular geometry and/or
bond lengths remains to be developed.

B. Isomorphs of a Symmetric IPL Dumbbell Model. In this
section we briefly consider a symmetric IPL dumbbell model
(see section III,B). In Figures 13a,b we show the particle radial
distribution functions along an isomorph before and after
scaling the distance r into reduced units. Also shown is the
reduced particle incoherent intermediate scattering function in
Figure 13c. The corresponding molecular center-of-mass quan-
tities are shown in Figure 14. The atomic dynamics of Figure 13c
appear slightly more invariant than the reduced molecular
center-of-mass dynamics of Figure 14c, and the difference seems
to be larger than what can be contributed to statistics. The latter
is predicted to be invariant along an isomorph whereas the
former is not. However, we have not tried to quantify this
observation any further.
Atomic systems with IPL interactions have exact isomorphs.

This reflects the scale invariance of the IPL potential, i.e., that it

Figure 10. Four state points (1), (2), (3), and (4) corresponding
to, respectively, (F, T) = (0.932, 0.400), (0.932, 0.465), (0.932, 2.000),
and (0.851, 0.274) are given where the first three state points are on the
same isochore. State points (2) and (4) are isomorphic, whereas (1) and
(3) are not isomorphic to (4). After equilibrating at state points (1), (2),
and (3), respectively, temperature and density are instantaneously
changed to that of state point (4) via a scaling of the center-of-
mass coordinates keeping the Eulerian angles of the molecules
fixed. An average has been performed over 100 samples. (a) Relaxational
behavior of all state points quantified by the potential energy U. The
isomorph jump (2) f (4) shows no relaxation whereas the other state
points do. (b) Close up of the potential energy of state point (2) before and
after the jump, where the jump takes place at t≈ 60.

Figure 9. Variation of γ (eq 16) and the correlation coefficient R (eq 1)
for the asymmetric dumbbell model in two different versions along an
isochore (red, F= 0.932) and along the isomorph (black) of Figures 4�8.
The crosses show γ calculated from the total virial W, and the asterisks
show γ calculated after subtracting the constraint contribution to virial,
i.e., WLJ = W � WCON. The corresponding R’s are shown in the inset.
γ is predicted in ref 20 to be a function only of density, which is seen to
apply to a good approximation for both versions.



1026 dx.doi.org/10.1021/jp2077402 |J. Phys. Chem. B 2012, 116, 1018–1034

The Journal of Physical Chemistry B ARTICLE

preserves its shape under a scaling of the argument. Because
molecules by their fixed geometry define a length scale in the
system, isomorphs will always be approximate. However, the
previous figures show that rigid molecules with IPL intermole-
cular interactions can also have good isomorphs.
In Figure 15 we consider the variation of γ and R along the

investigated isomorph, which shows that R decreases slightly
with increasing temperature (and density). The variation of γ
along the isomorph is less than for the asymmetric dumbbell, and
γ is to a good approximation constant. As for the asymmetric
dumbbell model (Figure 9), the effect of the constraints is to
increase γ and decrease R (these are, respectively, 6 and 1 for the
atomic IPL potential used).

C. Isomorphs of the Lewis�Wahnstr€om OTP Model. We
proceed to investigate the Lewis�Wahnstr€om OTP model.29,30

Figure 16 shows the particle radial distribution functions along an
isomorph with 21% density increase before and after scaling the
distance r into reduced units. We treat the particles as identical in
the quantities probed in simulations (i.e., the radial distribution
function, etc.) even though the OTP model is an isosceles
triangle. Also shown for reference is an isotherm with 11%

Figure 13. Structure and dynamics along an isomorph with 19% density
increase for the symmetric IPL dumbbell model (n = 18). (a) Particle
pair-correlation functions before scaling the distance r into reduced
units. (b) Particle pair-correlation functions after scaling the distance r
into reduced units. (c) The reduced particle incoherent intermediate
scattering functions at constant reduced wavevector q.

Figure 11. Excess isochoric heat capacity per particle CV
ex/N for the

asymmetric dumbbell model as a function of density along the isomorph
(black) and isotherm (red, T = 0.465) of Figures 4�8. The density
increase is 19% and 12%, respectively. Consistent with the predicted
isomorph invariance, the excess isochoric heat capacity increases less than
2% along the isomorph, whereas the isotherm shows a 25% increase. For
the isotherm the dynamics becomes very slow for densities higher than
F = 0.950 and the system becomes difficult to equilibrate properly.

Figure 12. Correlation coefficient R as a function of the bond length in
the asymmetric dumbbell model at (F, T) = (0.932, 0.465). The investi-
gated model has bond length 0.584 with a correlation coefficient R≈ 0.97;
however, as the bond length increases, the correlation coefficient decreases
to R≈ 0.65 at unity bond length. The inset shows the corresponding values
of γ as defined in eq 16. As the bond length increases, the system becomes
very viscous and the statistics is poor at high bond lengths.
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density increase in Figure 16c. Figure 17 shows the correspond-
ing reduced molecular center-of-mass radial distribution func-
tions. The reduced molecular center-of-mass structure is less
invariant along the isomorph than for the asymmetric dumbbell
(Figure 6), consistent with the OTP model being less strongly
correlating (R ≈ 0.90). However, comparing with the isotherm
in Figure 17c, the OTP model, here, crystallizes at the highest
density probed,36 even though the density increase is just 11%
compared with the 21% density increase along the isomorph.

Comparing now with the particle quantities of Figure 16, the
latter seems to be more invariant along the isomorph, even
though the reduced molecular center-of-mass structure is pre-
dicted in section II to be invariant. The isomorph invariants
presented in section II are exact in the case of exact isomorphs;
however, the OTP model has a correlation coefficient of 0.90,
and we expect this to be the cause of disagreement. This,
however, does not explain why the reduced structure should be
more invariant, and we currently have no explanation for this.
Figure 18 shows the reduced particle incoherent intermedi-

ate scattering functions along the isotherm and isomorph of
Figures 16 and 17, while Figure 19 shows the reduced molecular
center-of-mass incoherent intermediate scattering functions.
For the molecular quantities, the dynamics is roughly invariant
along the isomorph but not on the isotherm, even though the
density increase is 21% for the isomorph and only 11% for the
isotherm. In contrast to the reduced molecular center-of-mass
structure; the molecular dynamics (Figure 19b) is just as
invariant as the particle dynamics (Figure 18b), consistent with
the prediction of section II.
We consider in Figure 20 the variation of γ as defined by eq 16.

The large variation in γ indicates that density scaling may show a
breakdown sooner (for a given change in density) for the Lewis�
Wahnstr€omOTPmodel than for the asymmetric dumbbell where γ
changes less along an isomorph. The isomorphs of the OTP model
are, however, more approximative than for the asymmetric dumbbell,
which is consistent with OTP model being less strongly correlating.
Next, we consider isomorph jumps for the OTP model. The

setup is analogous to that of the asymmetric dumbbell model
described in section IV,A. It is seen from Figure 21 that an
isomorph jump shows no relaxation. The apparent larger fluctua-
tions in the potential energy (Figure 21b) than for the asymmetric
dumbbell (Figure 10b) are due to a change of scale in the figure.
We close the investigation of theOTPmodel by considering in

Figure 22 the isochoric excess heat capacity per particle CV
ex/N.

This quantity increases 7% over the 21% density increase along
the isomorph, whereas the 11% density increase on the isotherm
results in a 34% increase in the isochoric excess heat capacity
before crystallizing. These results are consistent with the predic-
tion that CV

ex is an isomorph invariant (see section II), although
less so than for the asymmetric dumbbell model.

Figure 14. Structure and dynamics along the isomorph of Figure 13 for the
symmetric IPL dumbbell model (n = 18). (a) Molecular center-of-mass pair-
correlation functions before scaling the distance r into reduced units~r = F1/3r.
(b) Molecular center-of-mass pair-correlation functions after scaling the
distance r into reduced units. (c) Reduced molecular center-of-mass in-
coherent intermediate scattering functions at constant reduced wavevector q.

Figure 15. Variation of γ and R (inset) along the isomorph of Figures 13
and 14 with a 19% density increase for the symmetric IPL dumbbell model
(n=18).γ increases slightly along the isomorph. Excluding the constraints in
the virial the correlation coefficient and γ are respectively R = 1 and γ = 6.
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V. MASTER ISOMORPHS

The previous section detailed the existence of isomorphs in
the phase diagram of liquids of small rigid molecules. We now
investigate whether the generated isomorphs for the LJ systems
have the same shape in theWU phase diagram, i.e., whether a so-
called master isomorph exists, as has been shown for generalized
LJ atomic systems.21 It is also interesting to compare the
isomorphs of the asymmetric dumbbell andOTPmodels, because

both systems have intermolecular (12,6)-LJ interactions, but
different constraint contributions to the virial (one versus three
constrained distances per molecule).

Figure 23a shows three different isomorphs in the WU phase
diagram for the asymmetric dumbbell model, in two different
versions: one for the total virialW and one for the ”LJ” virial, i.e.,
replacing W by WLJ = W � WCON. To investigate whether a
master isomorph exists, Figure 23b shows the same isomorphs

Figure 16. Particle radial distribution functions for the OTP model.
(a) Along an isomorph with 21% density increase, shown prior to scaling
thedistance r into reducedunits. (b) Along the same isomorphafter scaling the
distance r into reduced units. (c) Along an isothermwith 11%density increase.
At the highest density probed the OTP model crystallizes36 (magenta).

Figure 17. Molecular center-of-mass radial distribution functions for
the OTP model. (a) Along the isomorph of Figure 16 with 21% density
increase, shown prior to scaling the distance r into reduced units. (b)
Along the same isomorph after scaling the distance r into reduced units.
(c) Along the isotherm of Figure 16 with 11% density increase. At the
highest density probed the OTP model crystallizes (magenta).
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after scaling of the potential energy and the virial with the same
factor (depending on the isomorph). The best scaling factor was
identified by trial and error. Corresponding figures for the OTP
model are given in Figure 24. The figures show that for both
models a master isomorph exists to a good approximation both
with and without the constraint contribution to the virial.

Reference 21 derived predictions concerning the shape of
isomorphs for atomic systems with pair potential given by a sum
of two IPLs (the generalized LJ potential). The question arises
whether WLJU follows that shape? This is studied in Figure 25a
where the WLJU isomorphs for the asymmetric dumbbell and
OTP models are scaled using the previously mentioned proce-
dure. The two dashed curves are the isomorph prediction for an
atomic (12,6)-LJ system21 (where ~F = F/F* and F* is the density
of a chosen reference state point)

U ¼ U�
m~F

4 þ U�
n~F

2 ð18Þ

WLJ¼4U�
m~F

4 þ 2U�
n~F

2 ð19Þ
where the reference coefficients (Um

/ , Un
/) have been calculated

from two different state points along “Isomorph 1” of the
asymmetric dumbbell.21 The only assumption used in ref 21 to

Figure 18. The reduced particle incoherent intermediate scattering
functions for the OTP model keeping the reduced wavevector q
constant. (a) Along the isotherm of Figures 16 and 17 with 11% density
increase. (b) Along the isomorph of Figures 16 and 17 with 21% density
increase and almost a factor of 4 increase in temperature. The dynamics
is roughly invariant along the isomorph, but not along the isotherm.

Figure 19. Reduced molecular center-of-mass incoherent intermediate
scattering functions for the OTP model keeping the reduced avevector q
constant. (a) Along the isotherm of Figures 16�18 with 11% density
increase. (b) Along the isomorph of Figures 16�18 with 21% density
increase and almost a factor of 4 increase in temperature. The dynamics is
roughly invariant along the isomorph, but not along the isotherm.

Figure 20. Variation of γ (eq 16) and the correlation coefficient R
(inset, eq 1) for the OTP model in two different versions along an
isochore (red, F = 0.329) and the isomorph (black) of Figures 16�19.
The crosses show γ calculated from the total virialW, the asterisks show
γ calculated after subtracting the constraint contribution to virial, i.e.,
replacing W by WLJ = W � WCON. γ is predicted in ref 20 to be a
function only of density as is seen to be the case for both versions,
although the variation is larger than for the asymmetric dumbbell.
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derive these formulas is the invariance of the reduced atomic
structure along an isomorph; however, this is not predicted to be
the case for molecular systems with isomorphs (see section II).

It is clear that the atomic isomorph shape is not followed
exactly. Nevertheless, there seems to exist not only a master
isomorph in the LJ and total virial for the individual systems, but
also for the LJ virial between these two different model systems.
The same does not hold for the total virial, as can been seen in
Figure 25b, because the constraint contributions are different.

To examine the extent of “deviation” from eqs 18 and 19,
we show in Figure 26 for the asymmetric dumbbell U/ ~F2 and
WLJ/ ~F2 as functions of the reduced density ~F2 (F* = 1). The
reference coefficients can be calculated from a linear regression fit
of the potential energy and the estimated coefficients can be used
to plot a straight line in the LJ virial plot. This is performed in
Figure 26 where it is clear that even though both plots follow a

Figure 21. Four state points (1), (2), (3), and (4) corresponding to,
respectively, (F, T) = (0.329, 0.650), (0.329, 0.700), (0.329, 1.000),
and (0.303, 0.383) are given where the first three state points are on
the same isochore. State points (2) and (4) are isomorphic whereas
(1) and (3) are not isomorphic to (4). After equilibrating at state
points (1), (2), and (3), respectively, the temperature and density are
instantaneously changed to that of state point (4) via a scaling of
the center-of-mass coordinates keeping the Eulerian angles of the
molecules fixed. An average has been performed over 100 samples.
(a) Relaxational behavior of all state points quantified by the potential
energy U. The isomorph jump (2) f (4) shows no relaxation whereas
the other jumps do. (b) Close up of the potential energy of state
point (2) before and after the jump, where the jump takes place at
t ≈ 60.

Figure 22. Isochoric excess heat capacity per particle CV
ex/N for the

OTP model as a function of density along the isomorph (black) and
isotherm (red) of Figures 16�19. The density increase is 21% and 11%,
respectively. At high densities for the isotherm the OTP model crystallizes.
The isochoric excess heat capacity is to a good approximation invariant
along the isomorph, whereas this is not the case for the isotherm.

Figure 23. (a) Three different isomorphs for the asymmetric dumb-
bell model in two different versions with 19%, 21%, and 22% density
increase, respectively (black, magenta, and green). The crosses give the
total virial W, the asterisks give WLJ = W � WCON. τ~α is the reduced
relaxation time of the isomorph extracted from the self-part of
the intermediate scattering function. (b) The same isomorphs as in
(a) whereWU andWLJU are scaled to superpose with a factor identified
by trial and error. The black points have unity scaling factor.
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near straight line, the coefficients are not given by eqs 18 and 19.
It is worth mentioning again that the prediction of ref 21 is for an
atomic system and is as such not excepted to hold for rigid
molecular systems.

Finally, we consider in Figure 27 for the asymmetric dumbbell
how the instantaneous fluctuations of WCON correlate with WLJ

and W, respectively. The constraint contribution to the virial at
this state point does not correlate well with the contribution to the
virial coming from the LJ interactions (R = 0.31). The correlation
is higher when the total virial is considered (R = 0.61). The main
contribution to the virial for the asymmetric dumbbell model
comes from the LJ interactions; however, the LJ virial does not
correlate well with the constraint virial. The latter observation
may indicate a breakdown of master isomorph scaling (for the
total virial) at high pressures, but this remains to be confirmed.

VI. SUMMARY AND OUTLOOK

Isomorphs are curves in the phase diagram of a strongly
correlating liquid along which a number of static and dynamic
quantities are invariant in reduced units. References 20 and 21
focused on understanding isomorphs in atomic systems. In this

paper we generalized the isomorph concept to deal with systems
of rigid molecules (eq 5) and investigated several predicted
isomorph invariants for the asymmetric dumbbell, a symmetric
IPL dumbbell, and the Lewis�Wahnstr€om OTP models. We
find that these rigid molecular systems also have isomorphs to a
good approximation; however, the isomorphs of the OTPmodel
were more approximative than those of the asymmetric dumb-
bell, which is consistent with the OTP model being less
strongly correlating. Moreover, it was found that the asymmetric
dumbbell and Lewis�Wahnstr€om OTP models to a good
approximation have master isomorphs, i.e., that all isomorphs
have the same shape in the virial/potential energy phase diagram.
This applies for the total virial, but also after subtracting the
constraint contribution. A general master isomorph was identi-
fied between these two model systems after this subtraction.

A full theoretical understanding of the implications of rigid
bonds remains to be arrived at. For instance, the shape of
molecular isomorphs is different from the shape of ref 21
for atomic LJ systems. The rigid bonds seem in general to
increase γ and decrease the correlation coefficient R with res-
pect to the unconstrained system. More specifically, R

Figure 25. (a) Scaled WLJU isomorphs for the asymmetric dumbbell
and OTP models. The black points have unity scaling factor. Both
systems have intermolecular (12,6)-LJ interactions, and the dashed
curves are the isomorph prediction from ref 21 for an atomic system,
where the LJ reference coefficients have been calculated from the
dumbbell state points (F, T) = (0.932, 0.465) and (0.851, 0.274),
respectively. (b) ScaledWU isomorphs for the systems in (a). The total
virial does not show exact scaling between the asymmetric dumbbell and
OTP models.

Figure 24. (a) Two different isomorphs for the OTP model in two
different versions with 21% and 14% density increase (black and
magenta). The crosses give the total virialW, the asterisks giveWLJ =
W � WCON. τ~α is the reduced relaxation time of the isomorph
extracted from the self-part of the intermediate scattering function.
(b) The same isomorphs as in (a) whereWU andWLJU are scaled to
superpose with a factor identified by trial and error. The black points
have unity scaling factor.
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decreases significantly with increasing asymmetric dumbbell
bond length (R ≈ 0.65 around unity bond length; see section

IV,A). This is consistent with the results of Chopra et al.,10

who noted a worse scaling of the reduced relaxation time
and diffusion constant with excess entropy when the bond
length of a rigid symmetric LJ dumbbell model is increased.
On the other hand, it is noteworthy that strong correlation is
observed for the OTP model even though it has unity bond
lengths. The molecular center-of-mass structure in reduced
units is predicted to be invariant along an isomorph; however, for
theOTPmodel the reduced particle structure seemsmore invariant
along an isomorph than the reduced molecular center-of-mass
structure. The former is not predicted to be invariant along an
isomorph, and the difference should be investigated in more detail
to clarify this issue.

For real molecular liquids the concept of isomorphs is
approximate. Thus it is natural to wonder to which extent the
predicted scalings hold as the virial/potential energy correla-
tion becomes worse. Consider for instance the supercooled
regime. Here the transition states become increasingly more
important as the temperature is lowered, and one might
expect scalings involving dynamical quantities to be more
sensitive to a decrease in the correlation coefficient than
scalings based on the structure. Likewise, one could consider
the breakdown of density scaling, indicated here by the study
of the OTP model, as an effect of the correlation coefficient
moving away from unity, because power-law density scaling is
not solely based on Boltzmann factors. Quantifying how the
scalings depend on the correlation coefficient is a topic that
deserves more attention in future publications in connection
with molecular liquids.

’APPENDIX A: CONSTRAINED DYNAMICS AND THE
VIRIAL EXPRESSION

Constrained dynamics is discussed in many different places,
for instance refs 38, 40, and 41. We give here a brief introduction
to constrained dynamics and the connection to the virial expres-
sion used in this article.

Gauss’ principle of least constraint48 states that a classic
mechanical system of N particles with constraints deviates
instantaneously in a least possible sense from Newton’s second
law, i.e., that

∑
N

i¼ 1
mi €ri � Fi

mi

� �2
ðA1Þ

is a minimum. Here ri and Fi are the position and interaction
force of particle i. In the case of no constraints, setting the
partial derivative ∂/∂€ri to zero implies €ri � Fi/mi = 0, i.e.,
Newtons’s second law.

In the case of holonomic constraintsψα(rN) = 0 where α = 1, ...,
G, the variation can be carried out by introducing Lagrangian multi-
pliers, i.e.,

∑
N

i¼ 1
mi €ri � Fi

mi

� �2
� ∑

G

α¼ 1
λαψ€α ðA2Þ

should be stationary. Setting the partial derivative ∂/∂€ri to zero
implies (where a factor of 1/2 has been absorbed in the Lagrangian
multiplier)

mi 3€ri ¼ Fi þ ∑
G

α¼ 1
λα∇riψ

α ¼ Fi þ Gi ðA3Þ

Figure 26. Potential energy and LJ virial as a function of ~F2 for
“Isomorph 1” of the asymmetric dumbbell. (a) A linear regression fit
of the potential energy has been performed to calculate the reference
coefficients (Um

/ ,Un
/). (b) These coefficients are then used to plot the red

straight line, which according to the atomic prediction (eqs 18 and 19)
should coincide with the black data points. The green line is a linear
regression fit to the same data points.

Figure 27. (a) Correlation of the instantaneous fluctuations of WLJ and
WCON. The correlation coefficient R is 0.31. (b) Correlation of the instanta-
neous fluctuations ofW andWCON. The correlation coefficient R is 0.61.
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Newton’s second law thus remains valid if an additional force is
added (called the constraint force Gi). At this point λ

α is unde-
termined; however, an explicit expression40 for λα can be deter-
mined fromdifferentiating twice with respect to time the holonomic
constraint. In molecular dynamics simulations it is imperative to
calculate λα correctly to achieve a stable numerical algorithm. The
reader is referred to refs 38 and 39 for details concerning this aspect.

The virial W is defined by W = 1/3Σi=1
N ri 3 Fi. In an atomic

system with LJ pair potential interactions the virial is given by
W =WLJ = �1/3Σi<j

N riju0(rij). If the system has bond constraints
ψα = (rα,i � rα,j)

2/2 = rα,ij
2/2 = cα,ij

2/2, it follows from eq A3
that the constraint force contributes to the virial as WCON =
1/3Σi=1

N ri 3Gi = 1/3Σα=1
G λαrα,ij

2.

’APPENDIX B: CONSTRAINED NVE AND NOSE��
HOOVER NVT DYNAMICS IN REDUCED UNITS
ALONG AN ISOMORPH

We start our considerations from the constrained equations of
motion, eq A3:

mi 3€ri ¼ Fi þ ∑
G

α¼ 1
λα∇riψ

α ¼ Fi þ Gi ðB1Þ

Here ri and Fi are, respectively, the position and interaction force
of particle i, and λα is the Lagrangian multiplier for the α-th
constraint ψα. For simulating rigid molecules49 the constraints
are in general a combination of constrained bond lengths ψα =
(rα,i � rα,j)

2/2 = rα,ij
2/2 = cα,ij

2/2 and linear constraints ψβ =
Σi=1
nb Cβiri � rβ = 0, where Cβi is a factor that depends on the

geometry of the molecule (see ref 49 for more details). For
simplicity we consider only bond constraints in the following.

The general expression for the Lagrangian multiplier λα is
given by40,50

λα ¼ � ∑
G

β¼ 1

ðZ�1Þαβ ∑
N

i, j¼ 1
∇ri∇rjψ

β _rj _ri þ ∑
N

i¼ 1

∇riψ
β
3 Fi

mi

" #

ðB2Þ

Zαβ ¼ ∑
N

i¼ 1

∇riψ
α
3∇riψ

β

mi
ðB3Þ

Defining reduced units for length, energy, and mass as follows

~ri ¼ F1=3ri ðB4Þ

~U ¼ U=kBT ðB5Þ

~mi ¼ mi=Æmæ ðB6Þ
reduced units for time and force follow as

~t ¼ t=ðF�1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æmæ=kBT

p
Þ ðB7Þ

~Fi ¼ F�1=3Fi=kBT ¼ �∇~ri
~U ðB8Þ

Inserting the above definitions in eqs B1�B3 and usingrriψ
α =

rα,ij, we arrive at the constrained NVE equations of motion in
reduced units

~mi 3~r€i ¼ ~Fi þ ∑
G

α¼ 1
λ~α~rα, ij ¼ ~Fi þ ~Gi ðB9Þ

where

λ~α ¼ � ∑
G

β¼ 1

ð~Z�1Þαβ ∑
N

i, j¼ 1
~r_j~r_i þ ∑

N

i¼ 1

~rβ, ij 3 ~Fi
~mi

" #
ðB10Þ

~Zαβ ¼ ∑
N

i¼ 1

~rα, ij~rβ, ij
~mi

ðB11Þ

Because, in general, ~rα,ij
2 = F2/3cα,ij2, the reduced constrained

equations of motion are not invariant along an isomorph.
Considering instead the molecular center-of-mass motion in

reduced units

~Mi 3~r€CM, i ¼ ~FCM, i ðB12Þ
where ~FCM,i and ~Mi are respectively the reduced force on and
mass of molecule i. Because the reduced force ~FCM,i is invariant
along an isomorph, it follows that the molecular NVE equations
of motion are invariant along an isomorph. The invariance of
~FCM,i can be seen as follows. The isomorph definition eq 5
implies for a fixed state point (1) and arbitrary state point (x),
both along the same isomorph [where ~R � (F�1/3~rCM,1, ϕ1, θ1,
χ1, ..., F

�1/3~rCM,N, ϕN, θN, χN)], that

�Uð~RðxÞÞ=kBTx ¼ �Uð~Rð1ÞÞ=kBT1 � ln C1x ðB13Þ
Taking the gradient r~rCM,i

it follows that

~FðxÞCM, i ¼ ~Fð1ÞCM, i ðB14Þ
This concludes the proof of the isomorph invariance of the
reduced molecular center-of-massNVE equations of motion. For
the molecular center-of-mass NVT equations of motion the
proof is analogous to the above and shown for atomic systems
in ref 20. In this case the time constant of the Nos�e�Hoover
algorithm needs to be adjusted along the isomorph; otherwise,
the dynamics is not invariant.20
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