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A new rheometer is described. It consists of a transducer unit supplied with an electric impedance 
analyzing unit. The transducer unit converts a mechanical impedance into an electrical impedance 
by the piezoelectric effect. A detailed quantitative analysis of the interaction between the sample and 
the transducer is given. The real and imaginary parts of the she& modulus of a viscoelastic sample 
can be found in the frequency range of 1 mHz-50 kHz, modulus range of 0.1 MPa-10 GPa, and the 
temperature range of 150-300 K. The sample volume is 0.3 cm3 and the strain amplitude is 
exceedingly small. The small size of the transducer allows for good temperature control and 
equilibration. It has a simple construction based on inexpensive components. Results on the 
supercooled liquid 2-metyl-2,4-pentandiol at the glass transition obtained by the method are 
included. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

The purpose of this paper is to give a detailed descrip- 
tion of a shear modulus rheometer especially suited to the 
study of liquids with high shear modulus (>I MPa) in the 
audio frequency range and below. Since it is based on piezo- 
electric ceramics we will call it the piezoelectric shear modu- 
lus gauge (PSG). It was developed with the aim of studying 
the frequency dependence of the shear modulus of super- 
cooled liquids at the glass transition. The PSG has been uti- 
lized in two recent works. The first dealt with the connection 
between the electrical and mechanical relaxation in 1,3- 
butanediol and a silicone oil.’ The second dealt with the 
connection between the shear and bulk modulus of 
1,2,6-hexantriol.2 In the latter, a device called the piezoelec- 
tric bulk modulus gauge (PBGS3 was used. It is based on 
much the same principles as the PSG. 

In the case of liquids with a high modulus, one faces 
physical conditions which make the most common methods 
fail. Reviews on a variety of such methods have been given 
by Ferry” and Read, Dean, and Duncan.5 

Following the latter authors one can divide mechanical 
dynamic methods into four classes: 

ill 
(2) 
(3) 

(4) 

Forced vibration nonresonance methods (a continuous 
frequency range below 1 kHz). 
Torsional pendulum performing free vibrations (discrete 
frequencies ranging from 10 mHz to 1.0 Hz). 
Audiofrequency resonance techniques (discrete frequen- 
cies ranging from 20 Hz to 20 kHz). 
Ultrasonic methods (ranging from 100 kHz to 100 
MHz). 

The significant parameter is the ratio of the wavelength to a 
characteristic sample size. This ratio is decreasing down 
through the list. 

The rheometer, PSG, described here uses a forced vibra- 
tion nonresonance method but is also able to include continu- 
ously the frequency range of the resonance tecbiques. The 
high frequency limit on the forced vibration nonresonance 
methods is the first resonance frequency of the apparatus. For 

the PSG this resonance frequency is moved to a high fre- 
quency (-100 kHz) since Ihe mass of the system is much 
lower than in other rheometers. The demand on rigidity of 
the rheometer usually sets the dimensions of it and these 
again imply a certain lower mass limit. The PSG, however, 
shall not be rigid compared to the sample but must have a 
stiffness comparable to it. Thus the mass can be considerably 
lower. 

Another distinction between rheometers can be made ac- 
cording to their working principle.6 They can be based either 
on (A) a separate driver and sensor, or on (B) only one elec- 
tromechanical transducer. 
In case (A) the driver produces a known strain (or alt&na- 
tively, a stress) and the sensor registers the resulting stress 
(or, respectively, a strain). This p,tinciple works well’ in the 
case of soft materials (e.g.; below 1 MPa) but at high moduli 
not only the sample but alsa the driver or sensor are strained. 
Thus one has to take into account the compliance of the 
apparatus. This can, of course, be done but it is a nuisance 
which goes against the principle of measuring the pure stress 
and strain at the sample. Since the rheometer is not funda- 
mentally designed to be strained .it becomes difficult to cal- 
culate the corrections to be made and thus to make precise 
measurements. 

In case (B) the electromechanical transducer acts as a 
converter of a mechanical impedance (i.e., the ratio between 
stress and strain rate) into an electrical impedance. The me- 
chanical impedance of the transducer and the sample should 
be matched in order to obtain the highest sensitivity. The 
deformation of the transducer is thus not a problem, but a 
precondition for this method. Hence the impedance conver- 
sion method is the most natural to use in the case of high 
moduli. An adequate physical and mathematical description 
of the interaction between the sample and the transducer and 
of the connection between the mechanical and electrical side 
of the transducer is, of course, now essential. The transducer 
must be designed in such a simple way that such calculations 
are manageable. This can be accomplished by choosing a 
geometry of such high ‘symmetry that the strain field only 
depends on one spatial coordinate. The equations of motion 
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FIG. 1. Side and top view of the piezoelectric shear modulus gauge (PSG). 
(1) The supply lines for the electrodes. (2) The slit to facilitate assembly. (3) 
The aluminum casing. (4) The three piezoceramic discs. (5) The two liquid 
layers. 

which are originally partial differential equations will then 
reduce to ordinary differential equations that are explicitly 
soivable. In the case of the PSG one has a cylindrical sym- 
metry where the strain field to a good approximation depends 
on radius only. In the case of the PBG3 one has a spherical 
symmetry where the displacement is truly radial. 

II. DESCRIPTION OF THE PSG 

The device is based on the following simple idea: a pi- 
ezoceramic material coated with two electrodes acts as an 
electrical capacitor, the capacity of which is dependent on its 
strain state. A mechanically clamped capacitor will show a 
lower value of the capacitance than a free, movable capaci- 
tor. If the capacitor is brought into mechanical contact with 
another material, then this material will clamp the capacitor 
partially. The resulting decrease in the capacitance will be a 
measure of the stiffness of the adherent material. The mea- 
suring principle is of the impedance conversion type (YB). 

The realization of this idea actually requires a sandwich 
structure of three piezoceramic discs (pz discs) with two in- 
termediate layers of liquid (see Fig. 1). The three pz discs are 
electrically connected as shown in Fig. 2. The middle capaci- 
tor is in parallel with the series connection of the two outer 
capacitors. The three capacitors act as one unit as seen from 
the outer two terminals. The three discs are oriented with the 
polar axis in the same direction but the electric field orienta- 
tion of the middle one is in the opposite direction. On apply- 
ing a voltage difference to the outer terminals the middle disc 
will perform a radial displacement and so will the outer discs 
but in the opposite direction. These displacements produce a 
strain field in the interlying liquid layers. This is approxi- 
mately a shear strain field when the liqpid layer thickness 3d 
is much smaller than the radius R, of the discs. 

FIG. 2. The electric connection of t+e three piezoceramic capacitors of Fig. 
1. The dots indicate the polarization directions of the piezoceramics. The 
outer piezoceramic discs move in the opposite direction and only half the 
distance of the middle disc due to the electric coupling. This holds true even 
for the liquid filled transducer since the mechanical load of the outer discs 
are half that of the middle disc. 

The construction based on three pz discs is robust, pre- 
venting bending motion. A two-disc device consisting of two 
pz discs moving in opposite directions and with the liquid 
layer placed in between would give rise to such an unwanted 
bending. 

In the three-disc device the middle disc will experience 
an external tension twice as big as each of the outer discs. 
Therefore the three discs are electrically connected to give 
the middle disc twice the voltage of the outer discs (Fig. 2). 
The inner tensions produced by the piezoelectrical effect are 
then also doubled in the middle disc. This ensures that the 
middle disc always moves twice as far as the outer discs 
irrespective of the mechanical load of the liquid. Thus, a 
feature of the liquid displacement field is that it has two 
neutral planes at fixed distances d (l/3 of the layer thickness) 
from the outer discs. These neutral planes are vertical to the 
symmetry axis and there is no radial motion of any point 
belonging to these planes. They can be regarded as an infi- 
nitely rigid support. This means that the mathematical prob- 
leni of finding the dependence of the electrical capacitance of 
the device on the shear modulus of the liquid can be mapped 
onto the problem of a one-disc device (see Fig. 3). 

In the one-disc device the liquid is placed between one 
pz disc and an infinitely rigid support. The one-disc device 
can be realized (and has been) in the case of liquids of such 
low shear modulus that it cannot strain the support. 

In the three-disc device the pz discs also perform a de- 

FIG. 3. Schematic presentation of a one-disc device in two extreme posi- 
tions. (1) The electrodes. 2) The piezoceramic material poled in axial direc- 
tion. (3) The liquid sample. (4) The infinitely rigid support. 
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FIG. 4. The central part of the PSG blown apart along the central symmetry 
axis. The central plane of the PSG vertical to the symmetry axis and bisect- 
ing the middle piezoceramic disc is a symmetry plane. Thus only the upper 
part is shown. (1) The electrode supply line for the electrodes to be plugged 
into (5). (2) The hollow brass screw to accomplish fixation in the aluminum 
case (not shown, see Fig. 1). This screw, its twin, and the housing provide 
the electrical connection between the outer discs. c3) The upper piezocer- 
amic disc. (4) The insulating jacket, preventing connection between (2) and 
(5). (5) The tubular brass electrode contact and spacer for those two elec- 
trodes of the upper and middle pz discs that are facing the upper liquid layer. 
The assembled device is tilled by inserting a syringe into this tube. The slot 
in the spacer allows the liquid to how into the spacing between the pz discs. 
(G) The middle piezoceramic disc. 

formation in the polar (z) direction. However the middle and 
outer discs are also in counterphase in this motion. The 
thickness of each liquid layer is thus not affected, only a 
small translational motion is produced. Details of the central 
part of the three-disc transducer (PSG) have been given in 
Fig. 4. 

Notice that the two electrodes facing one liquid layer are 
on the same electrical potential and that there is no electric 
field in the liquid. Such a field would invalidate the method 
since the liquids under study often have a high dielectric 
constant and moreover show dielectric relaxation besides the 
mechanical relaxation. 

The small size of the transducer has the benefit of easy 
placement, thermal control in a cryostat, and avoidance of 
thermal gradients. In addition, only a small amount of the 
liquid sample (0.3 cm3) is needed. 

Ill. THEORY OF THE PSG 

A. Basic theory 

In the following, a description of how the shear modulus 
G(w) can be deduced from the measured electrical capaci- 
tance C,?,(w) of the PSG will be given. As previously men- 
tioned, the problem is equivalent to that of a one-disc device 
(Fig. 3). The liquid layer thickness d is l/3 that of one of the 
real liquid layers and the capacitance is 312 times the indi- 

vidual capacitances of Fig. 2. The radius of the piezoceramic 
disc is R, and the thickness is h. 

Place a Cartesian coordinate system with base vectors 
(e, ,e,, ,e,> at the,center of the pz disc, eZ , in the axial di- 
rection. The equations are set up in cylinder coordinates 
(r, 4,~). These refer-m the neighborhood of 
r=r cos(q$e,+r sin(+)ey+zez-to the radial e,, the azi- 
muthal e+, and the axial eZ unit vectors. A material point 
lays at r before the displacement and at r’ after the displace- 
ment. The displacement field is u(r)=r’-r 
=u,.e,+uge++u,ez. The strain tensor becomes7 

(lj 

The cylindrical symmetry gives u~=O and the indepen- 
dence of u,. and uI on 4. Thus, for the two components that 
will appear to be relevant, one has 

au, ur 
%=--g E&p=, 

while E+~= e,+=O. The last two components, %Z and E,.~, 
are not vanishing but do not enter into the problem as will be 
seen. 

The elastoelectric compliance matrix of a piezoceramic 
with axial symmetry along the pole axis (z axis) has the same 
form as that of the crystal class 6mm.8 This has the favorable 
property of a decoupling into four parts, namely 

(z;)=( 2: ::)( i$ 
(:)=(I: ::)( l$ (4) 

~,~=~(~ll-W)~,~~ 0) 

and 

[$i-(i: g i.j;3 ijig [ii-J i6) 

where the superscript T on the dielectric constant indicates 
constant tension. A change among the variables that are con- 
sidered independent and dependent in formula (6) can thus 
be made without involving the coefficients of Eqs. (3)-(5). 
However, a further simplification can be made. The piezoce- 
ramic plate is free to move in the z direction, i.e., cZZ=O on 
the surface z = h/2. At frequencies well below the first thick- 
ness resonance there will be no gradient, dldza,.,=O, i.e., 
oTZ=O throughout the piezoceramic plate. The ratio of the 
thickness resonance to the radial resonance frequency is ap- 
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proximately Ralh =20. Thus the condition holds even at the 
lowest radial resonances. So we consider only the following 
relations: 

(7) 

If 57, Q$t and E, are chosen as the input variables 
(independent variables), then 

[$j$,, “ii ,;i)[;J (8) 
where the superscript S on the dielectric constant indicates 
constant strain in the r and 4 directions and constant tension 
in the z direction. Denoting Poissons’ cross-contraction ratio 
by p=-s12/s,, and the planar coupling factor8 by 

kp=( &f*:i12,) 1’2y 

one has 

1 P 
c11= 

~Il+P~l” 
c12= 

sllfPS12’ 

613 
(9) 

-- e13- 
s11+s12’ 

E;3=E;3(1-k;). 

Let Q be the charge and U the potential difference of the 
electrodes of the pz disc. The capacitance C,= Q/U is the 
measured quantity. Now U= E,t and 

Q = jnRo2 rrrD,(r)dr. (10) 

The free capacitance Cf, defined by crrr= a++= arZ=O, be- 
comes 

and the clamped capacitance C,, , defined by Ebb= e++=O and 
rrZ,=O (no vertical clamping), becomes 

R; 
cc,= TrEG3 7. (12) 

Thus 

(13) 

The coupling factor kp is a dimensionless measure of the 
strength of the piezoelectric effect. k, ranges from zero to 
one. A value close to one means a strong coupling between 
the mechanical and electrical ports. Typical values of k, are 
0.1 for quartz, 0.4 for barium titanate ceramic, and 0.6 for 
lead zirconium titanate ceramic. The piezoceramic type pz26 
made by Ferroperm, Denmark and used here is based on the 
latter material. 

The third term is zero since by Eq. (5) Use is propor- 
tional to E,+, which is zero. The tangential stress orZ is zero 
at the free side (z-h/Z) and -cr, on the side (z=-h/2) 
which is in contact with the liquid. Since the plate is thin 
(h ci R,,) , the gradient dldzcr, is approximated with - cr,lh. 
In the following harmonic time variation of Esmmd u, at 
cyclic frequency, w is assumed and the factor e is elimi- 
nated. E, and u, now refer to the amplitude of these fields. 
Then Eq. (17) becomes 

‘From Eqs. (lo), (8), and (2) one deduces the measured 1 d 1 1 
capacitance, ;~ir~rr)-- 0- r 

+$- h “I=- co=pu, . 

FIG. 5. Illustration of the stresses acting on a differential volume element of 
the piezoceramic disc. 

25-e31Ro 
cm= Eh UARO) + Ccl. 

i 

Introducing the dimensionless quantity 

(14) 

(1% 

one finds 

F= g-j&, GRo). 06) 

By Eq. (15) F 3s directly given by the measurable yuan- 
tity C, . It is left to find the displacement u,.( R,) of the edge 
of the pz disc as a function of the shear rigidity G of the 
liquid and to invert this function. 

Now consider a differential element of the piezoceramic 
(Fig. 5). The resulting force per volume transmitted through 
the surfaces is the divergence of the stress tensor. The ex- 
pression for this divergence in cylindrical coordinates is 
given by Sokolnikoff.’ Making this equal to the density, p 
times the acceleration, one arrives at the radial equation of 
motion of the piezoceramic plate 

1 d 
--~(rurr)--~n 

1 d d 2 
,$++ ; Yj-$ cr,.,,+ z grz= P iJt’ ur. 

(17) 

W 
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FIG. 6. Illustration of the radial displacement of a differential element of the 
piezoceramic disc and the shear deformation of the corresponding differen- 
tial element of the liquid. (1) The piezoceramic disc including electrodes. (2) 
The liquid layer. (3) The infinitely rigid support. 

A further assumption is that the deformation in the liquid 
is pure shear and that only the component $yid(r) is non- 
zero. This approximation holds because d<R,. Then (Fig. 6) 

where G(o) is the shear modulus of the liquid. 
Using Eqs. (2), (8), and (19) the tensions of Eq. (18) can 

be expressed by the displacement u, , 

r”u~+ rui -I- 
w”p G(w) 
-- c cm 
Cl1 11 

where differentiation with respect to r now is indicated by an 
apostrophe. The boundary conditions of this differential 
equation are zero ‘displacement at the center, 

u,(O)=0 (21) 

and zero stress at the edge, cr,,(Ro) =0 or using Eqs. (S), (9), 
and (2) 

(22) 

The problem becomes dimensionless by the following defi- 
nitions: 

1 
x= rlRo, e(x)= 

(1 +pM,&Rn 
u,iRox). (23) 

Define the characteristic as follows: 

clldh modulus G,= -! , 
R; (24) 

inertance M,=pdh, cm 

and 

frequency 2n-f,=co,= e= &$, (26) 

together with 

“= G(w) -- 
cc ’ 

2 
, k’=S-V. 1m 

Then Eq. (20) becomes a Bessel differential equation 

x’e”+xe’+(k”x”- l)e=O wj 

with boundary conditions 

e(O)=O, (29) 

e’(l)+pe(l)= I. (30) 

The dimensionless measure (16) of the measured electri- 
cal capacitance becomes 

F(o)=(l+p)e(l). (31) 

e(1) is by Eq. (28) a function of k and thereby w. The SOILI- 
tion of Eq. (28) is given by first-order Bessel functions 

e(x)=AJl(kx)+BY,(kx). (32) 

Equation (29) yields B=O. while Eq. (30) leads to 

A=[kJ,(kj+pJ,(k)]-‘=[kJ,(kj+(p- l)J,(kj]-‘. 
(33) 

Thus the measured electrical capacity C, becomes 

C,(o>=C,, F[Siuj,Vimjl A+ 1 , I (34) 
P 

where 

J,(k) 
F’S’V)=‘l+pj kJo(kj+(p-l)J~(k) 

and 

(36) 

The resonances occur for those k= k,, n=1,2,..., which 
satisfy 

O=k,J,(k,j+(p- l)Jl(k,). (37) 

Thus the resonances depend on Poissons’ ratio p. A numeri- 
cal solution of Eq. (37) gives approximately 

k,(p)=0.621p+1.861, 0.2CpCO.4, 63 

k,(p)=O.192p+5.332, 0.2CpcO.4, (39) 

and so approximately 

p(kz/‘k,)= - 1.417k,lk,+4.032, 

2.5ckzlk,<2.75. 

(40) 

,fi-.fcki are the measured dimensional resonance frequencies 
of an empty transducer [G(w)=O]. Since f2/f 1 =k,lk$ , If@. 
(40) makes it possible to determine Poissons’ ratio directly 
from the observed first and second resonance frequencies 
without knowing the characteristic frequency f, . p is found 
to be 0.31 within a variation of 3% in the temperature inter- 
val of 180-250 K. This variation is neglected in the follow- 
ing. Thus 

k1=2.054, k2=5.391 for p=O.31. (41) 

The zeros of F occur for those k= j, , tz = 1,2,..., which sat- 
isfy 

O=J,U,~. 142) 

The first two arejl=3.8317 and j,=7.0156. Hence it is pos- 
sible to determine C,, as the measured capacitance at the first 
antiresonance frequency 
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FIG. 7. The first resonance of the empty piezoelectric shear modulus gauge 
(PSG), at 194 K as seen in the measured real electric capacitance. The 
symbols 0 represents measured data. The fit to the theory (solid line) de- 
termines the calibration parameters. These are needed for the inversion of 
electric capacitance data of the liquid filled PSG into shear modulus. 

f,,=$,= 1.865f1, cA=CmCfa). (43) 

Figure 7 shows a fit to C, of the empty transducer at 
194 K obtained by suitable scaling. The fitting parameters f, 
(or rather fi =f,k i) and k, were varied to give the best pos- 
sible proportionality between C, and F$l( 1 - ki) + 1 at all 
frequencies. C,, is then given by Eq. (‘34) as the proportion- 
ality constant. At this temperature it was found that 
fi=l05.4 kHz, k,=O.56, and C,,=6.70 nF. Typical values of 
the other characteristic entities can then be given. Since 
p=7.65X lo3 kg rnd3, d=dX10-3 m, and h=iX10M3 m, one 
has M,=pdh=6.4XlO-” kgm-’ and hence 
G,=M,(2nf11k,)2=6X lo7 Pa. 

B. Resonance versus quasistatic method 

The transducer can, in principle, be used in a very simple 
way to determine shear modulus G of a substance in tem- 
perature ranges, where G shows no dispersion and is real at 
the resonance frequencies. Denoting fi(0) and f,(G) as the 
ith resonance frequency of the empty and filled transducer, 
respectively, then according to Eq. (36) 

(44) 

or 

G=kjG,( (~)2-l)=(2~)2k?,(f~(G)-f~(Ojj. 

(45) 
Thus G is determined by the movement of the resonances. In 
practice, however, the thickness and bending (floppy) modes 
not considered in the present treatment can be problematic 
for this method. 

Indeed, the interest here is in the case of G showing 
dispersion and the complete solution of Eqs. (34)~(36) has to 
be used. The determination of G based on the degree of 
clamping of the electrical capacitance below the first reso- 
nance frequency will be termed the quasistatic method. 

C. The partially filled transducer 

A complication arises when the liquid does not fill out 
the cell completely. This is inevitable since the cell is filled at 
T=300 K and the measurement is perhaps done at 200 K. 
With a typical expansion coefficient of 4X 10V4 K-‘, AR,IR, 
becomes 3%. This is of importance since the greatest shear 
deformation takes place at the edge. Thus an enlarged model 
with the liquid filling up the cell to radius R, is considered. 
Put x1 = RJR,. Equation (28) is then replaced by 

x2e~fxe;+[(k,Xj2- i]el=o, kT= 
McW2- G 

G , 
c 

M,02 (46) 
x2ei+xei+[(k2x)2- l]e2=0, k:=-. 

c 
The boundary conditions are as before plus continuity of 

displacement and stress at x1, 

=1(0)=0, =l(xf)==dxf), 

el(l)+pe2(l)=l. 

Introduce 

P=k2.Jo(k2Z) + b- l)J*(kz), 

Q=k,Y,(k,)+(p-l)Y,(k,), 

R~~~xfJo~~~xl)J~(~2~f)-~2~lJOl~2~ljJ~~~~~l~, 

T=~~x~o(~~~~)YI(~~xI)-~~xIYo(~~xI)J,(~,xI), 

A=PT-RQ, C=TIA, D= -RlA. (48) 
Then 

e2(1)=CJ*ik2)fDYl(kz). (49) 
ez(l> is by C, D and k2 a function of V, S, and xl. F, defined 
by Eq. (15j, now also becomes a function of xl. It is still 
given by Eq. i16), such that Eq. (35) is replaced by 

F(S,v,xl)=(l +pj=*(lj (50) 

while Eqs. (34) and (36) still hold. 

D. Inversion algorithm 

Before inverting the formulas i34), (50), and (36) to give 
G as a function of C, another problem has to be taken into 
account. C, is shown again in Fig. 8 but now in a logarith- 
mic plot over a wider frequency span. Below the resonances 
where C,, is simply equal to Cf a weak dispersion is seen. 
This reflects dispersion of the dielectric constant eT3m Cf. 
Similarly, Cclm& will show dispersion, but it is assumed in 
the following that C/C,, and thereby the coupling factor k, 
is not frequency dependent. Such a proportionality is not 
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FIG. 8. The real part of the electric capacitance below the first resonance 
frequency of the PSG at 194 K in a logarithmic frequency scale [log is the 
base 10 logarithm here and in the following figures). This reveals the weak 
dispersion of the piezoceramic material itself, an effect which has been 
taken into account. 

found true in general for piezoceramic materials. However 
this assumption is substantiated in the case of the material 
~226 by capacity measurements on partially clamped discs. 

Then the frequency dependence can be eliminated in the 
analysis by considering the ratio of a reference spectrum 
C,(o) of an empty transducer and a spectrum C,(w) of a 
filled cell. Introduce 

cm - Ccl 
@(s,v,x~)= c-c= 

F(S,VJJ 

r cl F(S,O, 1) 

1-k; 1 
k; F(O,S,l) 

F(S,V,+), and F(S,O,l), and thus @(S,V,x,) are known 
analytically. C,n and C, can then be measured and thus @ 
determined experimentally. All that is left is an inversion to 
give V= G(o)/G, . This is done by approximating Q with an 
algebraic expression. Since Q-1 for V-+0 and @+O for 
V-m a broken rational function with the denominator of 1 
degree higher than the numerator is chosen 

Q’(S,V,Xl)= 
1 +a(S,e)V 

1 +b(S,EjV+C(S,e)VZ’ 

where E= 1 -xl and 
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FIG. 9. The approximative algebraic inversion formula checked by applying 
it to a single relaxation time model of the viscoelastic behavior of a Iiquid 
(Maxwell liquid). The elastic modulus G, is a factor of 10 times the char- 
acteristic transducer stiffness G, . The liquid completely tills the transducer. 
The imaginary and the real parts of the modulus are plotted with the fre- 
quency as a parameter (Argand plot). Nearby symbols of the original Max- 
well modulus (X) and the calculated modulus (cl) are at same frequency. 

a(s, E) = 
al(d( l:s&j’ 

a,(e)=25.82( 1 -0.407~22.27e2), 

a2(Ej= 13.25( 1+0.26+ 11 e2), 

1 
b(s,e)= 

s ’ 
(4.54-t 14.76) l- 4.22 

i i 

1 
C(S’E)= (740.+18500.~)(1-0.287s+0.118&’ 

(55) 
This expression approximates cf, within 5% for 0.95<x,< 1.0 
and O.O<s<4.0, that is, up to the first resonance of the free 
transducer. 

Inversion of Eq. (52) yields 

V(S,xJ = 
a-h@+ J(a-bQ)2-4CDDc(@- 1) 

2*c (56) 

Figures 9 and 10 illustrate the accuracy of the algebraic fit to 
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FIG. 10. As in Fig. 9, but now the liquid radius is 95% of transducer radius 
only. 
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CD. These Argand plots show the imaginary versus real part of 
the modulus of a hypothetical Maxwell liquid 

-iwr 
G,dw)=Gm G 

with G,/G,= 10 and a radius x1= 1.00 and 0.95, respec- 
tively. The crosses are the Maxwell model G, . The squares 
are V(Q) calculated from Eq. (56) but with @ calculated 
from GM by the analytical formulas (50), (49), (48). 

In order to further increase the accuracy in calculating V, 
one can now resort to a Newton algorithm with the V calcu- 
lated by Eq. (56) as a trial function V,. it follows from Eq. 
(34) that 

1 -k; 1-k’ 
k2 1 -5. (58) 

P 
Denote the value of F calculated by this formula using the 
measured C,(w) and C,(w) by F, (the measured F) and the 
exact V corresponding to this value by V,. Thus 
F,= F(S, V, ,xI). Since V, is near V, one has 

(Vo- VA. (59) 
“r “r 

This V is complex. A complex derivative is independent of 
the direction of the differentiation. Let A V= VJ, where S is 
a small real positive number, that is, differentiate in the di- 
rection of V, . Then 

or 

F, - F( V,> 

1+sF[Vr(l+6)]-F(Vt) 

If one uses the V. calculated by Eq. (61) as a new trial 
function the process can be iterated, since the successive V, 
will have V. as a fix point. However, Eq. (56) is so close to 
the exact vaIue that, in practice, one iteration suffices. 

IV. APPLICATION 

A. Electrical setup 

The PSG converts the problem of measuring a mechani- 
cal impedance into that of measuring an electrical imped- 
ance. The PSG is not tied up with any specific impedance 
analyzer but the current frequency range and accuracy will 
depend on it. The PSG and the PBG together with an ordi- 
nary capacitor for dielectric measurements make up a series 
of cheap measuring probes for shear modulus, bulk modulus, 
and the dielectric constant, respectively. They are applicable 
for the same impedance analyzer unit and improvements can 
be made independently. 

The Hewlett-Packard HP4192A network analyzer has 
been used in the frequency range of 10 Hz-50 kHz in mea- 
surements on the liquid filled cell. For calibration purposes, 
the empty cell is measured up to 400 kHz in order to include 
the tirst resonance frequency. This was the frequency range 
covered in the applications1-3 of the PSG and PBG referred 

to earlier. The network analyzer was used in the four- 
terminal impedance mode in those measurements. The 
HP4192A is now used in the network mode with the oscilla- 
tor output fed into an external measuring bridge. The PSG 
impedance is placed in this bridge and the bridge output is 
connected to a differential amplifier before the detection by 
the HP4192A. This has substantially decreased the noise at 
low frequencies and the 5 Hz lower frequency limit of the 
HP4192A can be exploited. Through supplementation with 
the Hewlett-Packard multimeter HP3458A, the impedance 
measurements are now extended into the low frequency 
range of 10 mHz-100 Hz. In this method another circuit is 
used. The Keithley Metrabyte digital wave generator PCIP- 
AWFG supplied with an analog filter feeds a voltage divider 
consisting of the PSG capacitance and a fixed capacitor of 
comparable size. The varying voltage over this capacitor is 
traced by the HP3458A and the amplitude and phase differ- 
ence are calculated by Fourier analysis in a computer acquir- 
ing data. Knowing the network characteristics, the complex 
PSG capacitance is found. The lower limits of 10 mHz were 
only set by the limitation of the duration of the experiment. 
As the impedance rises inversely proportional to frequency, 
electrical noise becomes more important at low frequency. 
However, no sign of noise disturbing the method is yet seen 
at 10 mHz. Thus the low frequency limit could be pushed 
down one decade or more if necessary. On the other hand, 
the dispersion of the piezoceramic increases rapidly with de- 
creasing frequency in the case of pz26. Thus probably an- 
other material as, e.g., pz29 with a more constant loss should 
be used in very low frequency studies. 

B. Filling 

A syringe filled with the liquid sample is introduced 
from top of the transducer into the central tube (see Fig. 1). 
This is opened by removing the electrode supply line. In 
order to fill the transducer in a reasonable time, the tempera- 
ture is elevated until the viscosity is less than IO” Pas. By 
application of an adequate pressure, the liquid flows steadily 
and uniformly through channels in the wall of the central 
tube and into the spacings between the piezoceramic discs. 
In order not to produce air bubbles the filling process should 
be slow enough that wetting of the surfaces can occur. In the 
case of a transparent liquid such bubbles are easily revealed 
by simply looking through the liquid from the side of the 
PSG. The filling is ended when the liquid layer is vertically 
aligned with the radius of the transducer. The surface tension 
prevents the liquid from running out. 

C. Thermal relaxation of the ceramics 

The PSG based on pz26 has been applied successfully in 
the temperature range of 150-300 K (the ultimate upper 
limit will be set by the Curie temperature of the piezocer- 
an-k). The constitutive parameters are temperature depen- 
dent and a calibration is needed at each temperature. How- 
ever, the structural relaxation occurring in the ceramics when 
changing the temperature introduces time dependence into 
these parameters even a long time after thermal equilibrium 
is reached. This effect is a nonequilibrium effect that is not to 
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FIG. 11. Electric capacitance measurements at 194 K. The upper curve (0) 
is the real part of the capacitance of the empty cell. The lower curve (0) is 
the calculated capacitance of the clamped cell. The middle curve [A) is the 
real capacitance of the cell tilled with liquid. The decrease of the capaci- 
tance with increasing frequency shows the glass transition. 

be confused with the equilibrium dispersion discussed in 
Sec. III D. We have found that reproducible values of the 
fitting parameters deduced in the resonance calibration pro- 
cedure can be obtained after repeated heating and cooling, 
but the relaxation can continue for days. We do not wait for 
this complete equilibration but wait long enough that the 
parameters can be considered constant during a measure- 
ment. This demands the same time scheme to be followed in 
the calibration measurement and the liquid measurements. 
The controlling computer guarantees that the thermal histo- 
ries are parallel in the two cases. The influence on the final 
shear modulus results has been examined by repetition of 
experiments. When the temperature had been shifted, a mea- 
surement was made after a waiting time of 45 min. A second 
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FIG. 12. The imaginary part of the electrical capacitance at 194 K. The 
lower curve (0) represents the clamped cell and the upper curve (0) the 
tilled cell. 

measurement was made again after another 45 min. Although 
the capacitance in the second case had decreased by about 
0.5%, the calculated shear modulus based on the two differ- 
ent calibration spectra showed no significant changes. 

b. Stress relaxation of the ceramics 

When changing the temperature, the liquid placed be- 
tween the piezoceramic discs tries to contract, thereby creat- 
ing surface tensions on the piezoceramics. Thus the stress 
prehistory of the piezoceramic material cannot be the same 
in the empty and filled transducer. This is of importance at 
such low temperatures that these biased stresses cannot relax 
out in the chosen waiting time. The problem, of course, is the 
worst in the case of liquids with a very high modulus. For- 
tunately; it is easily detected by considering the reproducibil- 
ity of the results on first going down and then up in tempera- 
ture. 

i. Measurement 

The method has been, applied to 2-methyl-2,4- 
pentanediol, a typical glass former which has been studied in 
the ultrasonic regime by Meister et al. to In Fig. 11, data on 
the directly measured capacitance at 194 K are shown. The 
upper curve (0) is the real part of the capacitance of the 
empty cell, i.e., a reference measurement. As previously 
mentioned, the coupling factor k, is found by the fitting of 
the first resonance peak, and by Eq. (13) the capacity of the 
clamped cell can be calculated. This is the lower curve (0) 
of Fig. 11. The middle curve (a) is the real capacitance of 
the cell filled with liquid. The decrease of the capacitance 
with increasing frequency shows.the gIass transition. At low 
frequencies the liquid curve merges into the curve of the free 
capacitor. Due to the low modulus of the liquid at these 
frequencies the PSG is practically free. At high frequencies 
the liquid curve levels off as the liquid reaches its limiting 
modulus G, . The liquid only partially clamps the transducer 
and thus any liquid will lie in the window between the free 
Cf and the cIamped C,, values. Correspondingly, the imagi- 
nary part of the electrical capacitance is shown in Fig. 12. 
The conversion of this data into the shear modulus as de- 
scribed in Sec. III is represented in Fig. 13. Both the real and 
imaginary parts of G(o) as a function of the Iogarithm of 
frequency are shown. The frequency at which the imaginary 
part has its maximum is called the loss peak frequency. No- 
tice that although the dispersion region is rather wide it is 
fully covered by the PSG. The high and low frequency elec- 
tric impedance measurement techniques join smoothly. As a 
supplement, an Argand diagram of the imaginary versus the 
real parts of G(w) at 194 K is shown in Fig. 14. The modulus 
range of 105-10*o Pa covered by the PSG is illustrated in 
Fig. 15, where the logarithm of the real and imaginary parts 
of G versus the logarithm of frequency is shown. The shear 
modulus of a supercooled liquid is both frequency and tem- 
perature dependent, G = G( w, T) . In Fig. 16 the real part of 
the shear modulus at a series, of temperatures is shown. One 
sees typically that G, is decreasing with temperature and 
also that the frequency at which the glass transition sets in is 
increasing with temperature. In Fig. 17 the logarithm of the 
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FIG. 13. The real ( 0) and imaginary (El) part of G(o) as a function of the 
logarithm of frequency at 190 K. The wide dispersion region of the liquid is 
fully covered by the PSG. The high and low frequency electric impedance 
measurement techniques merges at 100 Hz. 

loss peak frequencies is shown as a function of temperature 
in the range where they are covered by the actual frequency 
window. 

The measured values cannot be directly compared to that 
of Meister et &.,I0 since these ultrasonic measurements were 
done at higher temperatures. Assuming a linear dependence 
of G,. on -T, these authors found G,=O.294-O.O124T, 
where G, is expressed in GPa and T in “C. This was, based 
on measurements down to 220 K. An extrapolation of the 
formula gives 1.35 GPa at 188 K in accordance with the 
value to be read from Fig. 16. The agreement on the tem- 
perature coefficient is, however, not quite as good. Since the 
uncertainties lie in the absolute rather than the relative deter- 
mination of G, it is most probable that both methods give a 
good estimate of dG,ldT in their respective temperature 
ranges. This agrees with our findings that this coefficient is 
decreasing with increasing temperature. The extrapolation 
should include this nonlinearity in G,(T) and would predict 
a somewhat higher value of the shear modulus than we have 
measured. 
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FIG. 14. The Agand diagram of the imaginary vs the real part of G(w) at 
194 K. The values are normalized by the infinite frequency modulus, 1.25 
GPa. 
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FIG. 15. The most of the modulus range 105-10’o Pa covered by the PSG is 
illustrated by showing the logarithm of the real (0) and imaginary (Ll) parts 
of G  vs the logarithm of frequency at 198 K. 

F. Linearity 

The linear laws of viscoelasticity only hold if the strains 
are not too large. The strains in the case of the PSG are 
extremely small. The movement of the outer radius of the pz 
disc is roughly u,-R,d,,Ulh, resulting in a liquid shear 
deformation of $yid = d13ROlhdq.  W ith d,,=lO-I0 C/N 
and U = 1 V, one gets $yid = 1 OM6, quite a tiny deformation. 

V. ACCURACY 

A. Sensitivity 

The accuracy of the shear modulus measurements de- 
pends on the accuracy of the measurement of the electrical 
capacitance and the sensitivity of the transducer. The sensi- 

1.60 

.OO 2.0 4.0 
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FIG. 16. The real part of the shear modulus at a series of temperatures: (V) 
202 K, (A) 194 K, (0 j 188 K, (El) 184 K. The shift of the curves to lower 
frequencies as the temperature decreases is a consequence of the increasing 
internal relaxation time of the liquid. 
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B. Systematic errors 

The largest systematic error comes from the uncertainty 
of the value of the radius of the liquid layer. An actual radius 
smaller than assumed will result in a G that is too small. By 
careful alignment of the liquid and the edge of the PSG, the 
liquid radius is determined with 0.5%. Using the inversion 
algorithm, the effect on G is found to be 5%. This is because 
the inhomogeneous liquid strain field contributes much more 
to the clamping at the edge than at the center of the piezo- 
ceramic plates, and because here the larger differential area 
per differential radius contributes more to the capacitance. 
Thus the use of a wrong expansion coefficient of the liquid in 
the calculation of the radius at lower temperatures will also 
affect the absolute value of G. 

The PSG itself offers a method for estimating the expan- 
sion coefficient. At low temperatures, G can be determined 
not only by the quasistatic method but also by the resonance 
method (see Sec. III B). The liquid acts as a glassy solid and 
G has reached its infinite frequency value G, . Both methods 
are dependent on the liquid radius but in a different way and 
the values only match if the right radius is used. 

The part of the liquid layer close to the central axis con- 
tributes very little to the overall response. By the same token, 
the outer part contributes very much. Therefore the partial 
clamping by the nave can be neglected. 

Another systematic error can be ascribed to a volume 
effect. When the pz disc expands u the relative volume 
change in the liquid becomes u/R,, while the shear defor- 
mation is u/d. Thus although the deformation is not a pure 
shear, it is a good approximation in the limit d/&,41. In the 
present case d/&=3%. In the theoretical treatment, plate 
bending has been neglected, although the surface stress --al 
(see Fig. 5) exerted on the pz disc by the liquid has a torque 
about the azimuthal axis. This is compensated for by torques 
of radial gradients of orZ emerging as the disc slightly bends. 
For reference we notice that the inclusion of this effect in- 
volves the constitutive Eq. (4) and the axial equation of 
motion” 
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FIG. 17. The logarithm of the loss peak kequencies as a function of tem- 
perature in the range where they a covered by the actual frequency window. 

tivity ‘I’ is the ratio between the variation in the normalized 
measured capacitance F and the relative change in the shear 
modulus, 

1 fp=f$E=- JF 

dG h( 10) d log(G/G,j ’ (62) 

The sensitivity versus the modulus is shown in Fig. 18 in 
a logarithmic plot. The PSG is most sensitive at about 5G,. 
At G= lo6 Pa one finds T=O.5%. Thus a determination of G 
within 1% relative accuracy demands an accuracy of 0.005% 
on the electrical side. This can be achieved by the electrical 
setup and thus we claim a modulus range of 106-lOLo Pa. 
Accepting an accuracy of lo%, even 10s Pa can be reached. 
The stated accuracy holds for relative variations. An absolute 
determination of G is also affected by a number of system- 
atic errors. 
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FIG. 18. Transducer sensitivity as a function of the shear modulus of the 
liquid G relative to the characteristic transducer stiffness G, . G, depends on 
transducer geometry and elastic constants. In our case G,=~x lo7 Pa. 
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r W 2 UZ’ (663) 

Here the second term on the left-hand side vanishes due to 
the axial symmetry. Spurious resonances at above 100 kHz 
can probably be deferred to such floppy modes. 

VI. DISCUSSION 

A. Some other methods compared 

It is not our intention to give a review of other 
methods--see instead Refs. 4 and 5, but some of the points 
made in Sec. 1 can be illustrated by discussing these meth- 
ods. 

Recently, a driver/sensor technique was used by Jeong” 
in the audio frequency range which is a part of the frequency 
span of the present method. It was applied to glycerol, which 
has a rather high limiting shear modulus (-4 GPa) compared 
to other liquids. The driver and sensor were identical X-cut 
quartz crystals, which-by using the -piezoelectric effect- 
can be given a pure shear deformation when they are free of 
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surface stresses. These crystals were immersed in the liquid, 
which again was contained in a copper vessel. It was as- 
sumed that the driver determined the strain state of the liquid 
and that the sensor detects the stress state. Then the relative 
variations of the shear modulus could be found from the 
complex ratio of the amplitudes of the output and input volt- 
ages for the sensor and driver, respectively. Absolute values 
were not obtainable. 

However, the impact of the liquid on the stress state of 
the driver or the impact of the.sensor on the strain state of the 
liquid was not taken into account. 

The influence of the compliances of the driver and sen- 
sor on the output signal will be dependent on the shear 
modulus of the liquid itself. So this signal can only be as- 
sumed to be proportional to G when the stiffness of the 
liquid is small compared to that of the piezoelectrical crys- 
tals. The evaluation of the ratio between the stiffness of the 
liquid and that of the crystals is difficult without knowing the 
exact strain field. The stiffnesses involve both the specific 
moduli and a geometric form factor.” The dimensions of the 
liquid and the crystals are comparable. The deformation of 
the crystals could involve the smallest modulus cl,=7 
GPa,t3 which is only twice as much as glycerol. If this is the 
case, the effect can hardly be neglected. 

Another problem is that both shear and bulk moduli have 
to be taken into account since they are of comparable size. 
Even if the transducers themselves only perform shear defor- 
mations preserving the total volume, the volume need not be 
preserved locally in the liquid. The presence of two indepen- 
dent elastic constants of an isotropic medium implies that 
one cannot use proportionality arguments and circumvent a 
calculation of the actual strain field. Such a calculation will, 
in practice, be impossible due to the complicated boundary 
conditions induced by the geometry. The rather involved cal- 
culations of the even more highly symmetric PSG exemplify 
this. 

The impressive shear modulus apparatus of Ferry and 
FitzgeraldI was based on a conversion of the mechanical 
impedance into an electrical impedance like the PSG. The 
transduction was based on electromagnetic instead of piezo- 
electric effects. The rigidity range was much the same as for 
the PSG (displaced 1 decade down). This wide range was 
partly achieved by adjusting the sample impedance using 
samples of different geometries. This corresponds to chang- 
ing the characteristic modulus G, of formula (24), but the 
sensitivity discussed in Sec. V A was based on one sample 
geometry only. The frequency range of the Ferry/Fitzgerald 
apparatus was 25-5000 Hz. The moving part of the trans- 
ducer had a resonance below 25 Hz that just started to appear 
at the lower end of the frequency range. This resonance 
could provide problems in using the apparatus at lower fm- 
quencies. The large size of the device was a drawback. It had 
a weight of 100 kg and a linear dimension of 40 cm. A 
special cryostat was built for it and thermal equilibrium was 
established only after a long time. In this respect, the PSG 
weighing 12 g and having a diameter of 2 cm offers clear 
advantages. 

B. Advantages and disadvantages of the PSG 

The special, symmetrical three-plate arrangement of the 
piezoceramic discs of the PSG has several advantages. First, 
it stabilizes the mechanical displacement. Second, in combi- 
nation with the special electric wiring of the three plates, it is 
possible to analyze the mechanical interaction of the liquid 
and the transducer in terms of a simple artificial one-device 
transducer. Extensive calculations on this model have been 
given, including the effect of partial filling. The necessary 
calibration parameters besides mass and linear dimensions 
can be determined by a resonance measurement on the empty 
transducer. The frequency dependent shear modulus of a liq- 
uid filled into the PSG can then be derived from a~measure- 
ment of the resultant electric capacitance of the transducer. 
Since high precision electric impedance measurements are 
readily made, the shear modulus can be determined even 
when the sensitivitv of the device is low. This gives the wide 
dynamic range (ld5-10” Pa). This range can be expanded 
by changing the characteristic transducer stiffness, which de- 
pends on the geometry. The upper limit of the frequency 
range is around half the first resonance frequency, i.e., in the 
present case 50 kHz. The resonance frequency is inversely 
proportional to the diameter. The lower limit is beyond 1 
mHz, which in most work is also a practical limit when it 
comes to the duration of an experiment. The wide frequency 
range is of importance in a study of the so-called temperature 
time scaling principle (TTSP), which some of the relaxation 
mechanisms at the glass transition seem to follow. Methods 
with a narrow frequency range can only determine the relax- 
ation function by assuming that this principle be obeyed. The 
results of Meister et al. to were obtained in this way. With its 
wide frequency range, the PSG gives a unique possibility to 
examine the principle itself. The temperature range is for the 
time being 150-300 K. 

The PSG has a simple construction consisting of a few 
inexpensive components. The transducer could therefore be 
considered as a disposable unit in certain destructive experi- 
ments as, e.g., hardening studies of glues. The small amount 
of the sample needed is another benefit of the method, espe- 
cially in cases where the sample is expensive or difficult to 
synthesize. The small amount of volume is easy to thermo- 
stat because of the short thermal equilibrium relaxation time 
and thermal gradients are more easily avoided. 

The main problems of the method should also be men- 
tioned. The existence of the dispersion and thermal relax- 
ation of the piezoceramic material requires reference spectra 
at each temperature and a strict parallel thermal history of 
these and their corresponding liquid spectra. The character- 
istic flow time needed in the process of thermal contraction 
of the liquid following a temperature shift increases when the 
temperature is lowered. Thus at low temperatures and for 
very high sample shear modulus stress dependent relaxation 
of the piezoceramic constitutive parameters adds to these 
complications. The remedy for this is a prolonged annealing 
time. Although relative variations in shear modulus can be 
determined with high accuracy (dependent on the position on 
the sensitivity curve) the absolute value is only determined 
within 5%. The uncertainty comes mainly from the determi- 
nation of the radius of the liquid layers. 
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