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Abstract

Are the cohesive laws of interfaces sufficient for modelling fracture in polycrys-
tals using the cohesive zone model? We examine this question by comparing
a fully atomistic simulation of a silicon polycrystal with a finite element sim-
ulation with a similar overall geometry. The cohesive laws used in the finite
element simulation are measured atomistically. We describe in detail how to
convert the output of atomistic grain boundary fracture simulations into the
piecewise linear form needed by a cohesive zone model. We discuss the effects
of grain boundary microparameters (the choice of section of the interface, the
translations of the grains relative to one another and the cutting plane of each lat-
tice orientation) on the cohesive laws and polycrystal fracture. We find that the
atomistic simulations fracture at lower levels of external stress, indicating that
the initiation of fracture in the atomistic simulations is likely dominated by ir-
regular atomic structures at external faces, internal edges, corners and junctions
of grains. Thus, the cohesive properties of interfaces alone are not likely to be
sufficient for modelling the fracture of polycrystals using continuum methods.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The cohesive zone model (CZM) [1], a finite element based method for simulating fracture, is
often applied to polycrystals and multiphase materials which fracture at the interfaces of grains
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or material phases. The debonding of such interfaces is described by cohesive laws which give
the displacement across the interfaces as a function of stress. An example of a cohesive law
is shown in figure 2(b). It has been shown that the shape and scale of the cohesive law has a
large effect on the outcome of the finite element simulation [1, 2]. However, previous CZM
simulations of polycrystals have used cohesive laws that are guessed, chosen for numerical
convergence and do not take into account the effect of varying grain boundary geometries
within the material. The same cohesive law is often used throughout the material despite
the fact that in a real material, the geometries of the grain boundaries/phase interfaces must
vary [3–5].

For input into CZM simulations of polycrystals, it would be useful to find a formula for
the cohesive laws of grain boundaries as a function of their geometry. Numerous studies have
shown that there are large jumps in the peak stress for special grain boundaries [6–13]. A recent
systematic study of 2D grain boundaries has shown that perturbing special, commensurate
grain boundaries adds nucleation sites for fracture, lowering the fracture strength of the
boundary [14]. This leads to a hierarchical structure to the fracture strength as a function
of geometry, with singularities at all commensurate grain boundaries.

Since finding a functional form for 3D grain boundary cohesive laws is daunting, it is
helpful to calculate the cohesive laws atomistically, on the fly, for each geometry in a given
polycrystal. (It is less feasible to measure cohesive laws experimentally because it is difficult
to isolate and measure the displacements on either side of the grain boundary.) But are the
cohesive laws of the interfaces enough? In this paper, we will compare a finite element,
cohesive zone model of a silicon polycrystal that uses an atomistically generated cohesive law
for each interface to a fully atomistic simulation of the same geometry. We will compare the
stress fields of each model and the overall pattern of fracture. The model we will investigate is
that of a cube embedded in a boundary that bisects a larger cube (figure 1) with a normal load
imposed on the top face. The model has three regions, the two halves of the outer cube, and
the inner cube, each with a different lattice orientation. The orientations, chosen at random
and shown in table 1, form general, high angle grain boundaries. We calculate a cohesive law
atomistically for each interface of the model. To allow for intragranular fracture through the
inner cube, we have added an interface through the centre. For this interface, we measure the
cohesive law of a perfect crystal. Yamakov et al [15] describe a method for calculating cohesive
laws atomistically by calculating the stresses and displacements in 3D cracks propagating in
ductile Al for one grain boundary geometry. Here we simulate the brittle debonding of a flat
Si interface for varying grain boundary geometries.

2. The cohesive zone model

The cohesive zone constitutive model is implemented in a finite element model with zero
volume interface elements placed between the regular finite elements at interfaces. An example
of an interface element is shown in figure 2(a). These interface elements simulate fracture
by debonding according to a cohesive law, the relation between the traction and displacement
across the interface. The form of cohesive law used here is the piecewise linear form developed
by Tvergaard and Hutchinson [16] also described by Gullerud et al [17]. An example is shown
in figure 2(b). The piecewise linear form of the cohesive law is determined by the initial stiffness
k0, the peak traction τp and the critical displacement δc at which the surface is considered fully
debonded and traction free.

Camacho and Ortiz [18] describe mixed loading by assigning different weights to the
tangential and normal components of displacement, described by a factor β. We also assume
that the resistance relative to tangential displacements is considered to be independent of
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Figure 1. Schematic diagram of the cube-in-cube model. (a) A schematic diagram of the cube-in-
cube model. The inner cube is centred within the outer cube and has a length equal to 1/3 that of
the outer cube. (b) The numbering of the internal faces of the model. The upper-left figure shows
the entire cube-in-cube model, while the rest show only the inner cube. In our simulation, we load
the upper face of the model in the z-direction. Under such loading, faces 4, 7, 14 and 22 are subject
to pure normal traction. Faces 0, 1, 2, 3, 5, 6, 20 and 21 are subject to pure shear traction. (The
numbering of the internal faces is not contiguous because the finite element simulation also numbers
the ten external faces.) The inner cube is a single crystal, but in order to allow for intragranular
fracture through this crystal, we add an internal face through the centre. The constitutive relation for
this interface is that of a perfect crystal. Notice that pairs 0&1, 2&6, 3&5 and 20&21 are boundaries
that macroscopically have identical cohesive laws since they are related by an inversion, i.e. they
constitute symmetric pairs of interfaces for which the grains have been swapped.

Table 1. The lattice orientations of the three regions of the cube-in-cube model are given below as
Euler angles, expressed in degrees.

Centre Upper Lower
cube half half

θz First rotation about the z-axis (positive x-axis to y) 27.80 −79.28 34.09
θx Second rotation about the intermediate local x-axis 27.65 66.52 27.40

(positive y-axis to z)
θy Third rotation about intermediate local y-axis 89.49 23.64 −73.79

(positive z-axis to x)

direction. This leads to an effective displacement of

δ =

√

δ2
n + βδ2

t , (1)

where δn is the normal displacement and δt is the tangential displacement. The effective traction
is

τ =

√

τ 2
n + β−2τ 2

t , (2)

where τn is the normal component of traction and τt is the tangential component of traction.
We use a value of β = 1 as used in [4].

3. Atomistically determined material properties used by CZM

The parameters needed by the CZM simulation that are determined by atomistics are the elastic
constants associated with the atomic potential, the orientation of the lattice in each grain and
the cohesive law of each interface. We are modelling silicon using the Stillinger–Weber (SW)
potential [19] but with an extra parameter, α, multiplying the three body term such that α = 1
corresponds to standard SW. We use two values for this parameter, the standard value of 1.0
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Figure 2. Interface elements and the piecewise linear cohesive law. (a) A schematic diagram of a
triangular interface element. The displacement across the interface δ is initially zero. Each of the
two triangles forms a face of one of the tetrahedral elements in the material on either side of the
interface. (b) The form of the constitutive relation for the interface elements. The slope of the first
linear segment is the initial stiffness, k0. When the traction across the interface reaches the peak
traction, τp, the interface element begins to soften. When the normalized displacement, defined by
λ = δ/δc reaches a value of 1, the interface has fully debonded.

(matching to other properties of real silicon) and a value of 2.0 which makes the material more
brittle. We calculate separate material properties (elastic constants and cohesive laws) for each
version of SW.

3.1. Determining the elastic constants

In order to make a direct comparison between the atomistic and finite element (FE) simulations,
we must determine the elastic constants of each version of SW for input into the FE simulation.
The elastic constants are measured by initializing a cube of atoms in a diamond lattice,
incrementing a strain in one direction, relaxing the atoms at zero temperature and measuring
the stress tensor at each increment.

For an interatomic potential with three body terms of the form

Ei =
∑

j<k

f (Erij , Erik), (3)

we can find the αβ component of stress at atom i by using the relation [20]

(σi)α,β =
1

V

∂Ei

∂ǫα,β

, (4)

where V is the volume per atom. This leads to

(σi)α,β =
1

V

∑

j<k

∂Ei

∂Erij

·
∂Erij

∂ǫα,β

+
∂Ei

∂Erik

·
∂Erik

∂ǫα,β

. (5)

Because

∂(rij )γ /∂ǫα,β = (rij )βδα,γ , (6)

the atomic stress is

(σi)α,β =
1

V

∑

j<k

∂Ei

∂(rij )α
(rij )β +

∂Ei

∂(rik)α
(rik)β . (7)

We use a value of V equal to the volume per atom in the ground state (perfect lattice). This
has the shortcoming that for atoms near dislocations or grain boundaries, the actual volume
per atom will be quite different.
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Table 2. Elastic constants of silicon, determined atomistically for two versions of SW silicon.

Original SW Brittle SW Experiment [21]
(GPa) (GPa) (GPa)

C11 69.74 92.78 166
C12 35.20 23.69 64
C44 52.00 83.37 80

Figure 3. An example of a grain boundary simulation. The darker atoms represent the constrained
layer of atoms used to enforce rollered boundary conditions. The normal strain is imposed by
displacing the constrained atoms on the endcaps which are indicated by the rectangles. W is the
width of the unconstrained atoms in each grain in the direction perpendicular to the interface. Wgb
represents the width of the strain field on either side of the interface, and is chosen such that (11)
does not give a negative value.

C11, C12 and C44 are determined by σxx/ǫxx , σxx/ǫyy and σxy/ǫxy , respectively. The
results are given in table 2. The differences between the elastic constants calculated for SW
silicon and those found by experiment are due to the fact that the interatomic potential is an
approximate representation of real silicon.

3.2. Calculating the cohesive laws

The method for computing the cohesive law of a grain boundary with an atomistic simulation
is described in [14]. Here we are measuring fully 3D grain boundary geometries with general,
high angle orientations. An example of a 3D grain boundary simulation is shown in figure 3.
In order to simulate grain boundaries of any geometry (not just geometries restricted by
commensurability) we use constrained layers of atoms on the surfaces instead of periodic
boundary conditions. Because SW contains three body terms, a layer thickness equal to twice
the cutoff distance of the potential is needed to ensure that the free atoms are not subject to
surface effects. There is a constrained zone for each face (atoms that are within a constrained
zone width of a single exterior face), edge (atoms that are within a constrained zone width of
exactly two exterior faces) and corner (atoms that are within a constrained zone width of three
exterior faces). The atoms on the faces are constrained not to move perpendicular to the face,
the atoms on the edge are constrained to move only parallel to the edge and the atoms in the
corners are totally fixed in position. These constraints simulate ‘rollered’ boundary conditions.
Each grain is 30 Å wide and normal strain increments are 0.005. At each strain increment, we
displace the ‘endcaps’, the constrained atoms adjacent to the external faces that are parallel to
the yz-plane (indicated by the grey boxes in figure 3). We relax the atoms and measure the xx

component of stress on the endcaps. An example of the stress–strain curve that results from
such a simulation is shown in figure 4.
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Figure 4. Strain versus stress: brittle SW silicon. Strain versus stress for the 12 different interfaces
needed for the continuum FE cube-in-cube simulation. Each grain is 30 Å on a side. In order
to calculate the cohesive law for only the grain boundary, we subtract off the elastic response of
the bulk (figure 5). Face 0 has no grain boundary, representing intragranular fracture through the
centre cube. Notice that the cohesive laws of the vertical interfaces are invariant under inversion,
so some pairs of faces would have identical cohesive laws if measured in an infinite-sized system
(or one with periodic boundary conditions and microparameters that are completely optimized).
Thus the differences between faces 0&1, 2&6, 3&5 and 20&21, both here and in figures 5–7 reflect
the discreteness effects of the choice of lattice origin and positions of the edges of the simulation.

The CZM uses a traction-displacement law that describes the debonding at the interface in
question [16,18,22] as discussed in section 2. The piecewise linear form is determined by the
initial stiffness k0, the peak traction τp and the final displacement δc. We will need to extract
these parameters from the output of our grain boundary simulation (figure 4).

Because we are measuring the displacements 30 Å from the actual boundary, we need
to subtract off the elastic response of the grain. Because we are using rollered boundary
conditions, there is no Poisson-effect contraction, and the relevant component of the elastic
tensor is C1111, describing the strain normal to the grain boundary. The elastic tensor for
the rotated crystal is found by rotating the elastic constants found in section 3.1 by the same
rotation matrix that describes the rotation of the lattice vectors in each grain

C ′
1111 = R1iR1jR1kR1lCijkl . (8)

We must then combine C ′
1111 from each grain such that the stress in each grain is equal

(analogous to springs in series)

σ = C
(1)

1111

d1

W
= C

(2)

1111

d2

W
= Ceff

1111
d1 + d2

2W
, (9)

Ceff
1111 = 2

/ (

1

C
(1)

1111

+
1

C
(2)

1111

)

, (10)

where d1 and d2 refer to the displacement in each grain and W is the width of each grain. The
displacement near the grain boundary is then given by

dgb = 2Wǫ −
σ

Ceff
1111

2(W − Wgb), (11)
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Figure 5. Cohesive law: brittle SW silicon. Cohesive law, displacement versus stress, for the brittle
potential and 12 interfaces of figure 4. The transformation from strain to effective displacement
at the interface is as described in section 3.2. The effective thickness of the interface is 9 Å on
each side. (Note that this is comparable to the entire size of the smaller atomistic cube-in-cube
simulations.)
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Figure 6. Piecewise linear cohesive laws: brittle SW silicon. Simplified piecewise linear cohesive
law used in the FE simulations. The peak stress and its corresponding displacement are taken from
figure 5, and the critical displacement where the force vanishes is chosen to make the area under
the curve equal to the Griffith energy. In the figure on the left, the solid and dashed line pairs of
the same shade indicate pairs of interfaces with the same macroparameters (grain orientations) but
different microparameters.

where Wgb represents a finite width associated with the interface and ǫ is the external, normal
strain. Since, in our system, the grain boundary is more stiff than the perfect crystal for the
silicon geometries we have studied, this finite width is necessary so that (11) does not give
a negative value. Figure 5 shows the result of applying this correction to the data shown in
figure 4. The initial stiffness is then given by the peak stress divided by the displacement at
peak stress. The final displacement is set such that the Griffith criterion is met, i.e. such that the
area under the curve is equal to the difference between the final surface energies of the broken
grain and the initial energy of the grain boundary interface, δc = 2(γ − γgb)/τp. Figures 6
and 7 show the final, piecewise linear cohesive laws that are used by the CZM simulations.
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Figure 7. Piecewise linear cohesive laws: ordinary SW silicon. The same as figure 6 but for the
original, ductile SW potential for silicon.

For the perfect crystal, we can simply scale the cohesive law to a width equal to the finite
width used to process the grain boundary cohesive laws since we do not need to separate the
behaviour of the bulk from the behaviour of an interface. This has the effect of preserving the
non-linear elastic response. The non-linear elastic response of the bulk is not separated from
the response of the interface for the case of grain boundaries, since the elastic response of the
bulk that we subtract off is assumed to be linear. Since the grain boundaries have a lower
fracture stress than the perfect crystal, non-linear effects in the bulk are less important.

In principle, two boundaries for which the grains have been swapped (such as faces 0&1,
2&6, 3&5, 20&21 as shown in figure 1(b)) should have the same overall structure and therefore
have the same cohesive law. In practice, when simulating a finite region of a grain boundary,
microparameters (the choice of section of the interface, the translations of the grains relative to
one another and the cutting plane of each lattice orientation) alter the grain boundaries that have
the same macroparameters (grain orientation) or would otherwise be the same by symmetry.
The differences between the cohesive laws for the pairs 0&1, 2&6, 3&5, 20&21 in figures 6
and 7 indicate the scope of this effect, of order 10% (much smaller than the discrepancy
between atomistic and continuum simulations, which we will observe in section 5).

4. Fully atomistic simulation

The fully atomistic model is run with a software package called Overlapping Finite Elements
and Molecular Dynamics (OFEMD) which is described in detail in [23, 24]. OFEMD uses
the DigitalMaterial [25] library to run atomistic simulations of any geometry within a finite
element mesh. OFEMD uses the mesh information to fill each material region with atoms in
the given lattice orientation and set up constrained zones as described in section 3.2 to simulate
rollered boundary conditions. The fully atomistic simulation uses the same kinematic boundary
conditions as the FE simulation: a normal loading imposed on the upper face. We manually
update the positions of the atoms in the constrained zones that are adjacent to the upper face to
impose this boundary condition, incrementing the strain up to 15% in 0.5% strain increments,
relaxing the atoms at each step.

5. Cohesive zone model comparison

We compare the fracture behaviour of atomistic and continuum FE simulations for both the
standard SW potential (which is ductile for single crystal, intragranular fracture) and the
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Figure 8. Comparison of the atomistic and CZM simulations of the cube-in-cube with a 10 Å inner
cube, using brittle SW silicon. The top two rows show σzz on the xy centre (the interface between
the two outer grains, roughly the plane of fracture, see figure 1) plane. The bottom two rows show
σzz on the xz centre, cross-sectional plane.

modified, brittle SW potential. We use both potentials to check if discrepancies between
atomistic and continuum simulations could be due to ductility. We explore simulations of two
sizes (inner cube sizes of 10 and 20 Å) to check if discrepancies get smaller in the continuum
limit of larger specimens. The interfacial cohesive laws in each case were computed as in
figures 6 and 7, from atomistic simulations with 30 Å grains.

Figures 8–11 show the results of both the atomistic and continuum simulations for both
versions of SW silicon and both length scales. The colour scales denote σzz, the vertical
component of stress. The stresses for the atomistic simulations were calculated using (7). The
first row of each figure shows the xy centre plane of the atomic simulation (the plane of the
interface between the two outer grains and roughly the plane of fracture, see schematic in
figure 1). The second row shows the same plane of fracture for the CZM simulation. The third
row shows the xz centre plane of the atomistic simulation, illustrating the stresses around the
fracture zone and the crack opening. The fourth row shows the xz centre plane of the CZM
simulation. The stress-free state, shown in blue colour, is an indication that decohesion has
occurred across the interface within that region.
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We shall see that the atomistic simulations and the FE simulations differ in several
important respects. First, the FE simulations fracture overall at a higher strain level. This
might be a nucleation effect; the irregular atomic structures at the external faces and internal
edges and corners could be acting as nucleation points for fracture in ways that are not reflected
in the continuum simulation. Second, the pattern of fracture—which interfaces break in which
order—is in some cases different for the two simulations. Some of these differences are
accidental; the system has inversion symmetries across the xz and the yz planes that are broken
only by the microparameter choices in the grain boundary cohesive law atomistic simulations
and the fully atomistic cube-in-cube simulations. The FE simulation reflects the choice of
microparameters chosen in the cohesive law simulations while the fully atomistic simulation
reflects another choice of microparameters. Hence an atomistic simulation that breaks first
along the ‘front’ edge is equivalent to a FE simulation breaking along the ‘back’. Indeed,
were we to use fully converged, infinite-system cohesive laws such as the periodic boundary
conditions used in [14], an ideal FE simulation would break symmetrically. However, this
effect alone cannot account for the differences between the FE simulations and the fully
atomistic simulations. We will see that these differences are larger than the differences due to
microparameter choices (as observed in figures 6 and 7).

5.1. Brittle SW with a 10 Å inner cube

Figure 8 shows the comparison between the smaller simulations of the brittle potential (an
inner cube length of 10 Å, with the brittle modification of the SW potential). The atomistic
simulation appears to begin to fracture at 11% strain in the upper right corner of the xy plane
in figure 8(b) with the fracture spreading across the right side and finally across the centre
plane, extracting, rather than splitting, the inner cube at 15% strain. At this small scale, the
inner cube is amorphized during the first relaxation step.

The finite element simulation begins to fracture on the right side as well between 11.1%
strain and 12.1% strain, approximately where the atomistic simulation fractures. The only
feature which breaks the 90◦ rotation symmetry for the finite element simulations are the
differences in cohesive laws. The finite element simulation fractures slightly more rapidly,
also ending by breaking through the inner cube but at 14.1% strain rather than 15%.

5.2. Brittle SW with a 20 Å inner cube

For the 20 Å length scale atomistic simulations (figure 9), fracture also begins at the upper right
corner of the xy plane in figure 9(b); however, fracture begins noticeably earlier at 8% strain
and propagates through the centre plane more rapidly. At 9% strain, the atomistic simulation
is comparable to the continuum simulation at 13% strain, with the centre plane, excluding the
inner cube, cracked through. This more rapid fracture of the atomistic simulation could be due
to microstructure differences, but could also be due to the larger system size. A larger system
height means there is more energy stored in elastic strain per unit area of interface. Once a
given region reaches the maximum stress that it can sustain, it snaps open. With a smaller
system size, the opening of the interface is controlled since the constrained zones are closer.
This is related to the effect described in [14] where larger systems effectively approach fixed
force boundary conditions.

Both the atomistic simulation and the finite element simulation begin to decohere at the
upper face of the inner cube (compare figure 9(n) with the slight blue decohered region above
the inner cube in figure 9(s)). However, the FE simulation ultimately decoheres at the centre
plane instead. In the atomistic simulation, we also see a competition between cracking at the

10



Modelling Simul. Mater. Sci. Eng. 16 (2008) 065008 V R Coffman et al

Figure 9. Comparison of the atomistic and CZM simulations of the cube-in-cube with a 20 Å inner
cube, using brittle SW silicon. The top two rows show σzz on the xy centre (the interface between
the two outer grains, roughly the plane of fracture, see figure 1) plane. The bottom two rows show
σzz on the xz centre, cross-sectional plane.

top of the inner cube and cracking through the centre plane. Ultimately, the crack propagates
partially through the inner cube at an angle, reaching the top of the inner cube. This effect
cannot be replicated in the finite element simulation because it did not have interface elements
in position to crack at this angle.

5.3. Original SW with a 10 Å inner cube

For the original version of SW silicon (which is more ductile for single crystal fracture) with
the smaller inner cube size (figure 10), the atomistic simulations fracture at around 14–15%
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Figure 10. Comparison of the atomistic and CZM simulations of the cube-in-cube with a 10 Å
inner cube, using original SW silicon. The top two rows show σzz on the xy centre (the interface
between the two outer grains, roughly the plane of fracture, see figure 1) plane. The bottom two
rows show σzz on the xz centre, cross-sectional plane.

strain, similar to the fracture threshold seen for the brittle potential atomistic simulations at that
size. The continuum simulations, however, fracture at a much higher strain, 30% compared
with 15%, despite using cohesive zone models derived from the original potential.

The atomistic simulation begins to fracture at the top of the xy plane (10% strain figure)
and spreads along the right side (11%, 12% figures). At the end of the atomistic simulation
(14% strain), it has cracked through all but the centre cube. The CZM simulation begins to
fracture along the external edge along the side, and has also not cracked through or around the
inner cube at the conclusion of the simulation.

5.4. Original SW with a 20 Å inner cube

For the 20 Å case (figure 11), the ductile atomistic simulation again fractures at a much lower
stress than does the CZM simulation. The atomistic simulation fractures through all but the
centre cube very rapidly between 14% and 15% strain, reflecting again the effective soft-spring
fixed-stress fracture conditions from the larger system size; the CZM simulation fractures more
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Figure 11. Comparison of the atomistic and CZM simulation of the cube-in-cube with a 20 Å
inner cube, using original SW silicon. The top two rows show σzz on the xy centre (the interface
between the two outer grains, roughly the plane of fracture, see figure 1) plane. The bottom two
rows show σzz on the xz centre, cross-sectional plane.

gradually, showing a sweep from right to left. The behaviour of the CZM simulation is similar
to that of the 10 Å case with fracture beginning on the right side and slowly propagating through
the centre plane.

6. Conclusion

We have described a method for comparing finite element simulations of polycrystal models
with fully atomistic simulations of the same geometry. In the finite element simulations, we
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used elastic constants and cohesive laws for the grain boundaries, derived from the atomistic
calculations. We find fair agreement between the two simulations in one case (the 10 Å brittle
SW simulation) in terms of the strain at which the fracture begins and the pattern of fracture.
However, the more macroscopic, continuum, brittle simulation showed poor agreement, where
one would have naively expected improved convergence. The more ductile simulations showed
poor agreement at both length scales.

Why is the agreement between atomistic simulation and cohesive zone finite element
modelling so poor? (a) Perhaps we have made a poor approximation in implementing the
cohesive zone model. In particular, we measured directly only the cohesive zone parameters
under normal tension. The vertical boundaries are largely under shear, and their cohesive zone
relation calculated using the Camacho–Ortiz approximation could be a problem. However,
many of the simulations fracture first along the horizontal boundaries, where the shear
component should be small, and the large discrepancies in these initial failure points are likely
independent of this approximation. (b) Perhaps the cohesive zone models cannot be applied
on the nanoscale. The cohesive zone model was designed to model fracture in macroscopic
systems. Our nanoscale 10 and 20 Å inner cubes are indeed comparable in size to the cohesive
length Eδc/τp [2]. However, the agreement does not improve as one goes to larger systems.
Also, nanoscale crystals will inevitably have internal stresses due to incompatibilities in fitting
the crystallites together. However these stresses are measured in our atomistic simulations
before the external stress is applied, and found to be small other than within a few lattice
constants of the boundary. It would be surprising if the discrepancies found here were to
disappear with larger-scale simulations.

We tentatively attribute the discrepancy between the cohesive zone and atomistic
descriptions to the importance of lower-dimensional defects—grain boundary junctions and
interface corners. Stress concentration and atomistic disorder at these sites make them likely
nucleation sites for failure (as seen in our simulations). These sites, however, are not explicitly
described by cohesive laws, and extending these laws to incorporate the large variety of possible
geometries would seem infeasible. In order to extract the cohesive properties of such complex
local regions, we suggest the use of direct, on the fly, locally atomistic simulations [23, 24].
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