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Abstract

This thesis investigates new generic methods of identifying isomorphs and
pseudoisomorphs in molecular viscous liquids using computer simulation.

Isomorph theory has been studied for the last ten years in the Glass and
Time group at Roskilde University. Strongly correlating liquids, so-called
Roskilde simple liquids, are found to have invariant curves in their phase dia-
gram, termed as isomorphs. The structure and dynamics of Roskilde simple
liquids are invariant along isomorphs. These curves exist not only in atomic
liquid models but also in molecular systems. Isomorphs usually are deter-
mined along configurational adiabats and also via the direct isomorph check
method. In this work, we introduce new generic "force methods" to generate
isomorphs in rigid bonded models and pseudoisomorphs in harmonic spring
bonded models.

The atomic force method is introduced by Schrøder for the first time;
it has been shown that this method works properly for the Kob-Andersen
binary Lennard-Jones system [1]. In this thesis, we introduce the molecular
force and the torque methods which identify isomorphs in three small molec-
ular models: asymmetric dumbbell, symmetric inverse power law (IPL)
dumbbell and Lewis-Wahnström o-terphenyl (OTP). The advantage of force
methods is that only a single configuration is required to predict isomorphs
via these methods. The ability of these methods to predict isomorphs also
are tested on a larger molecular model, i.e. flexible Lennard-Jones chains
model with constraint bonds. In addition to the atomic and molecular forces,
the segmental force is also investigated in the Lennard-Jones chains model.

It has been shown that harmonic spring bonded molecular models have a
poor correlation between the constant-density equilibrium virial and potential-
energy fluctuations, and subsequently they are not supposed to have iso-
morphs. In 2016, Olsen et. al found invariant structure and dynamics
in harmonic models, behaving like isomorphs which are termed pseudoiso-
morphs [2]. Olsen et. al used a challenging method to determine pseudoiso-
morphs, while we suggest much easier methods, ("force methods") to identify
pseudoisomorphs in harmonic small and large molecular models. Two dif-
ferent scaling approaches, i.e. atomic scaling and center-of-mass scaling, are
used to scale the configurations. We quench the system in order to generate
pseudoisomorphs in harmonic models at high densities. Different minimiza-
tion schemes are presented and developed to find the local minima. At low
densities, pseudoisomorphs are identified in harmonic models via the force
methods without quenching.

The molecular force method can be considered as a general method to
identify isomorphs and pseudoisomorphs in small molecular models at low
and high densities. However, the force methods do not predict the iso-
morphic points in long flexible Lennard-Jones chains model along the large
density change; but it is possible to identify pseudoisomorphs via atomic
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and segmental forces in this model.
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Resumé

Denne afhandling undersøger nye generiske metoder til at identificere iso-
morfer og pseudoisomorfer i molekylære viskøse væsker ved hjælp af com-
putersimuleringer.

Isomorfteori er i de sidste ti år blevet studeret af Glas og Tid-gruppen ved
Roskilde Universitet. Her har man opdaget at stærkt korrelerede væsker,
også kaldet Roskilde simple væsker, har kurver i deres fasediagram, kaldet
isomorfer, hvor struktur og dynamik er invariant. Disse kurver eksisterer
ikke kun i atomare væskemodeller, men også i molekylære systemer. Isomor-
fer er ofte bestemt ved at finde de konfigurationelle adiabater, eller via den
direkte-isomorf-tjek-metode. I denne afhandling introducerer vi nye gener-
iske “kraftmetoder” til at generere isomorfer i modelsystemer med rigide
bindinger og pseudoisomorfer i modelsystemer med harmoniske fjederbindinger.

En kraftmetode til at generere isomorfer i atomare modelsystemer er
blevet introduceret af Schrøder, og denne metode er blevet testet for Kob-
Andersen binære Lennard-Jones-system [1]. I denne afhandling introducerer
vi den molekylære kraftmetode og drejningsmomentmetoden, til at iden-
tificere isomorfer i tre molekylære modeller: den asymmetriske dumbbell
model, den symmetriske inverse power law (IPL) dumbbell model og Lewis-
Wahnström o-terphenyl (OTP) modellen. Fordelen ved kraftmetoderne er
at kun en enkelt konfiguration er nødvendig for at kunne identificere iso-
morfer. Disse metoder er også testet på den fleksible Lennard-Jones kæde-
model. Udover de atomare og molekylære kræfter er den segmentale kraft
også blevet undersøgt i Lennard-Jones kæde-modellen.

Det er blevet vist at molekylære harmoniske fjederbindings-modeller har
en ringe korrelation mellem fluktuationer af virialet og den potentialle en-
ergy i ligevægt ved konstant densistet, hvorfor det ikke er forventeligt at disse
systemer skulle have isomorfer. I 2016 fandt Olsen et al. dog kurver med
invariant struktur og dynamik i harmoniske modeller, der opførte sig lige-
som isomorfer, og disse blev kaldt pseudoisomorfer [2]. Olsen et al. benyt-
tede en relativ kompliceret metode til at bestemme pseudoisomorferne, hvor
vi her foreslår simplere metoder (kraftmetoderne) til at detektere pseudoi-
somorfer i harmoniske molekylemodeller. To forskellige skaleringstilgange;
atomarisk skalering og massecenter-skalering, er anvendt til at skalere kon-
figurationerne. For at generere pseudo-isomorfer i harmoniske modeller ved
høje densiteteter, formindskes systemet (quenching) hvorefter to forskellige
minimeringsfunktioner er anvendt til at finde de lokale minima. Pseudo-
isomorfer er tilsvarende identificeret i harmoniske modelsystemer ved lave
densiteter via kraftmetoderne, uden behov for quenching.

Den generelle metode til at identificere isomorfer og pseudo-isomorfer
i molekylære modelsystemer ved lave og høje densiteter er den molekylære
kraftmetode. Kraftmetoderne forudser ikke isomorfer i den fleksible Lennard-
Jones kæde-model under store densitetsændringer; men det er muligt at
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generere pseudo-isomorfer via de atomare og segmentale kræfter i modellen.
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Chapter 1

Background

This chapter provides a general background concerning glasses and viscous
liquids. The Glass and Time Group at Roskilde University has been in-
vestigating the properties of ultra-viscous liquids over the last few decades.
Here, we provide a brief introduction about supercooled liquids by avoiding
crystallization and modelling them through simulation methods.

1.1 Glass

Glasses are defined as disordered materials which behave like solids from the
mechanical aspect but lack the periodicity of crystals [3]. Glasses usually
refer to transparent, shiny objects like bottles on the tables or windows in
common everyday life. Several different types of substances like metallic
alloy or organic molecules can form glasses. Besides, glasses have a promi-
nent role in current technology. For example, amorphous materials play
a critical role in developing non-volatile electronics and also revolutionize
superconductor technology [4–10]. It is interesting to know that the most
water in the Universe might be glassy [11]. Over the last century, scientists
have had many challenges with the fundamental questions provided by the
glasses and supercooled liquids. Developing experimental strategies and in-
creasing ingenuity in computer simulations in the last decades have helped
significantly to characterizing these materials.

1.1.1 Glass Transition

In general, a supercooled liquid can be made by cooling a viscous liquid fast
to avoid crystallization [12–14]. Most of the substances can be supercooled
at the right cooling rate. After cooling a liquid, particles usually solidify
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Chapter 1

and form an ordered lattice structure at temperature Tm. But if liquid
is cooled sufficiently fast, particles can not sample crystal, and liquid is
falling out of the equilibrium. The resulting material is supercooled at a
temperature below Tm. One of the main features of supercooled liquids
is that the enthalpy depends on the temperature at constant pressure (see
Figure 1.1). Besides, the glass can be formed at temperature Tg where the
enthalpy slope for liquids suddenly changes to the same slope of crystals.
The cooling rate is one of the main factors in forming glasses through a
continuous transition.

Figure 1.1: The volume V and enthalpy h at constant pressure in liquid, glass
and crystalline state dependent on temperature. Tm is the melting tempera-
ture. The glass is formed at glass transition temperature Tga with slow cooling
rate, and at Tgb when the cooling rate is fast. The thermodynamic properties,
isobaric heat capacity cp = (∂h/∂T )p and the thermal expansion coefficient
αp = (∂ lnV/∂T )p change significantly at Tg in a continuous manner. Taken
from Ref. [3].

Figure 1.1 shows that the enthalpy decreases continuously with decreas-
ing temperature. It means that the glass transition is not a phase transition
because no discontinues changes take place. The glass transition temper-
ature changed through out the process because of a narrow temperature
interval in transition. If a cooling rate is low, more time is available for a
liquid to adjust its configuration, and liquid stay at equilibrium state at low
temperature (i.e. Tga in Figure 1.1). The glass transition temperature Tg
depends on the cooling rate, which means that the glass properties depend
on how the process is done. For instance Tg increases if the cooling rate
increases (i.e. Tgb in Figure 1.1). If a liquid is cooled at a slower cooling
rate, the resulting material has a higher viscosity and lower enthalpy (Figure
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Chapter 1

1.1a) compared to the fast-cooled material (Figure 1.1b).

1.1.2 Viscouse Liquids

The definition of a glass transition can be explained in another way when the
viscosity and relaxation time reach a certain value. By cooling supercooled
liquid, the viscosity gets larger and larger. In addition, the dynamics be-
come slower and subsequently the relaxation time decreases. The particles
move slower and slower, so the liquid will be out of equilibrium and forming
the glass. The glass transition causes the shear viscosity to increase mas-
sively by a factor of 104, this increase in viscosity is used to determine the
glass transition temperature Tg. The time required for bringing the liquid
back to equilibrium, called structural relaxation time, increases significantly.
The viscosity is extremely sensitive to the temperature in the region, closed
to Tg in some melts. For silica this behavior is defined by the Arrhenius
functionality η = A exp(E/kBT ).

Figure 1.2: The well-known Angell plot showing the viscosity of many glass
forming liquids versus inverse temperature. Strong liquids as straight lines
obey the Arrhenius function. The non-type Arrhenius behavior liquids like o-
terphenyl (OTP) are so-called fragile, and follow the curved line. Taken from
Ref. [3].

Figure 1.2 is the famous so-called "Angell plot" [12] which classifies glass-
forming liquids in "strong" and "fragile" categories. Here, the "strong" liquids
refer to those liquids which have Arrhenius-type behavior like the SiO2 (yel-
low circles following a straight line in Figure 1.2). Whereas the liquids in
which their viscosity increases dramatically by lowering the temperature
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(non/super-Arrhenius behaviour) are considered "fragile" liquids. An exam-
ple of a fragile liquid is the o-terphenyl (OTP) seen in Figure 1.1 as black
circles, and studied in this thesis. It is still a challenge to explain the glass
transition by the non-Arrhenius-type liquids, and several theories has been
proposed in Ref. [5, 15–17].

1.2 Molecular Dynamics

The technique used in this work to study various model liquids is called
Molecular Dynamics (MD) simulation and it solves the classical equations
of motion of N molecules for each small time step [18, 19]. This method
is mainly used for many-body systems in which the particles’ motion obey
Newtonian classical mechanics. Furthermore, for a system confined in a
simulation box, periodic boundary conditions are considered to avoid effects
of the edges [19]. According to periodic boundary conditions, if a particle
leaves the box from the left side, another identical particle with the same
momentum enters the box from the right side. To understand the peri-
odic boundary conditions, consider the identical simulation boxes replicated
around the original box (see Figure 1.3). The particles in replicate boxes
(denoted as image particles) behave the same as the original particles and
the number of N particles remain fixed. To avoid counting the interaction
of the original particle with its image twice, the cutoff radius rc is defined
as the distance beyond which interactions are set approximately zero.

The Lennard-Jones pair potential for atoms or molecules in liquids con-
sists of two part, representing repulsive and attractive forces [21]. It is given
by,

uij(rij) = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 , (1.1)

in which εij and σij define the energy and length scale of the interaction
between the i, j particles. The most important term is the short ranged
repulsive force (i.e. r−12-term), created from the outer electron shells. It has
a main role in characterising the liquid structure. Whereas the long-ranged
attractive force (i.e. r−6-term) has a minor contribution in regulating the
liquid state [22]. The cutoff can be defined in several ways for the Lennard-
Jones potential u(r):

1. The cutoff is given by the so-called, "truncated and shifted potential
(SP)", where the potential is zero above the cutoff and shifted below in a
way that ensures the potential is continuous at rc [18, 23]. More precisely ,

fSP (r) =
{
fLJ(r) if r < rc

0 if r > rc,
(1.2)
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Figure 1.3: An illustration of replicated simulation boxes around the original
box in MD simulation. It illustrates the schematic representation of periodic
boundary condition. A main particle is replaced with an identical image particle
with the same momentum when it leaves the box. Taken from Ref. [20].

where the radial force is obtained by [fLJ = −u′LJ(r)].
2. The "truncated and shifted forces (SF)" cutoff, in which the force

decreases to zero continuously at rc, which is obtained by subtracting a
constant term fLJ(rc) [23, 24],

fSF (r) =
{
fLJ(r)− fLJ(rc) if r < rc

0 if r > rc.
(1.3)

The shifted force cutoff has become popular recently because it needs
the smaller cutoff distance and the errors reduce significantly.

1.2.1 Leap-Frog Algorithm

The Newton’s equations of motion, specifically Newton’s second law F = ma
is solved numerically by MD simulation via discretizing the time coordinate.
The force of a system can be extracted as the gradient of the potential energy,

F ≡ −∇U(R), (1.4)

which can be the Lennard-Jones potential given for pair interactions in
this work. Thus the pair force between the particles i and j is the derivation
of Lennard-Jones potential,
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fLJij (rij) = −24εij

[
2
σ12
ij

r13
ij

−
σ6
ij

r7
ij

]
r̂ij . (1.5)

The total force is obtained by summing over the pair forces in equation
1.5,

fi =
∑
j 6=i

fij(rij). (1.6)

Newton’s equation of motion is given by,

dri
dt

= vi(t), (1.7)

and

dvi
dt

= fi(t)
mi

. (1.8)

To solve equation 1.7 and 1.8 numerically by MD simulation time must
be discretized in small time steps ∆t. The time evolution of equation of
motion can be evaluated with different protocols. Here, we use the Leap-Frog
algorithm which is modified version of the Verlet algorithm [25, 26]. The
Leap-Frog algorithm has advantages in compared to the Verlet algorithm.
It avoids the time step squared needed to update the system state and can
save the position and velocity at different times. Moreover, it is more stable
in computer simulation [25]. With the Leap-Frog algorithm the velocities
and positions can be determined by half time step ∆t. If time is discretized
by time steps around time t, e.g. ..., t− 2∆t, t−∆t, t+ ∆t, t+ 2∆t, ..., the
time evolution of velocity and position of particles are obtained by,

vi(t+ ∆t/2) = vi(t−∆t/2) + ∆t fi
mi
, (1.9)

ri(t+ ∆t/2) = ri(t) + ∆tvi(t+ ∆t/2). (1.10)

To compare the model systems with real systems, the NVT ensemble
(i.e. the temperature is constant) is more often used and it can be simulated
by above mentioned algorithm. In this thesis the most part of the simula-
tions are done with canonical ensemble simulations (NVT -simulations). The
Nosé-Hoover thermostat is implemented to keep the temperature constant
[19, 27–30].

1.3 GPU Computing, RUMD
RUMD is a high-performance Molecular Dynamics simulation package de-
veloped at Roskilde University over the last ten years. RUMD is an abbre-
viation of Roskilde University Molecular Dynamics. The package is running
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on graphical processing units (GPU’s) instead of central processing units
(CPU’s) [31]. GPUs are used a lot in the scientific community since they
have substantial computational horsepower. They are much faster than
CPUs in processing due to several thousands of cores [32] and can process
more floating-point operations per second. Moreover, GPUs are cheaper and
more efficient from an energy consumption perspective. GPUs can make
identical parallel operations on different blocks of the same data and they
are good candidates for MD simulation. NVIDIA’s CUDA programming
environment, released in 2007, promotes the calculation capabilities of GPU
[33], which is used in RUMD.

Figure 1.4: Comparing RUMD performance with well-known simulation pack-
age, LAMMPS, as a function of system size. RUMD is much faster than
LAMMPS for small system sizes and it is seen perfect scaling for large system
sizes. Taken from Ref. [31].

RUMD is an open-source program that can be downloaded at http:
//rumd.org/. The package includes a library that is written in C++. It
also consists of Python interface and tools to perform post-simulation data
analysis. RUMD is optimized for small and medium system sizes while
still being comparable with other packages (e.g. LAMMPS, Gromacs, ...)
for a large system. This is illustrated in Figure 1.4 which compares the
performance of RUMD with different version of LAMMPS benchmark re-
sults. RUMD is relatively faster for small system sizes in comparison to
LAMMPS with three different GPU versions. All simulations and results in
this manuscript are produced and analyzed by RUMD.

1.4 Minimization Functions

The gradient descent is the most well-known optimization algorithm to find
the local minimum introduced in 1847 by Cauchy [34]. It starts from a
random initial point and takes steps corresponding to the negative gradient
of the function to find the minimum via gradient descent. At each step,

7
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we move in the direction where the function declined fastest because the
negative gradient points are in the steepest descent. Furthermore, gradient
descent is a first-order optimization algorithm. However, this method is
quite inefficient because it uses very limited local information and makes
small step sizes at each iteration.

1.4.1 Newton’s Methods

Another optimization method is Newton’s method that finds the extremum
(minima and maxima) using information of the curvature [35]. In this
method, the second-order function’s derivation is considred [36]. Newton’s
method estimates the function at a random point with a paraboloid and
then finds the minimum of the function by approximating the minimum of
the paraboloid. The step size is determined by the distance to the minimum
of the point’s parabola, so it takes less steps to converges to the minimum
in comparison with the gradient descent. Even though, Newton’s method
is faster; it might return a maximum or a saddle point instead of minimum
because it is strongly dependent on the local behaviour of the initial point.
The Jacobian or the Hessian is required in this method. Computation of the
Hessian scales as O(n2) in Newton method and is therefore more compu-
tationally expensive compared with the gradient descent which scales O(n)
operations [37]. In 1959, Davidon et al. suggested the quasi-Newton al-
gorithms for the first time. These methods are known as secant methods
which are the generalization of Newton’s methods that address the above
mentioned issues [38]. In this method, it is not necessary to compute the
Hessian matrix, and instead of approximating the new quantities at each
iteration, it takes the information from the previous iteration information
to process the next iteration of minimization, it is thus much less computa-
tionally expensive.

1.4.2 BFGS Optimization

The minimum of the convex function can be reached by gradient descent
(strongly initial point dependent, moves down slowly opposite the gradi-
ent), Newton’s methods (needs fewer steps, considering the second-order
behaviour of the function but costly in time) and quasi-Newton algorithms,
the secant methods, (much faster by imposing further constraints in the
minimization process).

The BFGS method is one the popular quasi-Newton algorithms which are
proposed by Broyden, Fletcher, Goldfarb, and Shanno, in 1970 [34–36, 39,
40, 40]. Newton’s methods are required to compute the inverse of Hessian,
which costs O(n2) operations; but using the BFGS method, the inverse
Hessian can be estimated directly, which is of course more efficient. BFGS
method is used in chapters 5 and 6 to find the local minima of supercooled
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liquids.
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Chapter 2

Isomorph and
Pseudoisomorph

This chapter gives a general overview of isomorph theory in constraint
bonded models and pseudoisomorph in harmonic spring bonded models. Iso-
morphs are invariant curves in the phase diagram of Roskilde simple models.
Besides, pseudoisomorphs are found in models with harmonic intramolecu-
lar interactions, which behave like isomorphs meaning that structure and
dynamics are invariant along these curves. Isomorph and pseudoisomorph
have been developed extensively in a series of publications of the Glass and
Time group at Roskilde University (Bailey et al., 2008 [41, 42]; Gnan et al.,
2009 [43]; Ingebrigtsen et al., 2012 [44]; Pedersen et al., 2009 [45]; Schrøder
et al., 2009, 2014 [46, 47]; Dyre, 2014, 2020 [48, 49], Veldhorst et al. 2014
and Olsen et al., 2016 [2, 50]).

2.1 Simple Liquids

Traditionally, simple liquids are referred to as many-body systems in which
classical particles interact via radially symmetric pair potentials. There are
ongoing debates about how to characterize the simple liquids. If the liquids
are only defined by the pair potential energy function, how provide a quan-
titative criterion to define these classes of liquids? In 2012, Ingebrigtsen
et al. classified simple liquids as systems with strong correlation between
viral and potential energy equilibrium fluctuations in the NVT ensemble
[44]. The class of simple liquids can be identified with the strongly corre-
lating systems, since the properties of these systems are simpler than the
other liquids in general and they are named Roskilde simple liquids [51–
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53]. Because the name of strongly correlating systems was confused with
the strongly correlating quantum systems, they are named Roskilde simple
systems [44]. Simple liquids include not only atomic systems but also some
molecular systems [54].

2.2 Roskilde Simple Liquids
Over the last ten years, isomorph theory has been developed and evaluated
by the Glass and Time group at Roskilde University [41–43, 45, 46, 50, 55–
59]. The theory depends on the correlation between the configurational
part of pressure and energy fluctuations in the canonical constant volume
ensemble (NVT) of liquids, solids and gas [43, 56, 60]. These two parts
depend on the positions of the particles ri. On the other hand, kinetic
energy and temperature only depend on the momenta of the particles pi,

E = K(p1 + · · ·+ pN ) + U(r1 + · · ·+ rN ), (2.1)
pV = NkBT (p1 + · · ·+ pN ) +W (r1 + · · ·+ rN ). (2.2)

An example of these strong correlations for an asymmetric dumbbell
model is given in Figure 2.1. This correlation leads the Glass and Time
Group to identify the so-called "hidden scale invariance" in R-simple sys-
tems [43]. Indeed, these systems have curves in their thermodynamic phase
diagram, along which structure and dynamic properties are invariant. These
invariant curves are named "isomorphs".

Figure 2.1: Correlation between potential energy and virial of an asymmetric
dumbbell model at state point (ρ, T ) = (0.932, 0.465). The potential energy and
virial per particle are normalized by subtracting the mean and dividing by the
standard deviation. The collapse illustrates strong correlation between potential
energy and virial.
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Since isomorph theory is applicable for strongly correlating system, it is
required to define a quantitative measure of this correlation [41]. The degree
of correlation is calculated from the standard Pearson correlation coefficient,
given by,

R(ρ, T ) = 〈∆W∆U〉√
〈(∆W )2〉〈(∆U)2〉

, (2.3)

where angular brackets 〈〉 indicate thermal NVT ensemble averages and
∆ denotes the instantaneous deviations from the equilibrium mean value,W
the virial and U the potential energy of the system. This correlation is in-
vestigated in many different models [41] which are assumed to be a Roskilde
simple model when R > 0.9. Isomorphs do not exist only in strongly corre-
lating liquids, but also metallic systems can have isomorphs [55, 60].

The slope γ of the W, U-correlations is characterized by ∆U = γ∆W ,
and it is given by the linear regression slope of a scatter plot between U and
W (see Figure 2.2) [61–63],

γ = 〈∆W∆U〉
〈(∆U)2〉

, (2.4)

which depends on the state point.

  -2.85 -2.84 -2.83 -2.82 -2.81 -2.8 -2.79
U/N

9.1

9.2

9.3

9.4

9.5

W
/N

Asymmetric Dumbbell Model
ρ = 0.932, Τ= 0.465

R ≅ 0.960

γ = 5.69
A

B

Figure 2.2: Scatter plot of W, U-correlations for asymmetric dumbbell model
consisting of 5000 molecules at state point (ρ, T ) = (0.932, 0.465). The system
is strongly correlated with R = 0.960 and γ = 5.69. Taken from ref. [54]

The correlations of most liquids or solids dominated by van der Waals
or weakly ionic and dipolar interactions is much stronger than the correla-
tions of systems with hydrogen or covalent bonds or strong Coulomb forces.
Furthermore, isomorph theory is only exact for systems with an Euler-
homogeneous potential energy function, which is perfectly strong corre-
lated, for example, systems interacting via an inverse-power-law (IPL) pair-
potential [41, 42]. All microconfigurations of an IPL system have W = γU
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with γ = n

3 and the correlation coefficient is exactly R = 1. Since R de-
pends on the temperature T and density ρ strong correlations appears only
in part of the phase diagram of liquids models; For example, the correla-
tion coefficient usually decreases to below 0.9 when approaching the critical
point.

It is important to note that isomorph invariance refers to structure and
dynamics reported in the so-called reduced (state-point dependent) units.
In this unit system the particle number density ρ ≡ N/V , where N is the
particle number and V the system volume defines the length unit l0, the
temperature T defines the energy unit e0, and the density and the thermal
velocity define the time unit t0. Thus if m is the particle mass, the length,
energy, and time units are given by [41, 43, 44],

l0 = ρ−1/3, e0 = kBT, t0 = ρ−1/3.
√
m/kBT

2.3 Isomorph Theory

In this section, we present an overview of versions of isomorph theory in-
troduced by Gnan. et al. [43] and developed by Schrøder. et al. [47]
and Dyre [48]. Isomorphs theory is defined by two similar approaches, and
both start with reduced microconfigurations. By considering a system with
N particles, microconfiguration R is the coordinates vector of all particles
R ≡ (r1, r2, ..., rN ). Since isomorph theory refers to quantities given in re-
duced units, a microconfiguration is scaled by density, R̃ ≡ ρ1/3R, to make
it a reduced microconfiguration. From the original formulation, two config-
urations with the same reduced coordinates ρ1/3

1 R1 = ρ
1/3
2 R2 at state points

(ρ1, T1) and (ρ2, T2) have identical canonical probability Boltzmann factors,

exp[−U(R2)/kBT2] ∼= C12 exp[−U(R1)/kBT1], (2.5)

C12 is a constant which does not depends on the specific configurations,
but on the considered state points. Furthermore, the identical Boltzmann
factors propose the identical structure and dynamics in reduced units.

The generic version of isomorph theory was formulated by Schrøder and
Dyre in 2014 [47]. The existence of isomorphs in R-simple liquids is ex-
pressed in "hidden scale invariance" identity, which is called that way be-
cause the scaling behavior of potential energy surface (see Figure 2.3) is not
obvious.

The potential energy surface of two configurations R1,R2 with identical
reduced coordinates, are scaled by,

U(R2) ∼= h1(ρ2)U(R1) + g1(ρ2), (2.6)
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Figure 2.3: Potential energy surface scaling behaviour on which isomorph
theory is valid. Taken from Ref. [48]

when density ρ1 changes to ρ2. In this version, the R-simple systems
with the Euler homogeneous pair potentials (v(λr) = λαv(r), λ ∈ R), obeys
the condition:

U(R1) < U(R2)⇒ U(λR1) < U(λR2). (2.7)

where λ is the scaling factor [47]. The new isomorph condition (equation
2.7) restates the isomorph condition or hidden scale invariance. Since the
configurations can be scaled back and forth at the set of the densities,⇒ can
be replaced to ⇔ in equation 2.7. If the potential energies of configurations
of a R-simple system are same, they are same after scaling,

U(R1) = U(R2)⇔ U(λR1) = U(λR2). (2.8)

R-simple systems obey the isomorph condition showed in equation 2.8.
In the new formulation, excess isochoric heat capacity, CexV is not invariant,
whereas it was predicted to be invariant in the original version of isomorph
theory [47]. The first-order approximation was taken in the original deriva-
tion, while most thermodynamic functions are derived from second-order
derivation in the new version [47].

Isomorph can be generated along invariant excess entropy or configura-
tional adiabats curves. The system’s entropy is the sum of the ideal gas en-
tropy and configurational contribution, i.e. the excess entropy, S = Sid+Sex.
For an ideal gas, the excess entropy is zero, and for any other systems,
Sex < 0, because they must be less disordered in comparison to an ideal gas.
According to isomorph theory, the excess entropy must be invariant along
isomorphs [54, 64–66]. It is defined as the thermodynamic equilibrium ex-

15



Chapter 2

cess entropy of configuration R with average potential energy U(R) at the
state point with density ρ,

Sex(R) ≡ Sex(ρ, U(R)). (2.9)

On the other hand, the potential energy U(R) can be expressed as the
function of density and thermodynamic excess entropy Sex,

U(R) = U(ρ, Sex(R)). (2.10)

The above formulations can be applied for any systems [67] but if we
focus on R-simple systems in which the configurations at two different den-
sities obey the hidden scale invariance (equation 2.8), R2 = λR1 where
λ = (ρ1/ρ2)1/3. Considering equation 2.9, it has been shown that the ex-
cess entropy of system can be identical at two densities, Sex(R1) = Sex(R2)
[47, 48] and it only depends on the reduced configuration,

Sex(R) = Sex(R̃). (2.11)

So then equation 2.10 can be represented by,

U(R) = U(ρ, Sex(R̃)). (2.12)

The new formulation in equation 2.12, which connects the microscopic
potential energy to equilibrium average potential energy, leads us to achieve
the invariant reduced units structure and dynamics.

One of the invariant dynamical properties is the reduced-force derived
from Newton’s second law in reduced coordinates, d2(R̃)/dt̃2 = F̃. All parti-
cle forces are expressed as a single vector force, F which is F̃ ≡ Fρ−1/3/kBT
in reduced units and it can be obtained by F = −∇U . With regards to
∇ = ρ1/3∇̃ and considering equation 2.12, we have,

F = −ρ1/3∇̃U(ρ, Sex(R̃)) (2.13)

= −
(
∂U

∂Sex

)
ρ
ρ1/3∇̃Sex(R̃).

Because
(
∂U

∂Sex

)
ρ

= T , the reduced force is equal to,

F̃ = −∇̃Sex(R̃), (2.14)

which implies that force must be invariant in reduced units. In the next
chapter we use the invariant reduced forces to identify isomorphs in R-simple
molecular models.
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2.4 Pseudoisomorph

There are several systems in which isomorph theory is not valid, like system
with Coulomb interactions or molecular liquid models with harmonic inter-
action. In 2016, Olsen et. al found invariant curves in spring models, which
resemble isomorphs, named pseudoisomorphs. Since the W, U-correlations
break down in harmonic models, the scaling exponent γ can not be used to
find the invariant dynamics and structure. However, the pseudoisomorphs
are predicted by quenching the system and eliminating the unscaled degrees
of freedom of harmonic bonds. See paper [2] for more details. In chapter
5 we use small stiff molecular models with intramolecular harmonic bonds
to predict pseudoisomorphs via our newly developed force methods. Large
flexible molecular models are investigated in chapter 6.

2.5 Identifying Isomorphs and Pseudoisomorphs

There are several different ways to identify isomorphs and pseudoisomorphs.
In this section, we explain two prominent methods. The first one is based
on the invariant excess entropy curves named configurational adiabats used
to generate isomorphs; the second method uses the potential energy surface,
named direct isomorph check method (DIC) used to find both isomorphs and
pseudoisomorphs. Additional methods based on invariant reduced forces are
introduced in the next chapter.

2.5.1 Configurational Adiabat

To find the curves of constant excess entropy (i.e. configurational adiabat),
the scaling exponent γ is used [43]. For an IPL system with the 100% W, U-
correlation (R = 1), the invariant curves are represented by ργ/T = const.
and γ = n/3. In general for strongly correlating systems with correlation
coefficient R > 0.9, scaling exponent γ as mentioned is the slope of the
linear regression fit of equilibrium fluctuations of potential energy and virial
in constant volume. The slope of configurational adiabats in (log ρ, log T )-
phase diagram of a strongly correlating system gives the scaling exponent γ.
Since the excess entropy remain constant along configurational adiabats and
isomorphs are configurational adiabats, dSex is set to be zero [43]. Besides,
the excess entropy can be written as a function of volume and temperature,

dSex =
(
∂Sex
∂T

)
V
dT +

(
∂Sex
∂V

)
T
dV = 0. (2.15)

Using the volume-temperature Maxwell relations for the configurational
degrees of freedom, (∂Sex/∂V )T = ∂ ((W/V )/∂T )V , equation 2.15 is written
as,
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(
∂Sex
∂T

)
V
Td lnT =

(
∂W

∂T

)
V
d ln ρ. (2.16)

By considering dU = TdS − PdV we have,(
∂U

∂T

)
V
d lnT =

(
∂W

∂T

)
V
d ln ρ, (2.17)

Using the fluctuation relations (∂W/∂T )V = −〈∆W∆U〉, (∂U/∂T )V =
−〈(∆U)2〉 gives the scaling exponent,

γ =
(
d lnT
d ln ρ

)
Sex

= 〈∆W∆U〉
〈(∆U)2〉

. (2.18)

Equation 2.18 can be applied for any system to find the configurational
adiabat curves [43]. Firstly, to find isomorphs, one must assure that the sys-
tem has the strong W, U-correlation by measuring R. Isomorphs are mapped
out step-by-step by changing the density using equation 2.18. γ can be mea-
sured from the equilibrium simulation at any given state point implementing
the different numerical integration. The density step size depends on which
integral is implemented in simulation. In the Euler integration method, the
density should change by a factor of 1%, whereas it can be changed more
in each step in the Runge-Kutta integration method [68]. The dynamics
and structure are invariant along configurational adiabats in both atomic
and molecular models with rigid bonds as long as they are considered as
R-simple models.

2.5.2 Direct Isomorph Check

The second way we are checking in this thesis is the direct isomorph check
(DIC) method. This method predicts the temperatures by using the iso-
morph definition directly (equation 2.5). DIC method evaluates the Boltz-
mann factor proportionality of two different isomorphic state points. Con-
sider two state points with different densities ρ1 and ρ2 have the same re-
duced microconfiguration ρ1/3

1 R1 = ρ
1/3
2 R2, then the potential energy sur-

face at these state points are compared by equation 2.5 which can be written,

U(R2) ∼= h1(ρ2)U(R1) + g1(ρ2). (2.19)

Equation 2.19 indicates the change in the potential energy surface by
changing the density and describes how the energy surface at density ρ1
changes when the micro configuration is scaled to a different density. h1(ρ2)
and g1(ρ2) only depend on density ρ1. Equation 2.19 is the original for-
mulation of isomorph theory, in which calculating the potential energy at
a given density and then scale the system to a second-density, it gives the
potential at the new density. Then by calculating the slope of correlation
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between these two potentials, by considering the condition T2/T1 = h1(ρ2) =
h(ρ2)/h(ρ1), one can identify the isomorphic state points.
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Figure 2.4: The correlation of potential energy surface and direct check of
equation 2.19 for the asymmetric dumbbell model (a large and a small LJ particle
connected by a rigid bond) at two state points (ρ1, T1) = (0.969, 0.581) and ρ2 =
1.009. Different equilibrium configurations are selected from a NVT simulation
at the first state point ρ1 = 0.969 in LJ units and then scaled to the second
density ρ2 = 1.009. The high correlating shows that the energies at the two
densities are related in some way.

Figure 2.4 shows the potential energy correlations of the configurations
at density ρ1 = 0.969 and the scaled configurations at density ρ2 = 1.009
of the asymmetric dumbbell model with constraint bond. The correlation
coefficient is quite high about 0.990, which implies that the state points are
isomorphic. As explained, the temperature of the second density is predicted
by the slope of the plot. The density can change more in each jump through
this method compared to the configurational adiabats. We test this method
in the next chapters to trace isomorphs and pseudoisomorphs in small and
large molecular models with constraint and harmonic bonds.

2.6 Invariant Structure
The structure of R-simple liquids is assumed to not change along isomorphs.
Considering equation 2.5, the probability of configurations do not change by
scaling to other isomorphic state points. The canonical reduced microcon-
figurations probability distribution function is derived by,

P (R̃) = exp[−U(R̃)/kBT ]∫
exp[−U(R̃)/kBT ]dR̃

. (2.20)

It is invariant at isomorphic state points which indicates that the reduced
equilibrium structure is invariant in configurations with the same probability
distribution. To investigate the system’s structure, we measure one of the
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typical structural quantities, i.e. the radial distribution function (rdf). This
property is defined as the probability of finding a particle at a distance r
from another particle. The rdf of the strongly correlating systems are found
to be invariant [43], and it is extensively used in this manuscript to test the
invariance of the structure.

2.7 Invariant Dynamics
Besides the structure, the dynamics in reduced units are predicted to be
invariant along isomorphs and pseudoisomorphs. As shown in section 2.3,
the reduced force is invariant since two configurations scaled at different
isomorphic points has the same potential energy except for an additive con-
stant (equation 2.19) [47, 69]. Mean square displacement in reduced units,
〈[̃r(t̃−r̃(0̃)]2〉, and intermediate scattering function given by time correlation
function of the spatial Fourier transform of the number density ρ(q),

F (q̃, t̃) = 〈ρ(q̃, t̃)ρ(−q̃, 0)〉
〈ρ(q̃, 0)ρ(−q̃, 0)〉 (2.21)

are main dynamical properties used many times in this thesis. Besides,
we calculate the orientational autocorrelation function of end-to-end vector
to investigate the rotational dynamics. Figure 2.5 demonstrates the invari-
ant intermediate scattering functions and the orientational autocorrelation
function of end-to-end vector in reduced units along isomorph in flexible
long Lennard-Jones chains (LJC). The relaxation time and diffusion con-
stant are also used to compare the isomorph methods. See reference [43] to
find more invariant dynamic properties. Isomorph theory is in agreement
with Rosenfeld’s excess entropy scaling because not only dynamics but also
excess entropy are invariant along isomorphs [70, 71].

Isomorph theory has been identified on different classes of systems, in-
cluding simple atomic systems in both liquid and solid phases [43, 45, 54, 56,
57], molecular systems like the rigid-bond asymmetric dumbbell model and
the symmetric inverse-power law dumbbell model [54], the 10-bead Lennard-
Jones chain [50], the Lewis-Wahnström’s three-site model of OTP [54], the
seven-site united-atom model of toluene [46], the EMT model of liquid Cu
[41]. Furthermore, it has been possible to verify isomorph-theory predictions
in experiments on van der Waals bonded organic liquids, and for supercriti-
cal argon [58, 59]. However, pseudoisomorphs are identified in the molecular
models with poor W, U-correlation [2, 50] e.g. the models with harmonic
bond. In this work, we intend to predict isomorphs in molecular models with
rigid bonds and pseudoisomorphs in the harmonic spring molecular models
via force-based methods and compare the results of these methods with the
configurational adiabats and the direct isomorph check methods.
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Figure 2.5: The segmental and center of mass incoherent intermediate scat-
tering function Fs, and normalized orientational autocorrelation function of the
end-to-end vector 〈R(0)R(t)〉in reduced units are invariant along isomorph in
the LJC model. Taken from [50].
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Generating Isomorphs in
Small Molecular Liquids

This chapter introduces a number of force-based methods to identify iso-
morphs in three molecular R-simple systems. Schrøder tested the atomic
force method on Kob-Andersen binary Lennard-Jones system [1]. We intro-
duce molecular force and torque methods and test them on the asymmetric
dumbbell (ASD), symmetric inverse power law (IPL) dumbbell and Lewis-
Wahnström o-terphenyl (OTP) with rigid bonds.

3.1 Introduction

The invariant reduced units force concept raises from the potential energy
surface scaling at different state points. The potential energies surface at two
state points are proportional by a constant factor plus an additive constant
(chapter 2). The scaling behaviour of the potential energy surface reveals
that the force is one of the quantities, which is invariant in the reduced units
according to isomorph theory. In the next section, we show that one can
predict isomorphs via simple and efficient methods, i. e. "force methods".

3.2 Finding Isomorphs via Invariant Forces

According to the isomorph theory, two configurations at two state points
have the same coordinates in reduced units, ρ1/3

1 R1 = ρ
1/3
2 R2. Not only the

structure is invariant along isomorphs but also the dynamics are supposed to
be constant along isomorphs at two different state points. So, the potential
energy gradient of a strongly correlating liquids is invariant along isomorphic
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state points. By considering, F̃R = −∇R̃Ũ , forces also should be invariant
along isomorphs which indicates,

F̃(R1) = F̃(R2). (3.1)

The reduced-forces at two state points are derived by,

F̃(R1) = F(R1)
kBT1

ρ
−1/3
1 , (3.2)

and

F̃(R2) = F(R2)
kBT2

ρ
−1/3
2 . (3.3)

With regards to equation 3.2 and equation 3.3 one can predict the tem-
perature of the next state point using the forces by,

T2 = |F(R2)|
|F(R1)|

(
ρ1
ρ2

)(1/3)
T1. (3.4)

The most prominent advantage of these methods is that one can use
only a single equilibrium configuration to generate isomorphs, which is not
possible in using the scaling exponent γ and the direct isomorph check
method. Four different force-based methods are assumed to predict iso-
morph in molecular systems: atomic force, molecular force (or center-of-
mass force), segmental force and torque methods.

3.3 Atomic Force Method
Currently, Schrøder tested the atomic force method on Kob-Andersen bi-
nary Lennard-Jones system and predicted good isomorphic points [1]. In
this section, we intend to test this method to identify isomorph in three
different constrained molecular model, namely asymmetric dumbbell model
(ASD), symmetric IPL dumbbell model (IPL) and Lewis- Wahnström o-
terphenyl (OTP) model. This force is measured by considering the particles’
intramolecular interactions and summing up the force of atoms in a config-
uration. So the external force of intermolecular interaction is excluded in
calculating atomic force.

3.3.1 Test the Method on ASD Model

Asymmetric dumbbell model (ASD) including 5000 molecules is a first model
that we pick to test the atomic force method. ASD is a toy model of toluene
which consists of two different sized Lennard-Jones (LJ) spheres, a large
(A) and a small (B) particles, rigidly bonded. The equilibrium length of
the bonds is 0.584 in the LJ units defined by the large sphere (σAA ≡ 1,
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Figure 3.1: Shows the strong correlation Rff = 0.990 between x-component
of non-reduced atomic forces at two different state points of the asymmetric
dumbbell model. (ρ1, T1) = (0.932, 0.465) is considered as a reference point. We
predict T2 = 0.725 by scaling a configuration to ρ2 = 1.009 via equation 3.4

εAA ≡ 1, and mA ≡ 1). The parameters of the model were chosen to
mimic toluene (σAB = 0.894, σBB = 0.788, εAB = 0.342, εBB = 0.117,
mB = 0.195) [64]. The inter-molecular pair potential interactions obey the
Lennard-Jones potential in ASD,

vij(rij) = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 . (3.5)

As expected, the atomic forces have strong correlation at two state
points, ρ1 = 0.932 and ρ2 = 1.009, see Figure 3.1. We calculated T2 = 0.725
at density ρ2 = 1.009 by considering atomic forces in the equation 3.4 and
using one individual equilibrium configuration at first state point (ρ1, T1) =
(0.932, 0.465). 152 configurations, taken from the equilibrium simulation at
reference point (ρ1, T1) = (0.932, 0.465), are used to improve the statistics
of temperature prediction. Figure 3.2 represents the distribution of T2 by
scaling the configurations to ρ2 = 1.009.

We measure center-of-mass mean square displacement (msd), center-of-
mass incoherent intermediate scattering function (FsCM ) and orientational
autocorrelation function of end-to-end vector (〈R(0)R(t̃)〉) in reduced units
to see if translational and rotational dynamics of ASD are invariant along
the predicted state points or not?! Figure 3.3 demonstrates center-of-mass
mean square displacement in reduced units, whereas Figure 3.4 shows the
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Figure 3.2: Distribution of T2 by using 152 configurations. T2 is predicted via
atomic force method.
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Figure 3.4: Testing the translational dynamics of ASD model via center-of-
mass incoherent intermediate scattering function in reduced units along the same
state points which are shown in Figure 3.3. The reduced wave-vector is given
by q̃ = q(ρ/0.932)1/3
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Figure 3.5: Testing the rotational dynamics of ASD model via orientation’s
auto-correlation function in reduced units along the same state points which are
predicted by similar method shown in Figure 3.3 and 3.4
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Figure 3.6: The fluctuation of potential energy and virial for symmetric IPL
dumbbell and OTP models. (a) The correlation coefficient at the reference state
point (ρ1, T1) = (0.775, 1.054) is R = 0.964 and the linear slop of regression is
about γ = 7.04 for asymmetric dumbbell model, (b) R = 0.913, γ = 7.153 for
OTP model at state point (ρ1, T1) = (0.329, 0.700). Reproduce results from ref.
[44]

center-of-mass reduced-intermediate scattering function along different pre-
dicted state points via the atomic force method. The rotational dynamics
are evaluated by considering the reduced orientational autocorrelation func-
tion of end-to-end vector in Figure 3.5. The atomic force method identify
isomorphic state points in ASD model.

In the following, we represent the results of testing the atomic force
method in symmetric IPL dumbbell model (IPL) and Lewis- Wahnström o-
terphenyl (OTP) model with rigid bonds. IPL and OTPmodels are classified
as strongly correlating systems (Figure 3.6), and atomic force method is
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assumed to predict isomorphic state points in these two models.
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Figure 3.7: Translational and rotational dynamics of IPL model along the pre-
dicted temperature via atomic force method using equation 3.4. The reference
point is (ρ1, T1) = (0.775, 1.054). (a) The mean-square displacement versus time
in reduced units. (b) The incoherent intermediate scattering function in reduced
wave-vector q̃ = q(ρ/0.775)1/3. (c) The orientational auto-correlation function
of end-to-end vector in reduced units.

3.3.2 Test the Atomic Force Method on IPL Model

The symmetric IPL dumbbell model consists of two identical particles. As
same as ASD, the particles have rigid bonds with length rij = 0.584. 5000
molecules interact via the IPL potential,

vij = εij

(
σij
rij

)n
(3.6)
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in which exponent is n = 18. All IPL parameters and particles’ masses are
unity. The unscaled configurations are taken from the equilibrium simula-
tion at reference point, (ρ1, T1) = (0.775, 1.054). The density variation is
about 19% taken from ref. [44]. The same dynamics quantities in Figure
3.3, Figure 3.4 and Figure 3.5 (msd, FsCM , 〈R(t̃)R(0)〉) are considered to
check dynamics of IPL model along force methods. Figure 3.7 represents
that dynamics of IPL are invariant at predicted state points by atomic force
method (equation 3.4). However, the translational dynamics (msd, FsCM )
have better collapse compared to rotational dynamics (〈R(t̃)R(0)〉).
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Figure 3.8: Same dynamical properties from Figure 3.7 in OTP model along
the predicted temperature via atomic force method. The reference state point is
(ρ1, T1) = (0.329, 0.700). (a) The mean-square displacement versus time in re-
duced units. (b) The incoherent intermediate scattering function at the reduced
wave-vector q̃ = q(ρ/0.329)1/3. (c) The orientational auto-correlation function
in reduced units.
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Figure 3.9: Testing the same dynamics properties from Figure 3.8 on OTP
model along the invariant atomic force from the reference point (ρ1, T1) =
(0.303, 0.383). (a) The mean-square displacement versus time in reduced units.
(b) Shows the incoherent intermediate scattering function at the reduced wave-
vector q̃ = q(ρ/0.303)1/3. (c) The orientational auto-correlation function of
end-to-end vector in reduced units.

31



Chapter 3

3.3.3 Test the Atomic Force Method on OTP Model

The Lewis- Wahnström OTP model has three identical LJ particles. Atoms
are connected by rigid bonds in an isosceles triangle with sides of rij = 1.00
and top angle of 75◦ which is different from the real 1,2-diphenylbenzene
molecule with 60◦. All LJ parameters are set to be unity in this model.
Figure 3.8 shows that the dynamics of the system is not invariant along
predicted state points via atomic force methods. The reference state point
is (ρ1, T1) = (0.329, 0.700). The dynamics have a good collapse by scaling
system to higher density, ρ = 0.345, 0.367. The collapse is vanished by scal-
ing at lower density, (see Appendix A). The results improve by scaling the
system to only higher density from the reference state point in Figure 3.9.
We consider (ρ1, T1) = (0.303, 0.383) as the reference point and density in-
creases about 16% overall. This density changes issue only appears for OTP
model, which is still the mystery. Hence, state point (ρ1, T1) = (0.303, 0.383)
is considered as the reference point for OTP model.

3.4 Center-of-mass Force Method

One may consider the center-of-mass force, so-called "molecular force", to
identify isomorphs in molecular models. The molecular force is calculated by
summing up atoms’ forces in each molecule. For example it can be obtained
by

∑
Fi =

∑
FA,i + FB,i in ASD model. The external force is considered

in measuring molecular force while the intramolecular forces (due to the
bonds) are cancelled out. The molecular forces of two different state points
have a strong correlation (see Figure 3.10).

Using the molecular force method in ASD model predicts T = 0.730 at
density ρ = 1.009, which is quite different from predicted temperature via
the atomic force method (Figure 3.1). The difference of predicting tempera-
ture via atomic and molecular force methods at ρ = 1.009 is shown in Figure
3.11.

We continue testing the molecular force method to check whether dy-
namics are invariant or not in ASD, IPL and OTP models. Figure 3.12
shows that the molecular force method predicts appropriate isomorphic state
points along which dynamics are invariant for three models. The molecular
force method predicts the better isomorphic points than the atomic force
method (see Figure 3.3, 3.4, 3.5, 3.7, 3.9). Besides, the rotational dynamics
of molecules should be invariant in reduced units, and it can be expressed
by torque. The following section introduces the torque method as the third
method to predict isomorphs in strong correlating molecular liquid models.
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Figure 3.12: Testing the molecular force method on three models, ASD, IPL
and OTP. Isomorphs are generated based on a single equilibrium configuration.
(a), (b), (c) The mean square displacement, incoherent intermediate scattering
function and orientational auto-correlation function in reduced units of the ASD
model, which are invariant. Reference point is (ρ1, T1) = (0.932, 0.465). (d),
(e), (f) The similar dynamical quantities of the IPL model in which we consider
(ρ1, T1) = (0.775, 1.054) as the reference point. (g), (h), (i) Results for similar
dynamics properties of the OTP model. The state point (ρ1, T1) = (0.303, 0.383)
is starting point.
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3.5 Invariance of Reduced Torques

The force acting on one molecule contains two terms,

FMol =
∑
i

(Fex,i + Fcons,i), (3.7)

in which Fex,i is the force due to the intermolecular interaction of ith
atom and Fcons,i is the contribution of rigid bond forces (i.e. intramolecular
interactions).

To calculate torque, we consider the rotational motion of each atom
around the center-of-mass of the molecule. Here, the intramolecular forces
(Fcons,i) are cancelled out and external forces calculate torque by,

τMol =
∑
i

rcm,i × Fex,i, (3.8)

where rcm,i is distance between the atom ith to center-of-mass in the
relevant molecule. In reduced units, torque is given by τ̃ = τ

kBT
, which

should be invariant at two isomorphic state points, τ̃1 = τ̃2. So one can
predicts new temperatures by,

T2 = τ2
τ1
T1. (3.9)

As presented in section 3.3 and section 3.4, isomorph curves have been
seen in molecular systems, which are generated by force methods (equation
3.4). We now test the torque method on small molecular models (e.g. ASD,
IPL and OTP models). As exTorques of two state points have strong cor-
relation in ASD model (Figure 3.13). The temperature, T2 = 0.763, at the
density 1.009 is predicted quite differently via this method compared to pre-
dicted T2 via atomic force method (Figure 3.1) and molecular force method
(Figure 3.10).

The precision of methods in predicting temperatures is shown in Figure
3.14. We calculate atoms’ temperature through atomic force and molecules’
temperature using molecular force and torque methods, T (i)

2 , at density ρ2 =
1.009. It is shown that the prediction accuracy of the molecular force method
is better than the accuracy of another two methods. Figure 3.15 represents
the dynamical properties of ASD, IPL and OTP systems along generated
state points by torque method using equation 3.9. The dynamics of ASD
and IPL models are not invariant using the torque, while there is a good
collapse in the dynamics of OTP model. The molecular force method is
the only method that predicts the proper isomorphic points in all three
molecular models. However, the atomic force method gives good results
in IPL model, and the torque method provides the proper results in OTP
model.
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model. The temperature is predicted, T2 = 0.763, by using equation 3.9.
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Figure 3.15: Testing the torque method on three models, ASD, IPL and OTP.
The same reference points in Figure 3.12 are considered. (a), (b), (c) mean
square displacement, incoherent intermediate scattering function and orienta-
tional auto-correlation function in reduced units of ASD model, which are not
invariant. The molecular force method provide better results (see Figure 3.12).
(d), (e), (f) similar dynamical quantities of IPL model. Molecular force method
gives nice invariant dynamics in this model in Figure 3.12. (g), (h), (i) results
for similar dynamical properties of OTP model. The results of torque method
is comparable with molecular force method in Figure 3.12.
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3.6 Comparing Isomorph Methods

In the previous section, we used force methods to predict isomorphic state
points for three models in which the dynamics behave differently through
the various methods. To investigate which methods work better in which
model, we measure the relaxation time and diffusion coefficients in this sec-
tion. By testing the force methods on molecular systems one may wonder
how results of these methods are comparable with results of configurational
adiabats and direct isomorph check method. In 2012, Ingebrigtsen et. al [44]
generated isomorphic state points along configurational adiabats in ASD,
IPL and OTP models. The temperature is estimated by changing the den-
sity 1% in each jump based on equation 2.18. The density can be changed
about 15% in force methods, which is a rather large change. The results of
configurational adiabats are shown in Figure 3.16 which demonstrates the
invariant structure and dynamics in ASD, IPL and OTP models.

Besides, we have created isomorphs by using the direct isomorph check
(DIC) method. As explained in section 2.5.2, DIC method identifies new
temperatures by using potential energy based on equation 2.5. We find iso-
morphic state points via this method by starting from a point in the phase
diagram and then change the density by a factor of 10%. Density change
is rather big compared to configurational adiabats, but it is not compa-
rable with forces methods. Figure 3.17 illustrates the invariant dynamics
generated via DIC method in ASD, IPL and OTP models.

We measure translational and rotational relaxation times and center-of-
mass diffusion coefficient in reduced units to investigate how these dynamical
properties vary through different isomorph methods. The translational re-
laxation time τ̃cm, is calculated from the intermediate scattering function
when it has decayed to 0.2. In contrast, the rotational relaxation time τ̃rot,
is defined as the time when the orientational autocorrelation function of end-
to-end vector reaches 0.2. We measure both relaxation times at state points
predicted via configurational adiabats, DIC, force methods and isotherm for
ASD model in Figure 3.18. The top panel (a) shows the data of transla-
tional relaxation time versus changing the density. Likewise, the rotational
relaxation time is given in the bottom panel of Figure 3.18(b). As we ex-
pected, the relaxation times are invariant along the isomorphs method in
comparison with isotherm.

The methods also create isomorphs along which the relaxation times
remain constant in IPL and OTP models (Figure 3.19, 3.20). The relaxation
times along different isomorph methods are constant along isomorphs in
comparison with the relaxation times along isotherm in three models.

Table 3.1 provides another interesting comparison of various methods in
the ASD model. It shows the ratio of reduced diffusion coefficient, transla-
tional and rotational relaxation times to density. The diffusion coefficient is
obtained from the slope of the mean square displacement in diffusive regime,
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Figure 3.16: Isomorphs along configurational adiabats using equation 2.18
in three ASD, IPL and OTP models. (a), (d) the radial distribution func-
tion (rdf) and center-of-mass intermediate scattering function (Fs) in reduced
units in ASD model. Results are reproduced from ref. [44] (b), (e) the sim-
ilar structural and dynamical quantities for IPL model. Here, we consider
(ρ1, T1) = (0.775, 1.054) as the reference point. (c), (f) the structure and dy-
namics of OTP model are invariant along constant excess entropy curves. State
point (ρ1, T1) = (0.303, 0.383).
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Figure 3.17: Generated isomorphic state points via DIC method in three
models. (a), (b), (c) The dynamical properties msd, Fs and < R(0)R(t̃) in
reduced units of ASD model. (d), (e), (f) The similar dynamical quantities for
IPL model. (g), (h), (i) The similar dynamical quantities for OTP model. Same
reference points in Figure 3.16 are considered here.
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Figure 3.18: Comparing the dynamics of ASD model through different meth-
ods with isotherm (purple). Relaxation times are approximately same along
four isomorphs predicted by atomic (green) and molecular (blue) force meth-
ods, configurational adiabats (black) and direct isomorph check(red) method at
densities ρ = 0.852, 0.969, but the torque method (orange) generate quite differ-
ent dynamics. (a) the reduced translational relaxation time against the density
changes along curves predicted via different methods for ASD model. (b) shows
the orientational relaxation time along curves in reduced units of similar model.
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Figure 3.19: The relaxation times variation against density through the iso-
morph methods and isotherm in IPL model. Here, the dynamics are also in-
variant along isomorph methods. However, Each isomorph method predicts a
different temperature at the same density.
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Figure 3.20: Comparing same dynamical properties along isomorph methods
from Figure 3.18 in OTP model. The results of molecular force method (blue)
is comparable with results of torque method (orange).
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(ri(t)− ri(0))2 ' 6Dt (3.10)

In molecular systems we calculate the diffusion coefficient by fitting to
the center-of-mass mean square displacement for,

(rcm,j(t)− rcm,j(0))2 > 10. (3.11)

Table 3.1: Comparison between the reduced-unit density variation of the dif-
fusion coefficient (first row), the translational relaxation time (second row) and
rotational relaxation time (third row) estimated from different methods and
isotherm in ASD model. The second column shows large values obtained by
isotherm, non-invariant curves. The third to seventh columns represent the re-
sults of configurational adiabats, direct isomorph check, atomic and molecular
forces and torque methods. The configurational adiabats and the molecular
force method generates better results than other isomorph methods.

Isotherm γ DIC FAtom FMol Torque
∂logD̃

∂logρ
-70(2) -0.5(4) 1.1(4) -1.4(2) -0.9(4) 7.47(6)

∂ log τ̃cm
∂ log ρ 77(3) -0.4(1) -1.0(1) 1.60(7) 0.5(1) -7.8(1)
∂ log τ̃rot
∂ log ρ 65(3) 1.9(1) 1.26(2) 3.47(3) 2.62(7) -2.6(2)

Table 3.2: Checking the reduced-units variation of the same dynamical quan-
tities, presented in Table 3.1, for the symmetric dumbbell IPL model. Here,
diffusion coefficient and relaxation times keep more invariant along atomic force
method. However, the molecular force and torque generate isomorph in IPL
model.

Isotherm γ DIC FAtom FMol Torque
∂logD̃

∂logρ
-113.4(6) 1.9(1) -0.78(7) -0.2(2) -0.462(5) 3.9(3)

∂ log τ̃cm
∂ log ρ 126.7(7) -0.4(3) -0.04(2) -0.21(7) -0.42(1) -0.95(4)
∂ log τ̃rot
∂ log ρ 107.9(6) 0.16(1) -0.7(2) 0.2(2) 0.10(9) 0.5(3)

The variation of the diffusion coefficient and relaxation time along iso-
morphs must be zero. Since the isomorph theory is approximate, the varia-
tions are close to zero. The molecular force method generates better state
points in ASD model compared to atomic force and torque methods (Table
3.1). Both atomic and molecular force methods are rather more accurate
than the torque method in the IPL model (Table 3.2). In contrast, the
torque method identifies better results in the OTP model (see Figure 3.20).
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3.7 Structure
In the previous section, we investigated how dynamical properties behave
through the state points calculated by new force methods. Besides, it has
been shown that the structure of molecular systems should remain invariant
along isomorphs produced by configurational adiabats and DIC method in
ref. [44]. Therefore, we measure the radial distribution function (rdf) as a
function of reduced displacement at state points created by atomic, molec-
ular force and torque methods in ASD, IPL and OTP. Figure 3.21 indicates
that the structure of three molecular models is invariant along isomorphs
created via force methods.
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Figure 3.21: The structure of three models along force methods. (a), (b), (c)
the radial distribution function in reduced units of ASD along atomic, molecular
and torque methods. The reference point is (ρ, T ) = (0.932, 0.465). (d), (e), (f)
the similar structural property at state points predicted by same methods in
IPL model. The reference point is (ρ, T ) = (0.775, 1.054). (g), (h), (i) rdf of
OTP model in reduced units. The reference point is (ρ, T ) = (0.303, 0.383).
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Generating Isomorph in a
Large Molecular Liquid

In this chapter, we test the force-based methods to identify isomorphs in
long flexible Lennard-Jones chains (LJC). In addition to the atomic, molec-
ular and torque methods, we consider another force-based method, named
segmental force to create isomorph in the LJC model.

4.1 Introduction

As discussed in chapter 3, isomorphs can be created by newly developed
force methods in most or all small molecular systems. Using these meth-
ods is beneficial because only a single configuration is sufficient to generate
isomorphs. Force methods are also expected to predict isomorphs in real
liquids, i.e. the former glass liquids which obey the power-law density scal-
ing and polymers are considered as a large part of real liquids which obey
this scaling. In 2014 Veldhorst et al. confirmed the isomorphs existence
in flexible Lennard-Jones chains (LJC) with rigid bonds [50]. It was found
that reduced units dynamics and intermolecular structure of the LJC model
have a good collapse at state points generated by configurational adiabats
(see Figure 2.5). On the other hand, not all of the structural properties of
the LJC model are necessarily invariant, e.g. the intramolecular structures
are not constant along isomorph. Since the bond lengths are constant at
different densities, they do not remain invariant in reduced units.

LJC model is made of sets Lennard-Jones particles connected by either
rigid bonds or springs. Since this model is a simple coarse-grained model of
polymers and alkanes, it was first used to study the properties of polymeric
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liquids by Grest and Kremer [72–74]. The chain model is more compli-
cated than the simple atomic and small molecular models. Because of the
long entangled chain, the particles have to move in specific ways in which
the monomers are supposed not to cut each other. The particles represent
groups of atoms, like the CHn unit in alkane or monomers in a polymer.

Here, the LJC model used in simulation consists of 10 beads connected
via rigid bonds and represented as a model of viscous polymer melts close
to the glass transition [75–78]. Even though one segment is considered as
several monomers, a chain of ten beads can barely be called a polymer in the
chemical or physical sense. The reason for simulating such short chains is
that one is usually interested in the viscous liquid’s equilibrium properties.
Increasing the chain length enhances the equilibration time dramatically and
increases the viscosity, so there is always a trade-off to be done [79, 80].

Since the LJC model has been shown to obey the power law density
scaling [81], and Rosenfeld’s excess entropy scaling [81–84], it would be an
appropriate model to test the new isomorph approaches. Therefore, the
equations 3.4 and 3.9 are used to generate isomorph in the (LJC) model in
this chapter.

4.2 Simulation Details

Particles in different molecules and non-bonded particles interact via the
standard LJ potential, cutting and shifting the forces at 2.5σ. We simulated
1000 chains in a cubic bounding box considering periodic boundary condi-
tions in the NVT ensemble using a Nosé-Hoover thermostat. The time step
we used was t = 0.0025. All particles were the same type. The potential
parameters and the bond lengths were set as unity σ = 1, ε = 1, l = 1σ.

The bonds remain rigid during the simulation [18] using the constraint
dynamics, and the forces are from the non-bonded particle pairs interactions.
The external force preserves the relative velocities of bonded particles zero
along the bond directions, using the Gauss principle of least constraint [85].
We used constraint algorithm developed by Toxværd et al. [86] in which the
energy and time symmetry preserve.

The correlations between the virial and potential energy of the LJC
model is less than correlations of the liquids considered as R-simple liquids
[42], and less than the standard single component Lennard-Jones (SCLJ)
liquid [41]. The correlation coefficient is estimated about R = 0.861 in
Figure 4.1. The slope γ of the U-W fluctuations is also considerably different
from the SCLJ liquid value, which is 4 < γ < 6.5 [41]. But it is still
in the range of the γ value for the OTP model, which has 6.3 < γ <
8.0 [54]. Although the correlation is not sufficiently strong, the dynamics
and structure remain constant on isomorphs generated along configurational
adiabats and DIC method [50].
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Figure 4.1: Correlations between the virial and potential energy in the LJC
model with ten segments at the state point (ρ = 1.00, T = 0.700). The corre-
lation coefficient and slope γ are obtained by linear regression to be R = 0.861
and γ = 7.388.

4.3 Segmental Force Method

In addition to the atomic and molecular forces and torque methods, we
introduce the segmental force to identify isomorph in the LJC model. There
are ten segments in each molecule of the LJC model, so the summation of
segment forces gives the molecular force,

FMol =
9∑
j=1

FSeg,j , (4.1)

and by using the,
FSeg,j = 1

dj
Fj + 1

dj+1
Fj+1, (4.2)

where dj and dj+1 are the number of bonds in which particle jth and
(j+ 1)th are involved sequentially, one can calculate segmental force. In the
previous chapter, the molecular force method generates better isomorphic
state points in small molecular systems at rather large density changes.

4.4 Testing the Force Methods on LJC Model

In this section, we generate curves on constant reduced forces and torque
for the Lennard-Jones chains (LJC) model. The same densities of the ref.
[50] are considered to compare the new force methods results with the old-
fashioned constant excess entropy results (configurational adiabats). We
start from state point (ρ1, T1) = (1.00, 0.700) then scale the configuration to
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densities to 0.96, 1.04, 1.08, 1.12. Density changes spread over 17%. For T =
0.700, the lowest density is determined ρ = 0.96 before the pressure reaches
negative values and phase transition occurs and highest density is considered
ρ = 1.20 to prevent the crystallization. New temperatures are obtained
by using equations 3.4, 3.9, 4.1. Similar dynamical quantities from Figure
3.15 are considered to check if the dynamics are invariant along reduced
invariant force curves or not. We probe the dynamics through the four
methods, atomic, molecular, segmental forces and torque methods in Figure
4.2. However, they work very well in the small stiff molecules; they do not
predict isomorphic state points in the LJC model. The larger molecular
models, like polymers, inherit the intramolecular degrees of freedom which
impact the dynamics and structure.

In contrast, the structure of the LJC, measured by the radial distribu-
tion function(rdf), have good collapses. We measure rdf along predicted
state points via three forces and torque methods. In Figure 4.3 we have
plotted four structural quantities in reduced units: the total rdf of segments
(a, e, i, m), the segmental intermolecular rdf (b, f, j, n) and segmental
intramolecular rdf (c, g, k, o) and center-of-mass rdf (d, h, l, p). As men-
tioned, the bond lengths do not remain constant in reduced units, so the
total segmental distribution function is not invariant, mostly around r̃ = 1
due to the nearest neighbour in the molecules. This is also seen in inter-
molecular and intramolecular distribution. The intermolecular structure is
more invariant than the intramolecular contributions. On the other hand,
the radial distribution of center-of-mass is not dependent on state points
and represents the nice collapse through all methods.

Besides, we compare the dynamics along the isotherm, configurational
adiabats [50], direct isomorph check (DIC) and force methods by plotting
the relaxation times obtained from the self intermediate scattering function
and orientational autocorrelation function of end-to-end vectors in Figure
4.2. The reduced translational and rotational relaxation times are approx-
imately constant along configurational adiabats and DIC method, whereas
they change along the new methods. For comparison, we incorporated the
relaxation times of isotherm in Figure 4.4. The state points of the isotherm
taken from ref. [50]. However, the density changes about 11%, the dynam-
ics change a lot compared to the isomorphs in which density changes about
25%. The relaxation times are invariant along configurational adiabats and
direct isomorph check method and they vary along force methods (Figure
4.4). Nevertheless, the force methods predict better results in a small density
changes, 8%, in LJC model (See Appendix B).
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Figure 4.2: Mean square displacement, incoherent intermediate function and
orientational autocorrelation function of end-to-end vector in reduced units on
invariant reduced forces and torques. Reference point is taken from ref. [50],
(ρ1, T1) = (1.00, 0.700). The wave vector is kept constant in reduced units
q̃ = 7.09ρ1/3. The dynamics are not invariant along predicted state points via
force methods in this large molecular model.
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Figure 4.3: Comparing four different radial distribution functions (rdf)
through force methods. The reference point is , (ρ1, T1 = 1.00, 0.700). (a, e,
i, m) The total segmental distribution function in reduced units. (b, f, j, n) The
contributions of particle pairs in different chains as intermolecular segmental
distribution in reduced units. (c, g, k, o) The reduced intramolecular segmental
distribution function due to the contributions from the pairs in the same chain.
(d, h, l, p) The radial distribution function of center-of-mass in reduced units.
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Figure 4.4: Comparing the translational (a) and rotational (b) relaxation time
in reduced units along the isotherm and isomorphs methods. The relaxation
times hold more invariant along the constant excess entropy and DIC methods,
and they are entirely different along the forces methods; however, they fail more
along the isotherm.
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Chapter 5

Pseudoisomorphs in Small
Molecular Models

In this chapter, we test the force methods on small molecular models with
harmonic spring bonds. Isomorphs do not exist in harmonic models since
they are not strongly correlating. However, there still are hidden scale in-
variance curves that behave like isomorphs, so-called "pseudoisomorphs".
We investigate the force methods to identify pseudoisomorphs in small stiff
molecular models, e.g. ASD, IPL and OTP models.

5.1 Introduction

Four newly developed isomorph methods have been tested for the R-simple
liquids, e.g. the atomic [1] and molecular models (see chapter 3). Although
they all work very well for the atomic [1] and small stiff molecular models,
the new force methods do not trace the isomorph in long flexible Lenard-
Jones chains at relatively large density change (see chapter 4). In recent
papers, [2, 50], it was presented that the models with harmonic bonds do
not have isomorph along the configurational adiabats. Besides, the slope γ
and the correlation coefficient drop dramatically in the spring models, so
they are not assumed to have isomorphs. The small molecules (ASD, IPL,
OTP) are considered with spring harmonic potential, given by,

vij(rij) = −0.5k(rij − r0)2, (5.1)

where k = 3000 is the spring constant for all models and r0 is the bond
length where the bond energy is zero. The non-bonded molecules interact
via Lennard-Jones potential. The same potential parameters explained in
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chapter 3 for each model are set here, and the bond lengths are similar. We
use the same density from chapter 3 for ASD, IPL and OTP models because
the dynamics and the structure of spring bonded models are not significantly
different from constrained models. Harmonic bonds are often used in molec-
ular models, which are beneficial since they are faster in the calculation and
scaled easier than constraint bonds. The correlation coefficient for harmonic
ASD and OTP are about R = 0.579, 0, 204 respectively (Figure 5.1) which
are not comparable with the corresponding values obtained in constrained
model (see Figure 3.6). The IPL system with harmonic interactions still has
a robust U-W correlation, R = 0.878, but the slope γ = 5.463 decreases (see
Figure 5.2). The correlation coefficient and linear regression slope dimin-
ish considerably by substituting the harmonic bonds to rigid bonds in the
models due to the springs’ fast vibration.

Figure 5.1: The potential energy and virial fluctuations for two models ASD
and OTP with harmonic spring intermolecular interactions. (a) The correlation
coefficient (R = 0.579) and linear regression slope γ = 4.585 at the state point
taken from reference [54] of ASD with spring bonds. Both values drop signif-
icantly in compared to ASD with constraint bonds R = 0.960, γ = 5.69. (b)
The similar quantities correlations for OTP, including the harmonic bonds. The
correlation coefficient for this model also shrink a lot, R = 0.204, whereas the
constrained OTP model are more strongly correlating R = 0.894 and γ declines
from 7.953 to 5.122.

Since the springs length are similar to rigid bonds, the dynamics and the
intermolecular structure behave like the dynamics and relevant structure of
models with rigid bonds. But due to the different spring length distribution,
the intramolecular structure is not the same, where the bond’s peak is widen
in Figure 5.3(b).

Figure 5.4 shows the mean square displacement, incoherent intermediate
scattering function and orientational autocorrelation function of the end-
to-end vector of ASD to demonstrate the effects of the bond type on the
dynamics. The dynamics are vividly faster for a harmonic ASD model.
However the bond type have a slight impact on the dynamics, it has a great
effect on correlation and consequently on identifying isomorph.

Olsen et al. [2] found that the ASD model dynamics are far from be-
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Figure 5.2: The potential energy and virial fluctuations for IPL model con-
sists of harmonic spring interamolecular interactions. It considered as a highly
correlated system since R = 0.878. The state point taken from ref. [54]. But
the slope γ = 5.464 diminishes comparing with the constraint model in Figure
3.6 (a).
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Figure 5.3: Comparing the radial distribution function against r for A-atoms
from different asymmetric dumbbell molecules and AB-atoms in each molecules.
Black curves indicated the rdf of rigid bonds and the red curve shows a similar
quantity for spring bonds. The intermolecular structure (a) is the same, whereas
the intramolecular structure (b) differs slightly at the first peak.

ing invariant along the configurational adiabat. In Figure 5.5 we reproduce
the dynamical quantities along the configuration adiabats [2] which implies
clearly that the models with spring do not have isomorph. Although the dy-
namics are constant along configurational adiabats in IPL and OTP model
with intramolecular constraint bonds, they are not invariant in correspond-
ing harmonic models (See Appendix C).

On the other hand in ref. [2] Olsen et al. traced out the invariant
dynamics along pseudoisomorph via the empirical density scaling in the
ASD model and identify pseudoisomorph in the same model via quenching
the systems to their inherent state. The strong correlation of the systems
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breaks down due to the vibrational degrees of freedom of springs. So they
generate pseudoisomorphs by eliminating these unscaled degrees of freedom
and quench the system to an inherent state which is the minimum local po-
tential energy state. The pseudoisomorph has been generated by requiring
scale invariance of the inherent-structure low-frequency part of the vibra-
tional spectrum. Results in Figure 5.6 are reproduced from ref. [2] indicates
the pseudoisomorph generated with this method. This gives us an idea to
test the forces methods to create the pseudoisomorph in models with spring
harmonic bonds and, comparing the predicted state points to those reported
by Olsen in the Figure 5.6.

As mentioned the dynamical properties of the models with spring are
not much affected by harmonic bonds. Moreover, the force is invariant in
reduced units in harmonic models, so it is expected the force methods work
very well also in harmonic models. In order to test invariant dynamics along
forces methods, similar dynamical properties from Figure 5.6 are considered
in next sections.

5.2 Pseudoisomorph at High Densities

We now pick the ASD model with 5000 molecules to investigate the dynamics
along the invariant reduced-forces. Three methods i.e. atomic and center-of-
mass forces and torque methods are chosen to predict the new temperatures
and we only need one equilibrium configuration.

In practice, we used 195 configurations to estimate the stability of the
procedure which are scaled via center-of-mass (CM) scaling to higher and
lower density from reference point (ρ1, T1) = (0.932, 0.465). In CM scaling,
the position of center-of-mass remain invariant in reduced units at different
densities.

Figure 5.7 shows the harmonic bonds cause the force methods do not
provide the appropriate state points. There are not any significant collapses
in dynamics properties from any of the methods. Besides, the predicted
state points are quite different from the pseudoisomorphic points in Figure
5.6. The molecular force method works better due to ignoring stretching
intramolecular degrees of freedom in the center of mass force calculation.
Apart from the molecular force and torque which are still strongly correlated,
Rff = 0.975, (see Figure 5.8(b, c)), the atomic forces correlation declines
due to the intramolecular flexible interactions, Rff = 0.850 (see Figure 5.8).

As expected, the harmonic spring force leads to the poor invariant dy-
namics along the atomic force method, predicted T2 by the molecular force
method should result in better invariance. Figure 5.9 demonstrates that
the statistical uncertainty of each atom temperature T (i)

2 , via atomic force
method prediction compared to each molecule’s temperature predicted via
molecular force and torque methods at highest density ρ = 1.060.
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Figure 5.7: Mean square displacement, incoherent intermediate scattering
function and orientational autocorrelation function of end-to-end vector of the
ASD model with harmonic spring bonds evaluated along invariant forces through
the CM scaling in reduced units. Reference point is (ρ1, T1) = (0.932, 0.465)
taken from ref. [2]. The density changes above 19%

62



Chapter 5

-200 -150 -100 -50 0 50 100 150 200

F
x

(1)

-300

-200

-100

0

100

200

300

F
x

(2
)

R
ff

≅ 0.850

Atomic Force Correlation of Only One Configuration

ρ
1
 = 0.932, Τ

1
 = 0.465

ρ
2
 = 1.060, Τ

2
 = 0.726

(a)

-80 -60 -40 -20 0 20 40 60 80

F
x

(1)

-150

-100

-50

0

50

100

150

F
x

(2
)

R
ff

≅ 0.975

Molecular Force Correlation of Only One Configuration

ρ
1
 = 0.932, Τ

1
 = 0.465

ρ
2
 = 1.060, Τ

2
 = 0.972

(b)

-90 -60 -30 0 30 60

τ
x

(1)

-90

-60

-30

0

30

60

τ x

(2
)

R
ff

≅ 0.975

Torque Correlation of Only One Configuration

ρ
1
 = 0.932, Τ

1
 = 0.465

ρ
2
 = 1.060, Τ

2
 = 1.050

(c)

Figure 5.8: Correlation of atomic force (a) molecular force (b) and torque
(c) of molecules. One configuration is taken from equilibrium simulation at
(ρ1, T1) = (0.932, 0.465). Then the temperature at ρ2 = 1.060 is predicted by
using equations 3.4, 3.9.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

T
2

(i)

0

1

2

3

4

T
em

p
er

at
u
re

 D
en

si
ty

 D
is

tr
ib

u
ti

o
n

Atomic Force Method
Molecular Force Method
Torque Method

ρ = 1.060

Figure 5.9: Comparing the results of temperature of each particle (through
atomic force method) and each molecule (through the molecular force and torque
methods), which is seen to be the sharpest for the molecular-force method.

63



Chapter 5

It is evident that the springs cause the atomic force method breaks down
and this gives the idea to calculate the atomic force by removing the har-
monic contribution. In Figure 5.10 we measure the intermediate scattering
function along the invariant atomic force in the absence of spring forces’
contribution Fs = k(rij − r0) by set the spring stiffness k = 0, and temper-
ature produces via the equation 3.4. The results get better but there is not
still any collapse.

10
-2

10
0

10
2

10
4

~t

0

0.2

0.4

0.6

0.8

F
sC

M
(~ q

,~ t) ρ = 0.886, Τ = 0.338

ρ = 0.932, Τ = 0.465

ρ = 0.969, Τ = 0.592

ρ = 1.009, Τ = 0.762

ρ = 1.060, Τ = 1.037

Method: Atomic Force
Model: Asymmetric Dumbbell
19%increase density

Figure 5.10: Self incoherent intermediate scattering function in reduced units
along the state points predicted via atomic force method without spring force
contribution by applying the CM scaling. Densities are taken from Figure 5.7.
The dynamics prediction improves in comparison with Figure 5.7 (a, b, c) but
still far from invariance.

5.2.1 Center-of-Mass Scaling vs Atomic Scaling

As mentioned, the results reported above are achieved using CM scaling.
In the following, we test the effect of using instead atomic scaling, where
the atomic force correlation get worse when we scale from ρ1 = 0.932 to
ρ2 = 1.060 (see Figure 5.11 (a)). Using the atomic scaling allows atoms
move freely, which achieve the poor atomic force correlation. However, the
molecular force correlation improves because of ignoring the spring force
(see Figure 5.11 (b)) and torque has the approximate same correlation in
compared to using the CM scaling in Figure 5.8.

In Table 5.1, we use the forces and torque methods to find the new
temperature in ASD model. The predicted temperatures are quite different
from pseudoisomorphic points predicted by Olsen after quenching the system
(Figure 5.6) and also they are different from results in Figure 5.7.
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Figure 5.11: Correlation of atomic force (a) molecular force (b) and torque (c)
after using the atomic scaling method. One configuration is taken from equilib-
rium simulation at (ρ1, T1) = (0.932, 0.465). Then we scale the configuration at
ρ2 = 1.060 via atomic scaling method. Comparing the correlation with Figure
5.8 in which we used the CM scaling indicates the atomic force correlation de-
creases and splits into two parts. While the molecular force correlation improves
and torque correlation dose not change much.

Table 5.1: Calculating the new temperatures via the forces and torque meth-
ods on flexible ASD model under the atomic scaling method instead of CM
scaling. The configurations are taken from equilibrium simulation at (ρ1, T1) =
(0.932, 0.465). Second column show the pseudoisomorphic points from ref. [2];
third, fourth and fifth columns show the temperatures predicted by atomic,
molecular force method and torque method.

Density T(Pseudoisomorph) T (FAtomic) T (FMol) T(Torque)
0.886 0.352 0.525 0.363 0.368
0.932 0.465 0.465 0.465 0.465
0.969 0.577 0.515 0.560 0.555
1.009 0.711 0.622 0.677 0.666
1.060 0.915 0.781 0.851 0.829
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5.3 What’s the problem
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Figure 5.12: Distribution of bonds length along a molecular force method
around the reference length of the spring (purple dashed line) (a); The Figure
demonstrates that bonds are compressed when the density increases from ρ1 =
0.932. This affects not just the intramolecular, but also the intermolecular forces.
The distribution of bonds length in reduced units indicates that the reduced
bonds length are compressed and shifted a lot by decreasing the density (b).

The force methods are assumed to generate pseudoisomorphic points in
flexible molecules at high densities regardless the spring bonds. It is re-
vealed that the bonds are compressed when the density is increased whereas
in reduced units the distribution shifts by decreasing the density. Figure
5.12 shows the average (a) bond lengths and (b) reduced bond lengths dis-
tribution for state points generated by the molecular force method. Scaling
the system at higher densities rises the intramolecular interaction and affects
the force methods predict the inconsistent temperatures, see Figure5.7. Now
to organize the scale and unscaled configuration to have the same distribu-
tion of spring length, We eliminate the unscaled degrees of freedom through
quenching the system and minimizing the potential energy surface.

5.4 The Local Minima of PES

Considering the 3N dimensional vector denoted as R, the potential energy
surface (PES) is described as the function of these configuration space U(R).
Any configuration R can be mapped to its "inherent structure", which cor-
responds to the local minima. Since the potential energy surface increase by
any small displacement, there is a local minima surrounded by uphills. Any
steps reach uphills around this minima. The gradient of potential energy cor-
responded the equilibrium configuration, vanishes, ∇U = 0 at local minima,
consequently all forces get zero value. There can find several local minima
on PES, but there is only one lowest energy, termed global minimum. Since
finding the global minimum of a high-dimension PES in liquids requires a
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great deal of effort and sometimes is impossible, we organize several ways
to find the local minimum in the next section.

5.5 Finding the Local Minima
For simplicity, in the ASD model composed of two particle connected with
flexible bonds, we consider the variation potential by changing the bond
length, U(l). If the potential energy surface is only considered as a func-
tion of bond length, one can find the minimum of the potential by keeping
fixed the center-of-mass of molecule position and bond length orientational
direction. Hence so the first condition is given,

dRCM,k = 0, (5.2)

where the center-of-mass position of kth molecule remains fixed and
the new bond length is reached without changing the bond orientational
direction,

R′ij = Rij + lk̂lk, (5.3)

in which the distance between two atoms R′ij in each molecules changes
along the kth bond direction l̂k. On the other hand to change the bonds
length, we have,

L′k = Lk + dlk, (5.4)

in which L′k is the new bond length of kth molecule obtained by chang-
ing the initial bond length Lk with small dlk. Developing a function to
quench the system to its minimum considering mentioned constraint con-
ditions (equations 5.2, 5.4) requires simple mathematics. Consider each
molecule composed of jth atom which should move along the kth bond di-
rection. The new position of atom (r′j) is described by,{

r′j = rj + αd̂lk j ≤ k
r′j = rj + βd̂lk j > k

(5.5)

in which d̂lk is unit vector of bond length variation. In regards to equa-
tions 5.2, 5.5 to keep fixed the center-of-mass position of molecules,

dRCM,k =
∑
jmjdrj∑
jmj

= 0. (5.6)

By substituting equation 5.5 in equation 5.6 we have,

i∑
j=0

mjdrj +
N−1∑
j=i+1

mjdrj = 0, (5.7)
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so then,

αd̂lk
i∑

j=0
mj + βd̂lk

N−1∑
j=i+1

mj = 0. (5.8)

In general one can obtain the α and β relation, which is,

β = −

i∑
j=0

mj

N−1∑
j=i+1

mj

α. (5.9)

Consider small stiff molecules, like asymmetric dumbbell model, we have
two particles (large A, Small B) with different masses (mA = 1,mB = 0.195),
according to the equation 5.9 we have,

β = −mA

mB
α. (5.10)

In equation 5.5, displacement of atoms A and B in the kth molecule is
derived by,

drA,k

drB,k

 =


α

−mA

mB
α

× dlk (5.11)

To calculate α we start from moving the atoms along bonds direction by
dlk,

|dlk| = |drB,k − drA,k|, (5.12)

In regards to equation 5.11, we have,

|dlk| = | −
mA

mB
αdlk − αdlk| (5.13)

So the α is obtained,

α = mB

mA +mB
. (5.14)

By substituting α and β in equation 5.11 and considering dlk = dlk̂lk
we have,

drA,k

drB,k

 =


mB

mA +mB

− mA

mA +mB

× dlk̂lk. (5.15)
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We now know how to move the particle to keep the center-of-mass of
molecules and orientational bond direction fixed by a scalar function (i.e.
equation 5.15) and find the minimum potential by ’scipy.optimize.minimize()’
function implementing Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm [34]. The same calculation can be easily used for symmetric IPL
dumbbell molecule composed two atoms with identical mass. Both scaling
approach, center-of-mass and atomic scaling are applied to create pseudoi-
somorphs via force and torque methods after quenching the system.

Increasing the density causes the bond length to shift from length mea-
sured at equilibrium. Figure 5.13 demonstrates that the bonds length dis-
tribution of unscaled configuration at ρ = 0.932 before minimization (black
curve) and indicates how the bonds compressed by scaling to highest density
ρ = 1.060 (red curve) whereas they differ from their equilibrium measures
(green curve). This difference vanishes (blue curve) by quenching the system
via the described function. Since the bonds length of unscaled configuration
at ρ = 0.932 avoid shifting (see Figure 5.12), they remain unchanged after
minimization (orange curve). In this section we defined the function which
used the scalar dl to find the local minimum while quenching the system via
the function based on the vector dl is represented in section 5.9
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Figure 5.13: The bond length distribution of one unscaled configuration
at ρ = 0.932 before minimization (black) shifts by scaling to higher density
ρ = 1.060 whereas it should correspond to the lengths at equilibrium (green).
The distribution of lengths for unscaled configuration at ρ = 0.932 is not affected
by minimization (orange curve). CM scaling is used. Quenching the configura-
tion at relevant density gives the better distribution (blue) consistent with the
equilibrium bond lengths.
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5.6 Forces Correlation After Quenching

Quenching the configuration to minimum state improves the correlation of
forces and torque. In this effort, we take a configuration from equilibrium
simulation at reference point (ρ1, T1) = (0.932, 0.465), then use the scalar
function (equation 5.15) to quench the configuration via BFGS method.
After minimization, we scale the configuration at a new density and do
the same minimization process. We now calculate the forces and torque
of unscaled and scaled configuration at two different density to predict the
temperature via equations 3.4, 3.9 after quenching.

We implement two different scaling approaches atomic (AS) and center-
of-mass scaling (CMS). In Figure 5.14, all three quantities correlation via
atomic and CM scaling boost in comparison with relevant correlations before
minimization (5.8). Atomic force correlation after scaling the system by CM
scaling is slightly better than correlation in case of atomic scaling (Figure
5.14(a, b)). On the other hand, the molecular force has the same correlation
via both scaling approaches (Figure 5.14(c, d)) and torque correlation differs
a little (Figure 5.14).

5.7 Identify Pseudoisomorphs After Quenching

We take the ASD model with harmonic bonds to minimize and evaluate
the scaling methods, and they give different potential energy and minimum.
The atomic force method provides different results along atomic and CM
scaling due to intramolecular interactions. In contrast, the molecular force
and torque methods create the same temperatures ( see Tables 5.2, 5.3).

Table 5.2: Potential and minimum potential energy after quenching and scale
the configuration via CM scaling. Then the temperatures are created via three
methods (atomic, molecular forces and Torque). (ρ1, T1) = (0.932, 0.465) is
reference point.

density U Umin T (FAtomic) T (FMol) Torque
0.886 -30720.936 -30722.153 0.438 0.352 0.345
0.932 -27156.659 -27152.223 0.465 0.465 0.465
0.969 -22804.725 -22850.120 0.498 0.573 0.581
1.009 -16338.726 -16545.582 0.574 0.710 0.730
1.060 -4989.757 -5706.172 0.634 0.917 0.957

The method we used works as follows. A single configuration is selected
from an equilibrium simulation at the reference state point (density ρ1 ).
This configuration is scaled uniformly to the density of interest, ρ2 . Both
scaled and unscaled configurations were quenched as described above in or-
der to eliminate the bond vibrational degrees of freedom. After this, the
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Figure 5.14: Correlation of atomic force (a,b) molecular force (c,d) and torque
(e.f) of molecules via both scaling method after quenching. One configuration is
taken from equilibrium simulation at (ρ1, T1) = (0.932, 0.465) and be quenched.
Then we scale the configuration at higher density ρ2 = 1.060 via CM scaling
(left panels) and atomic scaling (right panels) and quench again. Then the new
temperature is predicted by forces and torque using equations 3.4, 3.9.
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Table 5.3: Potential energy and minimum of potential energy after minimiza-
tion using the atomic scaling. The atomic force method provide different temper-
atures compared to table 5.2. But molecular force and torque methods identify
same state points.

density U Umin T (FAtomic) T (FMol) Torque
0.886 -30148.038 -30682.507 0.444 0.352 0.345
0.932 -27156.659 -27152.223 0.465 0.465 0.465
0.969 -22666.736 -22874.548 0.494 0.573 0.581
1.009 -15743,463 -16605.424 0.540 0.710 0.730
1.060 -3775.484 -5800.853 0.624 0.917 0.957

relevant forces / torques were evaluated and the temperature T2 was de-
termined from equations 3.4, 3.9. Note that the system is scaled before
quenching. We chose the CM scaling to evaluate the dynamics in Figure
5.15.

The best results are obtained from molecular force method which is also
the one that worked best in Figure 5.7. For this method we find excellent col-
lapse of the reduced center-of-mass mean-square displacement as a function
of time, as well as of the center- of-mass incoherent intermediate scatter-
ing function, while the directional autocorrelation function shows slightly
worse collapse but nevertheless significantly better than without quenching.
Comparing the results of the torque method with and without quenching
shows that quenching also significantly improves the dynamics to be invari-
ant. Since the atomic force method include the harmonic oscillations, it
does not produce the appropriate results after quenching. To remove the
harmonic bonds effects we calculate the atomic force without considering
the spring force after quenching. Both scaling approaches provide the same
temperatures. In Figure 5.16 removing the spring force contribution leads
to better results but there is not any good collapse.

5.8 DIC Before and After Quenching

Pseudoisomorph is traced out in small molecular model (e.g. ASD, IPL,
OTP) via molecular force method after we minimize the potential. In this
section, we intend to test the direct isomorph check method (DIC) to inves-
tigate if pseudoisomorphs can be identified by this method or not.

As explained in chapter 3, the isomorphic points are predictable by cal-
culating the potential energies slope at the first and second state point. We
now pick the equilibrium ASD configurations at (ρ1, T1) = (0.932, 0.465)
composed of spring bonds. Applying two scaling approaches approximate
different potential energy (Tables 5.2, 5.3) consequently slope will be differ-
ent. The configuration at (ρ1, T1) = (0.932, 0.465) is scaled at higher density
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Figure 5.15: The mean square displacement, incoherent intermediate scatter-
ing function, orientational autocorrelation function in reduced units evaluated
along the forces methods in ASD. We apply the CM scaling on 195 configura-
tions and predict T2 after minimization. The molecular force method provides
the proper pseudoisomorphic points. The results of torque method improve in
comparison with Figure 5.7. But the atomic force method does not work due to
the intramolecular interaction.
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ρ2 = 1.060 by CM scaling in which the slope of the potential energy corre-
lation plot reach 1.950 (see Figure 5.17 (a)). Whereas the slope is obtained
1.804 via atomic scaling (see Figure 5.17 (b)). The ASD model dynamics
through CM scaling and atomic scaling is demonstrated in Figure 5.18. The
temperatures are created by DIC method before quenching. The CM scaling
results are better than the atomic scaling results.
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Figure 5.18: Dynamics of the ASD model with harmonic bonds along tem-
perature generated via DIC method without quenching. Both scaling are used.
The CM scaling results (a, b, c) are comparable with pseudoisomorphic points
in Figure 5.6. But the Atomic scaling results (d, e, f) are quite different.

Table 5.4 indicates that removing the spring contribution does not im-
prove the results, especially at the highest density. Temperatures predicted
by CM and atomic scaling after abolishing the harmonic potential are quite
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different from the pseudoisomorphic points (Figure 5.6).

Table 5.4: Potential energy and temperatures after removing the harmonic
potential and scale the system via CM and atomic scaling. The first column
shows the density, the second column shows the potential energy without spring
contribution using the CM scaling, and the third column indicates the temper-
ature calculated through the DIC method using the CM scaling. Fourth and
fifth columns show the same quantities when we implement the atomic scaling.

density UCM−Scaling TCM−Scaling UAtomic−Scaling TAtomic−Scaling
0.886 -32098.247 0.348 -31480.013 0.362
0.932 -28552.965 0.465 -28552.965 0.465
0.969 -24201.031 0.578 -25080.788 0.561
1.009 -17735.032 0.723 -20068.564 0.679
1.060 -6386.063 0.947 -11556.348 0.854

Eliminating the degrees of freedom by quenching the system causes col-
lapse in CM scaling plot vanishes in Figure 5.19 (a, b, c), but it improves
the dynamics along atomic scaling (Figure 5.19 (d, e, f)). If we eliminate the
harmonic potential after quenching, it still does not accomplish the invariant
dynamics. The potential decrease a lot after minimization and abolishing
the harmonic contribution in Table 5.5 (comparing the results with Table
5.4).

Table 5.5: Shows the similar quantities of table 5.4 after quenching and re-
moving the springs. Results are still far from pseudoisomorphic points in Figure
5.6.

density UCM−Scaling TCM−Scaling UAtomic−Scaling TAtomic−Scaling
0.886 -32053.309 0.294 -32001.792 0.296
0.932 -28584.887 0.465 -28552.965 0.465
0.969 -24486.450 0.477 -24457.225 0.455
1.009 -18545.079 0.504 -18601.898 0.548
1.060 -8523.956 0.703 -8461.582 0.655
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Figure 5.19: The dynamics get worse after quenching the ASD configurations
in comparison with Figure 5.18 by using the CM scaling (a, b, c). However,
quenching helps the atomic scaling give the better results (d, e, f).
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5.9 Quenching via Vector Function
In this section, we implement other function, i.e. the vector-based function
in which dl is a vector matrix to fine the local minimum. It means that the
bonds length vary by different number while in section 5.5 we defined the
function in which all length change by a single number. We aim to find the
minimum of high-dimensional properties so the Conjugate Gradient (CG)
method would be a proper choice. This method has benefits of using the
gradient. For calculating the gradient of potential in constraint space for
kth molecule we have,

∂U(Lk)
∂Lk

= U(Lk,k+1 + dlk,k+1) + U(Lk,k+1)
dlk

(5.16)

=

∂U

∂rk
drk + ∂U

∂rk+1
drk+1

dlk
.

By substituting drk, drk+1 from equation 5.15, we have,

∂U(Lk)
∂Lk

= mB

mA +mB

∂U

∂rk
l̂k −

mA

mA +mB

∂U

∂rk+1
l̂k

= mB

mA +mB
FA −

mA

mA +mB
FB. (5.17)

The minimum potential is obtained by using the vector dl and consid-
ering two conditions, keep the center-of-mass position fixed and move the
particle only along the direction of the bond length (equation 5.15) and using
the gradient (equation 5.17). In BFGS method, we define a scalar function
to change the bond length by a scalar number, but we here pick the vector-
matrix to update the length. We use the ’scipy.optimize.minimize()’ func-
tion implementing conjugate gradient (CG) algorithm based on the vector
function. The bond length probability distribution is compared for unscaled
configuration at ρ1 = 0.932 and scaled configuration at ρ = 1.06, before and
after quenching by scalar and vector function in Figure 5.20. Quenching the
unscaled configuration via vector function gives the quite different distribu-
tion (purple curve) compared to results of the scalar function (orange curve)
at ρ = 0.932. Moreover, for scaled configuration, the vector function (pink
curve) does not provide the correct distribution bond length (green curve).
Quenching system via the scalar function (blue curve) reach better results.

Again, we check both scaling method (CM and atomic scaling) and then
after quench the system we use the force methods and DIC method to cal-
culate the temperatures. Table 5.6 and Table 5.7 show the potential and
minimum of potential via CM and atomic scaling after quenching by the
vector function. Using the CM scaling or atomic scaling gives the same
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Figure 5.20: Comparing the bond length distribution at reference point
ρ1 = 0.932 (black) and scale the system at ρ2 = 1.06 before and after quench-
ing. The bonds of unscaled configuration have quite different length distribu-
tion (purple curve) after quenching via vector function in compared to before
quenching (black curve). Minimization via scalar function gives the proper re-
sults for unscaled configuration (orange curve). The bond length (red) shifts
from equilibrium length (green) by scaling the system. Quenching the system
by scalar function provide the proper length (blue) corresponding to the equi-
librium, which is explained in Figure 5.13. However, the length distribution
is narrow after quenching by vector function (pink). Here, we apply the CM
scaling.
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minima (second column). The temperatures are approximately equivalent.
The vector function quench the system to different local minima in compar-
ison with the scalar function (Table 5.2, 5.3). The predicted temperatures
are quite different from pseudoisomorphic points in Figure 5.6.

Table 5.6: Minimum of potential and predicted temperatures via vector
function using the CG algorithm after CM scaling. The all force methods
and DIC are considered to predict the temperatures. The reference point is
(ρ1, T1) = (0.932, 0.465). The vector function minimize the system more than
the scalar function (Table 5.2), but it does not provide the proper pseudoiso-
morphs.

density U Umin T (FAtomic) T (FMol) Torque Direct Iso
0.886 -30720.936 -31864.362 0.354 0.354 0.347 0.351
0.932 -27156.659 -28314.342 0.465 0.465 0.465 0.465
0.969 -22804.725 -24032.457 0.573 0.570 0.577 0.573
1.009 -16338.726 -17777.382 0.700 0.701 0.719 0.708
1.060 -4989.757 -7044.952 0.894 0.895 0.931 0.907

Table 5.7: Using the CG algorithm based on the vector function after scale
system with atomic scaling approach gives the same minima when we use the
CM scaling (Table 5.6) and the temperatures are the same approximately.

density U Umin T (FAtomic) T (FMol) T(Tor) T(DIC)
0.886 -30148.038 -31864.362 0.354 0.354 0.347 0.351
0.932 -27156.659 -28314.342 0.465 0.465 0.465 0.465
0.969 -22666.736 -24032.458 0.573 0.570 0.578 0.573
1.009 -15743,463 -17777.381 0.700 0.701 0.719 0.708
1.060 -3775.484 -7044.951 0.894 0.895 0.931 0.907

So far, the pseudoisomorph is identified in ASD molecular model at high
densities by molecular force method after eliminating the unscaled degrees
of freedom and considering two constrain condition. We investigate the gen-
erating pseudoisomorphs in IPL model (See Appendix D). In IPL model, the
molecular force method also predicts proper pseudoisomorphs after quench-
ing.

5.10 Pseudoisomorphs at Low Densities

In this section, we trace pseudoisomorphs in ASD model at low densities. We
start from the state point (ρ1, T1) = (0.785, 0.174) and scale the system to
lower densities ρ = 0.738, 0.761 and higher densities ρ = 0.808, 0.832, 0.856.
The bonds are not compressed by increasing density. Figure 5.21 implies
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that there is no significant shifting in bond lengths distribution at higher
densities from reference point (ρ1, T1) = (0.785, 0.174).
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Figure 5.21: Bond lengths distribution of ASD model with harmonic spring
bonds at lower densities than densities we used in Figure 5.12. The state points
re predicted via molecular force method. The bonds have a roughly similar
distribution at different densities and the shifting seen in Figure 5.12 vanishes
here. The reference density is ρ1 = 0.785. The density changes over 16%.

To investigate the force methods, the configurations are taken from equi-
librium simulation at reference point (ρ1, T1) = (0.785, 0.174) and we scale
them via CM scaling then calculate the new T by equations 3.4 and 3.9.
In this case, we reach pseudoisomorphic points via the molecular force ex-
cept for the lowest density, ρ = 0.738 (see Figure 5.22). Furthermore, the
appropriate pseudoisomorphic points are identified without quenching the
system. The atomic force method results are still far from adequate T due
to the intramolecular harmonic bonds. While the molecular force method
find the pseudoisomorph and the torque results are comparable with results
of the molecular force method.

To get more information of configurations at state point (ρ, T ) = (0.738, 0.116)
at which the dynamics behave strange in Figure 5.22 (d, e, f), we plot struc-
ture which is represented by radial distribution function in reduced units in
Figure 5.23. It seems that the system has phase separation at state point
(ρ, T ) = (0.738, 0.116). While it has a perfect invariant structure at other
state points. Figure 5.24 illustrates the molecular force method is more
precise in identifying pseudoisomorphs in the ASD model.

In addition to CM scaling, we measure the temperatures via force meth-
ods after using atomic scaling. As shown in table 5.8 the temperatures are
quite different from the CM scaling approach results which are different from
pseudoisomorphic state points in Figure 5.22. Since the OTP model has the
low viscosity, the pseudoisomorphic points are identified via molecular force
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Figure 5.22: The low viscous ASD model dynamics does not demonstrate
any invariant along predicted state point via atomic force method (a, b, c). In
contrast, there are considerable collapses predicted by molecular force method
(d, e, f) and torque method(g, h, i) except at the lowest density ρ = 0.738. The
equilibrium configurations at (ρ1, T1) = (0.785, 0.174) are scaled to lower and
higher densities by CM scaling. The density spreads about 16%.
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Figure 5.23: Radial distribution function in reduced units of ASD model along
the state points predicted via molecular force method. The structure is invariant
except for the lowest density, at which system has liquid-gas phase separation.
The density spreads about 16%.
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Figure 5.24: Comparing the accuracy of force methods in predicting the tem-
perature of each particle through the atomic force and each molecule via molec-
ular force and Torque methods. At the highest density at which configuration
is scaled by CM scaling, the molecular force is the most accurate method, then
the torque is in the second rank. While the atomic force method is placed in
the third rank in predicting the temperature in harmonic models.
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and torque methods without any minimization required(see Appendix C).

Table 5.8: Predicted new T along invariant forces and torques after scaling the
system via atomic scaling method. The temperatures are far from anticipated
pseudoisomorphic points in comparison with Figure 5.22.

density T (FAtomic) T (FMol) T(Tor)
0.738 0.305 0.123 0.127
0.761 0.214 0.146 0.149
0.785 0.174 0.174 0.174
0.808 0.204 0.203 0.201
0.832 0.275 0.238 0.232
0.856 0.357 0.276 0.266

Indeed, it is interesting that one can identify pseudoisomorph in ASD
and OTP model at low densities by molecular force and torque method
without minimization.

5.11 Minimization via Scalar Function
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Figure 5.25: The bonds length distribution of unscaled configuration before
(black) and after (orange) quenching at reference state point ρ = 0.785; and it
also illustrates the bonds length have same distribution after scaling to ρ = 0.856
via CM scaling (red). Scaled configuration get the better length distribution
(blue) after quenching.

The scalar function provided proper results in section 5.5 when we quench
the ASD model at rather high densities. Here, we investigate if we can get
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invariant dynamics by quenching the ASD model at lower densities or not?!
Figure 5.25 demonstrates the configuration at ρ = 0.785 has the same bond
length before and after quenching (black and orange curves). By scaling
it to ρ = 0.856 the bonds length avoid to shift (red curve) while they are
compressed a little at equilibrium (green curve). Using the scalar function
in quenching the system provide the better length distribution (blue curve)
which is similar the relevant distribution at equilibrium. On the other hand,
quenching this low viscose system gives the approximate same results ex-
cept at highest density (comparing the predicted T in Table 5.9 with Figure
5.22).

Table 5.9: Predicted new T along invariant forces and torques after quenching
via scalar function and applying CM scaling method. The temperatures are
about close to results in 5.22.

density T (FAtomic) T (FMol) T(Tor)
0.738 0.171 0.117 0.115
0.761 0.172 0.143 0.142
0.785 0.174 0.174 0.174
0.808 0.177 0.208 0.209
0.832 0.182 0.248 0.253
0.856 0.190 0.294 0.301

Scaling the configurations via atomic scaling and quench the system give
different results comparing to the predicted temperature before quenching
in Table 5.8. In this case, quenching the system improves the results of
atomic force considerably. Results of molecular force and torque method
are as same as CM scaling results after quenching in Table 5.9 except for
the atomic force method.

Table 5.10: Predicted new T along invariant forces and torques after quenching
via scalar function and applying atomic scaling method. The temperatures are
about close to results in 5.9.

density T (FAtomic) T (FMol) T(Tor)
0.738 0.174 0.117 0.115
0.761 0.173 0.143 0.142
0.785 0.174 0.174 0.174
0.808 0.176 0.208 0.209
0.832 0.180 0.248 0.253
0.856 0.186 0.294 0.301

We can identify pseudoisomorphs in small molecular models like ASD,
IPL and OTP with harmonic bonds via molecular force method. At high
densities, the pseudoisomorphs appear after we eliminate the unscaled de-
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grees of freedom of springs by defining the scalar function in a constraint
space under two conditions and applying the BFGS optimization method.
While, at low densities the pseudoisomorphs are generated without quench-
ing which is astonishing.

86



Chapter 6

Pseudoisomorph in Flexible
Lennard-Jones Chains

In this chapter, the large molecular model i.e. flexible Lennard-Jones chains
model with harmonic bond is chosen to identify pseudoisomorphs via new
force methods. In 2016, Olsen et al. generate pseudoisomorph in LJC model
by quenching the system. We consider the atomic, center-of-mass, segmental
force and torque methods to identify pseudoisomorphs in this model before
and after minimization. The both scaling method, i.e. center-of-mass and
atomic scaling are tested.

6.1 Introduction

The flexible Lennard-Jones chains with harmonic intramolecular interactions
does not have the U-W strong correlation so it is not expected to have
isomorphs. Figure 6.1 demonstrates the weak correlation coefficient R =
0.284 and linear regression slope γ = 4.681 in compared to the relevant
quantities in LJC model with rigid bonds (see Figure 4.1). In 2016, Olsen
et al. [2] generated pseudoisomorph in the LJC model after they minimize
the system to abolish the unscaled degrees of freedom (Figure 6.2).

The force methods have been investigated to identify isomorphs in the
constrained Lennard-Jones chain (LJC) model in chapter 4 and in this sec-
tion, we intend to identify pseudoisomorph via the same methods. First, we
test the methods before quenching to investigate the system whether needs
to be minimized or not. We again apply both scaling methods (i.e. center-
of-mass and atomic scaling). Each configuration contains 1000 molecules.
All potential parameters and bond length are similar to the corresponding
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Figure 6.1: Decreasing R, γ also for LJC model when we change the rigid
bonds to flexible spring bonds. R = 0.861, γ = 7.388 are obtained for LJC
model with constraint and they drop to R = 0.284, γ = 4.681 in harmonic LJC
model.

quantities used in section 4.4. Since the LJC model has low viscosity at con-
sidered density, the bonds length distribution have no shifting at different
state points taken from ref. [2] (see Figure 6.3).

We test the force methods on this model in Figure 6.4 using the CM
scaling. Calculating the different type of forces in LJC model in which
each molecule contains ten beads is more complicated than small molecular
models. How calculating the segmental force is explained in chapter 4. The
state points generated in Figure 6.4 via forces methods are not comparable
with pseudoisomorphic points in Figure 6.2. On the other hand, Figure
6.5 shows using the potential achieves better results via DIC method after
scaling the configurations by CM scaling. The unscaled degrees of freedom
of flexible chains cause the dynamics to be not invariant along the force and
torque methods. The dynamics are not invariant along the molecular force
method, which used the CM force regardless of the spring contributions
to calculate T . In calculation of segmental force and torque, the spring
force is also removed, but the dynamics still are not invariant. Eliminating
the unscaled degrees of freedom by quenching the system might help the
methods to identify pseudoisomorphs. As mentioned, finding the minima of
liquids system needs lots of effort, and in some cases, it is impossible since
the potential energy surface is a high dimensional function.

6.2 Quenching the LJC Model

We explained how to minimize the small molecular model in constrained
space via the scalar function in section 5.5. However, the LJC model is
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doisomorphic points (Andreas paper). The reference point is (ρ1, T1) =
(1.00, 0.700). The density changes about 17%, and the bonds have an approxi-
mate identical length at different densities.

much more complicated, we consider the same conditions to simplify the
problem. First, the CM position of each molecule and each segment are
assumed to be fixed, dRCM,i = 0 and second the bonds length change along
the orientational direction of bonds (equation 5.4). By considering these
conditions and change the position of atoms according to equation 5.5, we
again reach the equation 5.9. The atoms have the identical mass, m = 1, in
LJC model, so we have,

β = − i+ 1
N − i

α. (6.1)

According to equation 6.1 and equation 5.5, the position of atoms is
derived by,

 r′j = rj + αd̂li j ≤ i

r′j = rj −
i+ 1
N − i

αd̂li j > i
(6.2)

With respect to change the segment length by dl, we have,

|dli| = |drj+1 − drj| (6.3)

By substituting equation 6.2 in equation 6.3, we have,

|dli| = | −
i+ 1
N − i

αd̂li − αd̂li|. (6.4)

90



Chapter 6

1
0

-2
1

0
0

1
0

2
1

0
4

~t

0

0
.2

0
.4

0
.6

0
.8

〈R(0)R(~t)〉

ρ
 =

 0
.9

6
, Τ

 =
 0

.6
9
3

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 0

.7
4
6

ρ
 =

 1
.0

8
, Τ

 =
 0

.9
0
0

ρ
 =

 1
.1

2
, Τ

 =
 1

.2
9
8

0

0
.2

0
.4

0
.6

0
.8

F
sCM

(~q, ~t)

ρ
 =

 0
.9

6
, Τ

 =
 0

.6
9
3

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 0

.7
4
6

ρ
 =

 1
.0

8
, Τ

 =
 0

.9
0
0

ρ
 =

 1
.1

2
, Τ

 =
 1

.2
9
8

1
0

-6

1
0

-4

1
0

-2

1
0

0

1
0

2

msd
CM

(reduced units)

ρ
 =

 0
.9

6
, Τ

 =
 0

.6
9
3

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 0

.7
4
6

ρ
 =

 1
.0

8
, Τ

 =
 0

.9
0
0

ρ
 =

 1
.1

2
, Τ

 =
 1

.2
9
8

A
to

m
ic F

o
rce

1
0

-2
1
0

0
1

0
2

1
0

4

~t

ρ
 =

 0
.9

6
, Τ

 =
 0

.5
4
8

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 1

.0
2
2

ρ
 =

 1
.0

8
, Τ

 =
 1

.6
4
5

ρ
 =

 1
.1

2
, Τ

 =
 2

.8
6
1

ρ
 =

 0
.9

6
, Τ

 =
 0

.5
4
8

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 1

.0
2
2

ρ
 =

 1
.0

8
, Τ

 =
 1

.6
4
5

ρ
 =

 1
.1

2
, Τ

 =
 2

.8
6
1

ρ
 =

 0
.9

6
, Τ

 =
 0

.5
4
8

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 1

.0
2
2

ρ
 =

 1
.0

8
, Τ

 =
 1

.6
4
5

ρ
 =

 1
.1

2
, Τ

 =
 2

.8
6
1

M
o
lecu

lar F
o
rce

ρ
 =

 0
.9

6
, Τ

 =
 0

.6
8
0

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 0

.8
1
0

ρ
 =

 1
.0

8
, Τ

 =
 1

.1
3
2

ρ
 =

 1
.1

2
, Τ

 =
 1

.8
7
5

ρ
 =

 0
.9

6
, Τ

 =
 0

.6
8
0

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 0

.8
1
0

ρ
 =

 1
.0

8
, Τ

 =
 1

.1
3
2

ρ
 =

 1
.1

2
, Τ

 =
 1

.8
7
5

S
eg

m
en

tal F
o
rce

1
0

-2
1

0
0

1
0

2
1

0
4

~t

ρ
 =

 0
.9

6
, Τ

 =
 0

.6
8
0

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 0

.8
1
0

ρ
 =

 1
.0

8
, Τ

 =
 1

.1
3
2

ρ
 =

 1
.1

2
, Τ

 =
 1

.8
7
5

1
0

-2
1

0
0

1
0

2
1

0
4

~t

ρ
 =

 0
.9

6
, Τ

 =
 0

.6
1
3

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 0

.9
3
4

ρ
 =

 1
.0

8
, Τ

 =
 1

.4
5
5

ρ
 =

 1
.1

2
, Τ

 =
 2

.5
3
4

ρ
 =

 0
.9

6
, Τ

 =
 0

.6
1
3

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 0

.9
3
4

ρ
 =

 1
.0

8
, Τ

 =
 1

.4
5
5

ρ
 =

 1
.1

2
, Τ

 =
 2

.5
3
4

ρ
 =

 0
.9

6
, Τ

 =
 0

.6
1
3

ρ
 =

 1
.0

0
, Τ

 =
 0

.7
0
0

ρ
 =

 1
.0

4
, Τ

 =
 0

.9
3
4

ρ
 =

 1
.0

8
, Τ

 =
 1

.4
5
5

ρ
 =

 1
.1

2
, Τ

 =
 2

.5
3
4

T
o
rq

u
e

(a)

(b
)

(c)

(d
)

(e)

(f)

(g
)

(h
)

(i)

(j)

(k
)

(l)

Figure 6.4: The dynamics of LJC model with harmonic bonds. The reference
point is (ρ1, T1) = (1.00, 0.700). The force methods are tested here before mini-
mization and using the CM scaling. The density increases about 17%. However,
the methods do not achieve the pseudoisomorph as expected.
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By doing math, we can obtain α and then β,

α = −N − i
N + 1 (6.5)

β = i+ 1
N + 1 (6.6)

So the new position of particles can be obtained by,
r′j = rj − (N − i

N + 1)d̂li j ≤ i

r′j = rj + ( i+ 1
N + 1)d̂li j > i

(6.7)

We now define a function to change the atom’s position by a scalar
value along the bond direction and keep the CM position fix and then we
can quench the system by using the BFGS minimization method [34] in
scipy.minimize() function of python.

Table 6.1: Potential and minimum of potential of harmonic LJC model. The
minimum of potential are calculated by using the scalar function and scaling
the configurations via CM scaling method. The starting point is ρ1 = 1.00.

Density U Umin

0.96 -42857.147 -42925.848
*1.00 -42656.196 -42658.487
1.04 -40070.162 -40370.622
1.08 -33785.021 -35473.475
1.12 -21726.564 -27425.074

Table 6.2: Calculating the new T using the BFGS algorithm based on the scalar
function after scale system with CM scaling approach. Four force methods are
applied to generate pseudoisomorphs. However, the results are different from
pseudoisomorphic points in Figure 6.2.

density T (FAtomic) T (FMol) T (FSeg) T(Tor)
0.96 0.693 0.676 0.676 0.611
*1.00 0.700 0.700 0.700 0.700
1.04 0.733 0.774 0.774 0.858
1.08 0.817 0.924 0.914 1.118
1.12 0.966 1.152 1.156 1.473

The equilibrium configurations at the reference state point, ρ1 = 1.00,
are minimized by the scalar function and then we scale the configurations
to lower and higher densities by CM scaling method, then again quench
the corresponding configurations. Quenching the high dimensional poten-
tial energy surface of LJC model is quite hard specially at lower density
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ρ = 0.96 and reference point ρ = 1.00 (see Table 6.1). The new tempera-
tures are produced via atomic and molecular force method (equation 3.4),
segmental force method (equation 4.1) and torque method (equation 3.9)
after quenching the system and using the CM scaling. Table 6.2 indicates
the predicted state points are not the desired pseudoisomorphs points which
found in Figure 6.2. The intramolecular vibrations are removed by quench-
ing and the methods give lower temperature in comparison with predicted
T before quenching (see Figure 6.4).
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Figure 6.6: The bonds length distribution of harmonic LJC model us-
ing the CM scaling before minimization (a), and after we minimize the sys-
tem via the scalar function in constrained space (b). The reference point is
(ρ1, T1) = (1.00, 0.700). The bonds shift by quenching the system while ap-
proximating the identical distribution in panel (a) before quenching. In both
Figures, the CM scaling is implemented.

As shown in Figure 6.6 (a), the springs reject to compress by scaling
the configurations to higher densities via CM scaling method. However,
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Figure 6.7: Correlation of atomic force (a,b), molecular force (c,d), segmental
force (e,f) and torque (g,h) of LJC model with harmonic bonds before and
after minimization. One configuration is taken from equilibrium simulation at
(ρ1, T1) = (1.00, 0.700), after quenching we scale the configuration at higher
density ρ2 = 1.12 via CM scaling and do quenching again. Then the new
temperature is predicted by forces and torque using equations 3.4, 3.9.
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quenching the system after scaling with the same method makes the spring
compress (see Figure 6.6). The atomic force and molecular force correlation
improve by quenching (see Figure 6.7). In contrast, the segmental force and
torque are weakly correlated either before or after minimization (see Figure
6.7).

6.3 Atomic Scaling on Harmonic LJC
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Figure 6.8: The bonds length distribution of harmonic LJC model is shifted
by using the atomic scaling. The reference point is ρ1 = 1.00.

The CM scaling method is used in scaling the spring LJC model before
and after minimization and the predicted points are far from pseudoiso-
morph. We now intend to use the atomic scaling method to allow the atoms
move freely regardless keeping the CM position fix. In addition, the springs
can stretch at lower densities and compress at higher densities from refer-
ence length as shown in Figure 6.8, which is not occurred in CM scaling (see
Figure 6.6(a)).

The dynamics are invariant along atomic (a, b, c) and segmental force
(g, h, i) methods in Figure 6.9 except at lowest density (ρ, T ) = (0.96, 0.883)
at which pressure is negative. On the other hand, the predicted points via
the molecular force method are not pseudoisomorphic (see Figure 6.9(d, e,
f)). Consequently, the torque method estimates the appropriate point at
densities ρ = 1.00, 1.04, 1.08, 1.12, not the lowest and highest densities (see
Figure 6.9(j, k, l)).

The atomic scaling method causes the intramolecular interactions in-
crease, so the potential energy is higher than the corresponding quantity
obtained from CM scaling (comparing the Table 6.3 with Table 6.1). Fur-
thermore, using the scalar function to quench the system leads to the better
minimum potential energy (see Table 6.3). Quenching the system via BFGS
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Figure 6.9: The dynamics of the LJC model with harmonic bonds implement-
ing the force methods after using the atomic scaling method. The reference
point is (ρ1, T1) = (1.00, 0.700). The density increases about 17%. The atomic
force method (a, b, c) generate the proper pseudoisomorph at higher densities
from the reference point. However, the molecular force method (d, e, f) do not
achieve the pseudoisomorphs as expected, the segmental force method (g, h, i)
gives the appropriate prediction also at higher densities; And the torque method
(j, k, l) provide the good results at some of the densities ρ = 1.00, 1.04, 1.08, 1.12.
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Figure 6.10: Quenching the LJC model by scalar function in constrained space
affect the bonds length do not shift a lot at high densities via atomic scaling
method. The reference point is ρ1 = 1.00.

method after scale the configurations by atomic scaling, gets better length
distribution, not shifted a lot, see Figure 6.10 which indicates that the bonds
are not much far from the reference length in compared to Figure 6.8. How-
ever, quenching the system does not improve the results and causes the
dynamics to change a lot along the atomic force and segmental force meth-
ods (see Figure 6.11). The torque method is the only method that gives
better dynamics. On the other hand, the predicted temperatures are lower
than corresponding results before minimization.

Table 6.3: Using the atomic scaling method before and after quenching the
harmonic LJC model. The potential energy increase due to the intramolecular
interactions boost in atomic scaling approach. Using the similar minimizing
method implemented in Table 6.1, we determine the better minima through the
atomic scaling (third column).

Density U Umin

0.96 -40735.162 -42838.588
*1.00 -42656.196 -42658.487
1.04 -39031.911 -40442.753
1.08 -30469.480 -35603.088
1.12 -17461.024 -27608.887

The structure is measured by segmental total radial distribution func-
tion which is invariant along atomic and segmental force methods before
we quench the system by using the atomic scaling (Figure 6.12 (a,c)). After
Quenching only the torque method gives the invariant structure (Figure 6.12
(h)).
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Figure 6.11: Quenching the harmonic LJC model by scalar function and im-
plementing the atomic scaling does not improve the dynamics along invariant
forces and torque. The reference point is (ρ1, T1) = (1.00, 0.700). The density
increases about 17%. The atomic force method (a, b, c), the molecular force (d,
e, f), the segmental force (g, h, i) provide poor results compared to Figure 6.9.
However, the torque method (j, k, l) achieve good results.
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Figure 6.12: The radial distribution function of harmonic LJC model in re-
duced units along the force methods before and after quenching. The atomic
scaling is applied to scale the reference configurations (i.e. equilibrium config-
urations at state points (ρ1, T1) = (1.00, 0.700)) to lower and higher densities
. The atomic (a) and segmental (c) force predict the better invariant structure
before we minimize the system. But the structure are not same at highest den-
sity along the molecular force (b) and torque (d) methods. After minimization,
the results of torque method get better (h) and the other methods’ predictions
are not good enough.
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Pseudoisomorphs are identified via atomic and segmental force using the
atomic scaling method without any quenching in long flexible Lennard-Jones
chains model. It is still unknown why the molecular force method is not able
to predict pseudoisomorphs in this model and also why the atomic scaling
works better than CM scaling approach.
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Conclusions

We have shown, for the first time, an easy and efficient force-based way to
trace isomorphs and pseudoisomorphs in molecular systems. Force methods
including the atomic, molecular, segmental and torque methods provide as-
tonishing results in small and large molecular liquid models. Isomorphs are
usually generated in strongly correlated liquids via configurational adiabats
and the direct isomorph check method. Identifying isomorphs via these
methods require several number of configurations from a long simulation
which is not efficient in time and energy. This issue has disappeared by de-
veloping the force methods which only need a single configuration to trace
an isomorph. On the other hand, pseudoisomorph can not be generated
along configurational adiabats and the direct isomorph check method since
W-U correlations break down in harmonic bonded models. The method
developed by Olsen et. al [2] is a rather tedious method to trace pseudoi-
somorph; While the force methods are able to generate pseudoisomorphs in
harmonic bonded models by using a single equilibrium configuration easily
and efficiently.

The atomic force, molecular force and torque methods produce compa-
rable results in comparison with configurational adiabats and the direct iso-
morph check method in small molecular models with rigid bonds (i.e. ASD,
IPL and OTP models). Since the isomorph theory is not exact, there are
few differences in details of which method works better in which model but
the force methods still provide comparable isomorphic state points. Even
so, the intramolecular interactions affect the atomic force calculation but
it still finds isomorphs in most of the small molecular models. Overall the
molecular force method is considered as a general method to find better in-
variant curves in all small molecular R-simple models. The torque method
also generate appropriate results. The new force methods are also tested on
long flexible a Lennard-Jones chains (LJC) model and they do not deter-
mine isomorphs in this large molecular model. Even though these methods
do not seem to work for flexible Lennard-Jones chains as well as ASD, IPL
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and OTP models, it is revealed that the force methods can still predict
appropriate isomorphic state points for small density changes.

Identifying pseudoisomorphs in spring bonded models was very difficult
and it needed a lots of effort before we developed the force methods. Now,
generating pseudoiomorphs in small and large molecular models can be easily
done using the force methods. Pseudoisomorphs are found in ASD and OTP
models at low densities via molecular force and torque methods, while the
atomic force method do not predict the proper temperatures because of the
vibrational intramolecular interactions.

If one increases the densities the proper invariant curves predicted via
molecular force method disappears due to the bond lengths compression
and vibrational intramolecular interactions. At high densities, the pseu-
doisomorphs appear after we eliminate the unscaled degrees of freedom of
springs by defining a scalar function in a constraint space considering two
conditions and applying the BFGS optimization method. We try to keep
the center-of-mass position of each molecule fixed and update the position
of particles along the bond direction in the scalar function and then we use
the BFGS method to find the local minima of the potential energy surface.
We also find the local minima via a vector function using conjugate gradi-
ent method. Force methods are not able to identify pseudoisomorphs after
quenching via the vector function in ASD model. In contrast, we create
pseudoisomorphs in IPL model via force methods after quenching via the
vector function. In addition, two scaling method are considered in spring
models, namely atomic scaling (AS) and center-of-mass scaling (CMS) ap-
proaches. Both scaling method do not provide the pseudoisomorphic state
points for ASD model at high densities before quenching. While, the molec-
ular force method predicts the most proper pseudoisomorphic state points
after quenching. The results of molecular force and torque method are the
same using the atomic and center-of-mass scaling approaches after we min-
imize the potential energy. The atomic force method which is affected by
the vibrating bonds, does not detect the pseudoisomorph in harmonic ASD
model neither before nor after quenching.

Dynamics and structure of flexible Lennard-Jones chains with spring
bonds are investigated at low density at which force methods do not predict
pseudoisomorphs through the center-of-mass scaling approach. While the
atomic and segmental force methods find the invariant curves by applying
the atomic scaling method. Pseudoisomorphs in LJC model at low density
are found without any quenching.

In summary, we have shown that it is possible to predict invariant struc-
ture and dynamics via a density scaling property i.e. invariant force in
reduced units in molecular models composed of rigid or spring bonds. Even
though, configurational adiabats and direct isomorph check method has been
used to detect the isomorphs over ten years, the force methods must be con-
sidered as new generic methods. The molecular force method is the most
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prominent method not only to generate isomorphs but also to generate pseu-
doisomorphs in vibrational space in small molecular models. In some cases,
the torque method also succeeds to gain proper results.

One of the possible improvements and extension of this work would be
to investigate the dynamics of larger molecular models to find a generic
force-based method to identify isomorphs in this larger models for the large
density changes. Furthermore, generalizing isomorph theory to rigid bonded
molecular models and define the pseudoisomorph theory in harmonic spring
bonded models can be a subject of ongoing research and requires further
work.
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Problems Dealing with OTP

OTP model with rigid bonds is one of the molecular models which we con-
sider to test the forces methods. Since there is a strong correlation between
the virial and potential energy of this model (Figure 3.6(b)), it has been clas-
sified as the R-simple liquid and it has isomorphs. Testing the force methods
on OTP reveals that these methods can trace the isomorphs when the sys-
tem is scaled to higher densities (Figure 3.9). This means that the structure
and dynamics predicted by force methods are invariant at higher densities
from reference point. Figure 3.12 and Figure 3.15 represents the perfect col-
lapse in dynamics in OTP when we start from point (ρ1, T1) = (0.303, 0.383)
and then increase the density to 0.315, 0.327, 0.340, 0.353. But if we start
from a point with high density (ρ1, T1) = (0.340, 0.903) and decrease the
density dynamics is not invariant along the predicted state points via force
methods.

Figure A.1 represents this issue via atomic force (a, b, c), molecular force
(d, e, f) and torque (g, h, i) methods along curves with 12% density decrease.
It is clear that the dynamics are not invariant by jumping down to lower
densities. In addition, the relaxation times change along force method more
than along the configurational adiabats and DIC method (Figure A.2).

To explain in detail, we investigate the bond length probability distri-
bution of the longer bond in each molecule by jumping up and down in
density. Apparently, the bond lengths of molecules are preserved at differ-
ent densities (Figure A.3). So the scaling affects the OTP configurations
neither at high nor at low densities. By looking at the dynamics quantity,
e.g. molecular force, it has been found that the molecular forces still have
strong correlation by decreasing the density (Figure A.4).

To investigate the effect of scaling on predicting the temperature via the
molecular force method, we used one configuration taken from equilibrium
simulation at (ρ, T ) = (0.303, 0.383) and scaled it to the density ρ = 0.340
to measure the statistics of the desired temperature each molecule intend to
have. The probability density distribution of each molecule’s temperature
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Figure A.1: Investigating the dynamics of OTP through the predicted state
points via three new force methods. The similar reduce-units dynamical
quantities from Figure 3.9 are considered. Here, the reference state point is
(ρ1, T1) = (0.340, 0.903). (a, b, c) Show the dynamics deviation along the
predicted state points by atomic force method. (d, e, f) Show the results of
checking the molecular force. However this method has been confirmed as the
best method in ASD, IPL and OTP (Figure 3.12). (g, h, i) Shows the torque
method does not also work for OTP by scaling to lower densities.
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Figure A.2: Show the translational (a) and rotational (b) relaxation times for
OTP model by starting from ρ = 0.340 and jumping down to lower density.
Both relaxation times of isomorph methods do not show the large deviation like
isotherm and they are approximately invariant.
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Figure A.3: The probability distribution of longest bond length in OTP
molecules. We scale the system at lowest density,ρ = 0.303, and highest density,
ρ = 0.367, by staring from ρ = 0.329.
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Figure A.4: The correlation of molecules’ forces at the ρ = 0.340 and jump to
ρ = 0.303. They still have a strong correlation regardless of which density we
start from.
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are presented in Figure A.5 which have the peak around T = 0.903 (red
curve). To check the method gives the right temperature or not, we took
an equilibrium configuration at (ρ, T ) = (0.340, 0.903) and then scaled it
to ρ = 0.303 and again change the density to ρ = 0.340, it gave the same
probability in Figure A.5 (black curve).
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Figure A.5: The probability distribution of the temperature which each
molecule desires. Shows the molecular force method always predict the right
temperature of the configurations by increasing the density. By scaling to higher
density ρ = 0.340 from reference point ρ = 0.303 we calculated T = 0.903 (red).
On the other hand, it has been manifested that if we start from density ρ = 0.340
and jump down to density ρ = 0.303 and then increase the density, it gives the
same T = 0.903 (black).

So we have clarified that the isomorphs methods work very well for OTP
model only if we increase the density. Now we confirm this by showing
the statistics of the molecules’ temperature when the densities decrease.
For the density ρ = 0.303 the molecules’ temperatures are expected to be
T = 0.383 regardless which density we choose as the reference point. For
instance, if we take a configuration of equilibrium simulation at ρ = 0.303
and change the density to 0.340, then back to staring density again the
temperature distribution is peaked around 0.383 according to Figure A.6
(black). In contrast, we realized that if we take a equilibrium configuration
at ρ = 0.340 and decrease the density to ρ = 0.303 it predicts T = 0.440
which is far from the expected temperature.

The OTP model is the only model struggling with density changes which
is still unknown. It has been shown the dynamics of the IPL model remains
invariant when the density decreases (see Figure A.7).
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Figure A.6: Shows the similar probability distribution in Figure A.5. But
we check the process by jump down in low density. For the state point ρ =
0.303 the temperature is anticipated to be about T = 0.383 (black), and it
is not dependent on starting point, but when we take a uscaled equilibrium
configuration ρ = 0.340 and scaled it to lower density ρ = 0.303 the temperatures
are obtained around T = 0.440.
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Forces Methods in LJC
Model

As shown in Figure 4.2 in section 4.4 the new methods do not find the
isomorph in rigid bonded LJC model, because of the non-scaled intramolec-
ular bonds. But if we test the force methods in small density changes, the
dynamics become invariant. Figure B.1 confirms that the force methods
predict isomorphic state points for small density ranges about 8% in LJC
model with rigid bonds.

The relaxation times in reduced units improve along the forces methods
at small density changes. The translational and rotational relaxation times
are plotted in Figure B.2 and they both are invariant in comparison with
isotherm.
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Figure B.1: Show the dynamics of LJC along the invariant reduced atomic
force (a, b, c), molecular force (d, e, f), segmental force (g, h, i) and torque (j,
k, l) curves. The mean square displacement, incoherent intermediate scattering
function and normalized orientational autocorrelation function of the end-to-
end vector are invariant in reduced units. The density changes over 8% from
the starting point (ρ1, T1) = (1.00, 0.700).
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Figure B.2: Comparing the translational (a) and rotational (b) relaxation time
in reduced units along the isotherm and forces methods. In low density ranges
the relaxation times hold more invariant compared to Figure 4.4, and they are
entirely different along the isotherm.
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Appendix C

Configurational Adiabats in
Spring Bonded IPL and OTP
Models

The dynamics of spring harmonic bonded models are not invariant along
the configurational adiabats because the excess entropy is not constant in
these models and scaling exponent γ can not identify pseudoisomorphs. The
dynamics of IPL model and OTP model" are shown to be not invariant
along configurational adiabats in Figure C.1. The state points are found by
equation 2.18 changing the density by 1% in each jump from the reference
point (ρ1, T1) = (0.806, 1.100) in IPL model and (ρ1, T1) = (0.329, 0.700) in
OTP model.
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Figure C.1: Show the dynamics of IPL and OTP models with harmonic bonds
along configurational adiabats are not invariant. (ρ1, T1) = (0.806, 1.100) is the
reference point in the IPL model and we consider (ρ1, T1) = (0.329, 0.700) as
the reference point for OTP. The density increases about 20%.
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Appendix D

Pseudoisomorph in IPL
Model

We chose the symmetric IPL dumbbell model with harmonic bonds as the
second model to identify pseudoisomorph via force methods. IPL model is
small molecules systems which are highly viscous. 5000 molecules in this
model consist of two identical atoms connected via harmonic oscillations
with length ri,j = 0.584. The intermolecular interactions obey the IPL
potential with exponent n = 18 (chapter 2) with unit parameter. The
intramolecular interactions are harmonic with spring stiffness k = 3000.
Since the structure remains invariant in harmonic models, we only check
the dynamics in this section.

As shown in Figure C.1, the scaling exponent γ does not provide pseu-
doisomorphic points because the W- U correlation is broken down in models
with harmonic intramolecular interactions. The DIC and force methods also
provide incompatible results because of the bending and stretching bonds in
Figure D.1. We used the CM scaling in Figure D.1 in which the dynamics
vary quite much. On the other hand, atomic scaling gives different results
since the potential energy and consequently the forces and torque are ob-

Table D.1: Predicted T via atomic force method (second column), molecular
force method (third comĺumn), torque method (fourth column) and DIC method
(fifth column) by applying the atomic scaling. The atomic force results are quite
unfavourable. Both molecular force and toque create the same results.

density T (FAtomic) T (FMol) T(Tor) T(DIC)
0.708 1.095 0.505 0.505 0.497
0.744 0.998 0.680 0.680 0.690
0.775 1.011 0.869 0.869 0.880
0.806 1.100 1.100 1.100 1.100
0.839 1.260 1.399 1.399 1.371
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Figure D.1: Show the dynamics of IPL with harmonic bonds along DIC
method (a, b, c), atomic force method (d, e, f), molecular force method (g, h,
i) and torque method (j, k, l). The reference point is (ρ1, T1) = (0.806, 1.100).
The density increases about 20%. The dynamics vary along DIC method and
also along the force and torque methods. CM scaling is used here.
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Figure D.2: Show the bond lengths distribution of IPL configurations taken
from equilibrium simulation at state points predicted via molecular force method
before minimization. The reference point is (ρ1, T1) = (0.806, 1.100). It shows
the bond lengths decrease by scaling the configurations to higher densities.

tained approximately different. Predicted state points via DIC and force
methods through the atomic scaling is presented in Table D.1. The molecu-
lar force and torque method predict same temperature using atomic scaling.
Any of the methods can not find pseudoisomrphs in IPL model because the
bond lengths distribution are compressed by increasing the density in Figure
D.2. Hence, the systems need to be quenched to generate pseudoisomorph
via force methods.

D.0.1 Quenching via a Scalar Function

It is required to eliminate the unscaled degrees of freedom by quenching
the system. We now consider two conditions (i.e. keep the center-of-mass
and the bonds’ orientational direction fixed) and use both center-of-mass
scaling and atomic scaling to test the force methods after quenching. We
use both minimization methods, i.e. BFGS and CG method, to create the
pseudoisomorphs in this section. Quenching the IPL model is much easier
than quenching the ASD model. Since particles in IPL models have identical
mass we can use the equation 5.15 with mA = mB = 1,

drA,k

drB,k

 =


1
2

−1
2

× dlk̂lk. (D.1)

Equation D.1 defines a scalar function which we can use to find the
local minima in IPL models via BFGS optimization method. The molecular
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Table D.2: Test the atomic force and DIC methods after quenching and remove
the spring’s contribution in calculating the potential and force. The tempera-
tures are far from pseudoisomorphic state points in Figure D.3 (g, h, i).

density U Umin T(DIC) T (FAtomic)
0.708 29380.606 25369.488 0.196 0.560
0.744 39082.553 35023.324 0.268 0.646
0.775 50012.381 46063.906 0.434 0.848
0.806 63925.787 58902.953 1.100 1.100
0.839 82791.457 75107.396 0.596 1.418

Table D.3: Using the scalar function to quench the system after scaling via
atomic scaling. DIC (fourth column) method and atomic force method (fifth
column) create quite distinctive T in compared with Figure D.3. But the molec-
ular force method (sixth column) and torque method (seventh column) approxi-
mately estimate comparable T in comparison with using the CM scaling (Figure
D.3).

density U Umin T(DIC) T (FAtomic) T (FMol) T(Tor)
0.708 30358.672 28708.306 0.571 0.885 0.475 0.465
0.744 39296.630 38777.029 0.707 0.922 0.657 0.649
0.775 50083.806 49964.634 0.880 0.990 0.856 0.852
0.806 63925.787 63919.768 1.100 1.100 1.100 1.100
0.839 82305.139 82300.285 1.339 1.268 1.412 1.416

force and torque methods predict pseudoisomorphic state points by using
the CM scaling method after quenching in Figure D.3). Whereas, the direct
isomorph check and atomic force method which are affected by harmonic
intramolecular interactions can not identify pseudoisomrphs.

The temperatures in table D.2, which are predicted by DIC and atomic
force method after quenching via the scalar function and remove the spring
force contribution, are still not desirable results in compared to Figure D.3
(g, h, i).

The potential energy and minimum of potential are different when we use
atomic scaling approach. Table D.3 shows the results of DIC and force meth-
ods after quenching via a similar function (i.e. equation D.1) and atomic
scaling method. Since the intramolecular interactions are different along
different scaling methods, DIC and atomic force method provide different
results comparing with Figure D.3 but molecular force and torque method,
in which the effects of the intramolecular interaction are ignored, predict
quite the same temperatures. If we abolish the harmonic potential, the DIC
method identifies inconsistent results, but the atomic force method provides
comparable temperatures according to table D.4 and table D.2.
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Figure D.3: The IPL system’s dynamics with harmonic bonds after scaling
the system with CM scaling method and then quench it via the scalar function
(equation D.1). Quenching the system helps methods to identify pseudoiso-
morph in IPL model. Direct isomorph check method (a, b, c), atomic force
method (d, e, f) do not predict invariant dynamics even after minimization.
Whereas, molecular force (g, h, i) and torque method (j, k, l) predict good
invariant dynamics.
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Table D.4: Minimum of potential and predicted temperatures after applying
atomic scaling and quenching via scalar function without spring contributions.
DIC method results are entirely inappropriate and the atomic force method
generates quite comparable results in comparison with the Table D.2.

density U Umin T(DIC) T (FAtomic)
0.708 30358.672 25325.066 0.159 0.560
0.744 39296.630 35122.698 0.245 0.646
0.775 50083.806 45847.652 0.202 0.850
0.806 63925.787 58902.953 1.100 1.100
0.839 82305.139 75104.077 0.441 1.416

D.0.2 Quenching via a Vector Function

After quenching via scalar function, the molecular force and torque methods
identify the proper pseudoisomorph in IPL molecular model with harmonic
bonds. In this section, we try the minimize the system by a vector function
through the conjugate gradient method (CG). According to the equation for
the IPL model with mA = mB = 1, the function is defined by,

∂U(Lk)
∂Lk

= 1
2
∂U

∂rk
l̂k −

1
2

∂U

∂rk+1
l̂k

= 1
2FA −

1
2FB. (D.2)

Using equation D.1 and equation D.2 via CG optimization method can
find the local minima of IPL model. Both scaling methods are tested to in-
vestigate this minimization method. Figure D.4 indicates that the system’s
dynamics improve by using the vector function to minimize the system along
DIC method and invariant forces and torque. The atomic force and molecu-
lar force produce approximate same results. The torque method provides the
proper pseudoisomorphs in Figure D.4. The results of both scaling methods,
i.e. CM and atomic scaling are roughly the same (see Table D.5).

The molecular force and torque methods generate pseudoisomorphs in
IPL model after we quench the system via both scalar function and vector
function, while the atomic force and DIC methods only predict proper invari-
ant dynamics after quenching via the vector function. It is anticipated the
force methods can identify pseudoisomorphs in IPL model at lower densities
without any minimization.
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Figure D.4: The IPL system’s dynamics with harmonic bonds after scaling
the system with CM scaling method and then quench it via the vector function
using equations D.2, D.2. The direct isomorph check method (a, b, c), atomic
force method (d, e, f), molecular force (g, h, i) and torque method (j, k, l)
provide good invariant dynamics.
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Table D.5: Potential, minimum of potential and predicted temperatures via
atomic scaling and after quenching via vector function by DIC and force meth-
ods. Using the vector function reaches much more minima value than the scalar
function in Table D.3. The atomic scaling method gives the same results as
using CM scaling method.

density U Umin T(DIC) T (FAtomic) T (FMol) T(Tor)
0.708 30358.672 25869.033 0.482 0.487 0.486 0.475
0.744 39296.630 36042.350 0.665 0.668 0.668 0.660
0.775 50083.806 47285.757 0.862 0.864 0.864 0.859
0.806 63925.787 61247.613 1.100 1.100 1.100 1.100
0.839 82305.140 79557.679 1.400 1.398 1.398 1.404
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Appendix E

Pseudoisomorph in OTP
Model

We found isomorph in constraint bonded OTP model via molecular force
method (see Figure 3.12) and torque method in Figure 3.15. Furthermore,
we recognized that isomorphs are predicted in the OTP model by scaling
the configuration at higher densities from the reference state point. This
section investigates how to generate pseudoisomorphs in the OTP model
with harmonic spring bonds and whether it requires minimization or not.
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Figure E.1: Show the bond lengths distribution of OTP configurations taken
from equilibrium simulation. The reference point is ρ1 = 0.329. It shows that
the bond lengths do not compressed by scaling the configurations to higher
densities.

By considering the density ρ = 0.329 as the reference point, the bond
lengths have proper distributions at the different densities, and they prevent
to compress since the system is not highly viscous. Since the OTP model
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Figure E.2: The dynamics of harmonic bonded OTP model after scaling the
system with CM scaling. The reference point is (ρ, T ) = (0.329, 0.700). It is
anticipated that the direct isomorph check method (a, b, c), atomic force method
(d, e, f) are not able to identify pseudoisomorphs. In contrast, molecular force
(g, h, i) and torque method (j, k, l) provide better results.
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Figure E.3: The dynamics of OTP model improves along DIC and atomic force
methods by removing the spring contribution in calculating the potential and
atomic force. The reference point is (ρ, T ) = (0.329, 0.700). Here, CM scaling
method is applied.
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Table E.1: Test the atomic scaling on harmonic OTPmodel. The new tempera-
tures are produced by similar force methods in Figure E.2 at same densities. The
temperatures come from DIC method are better than temperatures measured
via CM scaling approach (second column). Due to the harmonic intramolecular
fast vibration, the predicted state points along atomic force method achieve in-
consistency (third column). The molecular force and torque methods be likely
to calculate same temperatures.

density T(DIC) T (FAtomic) T (FMol) T(Tor)
0.303 0.362 1.724 0.452 0.452
0.316 0.527 1.032 0.567 0.567
*0.329 0.700 0.700 0.700 0.700
0.345 0.925 1.080 0.891 0.891
0.367 1.264 1.963 1.209 1.209

has three bonds, two with identical length l = 1 and one with different
length l = 1.218, the bond lengths distribution has two picks in Figure E.1.
If we consider (ρ1, T1) = (0.329, 0.700) as a starting point and scale the
system via CM scaling method, the molecular force and torque methods
generate better results in Figure E.2 (g, h, i, j, k, l) than DIC and atomic
force methods (Figure E.2 (a, b, c, d, e, f)). As shown, subtracting the
harmonic force contribution from intramolecular interactions make the DIC
and atomic force determine better results (see Figure E.3). The results of
testing the DIC and force methods on harmonic bonded OTP model through
the atomic scaling method are demonstrated in Table E.1.

If we consider (ρ1, T1) = (0.303, 0.383) as the reference state point and
scale the system to only higher density via CM scaling, the molecular force
method and torque method generate the pseudoisomorphic state points. Fig-
ure E.4 shows that the dynamics are invariant along state points predicted
via molecular and torque method. So by considering (ρ1, T1) = (0.303, 0.383)
as the reference state point we achieve quite better results via molecular
force and torque methods in comparison with results of Figure E.2 in which
(ρ1, T1) = (0.329, 0.700) is the reference point. Table E.2 demonstrates the
predicted temperatures via DIC and atomic force methods by subtracting
the harmonic intramolecular interactions. Temperatures predicted via DIC
method are comparable with pseudoisomorphic points predicted via molec-
ular force in Figure E.4 but atomic force results are still far from pseudoi-
somorphic state points. The results of atomic scaling method are presented
in Table E.3 which are quite different from pseudoisomorphic state points
in Figure E.4 along molecular force method.
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Figure E.4: The dynamics of OTP model with springs along DIC and force
methods using the CM scaling. The reference point is (ρ1, T1) = (0.303, 0.383).
The results of DIC and atomic force method are still inconsistent because of the
harmonic intramolecular interactions. The molecular force and torque methods
achieve a significant collapse. The density changes over 16%.
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Table E.2: Results of atomic force and DIC methods after removing the
spring’s contribution in calculating the potential and atomic force using CM
scaling. Both methods determine better results compared to results in Figure
E.4.

density T(DIC) T (FAtomic)
*0.303 0.383 0.383
0.315 0.512 0.524
0.327 0.669 0.717
0.340 0.875 0.999
0.353 1.124 1.379

Table E.3: Test the atomic scaling on harmonic OTP model through atomic
scaling by considering (ρ1, T1) = (0.303, 0.383) as the reference point. The new
temperatures are produced by similar methods in Figure E.4 at same densities.
DIC and force methods achieve inconsistency results which are quite far from
pseudoisomorphic state points.

density T(DIC) T (FAtomic) T (FMol) T(Tor)
*0.303 0.383 0.383 0.383 0.383
0.315 0.400 0.648 0.475 0.475
0.327 0.432 1.082 0.581 0.581
0.340 0.481 1.547 0.714 0.714
0.353 0.547 1.981 0.866 0.866
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Subtracting Harmonic
Interactions in LJC Model

The molecular force, segmental force and torque methods are not affected
by harmonic intramolecular interactions. So we only consider the atomic
force and DIC method to calculate temperatures before and after quenching
by removing the harmonic intramolecular interactions in this section. We
implement the CM scaling for both cases, and we calculate T after removing
the spring contribution. We start from state point (ρ1, T1) = (1.00, 0.700)
and we subtract the spring force, then scale the system via CM scaling at
different densities again remove the spring force from corresponding scaled
configurations. Then we use the atomic force method (equation 3.4) and
DIC method. Table F.1 show the predicted temperature via atomic force
method (third column), and DIC method (fourth column) which are different
from pseudoisomorphic points from ref. [2] (second column).

Table F.1: Predicted temperature via atomic force and DIC methods through
CM scaling and removing the harmonic potential. The second column results
from ref. [2] along which the dynamics are invariant. Comparing the atomic
force results (third column) and DIC (fourth column) method implies that they
are not pseudoisomorphic state points, especially at the highest density.

Density T(Pseudoisomorph) T (FAtomic) T(DIC)
0.96 0.539 0.566 0.517
*1.00 0.700 0.700 0.700
1.04 0.908 1.030 0.979
1.08 1.158 1.694 1.409
1.12 1.453 2.966 2.083

On the other hand, quenching the system causes the intramolecular in-
teraction declines, and the methods calculate lower temperatures after min-
imization, but still, they are not pseudoisomorphic. We use force methods
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after quenching and scaling via CM scaling and again remove the spring
forces in Table F.2. The predicted T are lower than the corresponding T
in table F.1, but they are quite different from pseudoisomorph results taken
from ref. [2].

Table F.2: Using the atomic force method and DIC method after quenching the
system and using CM scaling method and removing the harmonic contribution.

Density T(Pseudoisomorph) T (FAtomic) T(DIC)
0.96 0.539 0.559 0.411
*1.00 0.700 0.700 0.700
1.04 0.908 0.956 0.724
1.08 1.158 1.340 0.725
1.12 1.453 1.843 0.817

Atomic force and DIC methods do not find pseudoisomorph in harmonic
LJC model before and after quenching and removing harmonic intramolec-
ular interactions.
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Reprints of Articles
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Predicting scaling properties of fluids from individual

configurations: Small molecules

Zahraa Sheydaafar,∗ Jeppe C. Dyre, and Thomas B. Schrøder†
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Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark

(Dated: May 28, 2021)

Abstract

Isomorphs are curves in the phase diagram along which both structure and dynamics to a

good approximation are invariant. There are two main methods to trace out isomorphs in both

atomic and molecular systems, the configurational adiabat method and the direct isomorph check

method. We introduce and test a new family of force based methods on three molecular models;

the asymmetric dumbbell model, the symmetric inverse power law dumbbell model, and the Lewis-

Wahnström model of o-terphenyl. A unique feature of the force based methods is that they only

require a single configuration to trace out an isomorph. The atomic force method was previously

shown to work very well for the Kob-Andersen binary Lennard-Jones mixture, but we show that it

does not work for molecular models. In contrast, we find that a new method based on molecular

forces works well for all three molecular models.

PACS numbers: Valid PACS appear here

∗ samaneh@ruc.dk
† tbs@ruc.dk

1

ar
X

iv
:s

ub
m

it/
37

65
25

1 
 [

co
nd

-m
at

.s
of

t]
  2

8 
M

ay
 2

02
1



I. INTRODUCTION

Isomorphs are curves of invariant structure and dynamics in the thermodynamic phase

diagram. They occur in systems with strong correlations between the constant-volume

canonical-ensemble equilibrium fluctuations of potential energy and virial [1, 2], which char-

acterize the so-called R-simple (strongly correlating) systems [3–6]. The Pearson correlation

coefficient R between the thermal equilibrium fluctuations of potential energy U and virial

W is given by (where sharp brackets denote NV T canonical averages, and ’∆’ denotes the

deviation from equilibrium mean value, e.g., ∆U ≡ U − 〈U〉):

R =
〈∆W∆U〉√

〈(∆W )2〉〈(∆U)2〉
. (1)

For an inverse power-law (IPL) system with pair potential proportional to r−n in which

r is the pair distance, the correlation is perfect, R = 1, because W = (n/3)U for all

microconfigurations. Somewhat smaller correlations still lead to fairly invariant structure

and dynamics, and the class of R-simple liquids is defined by R > 0.9. Isomorph theory has

been applied to different classes of systems, including simple atomic systems in both liquid

and solid phases [7, 12–17], molecular systems [18], and the 10-bead Lennard-Jones chain

[19]. Furthermore, isomorph-theory predictions have been verified in experiments on van

der Waals bonded organic liquids [20, 21].

In 2012, Ingebrigtsen and et al. [18] studied isomorphs for liquid molecular systems

composed of small rigid molecules. They found isomorphs in the asymmetric dumbbell model

(ASD) (Fig. 1(a)), the symmetric inverse power law (IPL) dumbbell model (Fig. 1(b)), and

the Lewis- Wahnström o-terphenyl (OTP) model(Fig. 1(c)). It is important to note that

isomorph invariances refer to structure and dynamics reported in the so-called reduced (state-

point dependent) units. In this unit system, the length unit l0 is defined by the particle

number density ρ ≡ N/V where N is the particle number and V the system volume, the

temperature T defines the energy unit e0, and the density and the thermal velocity define

the time unit t0. Thus if m is the particle mass, the length, energy, and time units are given

[1, 3, 7] by

l0 = ρ−1/3 , e0 = kBT , t0 = ρ−1/3
√
m/kBT . (2)

Reference 18 used the so-caled configurational adiabat method to trace out isomorphs. For

2



FIG. 1. The fluctuation of potential energy and virial for the asymmetric dumbbell and symmetric

IPL dumbbell models and and the OTP model with rigid bonds. (a) The Pearson correlation

coeficient at the reference state point (ρ1, T1) = (0.932, 0.465) is R = 0.959 and the linear slope

of regression is γ = 5.69 for the asymmetric dumbbell model. (b) R = 0.962, γ = 7.11 for the

symmetric dumbbell model at state point (ρ1, T1) = (0.806, 1.400). (c) R = 0.894, γ = 7.95 for the

OTP model at state point (ρ1, T1) = (0.303, 0.383).

a scatter plot of virial versus potential energy of configurations taken from an equilibrium

simulation (see Fig. 1), the linear-regression slope γ is given [7–10] by

γ ≡ 〈∆U∆W 〉
〈(∆U)2〉 =

(
∂ lnT

∂ ln ρ

)

Sex

. (3)

Recall that Sex is the total entropy minus ideal gas entropy at the same density and tem-

perature (Sex < 0 due to the fact that any system is more ordered than an ideal gas). For

R-simple liquids, the isomorph theory predicts invariance of the dynamics along the config-

urational adiabats defined by Sex =Const [18, 28–30]. For any system, Eq. (3) allows one to

generate the configurational adiabats. This is done by calculating the two canonical averages

3



in Eq. (3) at an initial state point, changing density slightly, and from Eq. (3) calculating

the corresponding change in temperature. At the new state point the canonical averages are

recalculated, and so on.

Another method to generate isomorphs is termed the direct isomorph check, which works

as follows. Two configurations of the strongly correlated system have proportional Boltz-

mann factors, i.e.

e−U(R(1))/kBT1 = C12e
−U(R(2))/kBT2 . (4)

Here R(1) and R(2) are two configurations that scale uniformly into one another, R(2) =

(ρ1/ρ2)
1/3 R(1), and C12 is a constant that depends only on the two state points in question.

By taking the logarithm of Eq. (4) we get

U(R(2)) =
T2
T1
.U(R(1)) + kBT2 lnC12. (5)

Thus, taking configurations, R(1), from an equilibrium NVT simulations at (ρ1, T1) and

plotting U(R(2)) versus U(R(1)) is predicted to reveal strong correlation, and T2 can be

calculated from the slope.

Below, we investigate new efficient methods for generating isomorphs. They are all based

on the scaling properties of a single configuration selected from an equilibrium simulation of a

reference state point. This works well for the Kob-Andersen binary Lennard-Jones mixture,

which is a R-simple system [23]. The present paper extends the single-configuration idea to

deal with three molecular system: the asymmetric dumbbell (ASD) model, the symmetric

inverse power law (IPL) dumbbell model, and the Lewis-Wahnström OTP model.

II. SIMULATION DETAILS

We studied three molecular systems with rigid bonds, the asymmetric dumbbell model

(N = 5000), symmetric IPL dumbbell r−18 model (N = 5000), and the Lewis-Wahnström

OTP model (N = 3000). All three models were previously shown to have good isomorphs

[18].

Asymmetric dumbbell molecules consist of two different sized Lennard-Jones (LJ) spheres,

a large (A) and a small (B) particle, rigidly bonded. The length of the bonds is 0.584 in

the LJ units defined by the large sphere (σAA ≡ 1, εAA ≡ 1, and mA ≡ 1). The parameters

4



of the model were chosen to mimic toluene (σAB = 0.894, σBB = 0.788, εAB = 0.342,

εBB = 0.117, mB = 0.195) [28]. The inter-molecular pair potential interactions are given by

the Lennard-Jones pair potential:

vij(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
. (6)

The symmetric IPL model consists of two identical particles, connected by a rigid bond

of length 0.584. The inter-molecular pair potential interactions are given by the inverse

power-law (IPL) potential:

vij = εij

(
σij
rij

)n
(7)

in which n = 18. All IPL parameters and particle masses are unity.

The Lewis-Wahnström OTP model consists of three identical LJ particles. Atoms are

connected by rigid bonds in an isosceles triangle with side length 1.000 and a top angle of

75◦. All LJ parameters are set to unity in this model either.

All Molecular Dynamics simulations were performed in the NV T ensemble with a Nose-

Hoover thermostat using RUMD, an open-source package that can be downloaded at http:

//rumd.org [24].

III. THREE SINGLE-CONFIGURATION METHODS FOR IDENTIFYING ISO-

MORPHS

Generating isomorphs by means of Eq. (3) for an R-simple system is straightforward

but requires, as the numerical calculation of most statistical-mechanical quantities, a time

sequence of equilibrium configurations. Good statistics can be obtained, however, from the

scaling properties of the forces of a single configuration [23]. The idea is to make use of the

fact that all reduced forces are isomorph invariant.

To show that the reduced forces are all invariant along an isomorph, we refer to the basic

equation of isomorph theory [11],

U(R) = U(ρ, Sex(R̃)) . (8)

Here R ≡ (r1, ..., rN) is the configuration vector of all particle coordinates, U(ρ, Sex) is the

thermodynamic average potential energy at the state point with density ρ and excess entropy

5



Sex, R̃ ≡ ρ1/3R is the reduced configuration vector, and Sex(R̃) is the microscopic excess-

entropy function as defined in Ref. 11. The fact that the latter function depends only on the

configuration’s reduced coordinates is a consequence of the hidden scale invariance condition

U(Ra) < U(Rb)⇒ U(λRa) < U(λRb) in which λ is a uniform scaling parameter [11]. This

condition is equivalent to the system having strong virial potential-energy correlations [7].

It follows from Eq. (8) that the vector of all forces on the individual particles, F ≡
(F1, ...,FN), is given by

F(R) = −∇U(R) = −
(
∂U

∂Sex

)

ρ

ρ1/3∇̃Sex(R̃) . (9)

Since (∂U/∂Sex)ρ = T , the reduced force vector F̃ ≡ l0F/e0 = ρ−1/3F/kBT is given by

(where S̃ex ≡ Sex/kB)

F̃ = −∇̃S̃ex(R̃) . (10)

The fact that F̃ depends only on the reduced coordinates implies invariant dynamics along an

isomorph because in this case, the reduced-unit version of Newton’s second law, d2R̃/dt̃2 =

F̃(R̃) [1], has no reference to the state point density. This implies invariant reduced dynamics

along the isomorphs.

Given a reference state point (ρ1, T1) and a new density, ρ2, we now derive the equation

for calculating the temperature T2 so that the state point (ρ2, T2) is isomorphic with (ρ1, T1).

If R1 is a configuration taken from an equilibrium simulation of the reference state point

and R2 is the same configuration scaled uniformly to density ρ2, the fact that the reduced

forces of the two configurations are identical is expressed as follows:

F̃(R1) = F̃(R2) . (11)

From this identity T2 can be determined by:

T2 =
|F(R2)|
|F(R1)|

(
ρ1
ρ2

)1/3

T1. (12)

The atomic force method was tested for the Kob-Andersen binary Lennard-Jones model

in Ref [23]. For a system composed of rigid bonded molecules, in addition to atoms’ forces,

the center-of-mass forces are expected to be isomorph invariant in reduced units. This paper

tests both force methods on the ASD, IPL and OTP systems. The method is illustrated

6
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FIG. 2. (a) [“atomic-force method”] shows a plot of all particle forces in one axis direction

for a single configuration R1 of the reference state point (ρ1, T1) = (0.932, 0.465) versus for its

uniformly scaled version to density ρ2, R2 = (ρ1/ρ2)
1/3R1. From the slope of the best-fit line via

Eq. (12) one identifies T2 = 0.725. (b) [“molecular-force method”] shows a similar plot based on

the center-of-mass forces between the molecules (which ignores the intramolecular forces). Better

correlation is obtained here, and the slightly different T2 = 0.730 is arrived at using this method.

(c) [“Torque Method] shows the same plot in regard to the rotational motion of molecules. Despite

the approximately same correlation, the temperature defined from this method Eq. (13) is quite

different, T2 = 0.763.

in Fig. 2 in which (a) for the ADP system shows the x-coordinates of the forces on all

particles plotted against the same quantities of the uniformly scaled configuration for a 7%

density increase. (b) shows the same for the center-of-mass “molecular” forces between the

molecules, which have no contributions from the intramolecular forces. We find a strong

correlation in both cases, but a somewhat different prediction for T2, which is 0.725 by using

atomic force method and 0.730 by using center-of-mass force method.
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Before comparing the two methods by testing for invariant dynamics, we introduce a third

method based on the isomorph invariance of the reduced-unit torque on each molecule, i.e.,

τ̃1 = τ̃2 where τ is the torque. Since the torque in reduced units is defined by τ̃ ≡ τ/e0 =

τ/kBT , the invariance requirement means that T2 is given by

T2 =
|τ2|
|τ1|

T1 . (13)

This assumes invariance of the reduced rotational dynamics of the particles around the

molecules’ center-of-mass. This method is used in Fig. 2(c), which shows a quite high

correlation of the torques before and after scaling the configuration, but a somewhat higher

temperature, T2 = 0.763.
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FIG. 3. (a) Distribution of temperatures predicted by applying Eq. (12) and Eq. (13) to individual

molecules in a single configuration. For perfect scaling, all the molecules should ’agree’, i.e.,

the distributions should be delta functions. (b) the distribution of T2 values predicted from 152

independent configurations by using the atomic force (blue) and molecular force (red) methods.

Fig. 3(a) shows the distribution of T2 predictions, when Eq. (12) and Eq. (13) are applied

to individual molecules. The width of the distributions are similar, but smallest for the

molecular-force method. Fig. 3(b) shows the distribution of T2 values predicted by applying

Eq. (12) to 152 independent configurations. Using one configuration is a main advantage

of the new force based methods considered here. However, for comparison between the

methods, we will in the following use the average of the T2 values predicted from 100-200

independent configurations.

8



IV. RESULTS

In the following we will test the three different methods on the three models introduced

above. Both translational and rotational dynamics is considered; we test the invariance

of the reduced molecular center-of-mass mean square displacement (msd), the intermediate

incoherent scattering function (Fs), and the orientational time-autocorrelation function.

Tests of the three methods on ASD are shown in Fig. 4. The state point (ρ1, T1) =

(0.932, 0.465) is the reference point. From this we determined two state points with lower

density and two with higher density, spanning in all a density variation of 19%. The configu-

ration was scaled uniformly to the relevant density ρ2 in order to determine the temperature

T2 at which the reduced forces/torques are the same as at the reference state point. The

best results are obtained with the molecular-force method (Fig. 4 (d), (e), and (f)).

TABLE I. Reduced-unit density variation of the diffusion coefficient (first row), the relaxation

time of molecular center-of-mass dynamics (second row) and rotational dynamics (third row) for

the ASD model. The second column shows large numbers arising from the isotherm, non-invariant

curves. The third to seventh columns represent the configurational adiabat, direct isomorph check,

atomic and molecular forces and torque methods. The molecular force method is better than other

methods for predicting state points of approximately invariant dynamics.

Isotherm γ DIC FAtom FMol Torque

∂logD̃

∂logρ
-70(2) -0.5(4) 1.1(4) -1.4(2) -0.9(4) 7.47(6)

∂ log τ̃cm
∂ log ρ

77(3) -0.4(1) -1.0(1) 1.60(7) 0.5(1) -7.8(1)

∂ log τ̃rot
∂ log ρ

65(3) 1.9(1) 1.26(2) 3.47(3) 2.62(7) -2.6(2)

Figure 5 shows the variation of the relaxation times of translational motion (a) and

rotational motion (b) for an isotherm (purple), configurational adiabat (black), as well as

curves generated by the direct isomorph check (red), atomic force (green), molecular force

(blue), and torque methods (orange). Not surprisingly, all the approximate isomorphs are

better in representing the invariant relaxation compared to the isotherm. Table I shows the

density variation of the diffusion coefficient and translational and rotational relaxation times

(first column) in reduced units along the isotherm (second column) and the five approximate

isomorphs (third-seventh columns). The diffusion coefficient is calculated from the diffusive
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FIG. 4. Testing the ASD model for invariance of the reduced translational and rotational dynamics

by three different methods. Each method investigates the reduced center-of-mass mean-square

displacement (upper figures), the center-of-mass incoherent intermediate scattering function for the

reduced wave-vector q̃ = q(ρ/0.932)1/3 (middle figures), and the orientational time-autocorrelation

function probed via the autocorrelation of the normalized bond vector (bottom figures). (a), (b),

(c) show results for state points generated by the atomic-force method based on requiring invariant

reduced forces between all atoms, including the intramolecular contributions (Eq. (12)). (d), (e), (f)

show results for state points generated by the molecular-force method requiring invariant reduced

center-of-mass forces between the molecules (Eq. (12)). (g), (h), (i) show results for state points

generated by the torque method requiring invariant reduced torques on the molecules (Eq. (13)).

part of the mean-square displacement (compare Fig. 4). The variation of relaxation times

as functions of density are obtained by calculating the slope of relaxation curves of Fig. 5(a)

and (b) at two-state points, lower ρ = 0.886 and upper ρ = 0.969 points of reference state

point.
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FIG. 5. Comparing the relaxation time as a function of the density for the ASD model along

an isotherm (purple) as well as for five different methods: configurational adiabat (black), direct

isomorph check (red), atomic (green) and molecular (blue) force and torque (orange) methods.

(a) shows the translational relaxation time calculated by the intermediate scattering function.

(b) shows a similar plot for the rotational relaxation time (derived from the orientational time-

autocorrelation function of the molecular end-to-end vector).

TABLE II. Checking the reduced-units variation of the same dynamic quantities as in Table I for

the symmetric dumbbell IPL model.

Isotherm γ DIC FAtom FMol Torque

∂logD̃

∂logρ
-113.4(6) 1.9(1) -0.78(7) -0.2(2) -0.462(5) 3.9(3)

∂ log τ̃cm
∂ log ρ

126.7(7) -0.4(3) -0.04(2) -0.21(7) -0.42(1) -0.95(4)

∂ log τ̃rot
∂ log ρ

107.9(6) 0.16(1) -0.7(2) 0.2(2) 0.10(9) 0.5(3)

An important question is whether the molecular geometry determines which method

work for which model or not. The second model we consider is the IPL symmetric dumbbell

model to check the invariance properties by use of the single-configuration force methods.

The corresponding quantities are shown in Fig. 6, Fig. 7 and Tabel II. We determine two

state point with lower density and two with higher density, spanning in all a density variation

of 19%. Overall, for the ASD model we find the molecular force approach to produce the

best invariance curves. Fig. 7 (a) and (b) represent the variation of both translational and

rotational dynamics by plotting both relaxation times.

11



10
-2

10
0

10
2

10
4

~t

0

0.2

0.4

0.6

0.8

〈R
(0

)R
(~ t)

〉

ρ = 0.708, Τ = 0.573
ρ = 0.744, Τ = 0.796
ρ = 0.775, Τ = 1.054
ρ = 0.806, Τ = 1.390
ρ = 0.839, Τ = 1.860

10
-2

10
0

10
2

10
4

~t

ρ = 0.708, Τ = 0.565
ρ = 0.744, Τ = 0.792
ρ = 0.775, Τ = 1.054
ρ = 0.806, Τ = 1.395
ρ = 0.839, Τ = 1.873

10
-2

10
0

10
2

10
4

~t

ρ = 0.708, Τ = 0.550
ρ = 0.744, Τ = 0.783
ρ = 0.775, Τ = 1.054
ρ = 0.806, Τ = 1.409
ρ = 0.839, Τ = 1.906

ρ = 0.708, Τ = 0.565
ρ = 0.744, Τ = 0.792
ρ = 0.775, Τ = 1.054
ρ = 0.806, Τ = 1.395
ρ = 0.839, Τ = 1.873

ρ = 0.708, Τ = 0.550
ρ = 0.744, Τ = 0.783
ρ = 0.775, Τ = 1.054
ρ = 0.806, Τ = 1.409
ρ = 0.839, Τ = 1.906

10
-6

10
-4

10
-2

10
0

10
2

m
sd

C
M

(r
ed

u
ce

d
 u

n
it

s)

ρ = 0.708, Τ = 0.573
ρ = 0.744, Τ = 0.796
ρ = 0.775, Τ = 1.054
ρ = 0.806, Τ = 1.390
ρ = 0.839, Τ = 1.860

Atomic Force Method

ρ = 0.708, Τ = 0.565
ρ = 0.744, Τ = 0.792
ρ = 0.775, Τ = 1.054
ρ = 0.806, Τ = 1.395
ρ = 0.839, Τ = 1.873

Molecular Force Method

ρ = 0.708, Τ = 0.550
ρ = 0.744, Τ = 0.783
ρ = 0.775, Τ = 1.054
ρ = 0.806, Τ = 1.409
ρ = 0.839, Τ = 1.906

Torque Method

0

0.2

0.4

0.6

0.8

F
sC

M
(~ q

, 
~ t)

ρ = 0.708, Τ = 0.573
ρ = 0.744, Τ = 0.796
ρ = 0.775, Τ = 1.054
ρ = 0.806, Τ = 1.390
ρ = 0.839, Τ = 1.860

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

S
y
m

m
et

ri
c 

D
u
m

b
b
el

l,
 I

P
L

 1
8
 M

o
d
el

FIG. 6. Testing the atomic force, molecular force, and torque methods on the IPL model for

invariance of the reduced translational and rotational dynamics. The same dynamic quantities

as in Fig. 4 are investigated. The reference point is (ρ1, T1) = (0.775, 1.054) and the values of q

considered are constant in reduced units, q̃ = q(ρ/0.775)1/3. (a), (b), (c) show results for state

points generated by the atomic-force method (which includes the intramolecular contributions,

Eq. (12)). (d), (e), (f) show results for state points generated by the molecular-force method

(Eq. (12)). (g), (h), (i) show results for state points generated by the torque method (Eq. (13)).

So far, the molecular force method has given the best results. We proceed to investigate

the three force methods for the OTP model (Fig. 8). In this model, (ρ1, T1) = (0.303, 0.383)

is the reference point. The same quantities as before are plotted against the reduced time.

Again the molecular force method is best for producing approximate isomorphs (Fig. 9).

There is an interesting distinction in regard to which densities are used to analyze

the dynamics. Scaling the OTP system to lower density disturbs the prediction process.

In Fig. 10(a) we consider the fourth point of the state points of Fig. 8 (d), (ρ1, T1) =
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FIG. 7. Comparing the relaxation time as a function of the density for the IPL model along similar curves

as in Fig. 5. As shown before, all the approximate isomorph methods are better in representing the invariant

relaxation time than the isotherm. (a) shows the translational relaxation time calculated by the intermediate

scattering function. (b) shows a similar plot for rotational relaxation time.

(0.340, 0.903), as reference point, and then move to lower densities, spannig about 16%.

The invariant intermediate scattering function in Fig. 8 has disappeared by decreasing den-

sities in Fig. 10. On the other hand, the approaches are able to give the proper curves only

if scaling the configuration to higher density in OTP system. This issue is only found in

OTP model, not the other two models. For example, the IPL model dynamics has been

still invariant in reduced units along the molecular force methods. Figure 10(b) shows the

reduced incoherent intermediate scattering function of isomorphs points when we start from

(ρ1, T1) = (0.806, 1.395) (Fig. 6(e)) and decrease the density. The dynamics of IPL model is

still invariant however it gives the different state points in comparison with Fig. 6(e) because

the isomorphs are approximate.

To investigate the OTP model issue, we calculate the translational and rotational relax-

ation times through the isotherm and isomorphs methods by decreasing the density (Fig-

ure 11). By scaling the configurations to lower density, the configurational adiabats and DIC

methods still create the isomorphs along which the dynamics is quite invariant. However,

this is clearly not the case for the force methods. Thus, for the OTP model the molecular

force method works well, but only if increasing density from the reference point. At the

present we do not have an explanation for this
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FIG. 8. Testing for invariance of the same reduced dynamics as in Fig. 4 and Fig. 6 for the OTP

model. Approximate isomorphs were generated based on a single equilibrium configuration from

the reference state point (ρ1, T1) = (0.303, 0.383). Results were averaged over 152 configurations to

improve statistics. (a), (b), (c) show results for state points generated by the atomic-force method.

(d), (e), (f) show results for state points generated by the molecular-force method. (g), (h), (i)

show results for state points generated by the torque method.

V. DISCUSSION

Isomorphs exist in systems with strong virial potential-energy correlation, including

molecular systems with rigid bonds. For the asymmetric dumbbell, the symmetric dumbbell,

and the Lewis-Wahnström OTP models, we have seen that there exists curves along which

the dynamics is invariant to a good approximation. Though not our focus here, we note

that the structure is invariant to a good approximation for all three methods (Fig. 12).

We tested several methods to generate an approximate isomorph starting from a given
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FIG. 9. Comparing the relaxation time as a function of the density in the OTP model along an isotherm

and the various approximate isomorph methods. Both translational and rotational relaxation time are

invariant compared to the isotherm (purple). (a) shows the translational relaxation time calculated by the

intermediate scattering function. (b) shows a similar plot for the rotational relaxation time.

reference state point. The force methods involve in principle a single configuration and its

uniformly scaled version, although we averaged over 152 configuration pairs in order to get

better statistics and also to be able to estimate the uncertainty of the T2 predictions. Such

averaging is not going to be necessary if a much larger system is simulated than the presently

studied (5000 molecules for ASD and IPL, and 3000 molecules for OTP). Apparently, both

the intermolecular and intramolecular interactions play an important role in generating

potentially isomorphic state points. In particular, the atomic forces are still affected by the

intramolecular interactions, and we believe this is why the atomic-force method is not able

to identify state points of approximately invariant reduced dynamics in some cases. On the

other hand, the molecular-force method based on invariant reduced center-of-mass forces

generally works well, while the torque method gave decent results in ASD model. For the

IPL and OTP models, the torque method provides good results, as well.

Identifying isomorphs via three new methods is much simpler and computationally

cheaper than the method in Ref [18]. The force methods for generating isomorphs have here

only been tested on molecular systems composed of molecules with constraint bonds. The

question whether the molecular-force based method works well for other molecular system,
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FIG. 10. Comparing the dynamics of two model (OTP, IPL) when the density decreased. (a) shows

the incoherent intermediate scattering function illustrates that the dynamics of the OTP system is not

invariant when state points are generated by decreasing the density. Here the reference state point is

(ρ1, T1) = (0.340, 0.903). Surprisingly, the molecular force method, which his best for the ASD and IPL

methods and also for OTP when increasing the density, does not provide any isomorphic points. (b) shows

testing the similar method on IPL model in similar process of decreasing the density. (ρ1, T1) = (0.806, 1.395)

is the starting point. The reduced dynamics quantity still has a perfect collapse and it is not effected by

density changes.

e.g., with harmonic bonds, is important to investigate in future work.
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to determine the corresponding temperature T2. (a), (b), (c) show results for state points generated

by the atomic and molecular force and torque method for ASD model. (d), (e), (f) show results

for state points generated by the atomic and molecular force and torque for IPL model. (g), (h),

(i) show results for state points generated by the atomic and molecular force and torque for OTP

model.
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Pseudoisomorphs are curves in the thermodynamic phase diagram with invariant structure and

dynamics, but not invariant excess entropy. Pseudoisomorphs have been found in molecular models

with �exible bonds. Here we present force based methods to trace out pseudoisomorphs, and test
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I. INTRODUCTION

Isomorphs are curves in the thermodynamic phase diagram along which structure, dy-

namics, and excess entropy (the entropy minus that of the ideal gas with same density and

temperature) in the appropriate units to a good approximation are invariant. Systems with

isomorphs are termed Roskilde-simple, and they are characterized by strong correlation be-

tween the canonical-ensemble equilibrium �uctuations of potential energy, U , and virial, W ,

as quanti�ed by the Pearson correlation coe�cient (where sharp brackets denote canonical

averages, and ∆ denotes the deviation from the mean):

R =
〈∆W∆U〉√

〈(∆W )2〉〈(∆U)2〉
. (1)

R > 0.9 was given as the criteria for being Roskilde-simple, but even systems with slightly

lower R values can be found to have isomorphs. The ismorphic invariance of structure

and dynamics requires the use of so-called reduced units, where the unit of energy is given

by e0 ≡ kBT , the unit of length is given by l0 ≡ ρ−1/3, and the unit of time is given by

t0 ≡ ρ−1/3
√
m/kBT , where m is a characteristic mass of the system.

As mentioned, isomorphs have invariant excess entropy, i.e., they are con�gurational

adibats. In all systems, Roskilde-simple or not, con�gurational adibats can be traced out

using the general statistical mechanics relation:

γ ≡
(
∂ lnT

∂ ln ρ

)

Sex

=
〈∆U∆W 〉
〈(∆U)2〉 . (2)

Evaluating the right-hand side by equilibrium NVT simulations, a con�gurational adiabat

can be identi�ed in the (ρ, T ) phase diagram by solving the di�erential equation, Eq. (2),

numerically.

Isomoprhs have been found in both atomic and molecular systems. For molecular systems,

isomorphs are found when bonds are modeled by �xed constraints, but not when �exible

bonds are used. Fig. 1 shows scatter plots of the virial versus potential energy for asymmetric

dumbbell and 10-bead Lennard-Jones chain models, both with harmonic springs. Neither

model are Roskilde-simple; the correlation coe�cients are 0.579 and 0.284, respectively, and

as expected they are found not to have isomorphs. Nevertheless, empirical scaling reveal

that both models have curves in the phase diagram with invariant structure and dynamics

but not invariant excess entropy. These curves are termed �pseudoisomorphs�.
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FIG. 1. The potential energy and virial �uctuations for two models ASD and LJC with harmonic

spring intermolecular interactions. (a) The correlation coe�cient (R = 0.579) and linear regression

slope γ = 4.585 at state point taken from reference [12] of asymmetric dumbbell model with spring

bonds. (b) The similar quantities correlation for �exible Lennard-Jones chain model, including the

harmonic bonds. The correlation coe�cient for this model also shrink a lot, R = 0.204.

Since pseudoisomorphs are not con�gurational adiabats, Eq. (2) can not be used to iden-

tify them. In 2016 Olsen et al. presented a method for tracing out pseudoisomorphs; i) a

con�guration is quenched to the nearest local minimum in the high dimensional potential

energy landscape (an "inherent state") ii) the Hessian matrix is set up and diagonalised to

�nd the vibrational spectrum; iii) the high frequency part of the spectrum related to the

springs is identi�ed, and the scaling properties of the remaining part of the spectrum is

utilized to identify the pseudoisomorph. This method works, but is quite complicated to

apply. Fig. 2 demonstrates invariance of dynamics in both the asymmetric dumbbell (ASD)

and the �exible Lennard-Jones chain (LJC) along the state points that Ref. [7] determined

are pseudoisomorphs.

The present paper investigates much simpler methods for generating pseudoisomorphs.

The new methods are based on the scaling properties of the forces in a single con�gura-

tion. This works very well for atomic systems like the Kob-Andersen binary Lennard-Jones

mixture[13], and molecular models like the asymmetric dumbbell model and the Lewis-

Wahntrom OTP model with bonds modeled by constraints[14]. The present paper extends

the single-con�guration idea to deal with a molecular system that does not have strong virial

potential-energy correlations, and thus does not have isomorphs, but might have pseudoiso-

morphs.
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FIG. 2. Test of invariance of dynamics along state points determined by Olsen et al [7] to be

pseudoisomorphs. (a)-(c) the asymmetric dumbbell with harmonic springs. (d)-(f) the 10-bead

Lennard-Jones chain model with harmonic springs. (a, d) show the reduced mean-square displace-

ment of the center of mass plotted as a function of reduced time. (b, e) show the center-of-mass

incoherent intermediate scattering function as a function of the reduced time at the reduced wave-

vector given by q̃ = q(ρ2/ρ1)
1/3. (c, f) show the normalized end-to-end vector autocorrelation

function, which probes the decay of molecular orientation.

II. MODELS AND SIMULATION DETAILS

We simulated the asymmetric dumbbell model (ASD) with 5000 molecules consisting of

two di�erent sized Lennard-Jones (LJ) spheres, a large (A) and a small (B) particle. The

parameters of the model were chosen to mimic toluene[15]. Adopting the units de�ned by

the large sphere (σAA ≡ 1, εAA ≡ 1, and mA ≡ 1), the other LJ-parameters are given by

σAB = 0.894, σBB = 0.788, εAB = 0.342, εBB = 0.117, mB = 0.195. The bonds are modeled
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as harmonic spring, with an equilibrium length 0.584, and a spring-constants k = 3000.

For 10-bead Lennard-Jones chain (LJC) system, we simulated 1000 molecules. All par-

ticles are the same type, with the potential parameters and bond lengths set to unity

σ = 1, ε = 1, l = 1σ. Particles in di�erent molecules and non-bonded particles interact

via the standard LJ potential, cutting and shifting the forces at 2.5σ.

All Molecular Dynamics simulations were performed in the NV T ensemble with a Nose-

Hoover thermostat using RUMD, an open-source package that can be downloaded at http:

//rumd.org [16].

III. IDENTIFYING PSEUDOISOMORPHS VIA FORCE-BASED METHODS

Force methods have been introduced in refs. [14, 17]. Brie�y, the idea is the following:

Given a con�guration, R1, at state point (ρ1, T1) an a�ne scaling to density ρ2 is performed:

R2 = (ρ1/ρ2)
1/3R1. For molecules, two variants of this scaling can be applied; i) "molecular

scaling", where the center-of-mass of molecules are scaled while orientation and internal

degrees of freedom are kept �xed. ii) "atomic scaling", where the a�ne scaling is applied

to positions of all atoms, thus modifying internal degrees of freedom. After the scaling

of the con�guration, the forces associated with the two con�gurations, F(R1), F(R2), are

compared. If the new temperature, T2 can be chosen such that forces are the same in reduces

units, F̃(R1) = F̃(R2) , and if this is representative of all the relevant con�gurations, we

can expect structure and dynamics to be invariant in reduced units, since it is the same

di�erential equation being solved when simulating the two state points. In practice, the

temperature at density ρ2 is chosen by,

T2 =
|F(R2)|
|F(R1)|

(
ρ1
ρ2

)1/3

T1, (3)

which ensures |F̃(R1)| = |F̃(R2)| . Di�erent variants of the method is arrived at by di�erent

interpretations of what exactly F(R) represents, e.g., the forces on all the atoms in the

system, or the center-of-mass force on all molecules. We consider also a special variant,

based on invariance of torques in reduced units, τ̃1 = τ̃2, leading to:

T2 =
|τ2|
|τ1|

T1 . (4)
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FIG. 3. Force and torque correlations in harmonic ASD model using molecular scaling. (a)

[�atomic-force method�] shows the x-coordinates of the reduced forces on all particles plotted against

the same quantities of the uniformly scaled con�guration. The new temperatures are identi�ed by

Eq. (3). (b) [�molecular-force method�] shows the same for the center-of-mass �molecular� forces

between the molecules, which has no contributions from the intramolecular spring forces. (c)

[�Torque method�] shows the same correlation between the torque of molecules of unscaled and

scaled con�guration. (d) show the distribution of predicted temperatures, by applying the methods

to individual atoms and molecules.

The three methods are applied in Fig. 3, using molecular scaling for the initial scaling of

the con�guration, R2,cm = (ρ1/ρ2)
1/3R1,cm. (ρ1, T1) = (0.785, 0.174) is used as the reference

state point and ρ2 = 0.856, i.e., a 9% increase in density. Fig. 3(a) shows a scatter plot of

atomic force components, before and after scaling for a single con�guration. T2 = 0.197 is

found by applying atomic forces in Eq. (3); Fig. 3(b) shows a similar plot based on the center-

of-mass, or "molecular", forces between the molecules. Better correlation is obtained, and a

quite di�erent T2 = 0.299 is arrived at. Fig. 3(c) shows the torque correlations of molecules

of unscaled and scaled con�guration. The correlation is comparable with correlation of
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molecular force. Using Eq. (4) gives T2 = 0.310. Figure 3(d) shows distributions of the

temperatures predicted from applying Eq. (3) and Eq. (4) to individual atoms and molecules.

If the scaling was perfect, the distribution of predicted temperatures whould be a delta-

function, i.e., all atoms/molecules would "agree" on what the new temperature should be.

The molecular forces are found to give the smallest width of the distribution of predicted

temperatures.

For each of the three methods for identifying state points of possible dynamic invariances,

Fig. 4 compares the results for the dynamic signatures of the system studied in Fig. 2. The

methods only require a single con�guration, but when comparing the methods T2-values were

averaged over 195 independent con�gurations. We �nd that the molecular-force method gives

very invariant dynamics, with the exception of the lowest density where negative pressure

and a phase separation is observed. The torque method gives similar, but slightly worse,

results. The atomic force method does not work.

Next we turn our attention to the 10-bead Lennard-Jones chains (LJC). For this model

one can use not only the atomic and center-of-mass forces but also the segmental forces,

de�ned as:

FSeg,j ≡
1

dj
Fj +

1

dj+1

Fj+1, (5)

where dj and dj+1 are the number of bonds in which particle jth and (j + 1)th are involved

in. Note that the segmental forces here are de�ned so that:

FMol =
9∑

j=1

FSeg,j, (6)

The dynamics are invariant along atomic (a, b, c) and segmental force (g, h, i) methods in

Fig. 5 except at lowest density from reference point (ρ1, T1) = (1.00, 0.700). Same densities

are given from Fig. 1. On the other hand, the predicted points via the center-of-mass force

method are not pseudoisomorphic due to the intramolecular interactions (Fig. 5 (d, e, f)).

The torque method estimates the appropriate point at densities ρ = 1.00, 1.04, 1.08, 1.12, not

the lowest and highest densities (Fig. 5 (j, k, l)). The atomic and segmental force methods

predict the appropriate state points in LJC model whereas the molecular force method gives

better results in small molecular models (i. e. ASD model).

7



10
-2

10
0

10
2

10
4

~t

0

0.2

0.4

0.6

0.8

〈R
(0

) 
R

(~ t)
〉

ρ = 0.738, Τ = 0.171
ρ = 0.761, Τ = 0.172
ρ = 0.785, Τ = 0.174
ρ = 0.808, Τ = 0.178
ρ = 0.832, Τ = 0.186
ρ = 0.856, Τ = 0.197

10
-2

10
0

10
2

10
4

~t

ρ = 0.738, Τ = 0.116
ρ = 0.761, Τ = 0.142
ρ = 0.785, Τ = 0.174
ρ = 0.808, Τ = 0.209
ρ = 0.832, Τ = 0.250
ρ = 0.856, Τ = 0.299

10
-2

10
0

10
2

10
4

~t

ρ = 0.738, Τ = 0.115
ρ = 0.761, Τ = 0.141
ρ = 0.785, Τ = 0.174
ρ = 0.808, Τ = 0.211
ρ = 0.808, Τ = 0.211
ρ = 0.856, Τ = 0.310

ρ = 0.738, Τ = 0.116
ρ = 0.761, Τ = 0.142
ρ = 0.785, Τ = 0.174
ρ = 0.808, Τ = 0.209
ρ = 0.832, Τ = 0.250
ρ = 0.856, Τ = 0.299

ρ = 0.738, Τ = 0.115
ρ = 0.761, Τ = 0.141
ρ = 0.785, Τ = 0.174
ρ = 0.808, Τ = 0.211
ρ = 0.832, Τ = 0.256
ρ = 0.856, Τ = 0.310

ρ = 0.738, Τ = 0.116
ρ = 0.761, Τ = 0.142
ρ = 0.785, Τ = 0.174
ρ = 0.808, Τ = 0.209
ρ = 0.832, Τ = 0.250
ρ = 0.856, Τ = 0.299

Molecular Force Method

ρ = 0.738, Τ = 0.115
ρ = 0.761, Τ = 0.141
ρ = 0.785, Τ = 0.174
ρ = 0.808, Τ = 0.211
ρ = 0.832, Τ = 0.256
ρ = 0.856, Τ = 0.310

Torque Method

10
-6

10
-4

10
-2

10
0

10
2

m
sd

C
M

 (
re

d
u

ce
d

 u
n

it
s)

ρ = 0.738, Τ = 0.171
ρ = 0.761, Τ = 0.172
ρ = 0.785, Τ = 0.174
ρ = 0.808, Τ = 0.178
ρ = 0.832, Τ = 0.186
ρ = 0.856, Τ = 0.197

Atomic Force Method

0

0.2

0.4

0.6

0.8

F
sC

M
(~ q

,~ t)

ρ = 0.738, Τ = 0.171
ρ = 0.761, Τ = 0.172
ρ = 0.785, Τ = 0.174
ρ = 0.808, Τ = 0.178
ρ = 0.832, Τ = 0.186
ρ = 0.856, Τ = 0.197

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 4. Testing for invariance of the reduced dynamics for each of three di�erent methods

for generating pseudoisomorphs based on a single equilibrium con�guration of the reference state

point (ρ1, T1) = (0.785, 0.174). Each method investigates the reduced center-of-mass mean-square

displacement (upper �gures), the center-of-mass incoherent intermediate scattering function (middle

�gures), and the directional autocorrelation function probed via the autocorrelation function of the

normalized bond vector (bottom �gures). (a), (b), (c) show results for state points generated

by the atomic-force method based on requiring invariant reduced forces between all atoms, i.e.,

including the harmonic bond contributions (Eq. (3)). (d), (e), (f) show results for state points

generated by the molecular-force method requiring invariant reduced center-of-mass forces between

the molecules (Eq. (3)). (g), (h), (i) show results for state points generated by the torque method

requiring invariant reduced torques on the molecules (Eq. (4)).
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FIG. 5. The dynamics of the LJC model with harmonic bonds using the force methods applying

the atomic scaling method. The reference point is (ρ1, T1) = (1.00, 0.700). The density increases

about 17%. The atomic force method (a, b, c) generate the proper pseudoisomorph at higher

densities from the reference point. However, the molecular force method (d, e, f) do not achieve the

pseudoisomorphs as expected, the segmental force method (g, h, i) gives the appropriate prediction

also at higher densities; And the torque method (j, k, l) provides the good results at some of the

densities ρ = 1.00, 1.04, 1.08, 1.12.

IV. PSEUDOISOMORPHS IN ASD MODEL AT HIGH DENSITIES

In Fig. 4 we applied the force based methods to the ASD and found good invariance of

the dynamics using the molecular force method, and to a slightly lesser degree the torque
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FIG. 6. Mean square displacement, incoherent intermediate scattering function and orientational

autocorrelation function of end-to-end vector of the ASD model with harmonic spring bonds eval-

uated along invariant forces through the CM scaling. Reference point is (ρ1, T1) = (0.932, 0.465)

taken from ref. [7] . The density changes above 19%

method. Note however, that the densities used (ρ = 0.738 → 0.856) are smaller than the

densities (ρ = 0.886→ 0.972) applied by Olsen et al [7] (Fig. 2). Fig. 6 shows the results of

applying the same methods as in Fig. 4, but at the higher densities used by Olsen et al [7].

The molecular force method is still the best method, but the invariance of the dynamics is

clearly inferior to what was found at low densities.
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FIG. 7. Distribution of bond lengths along the molecular force method around the length of the

spring (purple dashed line) and comparing the bond length distribution of unscaled and scaled

con�gurations. The �gures demonstrate that bonds are compressed when the density is increased.

This a�ects not just the intramolecular, but also the intermolecular forces. (a) Comparing the bond

length of di�erent state points in which ρ = 0.932 is the reference point at equilibrium. Bond length

is shifting by scaling the system at di�erent densities. (b) Shows quenching the system according to

the constraint conditions (�x the centre-of-mass and orientational direction of molecules �x), causes

the bonds compressed to their right length at equilibrium (green). Comparing the bond length of

unscaled (black) and scaled (red) con�gurations shows how the bond length decreased by scaling

the system at high density before quenching, which is di�erent from the bond length at equilibrium

(green). This di�erence is disappeared by quenching the system (blue).

Fig. 7(a) shows the distributions of bond lengths for equilibrium simulations at the state

points generated by the molecular force method. The bonds are compressed when the density

is increased, an e�ect that is not seen at the lower densities used in Fig. 4. This means that

when a con�guration from the reference state point is scaled to a higher density, this scaled

con�guration is not representative of equilibrium con�gurations at the new state point, since

the bonds are too long.

In an attempt to eliminate the e�ects of the harmonic bonds, for any given con�guration

we kept �xed the center of mass and orientation of each molecule. For this �constrained�

system a scalar l was added to all bond lengths, and the potential energy was the minimized
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as a function of l. In this way any given con�guration is mapped into a �quenched� con�g-

uration with minimized harmonic bond energy, in e�ect removing the non-scaling degrees

of freedom suspected of causing the poor invariance seen in Fig. 6 and giving the proper

bond lengths (Fig. 7 b). Note that the system is scaled before quenching, not the other way

around.
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FIG. 8. Correlation of atomic force (a, b) molecular force (c, d) of molecules. One con�guration is

taken from equilibrium simulation at (ρ1, T1) = (0.932, 0.465). Then the temperature at ρ2 = 1.060

is predicted by using Eq. (3). Analog of Fig. 3 for pairs of quenched con�gurations. For both the

atomic-force (b) and the molecular force (d) methods we �nd better correlation between scaled and

non-scaled forces after quenching.

Based on pairs of quenched con�gurations one may apply again the atomic-force,

molecular-force, and torque methods to generate state points with, possibly, the same

dynamics. The method we implemented works as follows. A single con�guration is selected

from an equilibrium simulation at the reference state point (density ρ1). This con�guration
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is scaled uniformly to the density of interest, ρ2. Both scaled and unscaled con�gurations

were quenched as described above in order to eliminate the bond vibrational degrees of

freedom. After this the relevant forces / torques were evaluated and the temperature T2

was determined from Eq. (3) and Eq. (4). Figure 8(a) shows the force-force scatter plot of

a single scaled con�guration versus those of the unscaled con�guration before quenching,

while (b) shows the better force correlations after quenching. (c, d ) show the correlations

of center-of-mass forces before and after quenching. The quench method leads to better

correlation, with the correlation coe�cient increasing from 0.850 to 0.934 for the atomic

forces and from 0.975 to 0.990 for the molecular (center-of-mass) forces.
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FIG. 9. Distribution of each particles temperature predicted via atomic and molecular forces.

For both methods T2 distributions narrow after quenching (full lines) compared to those of before

quenching (dashed lines). These improved consistency results give hope that the quenching proce-

dure results in more invariant dynamics specially by molecular force method; this is tested below

in Fig. 10.

High correlation signals an internal consistency of the procedure and also narrow temper-

atures prediction distribution in Fig. 9 which give hope for a good collapse of the reduced

dynamics. This is tested in Fig. 10 that is analogous to Fig. 6 except that all temperatures

T2 are based on quenched con�gurations. We again averaged over 195 pairs of scaled and

non-scaled con�gurations in order to improve the statistics. The best results are obtained

with the molecular-force method, which is also the one that worked best in Fig. 4. For

this method we here �nd excellent collapse of the reduced center-of-mass mean-square dis-

placement as a function of time, as well as of the center-of-mass incoherent intermediate
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FIG. 10. Testing for invariance of the reduced dynamics for the three di�erent �quench� methods

for generating pseudoisomorphs based on a single equilibrium con�guration from the reference state

point (ρ1, T1) = (0.932, 0.465). The con�guration was scaled uniformly to the relevant density ρ2

in order to determine the corresponding temperature T2. In contrast to Fig. 6, the scaled and

non-scaled con�gurations were quenched to a potential-energy minimum to eliminate the harmonic

bond degrees of freedom, after which procedure T2 was determined as above in Fig. 6. (a), (b),

(c) show results for state points generated by the atomic-force method requiring invariant reduced

forces between all atoms, i.e., including the harmonic bond contributions (Eq. (3)). (d), (e), (f)

show results for state points generated by the molecular-force method requiring invariant reduced

center-of-mass forces between the molecules (Eq. (3)). (g), (h), (i) show results for state points

generated by the torque method requiring invariant reduced torques on the molecules (Eq. (4)).

scattering function, while the directional autocorrelation function shows slightly worse col-

lapse but nevertheless signi�cantly better than without quenching. Comparing the results

of the torque method with and without quenching shows that quenching also signi�cantly
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FIG. 11. Testing for invariance of the reduced-unit structure for the three di�erent methods

for without and with quenching for generating pseudoisomorphs based on a single equilibrium

con�guration from the reference state point (ρ1, T1) = (0.932, 0.465). The con�guration was scaled

uniformly to the relevant density ρ2 in order to determine the corresponding temperature T2. (a),

(b), (c) show results for state points generated by the atomic and molecular force and torque

method before minimization. (d), (e), (f)show results for state points generated by the atomic and

molecular force and torque methods after minimization.

improves the invariances. Using the atomic scaling give the same results for molecular force

and torque method after we quench the system in Table I while the atomic force gives

di�erent results compared to Fig. 10.

V. DISCUSSION

Genuine isomorphs do not exist in systems without strong virial potential-energy correla-

tions, like systems of molecules with harmonic bonds. For the asymmetric dumbbell model

and long �exible Lennard-Jones chains with harmonic springs, we have seen that there ex-

15



TABLE I. Predicted temperature using the atomic scaling after quenching. The atomic force method

provide di�erent temperatures compared to Fig. 10. But molecular force and torque methods

identify same state points.

density T (FAtomic) T (FMol) Torque

0.886 0.444 0.352 0.345

0.932 0.465 0.465 0.465

0.969 0.494 0.573 0.581

1.009 0.540 0.710 0.730

1.060 0.624 0.917 0.957

ists, nevertheless, curves along which the dynamics is invariant to a good approximation.

Such curves are termed pseudoisomorphs [7]. Though they do not have invariant excess

entropy, they still behave like isomorphs, in the sense that they have invariant strucure and

dynamics in reduced units. Though not a focus here, we note that the structure is invariant

to a good approximation for all three methods both with and without quenching (Fig. 11).

We tested several methods to generate pseudoisomorphs. All methods require only a

single con�guration. For the ASD model with harmonic bonds, the best method to trace

out pseudoisomorphs is the molecular force method with molecular scaling and quencing of

the harmonic bonds, see Fig. 10. At low densities, the quenching can be skipped (but it does

not hurt), see Fig. 4. Interestingly, the molecular method does not work for the 10-bead

LJ-chains. For this model the best method was found to be the atomic force method with

atomic scaling.
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The Structure and Dynamics of Matter
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The scaling exponent :
𝛾𝛾 = ∆𝑈𝑈 ∆𝑊𝑊

∆𝑈𝑈 2 = 𝜕𝜕 ln 𝑇𝑇
𝜕𝜕 ln 𝜌𝜌 𝑆𝑆𝑒𝑒𝑒𝑒

Invariance of reduced unit quantities :
�𝑹𝑹 = 𝜌𝜌1/3𝑹𝑹
�𝑭𝑭 𝑹𝑹 = 𝑭𝑭(𝑹𝑹)

𝜌𝜌 ⁄1 3 𝑘𝑘𝐵𝐵𝑇𝑇
�𝑭𝑭 𝑹𝑹2 ≅ �𝑭𝑭 𝑹𝑹1

The temperature of the second state point is quantified by :

Generating isomorphs via invariant reduced forces indicates
the invariance of dynamics and structure of liquids at
different predicted state points.

According to the isomorph theory, dynamics and structure of
strongly correlating liquids system, called simple Roskilde
liquids, are invariant in different state points.

The correlation coefficient :

𝑅𝑅 = ∆𝑊𝑊 ∆𝑈𝑈
∆𝑊𝑊 2 ∆𝑈𝑈 2

.

The asymmetric dumbbell model, mimic of the toluene, consists
of two different type of LJ atoms, a large (A) and small (B) atoms,
in which the intermolecular pair interaction is demonstrated by the
Lennard-Jones potential :

𝑢𝑢(𝑟𝑟𝑖𝑖𝑖𝑖) = 4 𝜀𝜀𝑖𝑖𝑖𝑖
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖

12
− 𝜎𝜎𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖

6

𝑈𝑈 = 𝑈𝑈𝐿𝐿𝐿𝐿

𝑊𝑊 = 𝑊𝑊𝐿𝐿𝐿𝐿 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐

AB

Strongly Correlating Systems

Isomorph

𝑅𝑅 > 0.9

N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, J. C. Dyre;” Pressure-energy correlations in liquids. IV. “Isomorphs”
in liquid phase diagrams”; J. Chem. Phys. 131, 234504 (2009).
A.E. Olsen, J. C. Dyre and T. B. Schroder; “Communication : Pseudoisomorph in liquids with intermolecular degrees of
freedom”: J. Chem. Phys. 145, 241103 (2016).
T. S. Ingebrigtsen, T. B. Schroder, J. C. Dyre; “Isomorphs in Model Molecular Liquids”; J. Phys. Chem. B; 116, 1018-
1034 (2012).

𝑇𝑇2 = 𝜌𝜌1
𝜌𝜌2

⁄1 3 𝐹𝐹1
𝐹𝐹2

𝑇𝑇1



Dynamical Scaled Approaches in Identifying Isomorphs
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Scaling Exponent Method:

Direct Isomorph Check Method:

Invariant Dynamical Methods:

Force: 
      ,

   Torque:
                                                                    ,

  

N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, J. C. Dyre;” Pressure-energy correlations in liquids. IV. “Isomorphs” in liquid phase diagrams”; J. 
Chem. Phys. 131, 234504 (2009)
A. E. Olsen, J. C. Dyre and T. B. Schroder; “Communication : Pseudoisomorph in liquids with intermolecular degrees of freedom”: J. Chem. Phys. 145, 

241103 (2016).
T. S. Ingebrigtsen, T. B. Schroder, J. C. Dyre; “Isomorphs in Model Molecular Liquids”;  J. Phys. Chem. B; 116, 1018-1034 (2012)

I. IsomorphTheory

II. Identifying Isomorph Methods

γ=
⟨ΔU ΔW ⟩

⟨ (ΔU )
2 ⟩

=( ∂ lnT∂ ln ρ )
S ex

~F (R )=
F (R )

ρ1/3 kBT

~τ=
τ
k BT

~F (R1 )≃
~F (R2)

~τ 1≃~τ2

III. Models

U (r )=4 ε [( σr )
12

−( σr )
6

] U (r )=ε (
σ
r )

18

U 2≃
T 2
T 1
U 1

The strongly correlated liquids, termed Roskilde simple liquids, 
experience isomorphs. Dynamics and structural properties of 
Roskilde liquids are invariant along isomorphs curves. Identifying 
isomorphic state points is an important fundamental issue in the 
isomorphs theory.

IV. Results

References

Isotherm Dir-iso F
Atom

F
Mol

Torque

-70(2) -0.5(4) 1.1(4) -1.4(2) -0.9(4) 7.47(6)

77(3) -0.4(1) -1.0(1) 1.60(7) 0.5(1) -7.8(1)

65(3) 1.9(1) 1.26(2) 3.47(3) 2.62(7) -2.6(2)
γ

∂ log~D
∂ log ρ

∂ log~τCM
∂ logρ

Isotherm Dir-iso F
Atom

F
Mol

Torque

-113.4(6) 2.37(2) 0.88(1) 0.751(2) 1.770(5) 4.80(2)

126.7(7) -1.35(2) 0.06(1) 1.71(1) 0.11(2) -4.26(1)

107.9(6) -0.87(1) 0.88(2) 0.91(2) -1.37(3) -1.807(7)

γ

Asymmetric Dumbbell Model Symmetric Dumbbell Model

γ

∂ log~D
∂ log ρ
∂ log~τCM
∂ logρ

∂ log~τ rot
∂ logρ

∂ log~τ rot
∂ logρ



Predicting scaling properties of fluids from individual configurations
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Pseudoisomorph Theory
Pseudoisomorph theory is identified in systems without strong virial
potential-energy correlations by identifying lines of invariant dynam-
ics in the phase diagram of spring harmonic bonded models [1]. These
curves behave like isomorphs although the excess entropy is not in-
variant along an pseudoisomorph.

R =
⟨∆W∆U⟩

√
⟨(∆W )2⟩⟨(∆U)2⟩

Identifying Pseudoisomorph
•Invariance Force Method

F̃(R1) = F̃(R2) T2 =
|F(R2)|
|F(R1)|


ρ1
ρ2



1/3

T1

•Invariance Torque Method

T2 =
|τ2|
|τ1|

T1

Why dynamic methods do not work?

•Minimization of the potential energy surface
We consider two condition:

L′
i = Li + dli

dRcm = 0

Update particles’ positions:



r′j = rj + αdli j ≤ i

r′j = rj + βdli j > i




dr1

dr2


 =




mB

mA +mB

− mA

mA +mB



× dl1̂l1

Calculate the minimum of potential in l space:
∂U(L)

∂L
=

mB

mA +mB

∂U

∂r1
l̂1 −

mA

mA +mB

∂U

∂r2
l̂1

After Minimization

Another Minimization Method
• Minimum of potential and predicted temperatures via Vector Function

density U Umin T (FMol) T (FAtomic) Torque
0.886 -30720.936 -31864.362 0.354 0.354 0.347
0.969 -22804.725 -24032.457 0.567 0.573 0.577
1.009 -16338.726 -17777.382 0.701 0.700 0.719
1.060 -4989.757 -7044.952 0.895 0.894 0.931
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