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Abstract

Since the end of the 20th century there has been a rapidly increasing interest in
ionic liquids because of their potential applications. Hansen et al., Phys. Chem.
Chem. Phys. 22, 14169 (2020) studied experimentally an ionic liquid and found
that many dynamical quantities were invariant along certain lines. Along these
lines, they also found the main peak structure factor to be invariant, while the
charge peak decreased in intensity and got shifted to lower reduced wavenumbers
as temperature increased.

We investigate ionic liquids using the framework of isomorph theory, which
predicts that some systems have lines in the phase diagram, where structure and
dynamics are invariant. The structure was not invariant in the experimental study,
however, we found isomorph theory to be a useful tool for analysing lines of in-
variant dynamics.

We analyse the structure and dynamics of three ionic liquid models using molec-
ular dynamics computer simulations. The three models have different amounts of
detail in order to isolate what features cause different behaviours of the liquid. This
includes the simple atomic salt model from Hansen and McDonald, Phys. Rev.
A 11, 2111 (1975), a molecular united atom model of the ionic liquid Pyr14TFSI
which was analysed in Hansen et al., and a molecular all-atom model of the same
ionic liquid.

We find that both the atomic and molecular models have curves in the phase
diagram where dynamics are invariant. This includes diffusion coefficient, viscosity
and characteristic times from the self-intermediate scattering function. All models
also obey the reduced Stokes-Einstein relation. Furthermore, for the molecular
models we found that some molecular-rotations showed invariance along these
curves. The molecular-rotations, which showed invariance, seemed to be the ones
with high moment of inertia. We refer to these curves of invariant dynamics as
“isodynes”. In Hansen et al., isodynes were only analysed in a density range
of 2%. However, for the molecular models we analysed different density ranges
around 20% and found isodynes in the entire interval. For the atomic model an
isodyne was analysed where the density was changed by a factor of 6.6 and showed
only small to no changes in dynamics for the entire interval. This tells us that
isodynes are a very stable feature of ionic liquids, and cover a much broader part
of the phase diagram than what was shown experimentally. This is one of the
main results of this work.

Although, the united atom model is between 2-3 times faster than the all-atom
model, the shape of isodynes in the united atom model are still very good approx-
imations of the isodynes in the all-atom model. This means that the hydrogen
does not change the overall dynamical behaviour significantly, other than slowing
down everything.
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We also analyse the structure factor peaks along these isodynes. We find that
the charge peak show the same changes as in the experiment for all three models.
Since this behaviour was also present in the simple atomic model its cause must
be found in the charge interaction and not in the molecular structure (which is
not present in that model). Hansen et al. reported the main structure factor peak
to be invariant, however, we find this to be a consequence of the limited density
range, which was studied. When limiting the density range to 2% we also see the
main peak to be invariant, and thus is in agreement with the experimental study.

For the molecular models, we find a substructure between close ion pairs. This
substructure was analysed for the united atom model. We find it is caused by
the interactions between the tetrahedral structure in the cation and N− in the
anion. This creates a preferred orientation of the anion relative to the cation,
which allows the pair to get close together. This substructure was most prevalent
in the high density, low temperature region, and was shown to be varying along
isodynes. The significance of this substructure is unknown. However, based on
partial redial distribution functions we believe that this substructure is present in
the all-atom model and might be even more pronounced than in the united atom
model.

Lastly, we perform a study of the preferred orientations of the cation tail for
the united atom model. We found that the part of the tail closest to the ring
is dominated by intra-molecular interactions. On the other hand, the end of the
tail is affected by the surrounding molecules. Here the end of the tail shows some
invariance along isodynes.
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Resume (in Danish)

Siden slutningen af det 20. århundrede har der været en stadig stigende inter-
esse i ionvæsker grundet deres potentielle applikationer. Hansen et al., Phys.
Chem. Chem. Phys. 22, 14169 (2020) foretog eksperimentelle studier af ion-
væsker og fandt bestemte linjer, hvor flere dynamiske egenskaber er invariante.
De fandt, at langs disse linjer er det primære maximum i strukturfaktoren invari-
ant, og ladnings-maximum falder i intensitet og bliver skubbet til lavere reducerede
bølgenumre ved stigende temperaturer.

Vi undersøger ionvæsker ved at anvende isomorfteorien, som forudser at visse
systemer har linjer i fasediagrammet med invariant struktur og dynamik. Struk-
turen var ikke invariant i det eksperimentelle studie, men vi finder stadig at iso-
morfteorien er et brugbart redskab til at analysere linjer med invariant dynamik.

Vi analyserer strukturen og dynamikken i tre ionvæskemodeller via molekylær-
dynamiske computersimuleringer. De tre modeller har forskellige mængder af de-
taljer for at isolere hvilke egenskaber, der for̊arsager hvilken opførsel i væsken.
Dette inkluderer den simple atomare saltmodel fra Hansen and McDonald, Phys.
Rev. A 11, 2111 (1975), en molekylær forenet-atom saltmodel af ionvæsken
Pyr14TFSI, som blev analyseret i Hansen et al., og en molekylær al-atom model
af den samme ionvæskemodel.

Vi fandt, at b̊ade den atomare og de molekylære modeller har kurver i fase-
diagrammet, hvor dynamikken er invariant. Dette inkluderer diffusionskoefficient,
viskositet og karakteristiske tider for den intermediære spredningsfunktion. Alle
modellerne overholder ogs̊a den reducerede Stokes-Einstein relation. Vi fandt end-
videre, at nogen molekylære rotationer var invariante langs disse linjer for de
molekylære modeller. De molekylære rotationer, som viste invarians, havde højt
inertimoment. Vi refererer til disse linjer med invariant dynamik som “isodyner”.
I Hansen et al. blev isodyner kun analyseret i et densitetsinterval p̊a 2%. I vores
molekylære modeller analyserede vi densitetsintervaller p̊a 20% og fandt isodyner i
hele intervallet. For den atomare model analyserede vi en isodyne, hvor densiteten
blev ændret med en faktor 6,6 og viste kun små til ingen dynamiske ændringer
i hele intervallet. Dette fortæller os at isodyner er en meget stabil egenskab for
ionvæsker, og den dækker en meget større del af fasediagrammet end hvad tidligere
er blevet vist eksperimentelt. Dette er et af hovedresultaterne fra dette projekt.

Selvom at den forenet-atom model er 2-3 gange hurtigere end al-atom modellen
er formen p̊a den forenet-atom models isodyner stadig gode approksimationer af
isodynerne for al-atom modellen. Dette betyder, at hydrogen ikke ændrer den
overordnede dynamiske opførsel signifikant udover at gøre alt langsomere.

Vi analyserede ogs̊a struktur faktor maxima langs isodyner. Vi fandt, at i alle
tre modeller havde ladnings-maximum samme opførsel som i eksperimentet. Da
denne opførsel ogs̊a er tilstede i den atomare model må den være for̊arsaget af
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ledningerne og ikke den molekylære struktur (som ikke er tilstede i denne model).
Hansen et al. rapporterede, at det primære maximum i struktur faktoren er invari-
ant, men vi fandt, at dette er en konsekvens af det begrænsede densitetsinterval,
som blev analyseret. N̊ar vi begrænser densitetsintervallet til 2% for vores data,
ser vi ogs̊a at det primære maximum er invariant.

For de molekylære modeller fandt vi en substruktur imellem tætte ionpar.
Denne substruktur blev analyseret for den forenet-atom model. Vi fandt, at sub-
strukturen kom fra interaktionerne mellem tetrahedral strukturen i kationen og
N− i anionen. Dette skaber en foretrukken orientering for anionen relativt til ka-
tionen, hvilket tillader ionerne at komme tættere sammen. Denne substruktur var
mest udbredt ved høje densiteter og lave temperaturer, og er ikke invariant langs
isodyner. Signifikansen af denne substruktur er ukendt. Baseret p̊a partiel radial
distributions funktioner, tror vi at denne substruktur er tilstede i al-atom modellen
og kunne endda være mere udtalt end i den forenet-atom model.

Tilsidst studerede vi den foretrukne orientering af kation-halen for den forenet-
atom model. Vi fandt, at den del af halen som er nærmest ringen var domineret af
intra-molekylære interaktioner. Enden af halen er derimod p̊avirket af de omkring-
liggende molekyler. Her viser enden af halen en delvis invarians langs isodyner.
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Chapter 1

Introduction

Molten salts and ionic liquids

We do not often encounter molten salts in our everyday life due to their high
melting points. A well known example of this is kitchen salt (NaCl), which has a
melting point of 801 ◦C at ambient pressure. This and many other scientific works
are interested in the subgroup of molten salts, that are liquid at room temperature.
More specifically, the melting points are less than 100 ◦C [Walden, 1914]. This
subgroup has different names such as room temperature molten salts and room
temperature ionic liquids. However, we will simply refer to it as ionic liquids (ILs)
which is commonly used in the literature.

The interest in ILs has increased massively since the end of the 20th century.
This is because of their potential use in different technologies, e.g. solar cells
[Zakeeruddin and Grätzel, 2009], as solvents in batteries [Webber and Blomgren,
2002], and as lubricants [Ye et al., 2001]. ILs are desired in these fields because
they can be designed to have different physical properties. Consequently, ILs were
famously referred to as “designer solvents” in Freemantle [1998] due to their flex-
ibility in combining and designing cations and anions. Some examples of common
chemical structures for cations and anions are illustrated in Fig. 1.1.

Figure 1.1: Modified version of Fig. 1 from Wang et al. [2020]. Exam-
ples of chemical structures of typical cations and anions for ILs.
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The low melting points of ILs are believed to be caused by the size and asym-
metry of the ions, which affect their packing [Hallett and Welton, 2011]. Addition-
ally, properties inherent for all ILs are a low vapour pressure, and consequently low
flammability [Freemantle, 1998]. This is associated with their low melting points
and strong Coulomb interactions [Bier and Dietrich, 2010]. These two qualities
alone, make ILs safe to use because they ensure the liquid will not vaporise or
ignite as easily as other alternatives. An example could be the IL [C4mim][PF6],
which was found to have a vapour pressure of 100 pPa at 25 ◦C [Paulechka et al.,
2003]. For comparison, the vapour pressure of water at the same temperature is
3.1690 kPa [Lide, 2004], which is a difference of 1013. However, before their poten-
tial application can be realized we need a better understanding of the behaviour
of ILs. Hence the rapid development of this scientific field.

Inspiration for this work

A historical overview of ILs with a focus on experimental results can be found
in Welton [2018]. It covers the earliest works like Walden [1914] to present day.
However, in this section we only go through works, that explain key concepts of
ILs or that directly inspired the direction and goal of this work.

The structure of different ILs has already been studied using both experiments
and simulations. This had led to the understanding of some structural features,
which seem to be general for ILs. These are nicely illustrated by Araque et al.
[2015], who used small angle X-ray scattering on a series of ILs. These features
involve two extra peaks in the structure factor, that appear as a consequence of
long range structures in the liquid. The three peaks can be seen for different ILs
in Fig. 1.2, which shows Fig. 1a from Araque et al. [2015]. The interpretation of
these three structure factor peaks for ILs (in order of decreasing q) is:

1. The main peak arises from the periodic distance between neighbouring ions.
Consequently, it is also referred to as the adjacency peak.

2. The presence of charges creates a preference of neighbouring molecules to
be of different types. Consequently, this creates a periodic structure that
reaches longer than the molecule neighbour distance. This results in an
extra peak in the structure factor which, due to its causation, is called the
charge peak.

3. Lastly, some ILs have cations with long alkyl chains (sometimes referred to
as tails). This has been shown to add polarity to the liquid, which creates
a periodic structure that reaches even longer than the charge peak. These
long range structures create a peak in the structure factor called the polarity
or the pre-peak.
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This correlation between the cation’s tail length and the long range structure,
that causes the pre-peak, was illustrated in Fig. 1a from Aguilera et al. [2015] (see
Fig. 1.2). The aim of this work was to investigate how lithium salt doping effects
the structure of two families of ILs with different tail lengths. This was done
using small-angle X-ray scattering experiments, with the goal to further increase
knowledge, which leads to ILs’ application in batteries. They found that lithium
salt doping greatly affected the length scale, which gives rise to the charge peak.
However, they also analysed the structure of these ILs with no lithium salt, and
found a clear connection between the tail length and the structure causing the
pre-peak.

Figure 1.2: Structure factor peaks for ionic liquids obtained with small-
angle X-ray scattering.
(Left) Fig. 1a from Araque et al. [2015]. Structure factor peaks for
different ILs. There are three types of peaks; pre-peak (polarity), charge
peak, and main peak (adjacency).
(Right) Fig. 1a from Aguilera et al. [2015]. Structure factor peaks
for two families of ILs with varying tail lengths. Different cation tail
lengths are shown here; n = 3, n = 4, n = 6, and n = 8. Both the
main and charge peaks are present at all tail lengths. However, there is
a clear correlation between the tail length and the length scale, which
gives rise to the pre-peak.
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The dynamics of ILs has also been a subject of great study. A part of this
involved testing if density scaling applies to ILs. The idea of density scaling is
that the dynamics of a system depends on the specific combination of density and
temperature i.e. Γ = ργ/T , where ρ is density, T is temperature, and γ is the
density scaling exponent. One result from López et al. [2011] showed that for six
ILs the viscosity, electrical conductivity and molar conductivities have similar γ.

With this understanding of ILs’ structure and dynamics Hansen et al. [2020]
asked the question of: “how these nano-scale structures influence transport prop-
erties and dynamics on different timescales ”. To answer this question, Hansen
et al. [2020] studied the IL Pyr14TFSI for a wide range of structure, dynamics
and transport properties using different methods. This IL is similar to the first
IL in Fig. 1.2 but with a shorter tail, which is why Pyr14TFSI does not have a
pre-peak. The Hansen et al. [2020] study included; the structure factor with X-ray
scattering, conductivity with dielectric spectroscopy, and microscopic dynamics
with neutron spectroscopy. They also used viscosity and self-diffusion data from
literature. With this data, they tested if density scaling applies for the system.
They found that not only does it apply for all the dynamics (charge transport, mi-
croscopic α-relaxation, phonon dynamics, viscosity and self-diffusion data), they
all have the same density scaling exponent γ = 2.8. Furthermore, they found that
when presenting the structure factor as a function of q̃ = ρ−1/3q the main peak
also obeyed density scaling. However, the same was not true for the charge peak.
This can be seen in Fig. 1.3, which shows Fig. 5b from Hansen et al. [2020]. The
cause of this behaviour is not well understood, which leads to the subject of this
work.

0.4 0.6 0.8 1 1.2 1.4
0

0.5
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Figure 1.3: This is figure 5b from Hansen et al. [2020] showing X-ray
data for the structure factor along lines of equal electrical conductivity.
The main peak is invariant, while the charge-peak decreases in ampli-
tude and gets shifted to lower q as the temperature increases.
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The aim of this work

In this work, we would like to investigate this phenomenon further and try to
explain the connection between structural and dynamical invariance. To do this,
we would like to apply “isomorph theory” which has been developed at Roskilde
University in Denmark since 2008. An in-debt explanation of isomorph theory
will be provided in Chap. 4, but for now it is sufficient to know the following; iso-
morph theory is a theoretical framework, that applies to a special class of systems
called “R-simple”. When applying a specific scaling, the theory predicts structural
and dynamical invariance along configurational adiabat, that is curves of constant
excess entropy (∆Sex = 0). If this is true, the curve is considered an isomorph.

The scaling of q used in Hansen et al. [2020] (q̃ = ρ−1/3q) is the same as
in isomorph theory. However, the curve of constant electrical conductivity from
Hansen et al. [2020] is not an isomorph, since the charge peak is not invariant.
However, it has been shown that systems with Coulomb interactions generally do
not have isomorphs [Dyre, 2014]. Instead we hypothesise that this curve could be
an approximate isomorph, or related in some way. This hypothesis is based on the
connection between isomorph theory and density scaling.

To test this, it would be interesting to find which dynamical quantities are
invariant along the same curves in the phase diagram. Furthermore, it would
be relevant to investigate the behaviour of the structure (especially the structure
factor) along these lines. This has lead to the following research questions:

1. Do simulated ILs have lines in the phase diagram where multiple dynamical
quantities are invariant? If so, how can these lines be found, and what
dynamical quantities are invariant along them?

2. Which aspects of structure are invariant, and which ones are not invariant,
along these lines of invariant dynamics?

3. What insight in the physics of ILs can be learned from the existence of
lines with invariant dynamics, and which microscopic properties are invariant
along them?

To our knowledge we are the first to analyse both structure and dynamics of ILs
through the lense of isomorph theory.
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Method

To answer these questions a computational approach was chosen because of the
extra information, that can be obtained, e.g. exact particle positions. Differ-
ent available methods come with benefits and limitations. Monte Carlo methods
would only provide structural information, which is not sufficient. Alternatively,
quantum calculations would provide detailed descriptions, but due to complexity
the system size would be massively limited. As a result, we choose to use molec-
ular dynamics (MD) computer simulations. MD was chosen because it allows us
to analyse both structure and dynamics of “large” systems, which is necessary to
answer our questions. It is also commonly used throughout the literature.

Furthermore, we would like to better understand, what IL features give rise
to their properties. To do this, we analyse three different models with varying
amount of detail, using coarse-grained modelling. The essence of coarse-graining
is attempting to describe a complex system with a simple model. The argument
being that if a simple model can capture the behaviour of a complex system, the
details that are absent from the model must not be essential to the behaviour.
The three IL models which we analyse are:

1. We analyse how charges affect a simple liquid system. To do this we choose
the simple salt model from Hansen and McDonald [1975]. This model con-
tains two types of point particles, which are identical in all respects except
they have opposite charge.

2. We analyse how the molecular structure affects the structure and dynamics
of ILs. To do this we choose an united atom model of the IL Pyr14TFSI which
was used in Hansen et al. [2020]. In united atom modelling all CH-groups
are represented by single spheres (in this case it only affects the cation).

3. We want to compare the united atom model with a more detailed all-atom
representation of the same IL. In all-atom modelling all C and H atoms
are represented by individual spheres. This model will not be studied as
thoroughly as the united atom model, since its main purpose is to be used
for comparison.

This should allow us to isolate the behaviour, that is caused by the charges, and
those that arise as a consequence of the molecular structure. This will provide us
with a detailed description of what features are responsible for the behaviour of
ILs.
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Roskilde University Molecular Dynamics

All simulations in this work are performed using the software Roskilde University
Molecular Dynamics also known as RUMD. RUMD is a MD simulation package
for NVIDIA’s GPU. It is optimized for high performance on small to medium
sized systems composed of molecules and spherical atoms. RUMD uses a python
interface and has a package with post-analysis tools, which we use throughout this
work. It is developed by the Glass and Time group, which is funded by the Danish
National Research Foundation.

RUMD is freely available at http://rumd.org/ where more information, in-
cluding the manual and tutorial, can be found.

Perspective on modelling

This work is computational and consequently only applies directly to simulated
ILs. However, this does not mean that we cannot learn from these models. For
instance if a model liquid satisfy the assumptions of a theory for real liquids, the
theory must also apply for the model liquid. This mentality is nicely summarised
by one of my colleagues:

“ Model liquids are liquids too. ”

– Professor Thomas B. Schrøder

Note on figures in this work

All figures in this work have been created for this project, with only four exceptions.
These are Fig. 1.1, Fig. 1.2 and Fig. 1.3 and later in Chap. 5 and Chap. 6 where
the Hansen et al. [2020] structure factor data (Fig. 1.3) will be shown again. Some
illustrations in the theory chapters are inspired by existing figures from other
sources in which case the original work is cited.
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Reading guide

A quick resume of what the reader can expect to find in the different chapters:

Chap. 2 Molecular Dynamics
Since this work is computational, some time will be spent explaining the
general idea and selected tools for molecular dynamics simulations. This
includes how to define molecular systems.

Chap. 3 Molecular Scale Structure and Dynamics
We present some general theory of materials, and introduce different struc-
tural and dynamical quantities on a molecular scale.

Chap. 4 Isomorph Theory
The concepts from the previous chapter will be used to explain, and be put
in the context of isomorph theory.

At this point, the reader should have a basic understanding of the theory
and method that will be used. We will therefore proceed to present the three
different models that are studied in this work.

Chap. 5 Simple Atomic Ionic Liquid Model
The first model is a simple point particle model, that will be used to find
how a simple charged system behaves.

Chap. 6 United Atom Ionic Liquid Model
The second model is a more detailed united atom model, that will help us
understand how molecular systems behave.

Chap. 7 All-atom Ionic Liquid Model
The third model is an all-atom version of the second model. This model will
not be studied as thoroughly as the second model, and will mainly be used
for comparison.

Chap. 8 Summary and Conclusions
A summary of the most important results from the three models. Lastly,
suggestions for further work will be provided.

I hope you will enjoy!
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Chapter 2

Molecular Dynamics

The goal of this chapter is to introduce the basic principles of molecular dynamics
simulations. The focus is on the details for setting-up and running a simulation
rather than performance optimisations. This includes; integrators and ensembles,
the potential energy function, intra-molecular potentials to simulate molecules,
and boundary conditions. In our case the process of creating an initial configura-
tion is not important since we in all cases require equilibration of the system before
data is collected. However, a short description of this can be found in Sec. B.1.

2.1 Introduction to Molecular Dynamics

Molecular dynamics (MD) is a classical method to simulate many body systems.
In this context classical means that it uses Newton’s equations of motion from
classical mechanics to determine the dynamics of the system. MD was developed
in the early 1950s and has since increased in popularity, with more sophisticated
techniques being added while maintaining the main principles.

One of the biggest benefits of MD from a scientific point of view is that we have
exact information of positions, velocities, and forces of all particles in the system
at different times. Thus we can investigate both the structure and dynamics of
the system, which is not possible in most physics experiments.

On the other hand, one of the obvious limitations of MD is that it technically
does not tell us anything about reality, it only tells us the behaviour of the sim-
ulated model. Another limitation is the available computational resources which
puts a practical restriction on the system size and the simulation-time. However,
this limit is constantly pushed by the evolution of technology.
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2.2 Temperature and pressure

Temperature

We know from classical mechanics that the kinetic energy of an object with mass
m and velocity v is

Ekin =
1

2
mv2 (2.1)

It turns out that we can define the temperature of the system from it’s kinetic
energy [Frenkel and Smit, 2002]. The average kinetic energy per degree of freedom
is 〈

1

2
mv2

〉
=

1

2
kBT (2.2)

The instantaneous temperature is

T (t) =
1

kBNf

N∑

j=1

mjv
2
j (t) (2.3)

where Nf = 3N − 3. This means that if one wishes to scale the temperature with

a factor λ they should scale the velocities with
√
λ.

Pressure

There are two common ways of calculating the pressure of a molecular system;
the atomic pressure (Pa), and the molecular pressure (Pm). We will show how to
calculate both. However, it was shown in Akkermans and Ciccotti [2004] that Pa
and Pm are equivalent in the thermodynamic limit.

The pressure tensor has 9 components, one for each combination of directions

P =



Pxx Pxy Pxz
Pyx Pyy Pyz
Pzx Pzy Pzz


 . (2.4)

Note that generally Pxx = Pyy = Pzz unless the system is asymmetric and has a
preferred direction (or statistics are bad).

Before presenting the two pressure tensors we first establish the notation. We
have a system with N molecules and nj atoms in molecule j. The centre of mass
and velocity of molecule j is rj and ṙj respectively. Likewise, the position of the
α’th atom in molecule j is rjα. Lastly, the relative position between atom jα and
kβ is rjαkβ, and the force on jα from kβ is Fjαkβ.
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In this context when computing the product between two vectors it will be
done in such a way that the product is a matrix, e.g.

rF =



rx
ry
rz


(Fx Fy Fz

)
=



rxFx rxFy rxFz
ryFx ryFy ryFz
rzFx rzFy rzFz


 (2.5)

With this clarified the atomic pressure tensor is given by [Heyes, 1994]

Pa =
1

V

(
N∑

j=1

mj ṙj
2 +

1

2

N∑

j=1

nj∑

α=1

N∑

k 6=j

nk∑

β=1

rjαkβFjαkβ +
1

2

N∑

j=1

nj∑

α=1

nj∑

β 6=α
rjαjβFjαjβ

)
.

(2.6)
Likewise the molecular pressure tensor is given by

Pm =
1

V

(
N∑

j=1

mj ṙj
2 +

1

2

N∑

j=1

N∑

k 6=j
rjkFjk

)
, (2.7)

where Fjk in the total force on molecule j from molecule k. This can also be
expressed in terms of the atomic forces

Pm =
1

V

(
N∑

j=1

mj ṙj
2 +

1

2

N∑

j=1

nj∑

α=1

N∑

k 6=j

nk∑

β=1

rjkFjαkβ

)
. (2.8)

Note that the Pa uses the positions of all the atoms, where Pm only uses the
centre of mass positions of the molecules. It has been shown that the pressure
also depends on the choice of boundary condition for the system [Akkermans and
Ciccotti, 2004]. With this the atomic or molecular pressure of the system is

P =
Pxx + Pyy + Pzz

3
. (2.9)
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2.3 Integrators and ensembles

At the core of MD is the second-order differential known as Newton’s second law

F = mr̈ (2.10)

where F is the force vector, m is the mass, and r̈ is the second order time derivative
of the position vector r, also known as the acceleration. Our goal is to find r as
a function of time. Unfortunately, this is not an equation which we can solve
analytically for our complex systems, but we can achieve an approximation by
discretize Eq. 2.10.

Since the force-field is conservative this would result in a simulation with con-
stant energy. However, other simulation schemes have been developed to modify
the forces so the temperature is constant instead. In this section, we describe two
MD-algorithms; one with constant energy (NVE), and one with constant temper-
ature (NVT). Both will be used in this work.

2.3.1 The Verlet algorithm (NVE)

The Verlet algorithm is named after the French physicist Loup Verlet for his work
on MD in 1967 [Verlet, 1967]. For a short derivation of the algorithm, imagine
a time step ∆t and three functions; position r(t), velocity v(t), and force F (t).
First, we use central difference to define v(t±∆t/2) at a half time step

v(t+ ∆t/2) =
r(t+ ∆t)− r(t)

∆t
(2.11)

v(t−∆t/2) =
r(t)− r(t−∆t)

∆t
(2.12)

With this we can again use central difference to define the force F (t) and write it
as a function of r(t)

F (t) = m
v(t+ ∆t/2)− v(t−∆t/2)

∆t
(2.13)

= m
r(t+ ∆t)− 2r(t) + r(t−∆t)

(∆t)2
(2.14)

Now we can isolate r(t+ ∆t) to find the next position in the simulation

r(t+ ∆t) = 2r(t)− r(t−∆t) + (∆t)2F (t)

m
(2.15)

This equation is the Verlet algorithm, and it only depends on positions at times t
and t−∆t, and forces at time t (independent of velocities).

12



r(t−∆t) r(t) r(t+ ∆t)

v(t−∆t/2)

Figure 2.1: Illustration of a timeline for the Verlet algorithm, and the
Leap-frog algorithm.

A variation of the Verlet algorithm which is dependent on velocities instead of
the previous configuration can be obtained simply by inserting Eq. 2.12 in Eq. 2.15.
This is called the Leap-frog algorithm, and has the form

r(t+ ∆t) = r(t) + ∆tv(t−∆t/2) + (∆t)2F (t)

m
(2.16)

An illustration of a timeline can be seen in Fig. 2.1.

2.3.2 The Nosé-Hoover Thermostat (NVT)

The Nosé-Hoover Thermostat is named after the Japanese physicist Shuichi Nosé
and the American physicist William G. Hoover. It was first presented in 1986
Posch et al. [1986]. The difference between the Verlet algorithm and the Nosé-
Hoover Thermostat is that the forces are shifted with a factor −ξpj(t) Frenkel
and Smit [2002]. The set of differential equations are

ṙj(t) =
pj(t)

mj

(2.17)

ṗj(t) = Fj(t)− ξpj(t) (2.18)

ξ̇(t) =

(∑

j

p2
j(t)

mj

− (3N − β)T )

)
/
(
2 (3N − β)Tτ 2

)
(2.19)

where T is the target temperature, and τ is the relaxation time of the thermostat.
If the relaxation time τ is long then the temperature is regulated slowly (if too
slow it is effectively NVE), but if τ is too short then ξ dominates the forces and
one get unphysical forces. A discretization of Eq. 2.17-2.19 using the Leap-frog
scheme gives

rj(t+ ∆t) = rj(t) + ∆t
pj(t+ ∆t/2)

m
(2.20)

pj(t+ ∆t/2) =

(
1−∆t ξ(t)

2

)
pj(t−∆t/2) + ∆tF (t)

1 + ∆t ξ(t)
2

(2.21)

ξ(t+ ∆t) = ξ(t) + ∆tξ̇(t) (2.22)
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2.4 The potential energy

When describing the interactions between particles, it is common to define a func-
tion V (r) for the potential energy between them. From this, one can find the
corresponding forces by using

F (r) = −∇V (r). (2.23)

Once the forces are known, one can use Newton’s second law of motion to find the
new positions of the particles (see Sec. 2.3)

F = mr̈. (2.24)

The potential energy function, or simply the potential, only depends on the posi-
tions rj of the N particles in the system. However, it can depend on the positions
in a variation of ways, N -ways to be exact. This function can be separated into
different parts depending on how many positions it depend on. The total potential
can therefore be described as a sum of its individual parts [LeSar, 2013]

Vtot = V0 +
N∑

j

V1(rj) +
N∑

j,k

V2(rj , rk) +
N∑

j,k,l

V3(rj , rk, rl) + . . . , (2.25)

where V0 is a constant, V1 is the one-body term, V2 is the two-body term, and
so on till VN , the N -body term. In the following section, we will describe how to
use the two-body term for non-bonded interactions, and the two-body, three-body,
and four-body terms to describe the bonded interactions in molecules.

2.4.1 Two-body term - Pair potentials

Now we consider the symmetric two-body term, that is V (rj , rk) = V (rk, rj).
In this case only the relative positions of the particles matter, meaning that we
can change the variable from (rj , rk) to the distance between the particles rjk =
|rk − rj |, or r for simplicity.
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Examples of simple pair potentials

Theoretically one can define the potential in any way imaginable, however, a con-
dition that many potentials follow is that particles can not overlap (at least not
without a large energy cost). A simple way of enforcing this is by using an inverse
power law (IPL) potential

VIPL(r) = ε
(σ
r

)n
, (2.26)

where n is a positive real number, and ε and σ are characteristic energies and
distances, respectively. This is also referred to as a soft sphere potential.

One of the most famous pair potentials is the Lennard-Jones (LJ) potential
which consists of a sum of two IPLs and has the form [Jones and Chapman,
1924a] [Jones and Chapman, 1924b]

VLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (2.27)

This potential has a global minima at rmin = 21/6σ ≈ 1.12σ where the potential
takes the value V (rmin) = −ε. The repulsive part of this potential is between
0 < r < rmin and the attractive part is between rmin < r < ∞. The first IPL
is sometimes referred to as the repulsive term while the second IPL is called the
attractive term. The graphs of the LJ and IPL potentials can be seen in Fig. 2.2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

0

2

4

V
(r

)

LJ

IPL

Figure 2.2: The graphs of the LJ, and IPL potentials with ε = 1, σ = 1,
and for the IPL n = 1 (to represent electrostatic interactions).
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Cutoff/Truncation of potentials

The pair potential is defined for every set of particles, which results in many
calculations for large systems. However, since the potentials generally are defined
to approach 0 as r goes to infinity, many of these interactions’ contribution to the
potential energy is insignificant. Because of this (and to save computer-power) it
is common practice to introduce a truncation of the potential, also known as a
cutoff, after which the potential is 0. So a potential V (r) with a truncation at rcut
would have the expression

Vcut(r) =

{
V (r), for r ≤ rcut

0, for r > rcut
. (2.28)

However, in most cases this will create a discontinuity in the potential (and forces)
which could cause artefacts such as jumps in the potential energy. A common way
to fix the energy jumps is by using the shifted potential cutoff method instead
[Toxvaerd and Dyre, 2011]. This method removes the discontinuity simply be
adding a constant. Given a pair potential V (r) with a cutoff at rcut the shifted
potential version would be

VSP (r) =

{
V (r)− V (rcut), for r ≤ rcut

0, for r > rcut
. (2.29)

This does not change the forces between the particles, meaning that they are still
discontinues. This corresponds to giving the particles a small ‘kick’ when they get
within the cutoff distance.

A similar method called shifted force can be used to make the forces continuous
and the potential differentiable. This is done by adding a line to the potential with
the slope −V ′(rcut)

VSF (r) =

{
V (r)− V ′(rcut)r − V (rcut), for r ≤ rcut

0, for r > rcut
. (2.30)

This changes the forces but it has been shown in earlier studies that the results are
still accurate (see Toxvaerd and Dyre [2011] and for Coulomb interactions Hansen
et al. [2012]).
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Multiple types of particles

Until now, we have only talked about pair-potentials where all particles are of
the same type and interact the same way. However, it is possible to define a
multicomponent system with different particle interactions. For simplicity, we refer
to specific types as A, B etc. and unspecified types as α, β. These particles could
interact with different functional form, but assuming they have the same form,
such as the LJ-potential, we would need a set of ε and σ for each combination of
types, εαβ and σαβ. This is normally done by finding values for each type εα and
σα and defining εαβ and σαβ as a function of these. The standard way to define
εαβ is by using the Berthelot rule [Berthelot, 1898]

εαβ =
√
εαεβ, (2.31)

however, there are two standard ways to define σαβ

σαβ =
√
σασβ or σαβ =

σα + σβ
2

. (2.32)

The second part of Eq. 2.32 (also known as the Lorentz rule [Lorentz, 1881]) is
what we would expect when imagining the particles as hard spheres. This is the
version we apply in this work. The multicomponent pair-potential can be written
as

V2 =
∑

α

Nα,Nα∑

j<k

Vαα(rjk) +
∑

α6=β

Nα,Nβ∑

j,k

Vαβ(rjk) (2.33)

The potential is separated into a like and unlike part to avoid calculations between
a particle with itself.

2.4.2 Intra-molecular potentials - Define a molecule

So far we have only described interactions that are present between pairs of parti-
cles. However, to form a molecule some particles have extra interactions that are
not present between all particles. We will discuss three common ways particles can
be bonded together to form molecules. Firstly, one can fix the distance between
two particles, secondly one can fix the angle between three particles, and thirdly
one can fix the dihedral angle between four particles. These three constrictions
are illustrated in Fig. 2.3.
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l0

Bond

θ

Angle

θ

Dihedral

Figure 2.3: Illustrations of particle positions in the case of potential
energy from bonds, angles, and dihedrals.

Bond and angle potentials

There are many different versions of bond and angle potentials, but a simple
example would be a harmonic oscillator (or a spring) with energy [GRO, 2019]

V (x) =
1

2
k (x− x0)2 . (2.34)

This is commonly used since it is simply a Taylor approximation around an equi-
librium position, x0. Thus the bond- and angle-potentials can both be described
with the functions

Vb(r) =
1

2

∑
kb (r − l0)2 and Va(θ) =

1

2

∑
ka (θ − θ0)2 , (2.35)

where kb and ka are the spring constants, l0 is the bond length, and θ0 is the
preferred angle. Some versions of these potentials do not have the factor 1/2 in
which case it is included in the spring constants.

Force calculation - Bonds Two particles at positions rj and rk (and relative
distance rjk = rk − rj) with the bond-potential Vb(r) have the forces

Fj =
∂Vb(r)

∂r
· ejk (2.36)

Fj = −Fk, (2.37)

where the force acts in the direction ejk = rjk/rjk [Monasse and Boussinot, 2014].
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Force calculation - Angles Three particles at positions rj , rk, and rl with
the angle-potential Va(θ) form a plane with the normal vector nkjl

rkj = rj − rk and rkl = rl − rk (2.38)

nkjl =
rkj × rkl
|rkj × rkl|

(2.39)

and the angle θ between the particles is

cos(θ) =
rkj · rkl
|rkj| |rkl|

(2.40)

The forces on particle j and l act in the directions

ej = − ekj × nkjl
|ekj × nkjl|

and el =
ekl × nkjl
|ekl × nkjl|

(2.41)

and the forces on the three particles are

Fj = −∂Va(θ)
∂θ

1

rkj
ej (2.42)

Fl = −∂Va(θ)
∂θ

1

rkl
el (2.43)

Fk = −Fj − Fl (2.44)

An illustration of the forces in an angle-potential can be seen in Fig. 2.4.

θ

Fj

Fl

Fk

rj
rk

rl

nkjl

Figure 2.4: Two dimensional illustration of the forces in an angle-
potential. The normal vector nkjl is pointing out of the page.
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Dihedral potentials

As illustrated in Fig. 2.3, the dihedral potentials describe the angle between two
planes determined from four particles. There are two classes of dihedrals; proper-
and improper dihedrals. The difference between them is how the zero angle is
defined. For proper dihedrals, the cis version corresponds to an angle of zero,
where the trans version is zero for improper dihedrals. This has also lead to the
convention of using θ for proper dihedrals and φ = θ− 180 for improper dihedrals.
An illustration of the difference between cis and trans configurations can be seen
in Fig. 2.5.

Cis Trans

Figure 2.5: Illustrations of cis and trans versions of a simple four par-
ticle configuration.

In the following section, we will describe three similar types of proper dihedral
potentials which will be referenced in this work. The first dihedral potential we
present is the periodic type, which has the form [GRO, 2019]

V (θ) = Kθ (1 + cos (nθ − θ0)) , (2.45)

with energy Kθ, order n, and phase θ0. The second dihedral potential we present
is from the OPLS force field and is called the Fourier dihedrals which has the form

V (θ) =
1

2

4∑

n=1

Fn
[
1 + (−1)n+1 cos (nθ)

]
, (2.46)

with four energy parameters Fn. These potentials are similar in the sense that
they can describe some of the same functions.

Lastly is the Ryckaert-Bellemans function which has the form

V (θ) =
5∑

n=0

Cn (− cos (θ))n , (2.47)

with six energy parameters Cn. There is an exact translation from the Fourier
dihedrals to the Ryckaert-Bellemans function. The transformation is

C0 = F2 +
1

2
(F1 + F3) C1 =

1

2
(−F1 + 3F3) C2 = −F2 + 4F4

C3 = −2F3 C4 = −4F4 C5 = 0. (2.48)
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Force calculation - Dihedrals

To avoid an overload of symbols we instead use numbers to label the particles
in the upcoming example. Imagine four particles at positions r1, r2, r3, and r4
with the dihedral-potential Vdihe(θ) as shown in Fig. 2.6. In this case, the relevant
relative position vectors are

r21 = r1 − r2 and r23 = r3 − r2 and r34 = r4 − r3, (2.49)

and the normal-vectors to the two planes are

n213 = r21 × r23 and n324 = −r23 × r34. (2.50)

The angle θ between the planes, which is used to calculate the potential energy is

θ = arccos

(
n213 · n324

|n213| |n324|

)
. (2.51)

However, when calculating the forces on particle 1 and 4, two extra angles are
needed

sin (θ2) =
r21 × r23
|r21| |r23|

and sin (θ3) =
r34 × r32
|r34| |r32|

. (2.52)

The forces on particle 1 and 4 are

F1 = −∂Vdihe(θ)
∂θ

1

r21 sin (θ2)
n213 (2.53)

F4 = −∂Vdihe(θ)
∂θ

1

r34 sin (θ3)
(−n324). (2.54)

The forces on particle 2 and 3 are

F2 = − (e32 × F1 + r34 × F4 + r21 × F1)× e32 (2.55)

F3 = − (e23 × F4 + r34 × F4 + r21 × F1)× e23. (2.56)

To confirm the condition F1 +F2 +F3 +F4 = 0 we see that the two last terms in
Eq. 2.55 and 2.56 are equal in magnitude but with opposite sign

(r34 × F4 + r21 × F1)× e32 = − (r34 × F4 + r21 × F1)× e23 (2.57)

and the first term in Eq. 2.55

(e32 × F1)× e32 = F1 (2.58)
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Figure 2.6: Illustration of the dihedral angle between two planes
spanned by four particles. The cic version corresponds to an angle
of 0. The second part of this illustration is inspired by figure 1.10 in
Allen et al. [2017]

Excluded interactions

As mentioned earlier the goal of using bond, angle and dihedral potentials is to
restrict a specific distance or angle between a set of atoms. To enforce these
conditions it is common to excluding the non-bonded interactions between the
first and last particle in the bonded set. So for dihedral 1-2-3-4, angle, 1-2-3, and
bond 1-2, one would exclude the non-bonded interactions between particle 1-4,
1-3, and 1-2 respectively, see Fig. 2.7.

In RUMD, the non-bonded interactions in bonds, angles and dihedrals are
excluded by default.

1 2

Bond

1

2 3

Angle

1

2 3

4

Dihedral

Figure 2.7: Illustrations of bonds, angles, and dihedrals where the red
dashed line represents the excluded non-bonded interactions.
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2.5 Boundary conditions

Boundary conditions are used to limit the movement of the particles, often by
“putting them into a box”. This means that if a particle would move out of the
box different methods can be used to put it back inside. Some of these methods
are described in Allen et al. [2017].

Periodic boundary conditions

A problem with simulations is that we are limited by the available computer pro-
cessing power. This often leads to a compromise between system size, number
of particles, and the computation time. However, there is a way to define the
boundary conditions to create the illusion of an infinite system.

If a particle would move out of the box, it will instead be moved to the opposite
side. In a box with side length Lx the particle positions would be redefined after
each time step to xnew = xold mod (Lx). This also means that we should calculate
the interactions with particles on the other side of the box if they are “sufficiently
close”. A simple way to implement this for particles j and k is with the distance
function

dxjk = xjk − Lxint (2xjk/Lx) (2.59)

drjk =
√
dx2

jk + dy2
jk + dz2

jk. (2.60)

This is called periodic boundary conditions, and Fig. 2.8 illustrates the movement
of the particles, and the area of particle interaction when they are applied.

Particle movement

(a)

Area of particle interaction

(b)

Figure 2.8: (a) An illustration of particle movement in a 2D box with
periodic boundary conditions. Note that the movement is exaggerated.
(b) An illustration of the area in which particles can interact.
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Particle images and dynamics

When calculating dynamical properties such as the mean square displacement (see
Sec. 3.4) the distance travelled by the particles is important. Because of this, we
should save the number of times a particle has been moved from one side of the
box to the other (in three dimensions this would be the integers Imx, Imy, and
Imz). Thus the image of the particle is

rim = r +



ImxLx
ImyLy
ImzLz


 (2.61)

where Lx, Ly, and Lz are the side lengths of the simulation box.

Box size and cutoff

Due to the periodic boundary conditions, it is possible that a particle j can interact
with the same particle k twice, or even itself, if the box becomes too small, this is
illustrated in Fig. 2.9. To avoid this, the shortest side-length of the box should be
greater than or equal to twice the largest cutoff,

Lmin ≥ 2rcut (2.62)

Figure 2.9: Illustration of particle interactions in a box with imple-
mented periodic boundary conditions, where Eq. 2.62 is not satisfied.
This is seen by the overlapping areas, meaning that it is possible to
interact with the same particle twice.
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Chapter 3

Molecular Scale Structure and
Dynamics

The goal of this chapter is to explain different ways of describing the structure,
and dynamics of matter on a molecular scale. When it comes to calculating these
quantities we will take the perspective of an computational physicist. This means
we will assume the position, velocity and forces on the particles are known at dif-
ferent times, as this is the case in simulations.

3.1 Phases of matter

The most common phases of matter that we know from our daily lives are solid,
liquid, and gas. The phase of a material depends on its physical quantities such
as temperature (T ), pressure (P ) and density (ρ), a combination of these is called
a state point. However, different types of matter do not necessarily partake the
same phase at the same state point. Think of water and air; at room temperature
and atmospheric pressure they are liquid and gas respectively, but they are both
gas at temperatures greater than 100 ◦C. Because of this, it is practical to make
diagrams of these different phases for a given material, a phase diagrams. It is
of course possible to make different kinds of phase diagrams depending on which
physical quantities are used to describe the material. This can become a question
of what is easier to control. Consequently some experimentalists tend to prefer
temperature and pressure, while people doing computer simulations often prefer
density and temperature.
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Sketches of a T − P and a ρ − T phase diagram can be seen in Fig. 3.1. The
three main lines are; the solid-gas line (red), the solid-liquid line (green), and the
liquid-gas line (blue). Crossing any of these lines would require the system to
absorb or release energy, resulting in a first-order phase transition. The ρ − T
phase diagram also has regions where phases can coexist.

Structure and dynamics generally change significantly between phases, but
they also change less dramatically within the same phase. Examples could be
how viscous liquids (like honey) generally flow more easily at high temperatures
than low temperatures. This behaviour within the phases, and the location of the
different phases in the phase diagram, is controlled by the interactions between
the atoms or molecules in the material. These interactions are dependent on the
fundamental forces between the atoms in the material. One of these interactions is
the electrostatic force or Coulomb force, named after the French physicist Charles-
Augustin de Coulomb. These forces can be attractive or repulsive, and affect
matter with charges, such as ions. Consequently ionic materials behave different
than materials that are neutrally charged.

solid

liquid

gas

fluid

Tt

Pt

Tc

Pc

T

P

solid

liquidgas

fluid

gas + liquid

gas + solid

fluid
+

solid

ρt

Tt

ρc

Tc

ρ

T

Figure 3.1: Illustration of a T −P and a ρ−T phase diagram. In both
diagrams the triple point is marked with a grey circle, and the critical
point is marked with a blue circle. The line between solid and gas
(red), the solid-liquid line (green), and the liquid-gas line (blue). The
red, green, and blue regions of the ρ− T diagram indicate coexistence
between the phases. This illustration is inspired by wik [a] and wik [b].
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3.2 The van Hove function

Systems which are amorphous (without shape/form), like liquids and gasses do
not have a strict pattern to pack space. Consequently their structure cannot be
described with a lattice as is the case for solids. However, this does not mean that
we cannot describe their structure or dynamics. Instead we can define a counting
function, which can give insight into different distributions.

There is one function which is the very important for this analysis of the struc-
ture and dynamics since it gives access to many analysis tools. This is the van Hove
function G(r, t), Eq. 3.1, which we separate into two parts; a self part Gs(r, t), and
a distinct part Gd(r, t). Here the vector r describes the direction and distance that
are analysed, and t indicates the difference in time between the particles. Thus
the the van Hove function is defined as [Van Hove, 1954]

G(r, t) = Gs(r, t) +Gd(r, t) (3.1)

Gs(r, t) =
1

N

〈∑

j

δ(r − rj(0) + rj(t))

〉
(3.2)

Gd(r, t) =
1

N

〈∑

j 6=k
δ(r − rj(0) + rk(t))

〉
, (3.3)

where N is the number of particles, rj(t) and rk(t) are the positions of particle
j and k at time t respectively, 〈· · · 〉 represents the ensemble average, and the
δ-function is defined by

δ(x) =

{
∞ , for x = 0
0 , for x 6= 0

and

∫ ∞

−∞
δ(x) = 1. (3.4)
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3.3 Molecular scale structure

When analysing structure we generally look at distances between particles at the
same time, and compute the average for different configurations at different times.
Consequently when using the van Hove function to analyse structure we use the
less general static version, that is G(r) = G(r, 0). One can think of this function
as the relative particle position distribution in the direction of r.

3.3.1 The radial distribution function

Using the static van Hove function, we can define a useful tool for analysing struc-
ture, the radial distribution function (RDF) g(r). It is a scaled version of Gd(r).
The radial distribution function is defined as [Allen et al., 2017] [Egelstaff, 1994]

g(r) =
1

4π|r|2
1

ρ
Gd(r) (3.5)

=
1

4π|r|2
1

ρN

〈∑

j 6=k
δ(r − rj + rk)

〉
. (3.6)

However, the systems that we will be analysing in this work, are assumed to be
isotropic (equal-way), that is they look the same in all directions. This means that
we only need to consider the norm of r, r = |r|. Thus Eq. 3.6 becomes

g(r) =
1

4πr2

1

ρN

〈∑

j 6=k
δ(r − |rj − rk|)

〉
. (3.7)

This makes it possible to show the RDF in a 2 dimensional plot. A schematic
drawing of particle positions, and a sketch of a typical RDF for a liquid are shown in
Fig. 3.2. The periodicity of the peaks is related to the size of the atoms/molecules
in the system. If it was a gas, the RDF would have fewer peaks because the long
range structure is even less present in this case. For a solid with a lattice structure,
we would see δ-peaks at the corresponding neighbour distances, however, note that
a lattice is not isotropic.

Partial radial distribution functions

If the system consists of multiple components we can consider the partial radial
distribution functions. Like the standard RDF this function describes the density-
fluctuations, but only between particles of type α and β. This can be done by
simply changing the sum and the normalisation

gαβ(r) =
1

4πr2

1

cαcβρN

〈
Nα,Nβ∑

j,k

δ(r − |rβk − rαj |)
〉
, (3.8)
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1

r

g(r)

Figure 3.2: On the left is a schematic drawing of particle positions
in a liquid. The dashed circles represent the distances at which the
probability of finding particles are the lowest. On the right is a sketch
of a typical radial distribution function. The probability is 0 for small
r-values since particles cannot overlap.

where cα is the concentration of type α, and rαj is the position of the jth α-
particle. Note that if the types are equal, e.g. α = β, then j 6= k in the sum. The
construction of Eq. 3.8 ensures that the weighted sum of partial RDFs is equal to
the total, that is

g(r) =
∑

α,β

cαcβ gαβ(r). (3.9)

3.3.2 The static structure factor

From the analysis of the RDF in Sec. 3.3.1, we saw that there are certain length
scales which are more common than others (the distance between peaks). A func-
tion that can describe these length scales, is the static structure factor, S(q) where
the wave-vector q has dimension of inverse distance. The S(q) can be calculated
as the Fourier transformation of the RDF, but it can also be calculated directly
as [Fischer et al., 2005]

S(q) =

∫ ∞

0

g(r) exp (−iq · r)dr

=
1

N

〈∑

j,k

exp (−iq · rjk)

〉
, (3.10)
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where rjk = rk − rj and i is the imaginary unit. This equation can be simplified
if the system in question is isotropic, and then S(q) becomes

S(q) = 1 +
1

N

〈
N∑

j,k 6=j

sin(qrjk)

qrjk

〉
, (3.11)

where q = |q| and rjk = |rjk|. The distance represented by a given q-value is given
by r = 2π/q.

Partial structure factors

For systems with more than one type of particle, it is possible to calculate the
structure factor between particles of type α and β, also known as the partial
structure factors. This can be done in several different ways, but we focus on the
Faber-Ziman and the Bhatia-Thornton partial structure factors.

Faber-Ziman The Faber-Ziman (FZ) partial structure factors are what we would
obtain by calculating the Fourier transformation of the partial RDFs. For an
isotropic system it can be written as

Sαβ(q) = Sβα(q) = 1 +
1

cαcβN

〈
Nα,Nβ∑

j,k 6=j

sin(qrjk)

qrjk

〉
, (3.12)

where cα and cβ are the concentrations of particle types α and β, respectively.

Bhatia-Thornton If the system only contains two different types of particles, we
can calculate the Bhatia-Thornton (BT) structure factor from Bhatia and Thorn-
ton [1970]. This structure factor consists of three parts referred to as number-
number (NN), concentration-concentration (CC), and number-concentration (NC).
These are defined from the FZ partial structure factors, which therefore must be
obtained first.

The NN partial structure factor describes the distribution of atomic number
density. It is simply a weighted sum of the FZ structure factors and can be thought
of as the total signal. As a consequence of this, SNN(q) is “colour-blind” meaning
that it cannot distinguish between the two particle types. It is defined by

SNN(q) = c2
1S11(q) + c2

2S22(q) + 2c1c2S12(q). (3.13)

In contrast to NN which can be thought of as the “colour-blind” total signal, the
CC partial structure factor is instead the coloured difference between like and
unlike types. It is defined by

SCC(q) = c1c2 [1 + c1c2 (S11(q) + S22(q)− 2S12(q))] . (3.14)
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Information on the ordering of the different atom types can be obtained by calcu-
lating the Fourier transform of SCC(q). If the particles are indistinguishable, then
SCC = c1c2.

The NC partial structure factor describes the correlation between NN and CC
and is defined by

SNC(q) = c1c2 [c1 (S11(q)− S12(q))− c2 (S22(q)− S12(q))] . (3.15)

If S11(q) = S22(q) and has equal concentrations then SNC = 0. From these defini-
tions, it can be shown that

SNN(q) > 0, SCC(q) > 0, SNN(q)SCC(q) > SNC(q). (3.16)

Example of S(q) in a simple ionic liquid

An example of the FZ and BT partial structure factors for a simple ionic liquid
model can be seen in Fig. 3.3. An in-debt analysis of the model used in this
example (the Hansen and McDonald simple salt model) can be found in Chap. 5.
Here we see that SNN(q) (dashed blue) has a peak around 7, and SCC(q) (dashed
red) has a peak around 4. The fact that the system has a CC peak tells us that
there is type-ordering, and the peaks position relative to the NN peak tells us that
it is long range. The FZ partial structure factors in combination with Eq. 3.13
and 3.14 provides a conformation of the BT partial structure factors.
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Figure 3.3: Example of simulation data for the Hansen and McDonald
simple salt model at ρ = 0.3 and T = 0.1. (Left) The partial g(r).
(Right) Both the Faber-Ziman and Bhatia-Thornton structure factors.
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3.4 Molecular scale dynamics

3.4.1 Self-intermediate scattering function

It turns out that the static structure factor S(q) from Eq. 3.10 is a special version
of a more general function, the dynamic structure factor S(q, ω), where ω is the
frequency. However, we will be using the real time version called the intermedi-
ate scattering function F (q, t). It can also be thought of as the special Fourier
transform of the van Hove function G(r, t), Eq. 3.1, and is defined as

F (q, t) =
1

N

〈∑

j,k

exp [iq · (rj(t)− rk(0))]

〉
, (3.17)

where N is the number of particles, rj(t) is the position of particle j at time t,
and 〈. . . 〉 denotes the ensemble average [Frenkel and Smit, 2002]. However, using
the self part of the Hove function Gs(r, t) instead means that only one particle
is considered at different times. This is called the self-intermediate scattering
function Fs(q, t) and can be calculated as

Fs(q, t) =
1

N

〈
N∑

j

exp [iq · (rj(t)− rj(0))]

〉
. (3.18)

This function describes the correlation of the particles’ positions with themselves
in time. Here q is a measure of the length-scale in the correlation function. Large
wave-vector q represents small distances which would result in faster decorrelation.
A schematic drawing of a Fs(t) curve can be seen in Fig. 3.4.

log t

Fs

1

Figure 3.4: Schematic drawing of a Fs(t) curve.
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3.4.2 Mean square displacement

When previously describing the structure of liquids, we analysed the distance be-
tween pairs of particles at fixed times, that is |rj(t0)−rk(t0)|. Now when describing
the dynamics we instead analyse the distance between individual particles at dif-
ferent times, that is |rj(t0 + t) − rj(t0)|. It should be noted that this is not the
total distance travelled in this time-interval, but rather the distance between the
initial and final position (see Fig. 3.5). This is called the mean square displacement
(MSD), and it is calculated by

MSD(t) =
〈
|r(t)− r(0)|2

〉
=

1

N

N∑

j=1

|rj(t0 + t)− rj(t0)|2, (3.19)

where N is the number of particles, r(t) is the position of a particle at time t, |. . . |
is the vector norm, and 〈. . . 〉 denotes the ensemble average [Frenkel and Smit,
2002].

A common way to represent MSD-data is in a log-log plot. This can show the
dynamics on both short and long timescales. On very short timescales the particles
move with constant velocity because they have not had time to accelerate. This
means that for very short timescales the MSD is

MSD(t) =
〈
|r(t)− r(0)|2

〉
≈
〈
|vt|2

〉
= v2t2, (3.20)

where v is a characteristic velocity that depends on the given state point. From
this we see that the MSD is proportional to t2, and thus has a slope of 2 in a
log-log plot. This is referred to as the ballistic phase.

Similarly for long timescales the particles generally lose their “memory” of
their initial position. This means that the dynamics of the system is analogous to
a random walk and becomes diffusive, wherefore it is named the diffusive phase.

rj(t0)

rj(t0 + t)

Figure 3.5: Schematic drawing of a particle’s movement as a function of
time. The full line represents the path travelled by the particle, while
the dashed line represents the relative distance between the particle at
time t0 and t0 + t. The mean square displacement calculates the latter.
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Figure 3.6: Schematic drawing of the ballistic and diffusive phases in
the mean square displacement.

Consequently it is common to describe this phase by the diffusion coefficient (D),
which can be calculated as

D =
1

2d
lim
t→∞

(
d

dt
MSD(t)

)
, (3.21)

where d is the number of spatial dimensions. Some systems have a plateau or other
features between the two phases. The different phases are illustrated in Fig. 3.6

3.4.3 Viscosity

The viscosity (η) is a measure of a liquid’s resistance to flow. In this section we
introduce this concept in two ways;

• First, a classical explanation to build intuition of viscosity.

• Second, a more abstract approach which will be used to calculate the viscos-
ity in this work.

A classical way to think about this is to imagine two parallel plates with area
A a distance ∆y apart with the liquid in between. One wall is stationary while
the other moves parallel with the velocity ∆vx. If the liquid is assumed to be
viscous, the movement of the upper plate will drag the closest particles with it
which in turn will drag its neighbours with it and so on. This will create a velocity
gradient in the liquid, however, we assume that ∆y is so small that it is linear.
An illustration of this can be seen in Fig. 3.7. In this case, the viscosity is the
proportionality constant

F

A
= η

∆vx
∆y

, (3.22)
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where F/A is the shear stress. We can also think of this example as a small slice
of a bigger system, see Fig. 3.8. In this case Eq. 3.22 can be generalized for flows
in any direction in the xy-plane

σxy = η

(
∂vy
∂x

+
∂vx
∂y

)
. (3.23)

∆vx > 0

v
∆y

F

y

x

Figure 3.7: Schematic drawing of two parallel plates with a liquid be-
tween them. The lower plate is stationary while the upper plate is
moving with the velocity ∆vx. This figure is inspired by Fig. 41.1 from
Feynman [1964].

vx

vx + ∆vx

∆y

y

x

Figure 3.8: Schematic drawing of a liquid motion in the x-direction.
The dashes box indicates a slice where the velocity gradient is linear.
This figure is inspired by Fig. 41.2 from Feynman [1964].
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Setups, which follow this idea, are used to determine the viscosity in both
experiments and simulations. However, this approach does not work for systems
in equilibrium which we will be working with. Instead we will use the Green-Kubo
formula [Allen et al., 2017]

η =
V

kBT

∫ ∞

0

〈σxy(0)σxy(t)〉 dt, (3.24)

where V is the volume of the simulation box, kB is the Boltzmann constant, T is
the temperature, and σxy(t) is the xy component of the stress tensor as a function
of time t [Heyes et al., 2019]. The xy component of the shear stress is defined from
the pressure tensor, Eq. 2.4, by σxy = −Pxy.

3.4.4 The Stokes-Einstein relation

In computer simulations it is often easier to determine the diffusion coefficient, D,
than the viscosity, η. Because of this a relation between the two would be a very
important and practical result.

An alternative way to define D (other than Eq. 3.21) is with the Einstein-
Smoluchowski-Sutherland relation which states that [March and Tosi, 2002]

D = µkBT, (3.25)

where µ is the “mobility” which describes the drift velocity over the applied force.
For non-turbulent flow in a viscous liquid the mobility of a particle can be described
by Stokes’ law

µ =
1

cπησH
, (3.26)

where c is a constant, η is the viscosity and σH is the hydrodynamic diameter and
is related to the size of the particle. Connecting Eq. 3.25 and 3.26 gives rice to
the Stokes-Einstein relation which states the following for D and η

Dη =
kBT

cπσH
. (3.27)

However, by the use of reduced units described in the isomorph theory this can
be simplified further such that the product reduces to a dimensionless constant α
[Costigliola et al., 2019]

D̃η̃ = α. (3.28)

Here ˜ (tilde) indicated that the parameters has been scaled. The next chapter is
dedicated to explain isomorph theory and this scaling.
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Chapter 4

Isomorph Theory

The goal of this chapter is to provide an explain of the basics of isomorph theory
for the uninitiated. To do this we will first introduce historical background, fol-
lowed by the definition of the theory and its predictions. Lastly we will show a
way of tracing isomorphs in the phase diagram.

4.1 Introduction to isomorph theory

When describing the behaviour of a system it is helpful to analyse different prop-
erties along specific curves in the phase diagram. This could be curves of constant
temperature T (isotherm), volume V (isochore), pressure P (isobar) etc. However,
it turns out that for some systems many structural and dynamical properties are
invariant when scaled appropriately along some curves called isomorphs.

The isomorph theory is a way to describe the phase diagram of materials with
a single parameter, and it has been developed at Roskilde University in Den-
mark since 2009. The theory was first described in the fourth paper in the series
“Pressure-energy correlations in liquids” [Gnan et al., 2009] but has since been
reworked and clarified in Schrøder and Dyre [2014]. The name isomorph is Greek
and means equal shape/form which could be confusing since not only structural
properties are expected to be invariant. However, the inspiration for the name
came from the mathematical term “isomorphism” which refers to a mapping of
specific properties between two sets.

In this chapter we aim to give an overview of isomorph theory including; some
background, the definition of isomorphs, the scaling of units, and how to trace
isomorphs.
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4.2 Invariance and scaling

4.2.1 Excess entropy scaling

Excess entropy (Sex) is defined as the difference in entropy when compared with
an ideal gas at the same density and temperature , i.e.

Sex(ρ, T ) = S(ρ, T )− Sid(ρ, T ). (4.1)

Curves in the phase diagram with constant excess entropy (∆Sex = 0) are called
configurational adiabats.

Based on simulations Yaakov Rosenfeld proposed that excess entropy is the
controlling parameter for transport coefficients in simple models like hard-spheres,
soft-spheres, and Lennard-Jones [Rosenfeld, 1977]. Rosenfeld also introduced the
concept of “reduced” transport coefficients which are dimensionless versions ob-
tained by scaling with the state point parameters ρ and T . This work was later
continued, where the scaling was shown to be more universal and also hold for
dilute gases [Rosenfeld, 1999]. These two cases would later be connected in Bell
et al. [2019].

Thus, it was established that there is a scaling which for simple systems result
in invariant transport coefficients along configurational adiabats. The reason for
this invariance was still not understood. An explanation of this was provided with
the introduction of isomorph theory.

4.2.2 Density scaling

Density scaling mainly has its basis in experiments. The main idea of density
scaling is that the dynamics of a system is not depending on ρ and T independently,
but rather the specific combination [Roland et al., 2005]

Γ =
ργ

T
, (4.2)

where γ is a system specific coefficient. For systems with density scaling the phase
diagram can effectively be reduced to 1 dimension with parameter Γ.

There has been some debate weather γ is a constant. However, experimental
data from Ransom et al. [2019] showed that it does change at high pressure, but
can approximately be considered a constant for smaller changes. Density scaling
and Eq. 4.2 is exact for systems where the potential energy can be described by
an inverse power law with exponent n (Eq. 2.26). In these simple cases γ is in fact
a constant and is equal to n/3.
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4.3 Definition of isomorphs

As mentioned earlier the isomorph theory was first introduced in Gnan et al. [2009],
however, we will be focusing on the more recent version from Schrøder and Dyre
[2014].The two versions are of course consistent and it is shown in Schrøder and
Dyre [2014] that the old version is the first-order approximation of the new version.

The isomorph theory is true for a class of systems called Roskilde-simple or R-
simple for short. A R-simple system has the property that for two configurations
Ra and Rb at equal density ρ and potential energy U(R) then if

U(Ra) < U(Rb) ⇔ U(λRa) < U(λRb) (4.3)

U(Ra) = U(Rb) ⇒ U(λRa) = U(λRb), (4.4)

for any positive real number λ. From this we see that the isomorph theory is exact
if the potential energy U(R) is a homogeneous function i.e.

f(λX) = λkf(X), (4.5)

where X is a multidimensional variable, and λ and k are positive real numbers.
An example of this could be a pair potential consisting of an inverse power law.
This idea of scaling the configurations are essential for the theory, specifically
scaling with the density such that R̃ = ρ1/3R. An illustration of this can be seen
in Fig. 4.1. From this it became sufficient to define isomorphs as configurational
adiabats and thus the excess entropy is invariant.

Original, R

L = 3
√
N/ρ

Scaled, R̃

L̃ = 3
√
N

Figure 4.1: Illustration of isomorph scaling of a cubic box. The left box
has side-lengths L = 3

√
V = 3

√
N/ρ. Here the average distance between

particles is ρ−1/3. The right box is scaled with the density such that
L̃ = 3

√
N .
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4.3.1 Isomorph scaled units

A list of the characteristic quantities used for the isomorph scaled units can be
found in Tab. 4.1. Furthermore a list of some of the reduced units and the necessary
scaling factors can be seen in Tab. 4.2. It is common to use ˜ (tilde) to indicate
that a quantity has been scaled.

Name Symbol SI unit

Number density ρ m−3

Temperature T K
Characteristic mass m kg
Boltzmann constant kB J K−1

Table 4.1: List of characteristic quantities for Newtonian dynamics
[Gnan et al., 2009].

Quantity Definition

Length l0 = ρ−1/3

Energy E0 = kBT

Time t0 = ρ−1/3

√
m

kBT

Velocity ṽ =
v

l0/t0
=

√
m

kBT
v

Force F̃ =
F

E0/l0
=

1

ρ1/3kBT
F

Pressure P̃ =
P

E/l30
=

1

ρkBT
P

Diffusion coefficient D̃ =
D

l20/t0
= ρ1/3

√
m

kBT
D

Viscosity η̃ =
η

E0t0/l30
=

1

ρ2/3
√
mkBT

η

Heat conductivity κ̃ =
κ

kB/(l0t0)
=

√
m/(kBT )

ρ2/3kB
κ

Table 4.2: List of scaling factors for conversion to isomorph reduced
units [Gnan et al., 2009].
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4.3.2 Predictions of isomorph theory

In this section we quickly go through the derivation of the most important predic-
tions of isomorph theory. However, for a more detailed description we refer to the
original paper Schrøder and Dyre [2014].

Equal excess entropy

First we define the microscopic excess entropy function as the thermodynamic
excess entropy of a system

Sex(R) ≡ Sex(ρ, U(R)), (4.6)

where U(R) is the average potential energy for the density ρ with configuration
R.

Assume we have two configurations R1 and R2 at densities ρ1 and ρ2 respec-
tively, with equivalent reduced representation, i.e. R̃1 = ρ

1/3
1 R1 = ρ

1/3
2 R2 = R̃2.

The microcanonical expression for the excess entropy for the two configurations is
given by

Sex(R1)

kB
= −N ln (N) + ln

(
Vol
{
R̃′|U(ρ

−1/3
1 R̃′) < U(R1)

})
(4.7)

Sex(R2)

kB
= −N ln (N) + ln

(
Vol
{
R̃′|U(ρ

−1/3
2 R̃′) < U(R2)

})
, (4.8)

where “Vol” is the reduced-coordinate configuration volume. If these configura-
tions are from a R-simple system they will per definition obey Eq. 4.3. By using
Eq. 4.3 on the second term of Eq. 4.7 and choosing λ = ρ

1/3
1 ρ

−1/3
2 we get

U(ρ
−1/3
1 R̃′) < U(R1)⇔ U(ρ

−1/3
2 R̃′) < U(ρ

1/3
1 ρ

−1/3
2 R1) = U(R2) (4.9)

which is the second term in Eq. 4.8. From this it follows that Sex(R1) = Sex(R2).
This means that for R-simple systems Sex(R) only depends on the reduced con-
figuration, i.e.

Sex(R) = Sex(R̃). (4.10)

Thus the potential energy can be written as

U(R) = U(ρ, Sex(R)) = U(ρ, Sex(R̃)). (4.11)

This description of potential energy from Eq. 4.11 is an important result which
will be used in the following derivations.
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Invariance of structure and dynamics

The reduced forces are defined as

F̃ ≡ F
ρ−1/3

kBT
. (4.12)

Eq. 4.11 implies that the force is

F = −∇U = −
(
∂U

∂Sex

)

ρ

∇Sex(R̃) = −T∇Sex(R̃), (4.13)

which when combined with Eq. 4.12 shows that the reduced force is

F̃ = −∇Sex(R̃)
ρ−1/3

kB
. (4.14)

This means that the reduced force is a function of the reduced configuration R̃
and not just R. It then follows from Eq. 4.6 that two points along a configura-
tional adiabat must have equal reduced forces and consequently identical reduced
dynamics. Likewise the use of the same reduced configurations also implies invari-
ance of the reduced structure. This feature of invariant structure and dynamics is
the main prediction of isomorph theory.

Potential energy and virial correlation

The virial of a configuration R with potential energy U(R) is defined as

W (R) ≡ −1

3
R · ∇U(R). (4.15)

We would like to show a connection between potential energy U and virial W .
To do this we use two configurations Ra and Rb at the same density with equal
potential energy. Assuming the system is R-simple Eq. 4.4 then gives U(λRa) =
U(λRb). Differentiating this with respect to λ gives

Ra · ∇U(λRa) = Rb · ∇U(λRb). (4.16)

Setting λ = 1 and using Eq. 4.15 yields

W (Ra) = W (Rb). (4.17)

This means that W is a function of U and ρ, which implies that W and U theo-
retically should be perfectly correlated. However, no real system has perfect cor-
relations, but this result can still be used to predict the “quality”of an isomorph.
We refer to this correlation as R

R (ρ, T ) =
〈∆W∆U〉√

〈(∆W )2〉 〈(∆U)2〉
. (4.18)
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In the first version of the theory a configurational adiabat was only considered an
isomorph when it had strong correlations, i.e. R > 0.9. However, for some systems
invariance has also been observed at lower R [Veldhorst et al., 2014]

Another relevant quantity for the WU correlation is the coefficient of propor-
tionality between the two, also referred to as density scaling exponent γ. For this
the definition of γ from the first version of the theory is reused [Gnan et al., 2009]

γ (ρ, Sex) ≡
(
d lnT

d ln ρ

)

Sex

=
〈∆W∆U〉
〈(∆U)2〉 . (4.19)

This quantity can be used to trace the isomorphs in the phase diagram.

4.3.3 Tracing isomorphs

Different methods have been developed for tracing isomorphs in the phase diagram.
However, in this section we will only go through one of the simpler methods. For
this we will be using the Euler iteration method which calculates the next step
yn+1 as

yn+1 = yn + hf(xn, yn) (4.20)

This method combined with Eq. 4.19 can be used to trace a configurational adiabat
in the ρ− T phase diagram.

d lnT = γn (d ln ρ) (4.21)

lnTn+1 − lnTn = γn (ln ρn+1 − ln ρn) (4.22)

Tn+1 = Tn

(
ρn+1

ρn

)γn
, (4.23)

where γn is a function of ρn and Tn.
Other methods for tracing isomorphs (e.g. direct isomorph check) has been

developed, but they will not be utilised in this work. However, a description is
provided in Gnan et al. [2009].

Tracing isomorphs in molecular systems

These methods for tracing isomorphs are generally known to not work for molecular
systems, at least systems with flexible bonds. This is because the bonded potentials
generally decorrelates U and W [Olsen et al., 2016]. In these cases other methods
are needed.

The approach we will be using for our molecular system is to analyse iso-
chores and describe their dynamical properties as a function of T . From this we
can extrapolate and find a temperature for each density where the dynamics are
invariant.
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Chapter 5

Simple Atomic Ionic Liquid
Model

In this chapter we analyse the simple salt model from Hansen and McDonald
[1975]. The main focus is on the potential existence of isomorphs. This is despite
knowing from previous studies that systems with strong Coulomb interactions gen-
erally do not have isomorphs [Dyre, 2014]. However, experimental studies such as
Hansen et al. [2020] show density scaling applying for ILs. This makes us believe
that ILs could have an isomorphs-like behaviour in the weak Coulomb regime.

The results from this study have been published in the Journal of Chemical
Physics with the title Quantifying dynamical and structural invariance in a simple
molten salt model [Knudsen et al., 2021]. It should be noted that this publication
was written before this chapter, and hence will undoubtedly be many similarities
between the two since they report the same findings. Since this publication, more
simulations have been performed to investigate even lower densities, however, this
does not change the conclusions from the paper. The paper is provided in Chap. D.

5.1 Model details and analysis

One of the most distinctive properties of ionic liquids when compared with other
liquids are there charges, wherefore their name. To better understand this charac-
teristic we start by investigating a very simple model which has this as its primary
feature. For this we choose the simple salt model from Hansen and McDonald
[1975]. Contrary to Hansen and McDonald we generally study higher densities to
gain insight in both the Coulomb dominated region and the weak Coulomb region.
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5.1.1 The potential energy

The Hansen and McDonald simple salt model contains two types of particles, which
we refer to as A and B. These are point particles, identical in every way except
for their opposite charge. Because of this symmetry, we will only show results for
types A, AA, and AB since they are identical to B, BB, and BA, respectively.

The potential energy between the particles is defined as a sum of two inverse
power laws (IPLs). The first is always repulsive, insuring that the particles do not
overlap; the second represents the Coulomb interactions, and its sign is therefore
dependent on the particle types. Say that any particle type can be represented by
either α or β then the potential energy is described by

Vαβ(r) =
1

9

(σ
r

)9

+ εαβ

(σ
r

)
, (5.1)

where εAA = 1, εAB = −1, and the characteristic distance parameter σ (the
location of the minimum in VAB) is absorbed in r or simply set equal to 1. We
choose a cutoff at rcut = 6 and applied the shifted force method described in
Sec. 2.4.1. The graph of the cut and uncut potential can be seen in Fig. 5.1, and
a test of the chosen cutoff value is provided in Sec. 5.2.1.
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Figure 5.1: The graphs of the potential for the simple salt model,
Eq. 5.1. On the left is a graphs of the potential with no truncation.
On the right is a graphs of the potential with the shifted force method
and a cutoff at 6.
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5.1.2 Scaling the electrostatic interactions

As will be described in Sec. 5.3, we analysed this model in a large density and tem-
perature interval. One of the reasons for this is that we can artificially change the
strength of the electrostatic interactions by moving around in the phase diagram.
To better understand this, we study a more general version of Eq. 5.1 where the
Coulomb term (the second IPL) is scaled by a positive dimensionless scalar λ, and
the exponent in the first IPL is n > 1

Vαβ(r) = ε

(
1

n

(σ
r

)n
+ εαβλ

σ

r

)
. (5.2)

It turns out that we can remove the λ by scaling the total potential and r, such
that the potential becomes

Vαβ(r) = ε′
(

1

n

(
σ′

r

)n
+ εαβ

σ′

r

)
, (5.3)

where ε′ = ελn/(n−1) scales the overall energy, and σ′ = σλ−1/(n−1) is the rescaled
distance. The minimum for the rescaled VAB(r) is located at

(
σ′; 1−n

n
ε′
)
.

This rescaling implies that each state point (ρ0;T0) simulated with Eq. 5.1
is equivalent to a different state point (ρ;T ), where the Coulomb term has been
scaled by λ. This new state point would be

(
ρ
T

)
=

(
λ3/(1−n)ρ0

λn/(1−n)T0

)
. (5.4)

This traces out a curve, which turns out to be a simple power law with the form

T = (ρ/ρ0)n/3 T0 along which λ = (ρ/ρ0)
1−n
3 . (5.5)

Since n > 1, increasing the electrostatic interactions would correspond to decreas-
ing the density. This makes sense since we expect the Coulomb term to dominate
at long distances.

This means that the results of our analysis will also be valid for other values
of λ. It should be noted that properties will change when presented in isomorph
scaled units, since they are dependent on the state point. However, if a property
is invariant along a line in the phase diagram, this will still be the case after the
λ-scaling, but the line and value of the property will be different in the new phase
diagram.
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5.1.3 Density dependence of the density scaling exponent

It would be interesting to get an idea of the density scaling exponent γ dependence
on density. Both because it controls the shape of the configurational adiabats
but also because it can be compared with experiments. To do this, we start by
analysing the fluctuation of the potential energy, which can be separated into two
terms representing the repulsive IPL and the Coulomb interactions

∆U = ∆UIPL + ∆UC . (5.6)

The same can be done for the fluctuation of the virial using Eq. 4.15

∆W = ∆WIPL + ∆WC

= 3∆UIPL +
1

3
∆UC . (5.7)

By using the definition of γ from Eq. 4.19, and the two expressions for ∆U and
∆W above we get

γ =
〈∆W∆U〉
〈(∆U)2〉

=
3
〈
(∆UIPL)2〉+ 10

3
〈(∆UIPL∆UC)〉+ 1

3

〈
(∆UC)2〉

〈
(∆UIPL)2〉+ 2 〈(∆UIPL∆UC)〉+

〈
(∆UC)2〉 . (5.8)

The value of 〈(∆UIPL∆UC)〉 was calculated for a couple of state points along a
configurational adiabat (A1), see Fig. 5.2. Here we see that at high densities the
correlation is close to zero.

Based on this, we presume that 〈∆UIPL∆UC〉 = 0 which allows us to simplify
the expression to

γ =
3 +X/3

1 +X
where X ≡

〈
(∆UC)2〉

〈
(∆UIPL)2〉 . (5.9)

We would expect X to approach 0 at high densities, meaning that γ = 3 in this
limit. Likewise at low densities γ would theoretically have at limit at 1/3.

As will be shown later in Fig. 5.6, we see that γ becomes less than 1/3 at the
lowest densities along the isotherms. However, this is not surprising since we saw
in Fig. 5.2 that ∆UIPL and ∆UC are not uncorrelated at low densities.
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Figure 5.2: Correlation between UIPL and UC for selected points along
a configurational adiabat (A1).
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5.2 Test of model implementation

5.2.1 Test cutoff

In our studies of this model we used the shifted force cutoff method and a cutoff
value of 6σ. We would like to test if this cutoff value was sufficiently large or
if this choice affected the results significantly. To do this we performed a set of
simulations at three different state points ρ = 0.75 and T = 0.1; 0.5; 1.0 and with
three different cutoff values rcut = 3; 4; 5.

Then we analysed the Bhatia-Thornton partial structure factor with a focus
on the small q. The Bhatia-Thornton structure factor was calculated from density
fluctuations to avoid artefacts from Fourier transforming the radial distribution
function. The biggest changes in this region was observed at the high temperature
so that will be shown in Fig. 5.3 at the three tested cutoff values and the value 6
from our simulations.

Here we find that the NN curves does not change much when varying the cutoff
value. On the other hand, the CC curves does change, but only significantly at
small q. There are visible changes between 3, 4, and 5 at small q. However, the
difference between 5 and 6 are very small suggesting that a cutoff value of 5 is
sufficient and 6 (which we used) is safe.
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Figure 5.3: Bhatia-Thornton partial structure factors at ρ = 0.75 and
T = 1.0 with four different cutoff values; 3, 4, 5 and 6σ. This structure
factor is calculated from density fluctuations to avoid artefacts from
Fourier transforming the radial distribution function.
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5.3 Simulation details

We have simulated three configurational adiabats which will be referred to as A1,
A2, and A3. They were all simulated to a max density around 2. A2 and A3
start at state points (1.0; 0.1), and (1.2; 0.1), respectively, while A1 passes through
(0.75; 0.1) but got extended to low densities, 0.3, to check the behaviour in this re-
gion. For comparison, we also simulated six isotherms at T = 0.1; 0.15; 0.2; 0.3; 0.5; 1.0
in a density interval from 0.1 to 2.0. These will be referred to as T0.1, T0.15, T0.2,
T0.3, T0.5, and T1.0, respectively. We performed more simulations between den-
sities 0.7 and 2.0 to get a better insight into the models behaviour in this region.
Fig. 5.4 shows all the simulated state points in a ρ− T phase diagram. Some sim-
ulations along isotherms crystallized in the high density low temperature region.
The structure observed here was similar to that of an CsCl crystal, see Fig. 5.5.
These simulations will not be analysed further.
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Figure 5.4: Simulated configurational adiabats and isotherms in (a) a
ρ − T phase diagram and (b) with P as a function of T . The state
points, where crystallization was observed are marked with a black X.
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(a)

(b)

Figure 5.5: (a) An example of a liquid configuration at ρ = 1.35 and
T = 1.0. Note that there is no long range structure. (b) An example
of a crystalized configuration at ρ = 1.35 and T = 0.1. The crystal
structure observed during the these simulations was similar to that of
an CsCl crystal.
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To check if the three configurational adiabats A1, A2, and A3 are isomorphs,
we calculated the correlation coefficient between the potential energy and virial
(Eq. 4.18), and checked if it was greater than 0.9. This criteria turns out only to
be satisfied at high densities, meaning that these curves are not isomorphs in the
entire simulated range, and will therefore not be referred to as such. We traced
the configurational adiabats with the density scaling exponent γ (Eq. 4.19) as
described in Sec. 4.3.3. The density was scaled with 2% between each simulation

Tn+1 = Tn

(
ρn+1

ρn

)γn
. (5.10)

Fig. 5.6 show R and γ as a function of density for all configurational adiabats and
isotherms. We see that γ is monotonically increasing as a function of density, and
it seems to slowly approach 3.
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Figure 5.6: (a) Correlation coefficient R along configurational adiabats
and isotherms as a function of density. (b) Density scaling exponent γ
along configurational adiabats and isotherms as a function of density.
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All simulations contained 8000 particles, and had a data collection run of 100 ·
217 timesteps with an isomorph scaled timestep of t̃step = 0.004. Since state points
along an isotherm in the NVT ensemble are independent of each other, they could
run in parallel. All particles started in a face centred cubic lattice (randomized
by type) and were equilibrated for 2 · 106 time steps. We checked that this initial
lattice had melted by analysing the radial distribution function and the particle
configurations. On the other hand, the points along the configurational adiabats
are dependent on each other, and therefore had to be run in series. However, since
we do not expect big changes, only the first point equilibrated for 2·106 time-steps,
the next point started at the previous end-configuration and was equilibrated for
106 time-steps.

The Nosé-Hoover Thermostat (see Sec. 2.3) was used to preform these NVT
simulations. The thermostat relaxation time was set to 0.2 for all simulations.

All simulations were performed in an elongated box with size 2L× L× L and
periodic boundary conditions. For this model the structure factor is calculated
from density fluctuations which means that the smallest q is limited by the size of
the simulation box. This was done to avoid artefacts from Fourier transforming
the radial distribution function. Thus an elongated box was chosen to get a better
resolution in the structure factor without increasing the number of particles.
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5.4 Results: Dynamics

In this and the next section, we present and discuss various structural and dy-
namics properties of the model along the simulated configurational adiabats and
isotherms. Since we compare simulations at many different state points, we will
focus on quantities with a scalar representation to make the results more clear.
However, we will still provide examples of the raw data from which these quantities
are calculated.

We will first go through dynamical properties followed by structural properties.
All results in this section will be presented in the isomorph scaled units described
in Tab. 4.2.

5.4.1 The self-intermediate scattering function

Firstly, we analyse the self-intermediate scattering function, Fs (see Sec. 3.4.1).
When calculating Fs we used q̃ = 7.1, because it roughly corresponds to the
position of the peak in SNN at high densities.

We have found and compared the time when Fs = e−1. We tried different
methods to determine this time but got the best result when fitting the data to a
stretch exponential

f(t) = A exp
(
− (t/τ)β

)
, (5.11)

where A, τ , and β are coefficients. The correlation between the data and the fit
was greater than 0.998 in all cases. We also tried with a more restrictive fit where
A = 1, but this yielded worse results in the relevant time interval. However, A
was close to 1 for all fits. Consequently, we refer to the time at which Fs = e−1 as
t1/e and not the coefficient τ from the fit.

Fig. 5.7 show all Fs curves along A1 and T1.0. Here we should notice that
we have no plateaus, rather Fs goes directly from 1 to 0, meaning that there is
no two-step relaxation. The second thing is that all the curves along A1 collapse
which is not the case for T1.0. This trend is also true for the other isotherms and
configurational adiabats.

The second part of Fig. 5.7 shows the isomorph scaled time t̃1/e as a function of
density for all isotherms and configurational adiabats. Here we should notice that
along the configurational adiabats t̃1/e increases slightly at high densities, where
as the isotherms changes significantly in the same density interval. It is also worth
noting that A1 seems to have a minima around ρ = 0.7. We do not know why
this is the case, however, this could imply that the invariance vanishes at densities
lower than 0.3.
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Figure 5.7: (a) All 96 Fs curves along A1 (blue), and all 33 Fs curves
along T1.0 (red). The horizontal dashed line indicates the value e−1 ≈
0.37. (b) The time t̃1/e as a function of density for all isotherms and
configurational adiabats. The horizontal dashed lines going through
the first point of A1, A2, and A3 are guides for the eye.
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Figure 5.8: Plot of the fitting parameter β from the stretched expo-
nential fit of the Fs data, Eq. 5.11. The horizontal dashed lines going
through the first point of A1, A2, and A3 are guides for the eye.

As previously mentioned, we found that a stretched exponential was a better
fit then a regular exponential. As a result of this we checked how stretched or
compressed the exponential was, so we plotted β from the fit as a function of
density in Fig. 5.8. Here we see that the fit switches between being stretched and
compressed, and for the isotherms β approaches 2 at low densities corresponding
to a Gaussian function. We also see that the data for A1 show a maximum around
ρ = 0.7, which coincides with the minimum we saw in t1/e at the same density.

5.4.2 The viscosity

We used the Green-Kubo formula described in Sec. 3.4.3 to calculate the viscos-
ity. Computing the integration turned out to be challenging due to the different
features and noise in the data. We found that the best results were obtained when
fitting the data and performing an analytical integration of the fit. We used to
following fitting function

f(t̃) =

{
a0 + a2t̃

2 + a3t̃
3 for t̃ ≤ 0.06

b1 exp
(
−t̃/τ1

)
+ b2 exp

(
−t̃/τ2

)
for 0.06 < t̃

, (5.12)

where t̃ is the isomorph scaled time. The first order term in the 3rd order poly-
nomial is set to zero because the slope is zero at t̃ = 0. This is because the
autocorrelation function is smooth and time-reversible and therefore an even func-
tion of time [Hansen and McDonald, 2013].
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The first part of Fig. 5.9 shows examples of the stress-autocorrelation. There
are two curves along A1 (light and dark blue), and two curves at the density 1.5
(red and orange). Here it should be noted that the two curves along A1 are much
more similar then the ones at ρ = 1.5.

The second part of Fig. 5.9 shows the reduced viscosity η̃ as a function of
density for all configurational adiabats and isotherms. Again we see invariance
along all configurational adiabats but not the isotherms.
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Figure 5.9: (a) Selected stress-autocorrelation curves. The two blue
curves are both from A1 and are visibly similar. This is in contrast to
the red and orange curves which are on the same isochore with ρ = 1.5.
(b) The isomorph scaled viscosity as a function of density along all
configurational adiabats and isotherms. The horizontal dashed lines
going through the first point of A1, A2, and A3 are guides for the eye.
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5.4.3 The mean square displacement

Here we present the mean square displacement (MSD) and the diffusion coefficient
(D), which are explained in Sec. 3.4.2. The first part of Fig. 5.10 shows all MSD
curves along A1 and T1.0. As was the case for Fs, we see that curves along A1 col-
lapse, which is not the case for T1.0 (the same is true for the other configurational
adiabats and isotherms).

The second part of Fig. 5.10 show the isomorph scaled diffusion coefficient as
a function of density for all configurational adiabats and isotherms. It turns out
that D̃ is invariant along the configurational adiabats but not along the isotherms.
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Figure 5.10: (a) All 96 MSD curves along A1 (blue) and all 33 MSD
curves along T1.0 (red). (b) The isomorph scaled diffusion coefficient as
a function of density along all configurational adiabats and isotherms.
The horizontal dashed lines going through the first point of A1, A2,
and A3 are guides for the eye.
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5.4.4 The Stokes-Einstein relation

The Stokes-Einstein relation (see Sec. 3.4.4) can be used to relate the diffusion
coefficient (D) and viscosity (η). However, from the perspective of isomorph theory
we use the scaled quantities D̃ and η̃ [Costigliola et al., 2019]. Thus, the reduced
Stokes-Einstein relation can be seen in Fig. 5.11 for all simulations. Here we see
that the relation holds except for the low density high temperature region. The
rest of the range has a plateau around 0.15.

Based on the previously observed invariance of D̃ and η̃ along configurational
adiabats it is not surprising that their product is invariant. However, it is signifi-
cant that they have the same product since this is a higher level of invariance.
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Figure 5.11: The reduced Stokes-Einstein relation along all configura-
tional adiabats and isotherms as a function of density.
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5.5 Results: Structure

5.5.1 The partial radial distribution function

Now that we have shown that the system has invariant dynamics along configu-
rational adiabats we turn our attention to the structure, starting with the radial
distribution function (RDF) (see Sec. 3.3.1). An example of RDF curves along
A1 and T1.0 can be seen in Fig. 5.12. The first striking thing is that there are
big changes along A1 when compared to the invariances observed of the dynamics.
The second thing is that gAA(r) and gAB(r) are approximately in phase at high
densities, and out of phase at low densities. This makes sense since the particles
primarily feel repulsive forces from their nearest neighbours at high densities, but
both attractive and repulsive forces at low densities. The third thing is that the
first peak in gAA(r) along T1.0 disappears around densities lower than 0.7. This is
also true for the other isotherms. Because of this the AA data in this region will
not be shown.
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Figure 5.12: Example of g(r̃) data from (a) A1 and (b) T1.0. Notice
that the peak in gAA(r̃) disappears at low densities along T1.0.
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To quantify the overall changes in the RDF we start by analysing the position
of the critical points (i.e. maxima and minima). This was done along A1 for
both gAA(r̃) and gAB(r̃) as a function of density, see Fig. 5.13. Note that at long
distances the RDF becomes more flat (see Fig. 5.12) which makes it more difficult
to locate the critical points in this region, resulting in noisy data.

From this it is more clear that gAA(r̃) and gAB(r̃) are out of phase at low
densities, and in phase at high densities. At high densities the positions of the
critical points are: r̃ ≈ 1.0 (maximum), r̃ ≈ 1.5 (minimum), r̃ ≈ 1.9 (maximum),
r̃ ≈ 2.4 (minimum), r̃ ≈ 2.8 (maximum), and r̃ ≈ 3.3 (minimum).

In gAA(r̃) we observe that an extra minimum and maximum gets created at
ρ ≈ 0.7 and r̃ ≈ 1.7 which remains at higher densities. Likewise in gAB(r̃) we
observe that a minimum becomes two minima and a maximum at ρ ≈ 0.8 and
r̃ ≈ 2.8.
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Figure 5.13: The position of critical points in gAA(r̃) (blue) and gAB(r̃)
(orange) as a function of density along A1. Here maxima are marked
with “4”, and minima are marked with “5”.
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To quantify the changes in the RDF further we analyse the position and height
of the first peak in both AA and AB. These were found by fitting a 4th order
polynomial to the points around the peak. The result of this analysis can be seen
in Fig. 5.14. The first thing we notice when looking at the position and height of
the first peak in g(r̃) is that they generally vary a lot. However, the data seem to
become more invariant at higher densities.
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Figure 5.14: The position and height of the first peak in gAA(r̃) and
gAB(r̃) as a function of density for all configurational adiabats and
isotherms. (a) position of peak in gAA(r̃), (b) position of peak in gAB(r̃),
(c) height of peak in gAA(r̃), and (d) height of peak in gAB(r̃).
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In a similar way we analyse the position and height of first minimum for both
gAA(r) and gAB(r), see Fig. 5.15. It is difficult to determine the exact position of
the minimum at low densities. This is especially true for gAA(r) which does not
even have a peak at ρ < 0.7.

From this we see that the position of the first minimum for both gAA(r) and
gAB(r) is r̃ ≈ 1.5 and changes very little at high densities. At low densities the
position varies more significantly. We also find that the height of the minimum
in gAA(r) decreases as a function of density. Lastly, the height of the minima in
gAB(r) does not change much along configurational adiabats in the high density
region.

0.75 1.00 1.25 1.50 1.75 2.00
ρ

1.2

1.3

1.4

1.5

1.6

r̃ m
in

(a)

T0.1

T0.15

T0.2

T0.3

T0.5

T1.0

A 1

A 2

A 3

0.0 0.5 1.0 1.5 2.0
ρ

1.2

1.3

1.4

1.5

1.6

r̃ m
in

(b)

T0.1

T0.15

T0.2

T0.3

T0.5

T1.0

A 1

A 2

A 3

0.75 1.00 1.25 1.50 1.75 2.00
ρ

0.6

0.8

1.0

1.2

g A
A

(r̃
m
in

)

(c)

T0.1

T0.15

T0.2

T0.3

T0.5

T1.0

A 1

A 2

A 3

0.0 0.5 1.0 1.5 2.0
ρ

0.4

0.6

0.8

1.0

g A
B

(r̃
m
in

)

(d)T0.1

T0.15

T0.2

T0.3

T0.5

T1.0

A 1

A 2

A 3

Figure 5.15: The position and height of the first minima in gAA(r̃)
and gAB(r̃) as a function of density for all configurational adiabats and
isotherms. (a) position of minimum in gAA(r̃), (b) position of minimum
in gAB(r̃), (c) height of minimum in gAA(r̃), and (d) height of minimum
in gAB(r̃).
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5.5.2 The partial structure factor

We also analysed the Bhatia-Thornton partial structure factor (see Sec. 3.3.2).
Due to its relation with g(r) we do not expect S(q) to be invariant, however, it
will still give an insight into the behaviour of the model. We only show SNN(q)
and SCC(q) since SNC(q) = 0 due to the symmetries in the model and the chosen
concentrations.

Selected curves along A1 and T1.0 can be seen in Fig. 5.16. At low densities
the position of the first peak in SNN(q̃) rapidly goes to large q. Likewise, the peak
in SCC(q̃) becomes so flat that the exact position is difficult to determine. The
peak even seems to disappear along T1.0 at ρ = 0.1. This is not surprising since
we also saw the vanishing of the first peak in gAA(r).

As for the RDF, we analyse the position and height of the first peak in SNN(q̃)
and SCC(q̃), which can be seen in Fig. 5.17. As expected, the data change a lot
but generally become more invariant at high densities. This is especially true for
SNN(q̃). Based on this we can imagine that at even higher densities SNN(q̃) would
be invariant, and SCC(q̃) would also be invariant, or continue to move to lower q
and decrease in height as the density increases. In the later case, the model would
behave the same as the experimental data presented in Hansen et al. [2020].

To further emphasise this point SCC(q̃) curves from the high density region
of A1 can be seen in Fig. 5.18 (similar figures can be made for A2 and A3).
Here a density interval of 12.6% are shown, and the behaviour is similar to the
experimental data from Hansen et al. [2020] (which had a density interval of 2%).
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Figure 5.16: Selected S(q̃) data from (a) A1 and (b) T1.0. At low
densities we generally see that the peak in SNN(q̃) goes to high q̃-values
which makes it difficult to define.
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Figure 5.17: The position and height of the first peak in SNN(q̃) and
SCC(q̃) as a function of density for all configurational adiabats and
isotherms. (a) position of peak in SNN(q̃), (b) position of peak in
SCC(q̃), (c) height of peak in SNN(q̃), and (d) height of peak in SCC(q̃).
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Figure 5.18: Compare S(q̃) with experimental data. (Left) Figure 5b
from Hansen et al. [2020] showing X-ray data in a density interval of 2%.
(Right) S(q̃) curves along A1 in the high density region (1.757− 1.979
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5.5.3 The number of nearest neighbours

The number of nearest neighbours of type α around a type β is

Nαβ = 4πcαρ

∫ R

0

gαβ(r)r2dr, (5.13)

where cα is the concentration of α, gαβ(r) is the partial RDF for α and β, and R
is the limit for the integral, which is often chosen to be the first minimum.

When choosing the integration limitR we initially defined it as the minimum for
each curve, which resulted in very noisy data. To avoid this we decided to choose
a fixed R around the minimum. Based on Fig. 5.13 we choose the integration
limit R = 1.5ρ−1/3. However, it should be noted that this choice is based on the
high density region, since a fixed limit will not work at low density due to the big
changes in g(r).

The number of nearest neighbours for like (NAA) and unlike (NAB) particles
along all configurational adiabats and isotherms can be seen in Fig. 5.19. The first
thing we should note is that the y-axis shows a small interval of 0.8, meaning that
these numbers generally do not change much. NAA is approximately 6 while NAB

is approximately 7.5. This makes sense when comparing with the crystal structure,
which is shown in Fig. 5.5. Here we saw that the system prefers a crystal structure
similar to that of CsCl, which has first nearest neighbours 8 and second nearest
neighbours 6.
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Figure 5.19: The number nearest neighbours (a) like (NAA) and (b)
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When studying NAA and NAB for the configurational adiabats we notice that
they behave opposite to each other. This let us to analyse the total number of
nearest neighbours Z = NAA + NAB and the concentration fAA = NAA/Z, see
Fig. 5.20. Here we see that the differences in NAA and NAB along the configura-
tional adiabats almost cancel out resulting in a Z which does not change much.

The concentrations fAA change very little and are in the interval 0.42 − 0.48.
Along isotherms fAA are decreasing and crystallises before 0.42. This makes sense
since fAA for the crystal structure observed in Fig. 5.5 is 6/14 ≈ 0.43. For configu-
rational adiabats fAA is increasing at high densities. At sufficiently high densities
we would expect fAA to approach 50% as the charges become less dominant.
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Figure 5.20: (a) The total number of nearest neighbours Z, and (b)
the concentration of like particles fAA. At the lowest simulated density
along A1 (which can not be seen here) the concentration is 0.520.
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5.6 Conclusion

In this chapter we analysed the simple salt model from Hansen and McDonald
[1975] in a broad density range. This included simulating various isotherms and
configurational adiabats.

Density scaling exponent

In Sec. 5.1.3 we analysed the density scaling exponent γ analytically for this model.
We obtained Eq. 5.9 for the high density region where 〈∆UIPL∆UC〉 ≈ 0 (see
Fig. 5.9). This explains qualitatively that γ increases as a function on increasing
density as the electrostatic interactions become less dominant. This was also shown
to be the case in our simulations (see Fig. 5.6).

As mentioned in the beginning of this chapter, these results were published in
Knudsen et al. [2021]. Since then K. R. Harris found experimental verification of
this density scaling behaviour for high-temperature molten salts [Harris, 2022].

Curves of invariant dynamics: Isodynes

This model show a high level of dynamical invariance along configurational adi-
abats when isomorph scaling is applied. This included; viscosity, the diffusion
coefficient, and the time it takes the self-intermediate scattering function to reach
e−1 ≈ 0.37. Furthermore, even the MSD and Fs shows invariance along the config-
urational adiabats. This is remarkable since the configurational adiabat A1 covers
a density range of 660%. With the exception of the lowest densities and highest
temperatures the model also satisfies the reduced Stokes-Einstein relation. Going
forward we refer to these curves of invariant dynamics as isodynes. The existence
of isodynes was also shown in the experimental data from Hansen et al. [2020],
however, there they were only analysed a density range of 2%. An important result
from the analysis of this model is how stable the existence of isodynes are in the
phase diagram.

Structure along isodynes

The structure along both isodynes and isotherms were studied. We do not see
structural invariance on the same scale as the dynamical invariance. Along iso-
dynes the structure is generally more invariant in the high density region. This
turned out to be true for the position of multiple critical points in the radial
distribution function (even at longer distances), see Fig. 5.13.

To compare with the experimental results from Hansen et al. [2020] we com-
puted the Bhatia-Thornton partial structure factor. Along isodynes the charge
peak decreased in intensity and shifted to smaller q with increasing temperature.
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This is the same behaviour as in Hansen et al. [2020]. However, the main peak
increased in intensity and slightly shifted to smaller q as temperature increased.
Hansen et al. [2020] found the main peak to be invariant, however, this experi-
mental study only covered a density interval of 2%. Our main peak also looks
invariant when presented in a smaller density interval.

Due to the simplicity of this model the charges must be a fundamental part
of this structural behaviour. Additionally, if the charges were removed from the
model (the second IPL in Eq. 5.1) we can tell from the definition of the Bhatia-
Thornton partial structure factor (Eq. 3.14) that there would be no charge peak.

The behaviour of the charge peak seen in Hansen et al. [2020] is also present
in this model, and thus can not be related to molecular structures (which are
not present in this model). Consequently, this behaviour most be caused by the
charges themselves.

Number of nearest neighbours

The number of like and unlike neighbours (NAA and NAB) was similar to that of
the crystal structure which we observed for the system (6 and 8 respectively), see
Fig. 5.5. We found this the number of nearest neighbours generally did not change
much in the simulated range, i.e. less than 0.8 for both AA (like) and BB (unlike)
neighbours, see Fig. 5.19. Bigger changes were observed in the low density region,
however, this is because the chosen integration limit does not correspond to the
first minimum in the radial distribution function. We also found that the total
number of neighbours, while generally not changing much, showed more invariance
along the isodynes than the isotherms, see Fig. 5.20. Lastly, we analysed at the
concentration of like and unlike neighbours. We found that between 42% − 48%
of the neighbours are of the same type (like). Due to the charges it makes sense
that there would be a preference towards unlike types. We also see that along the
isodynes this preference becomes smaller as density increases in the high density
region. However, the opposite is true for the isotherms.
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Chapter 6

United Atom Ionic Liquid Model

In this chapter we analyse a united atom model of the ionic liquid from Hansen
et al. [2020]. The model is simulated in two regions; a narrow density region at
room temperature for comparison with experimental data, and a larger density
region at higher temperatures to find if the model has isodynes. To test the latter,
we analyse different dynamical properties and find which of these (if any) have
the same contours in the phase diagram. Then we analyse the structure along
these curves and compare them with isotherms, isochores and the experimental
structure data from Hansen et al. [2020].

6.1 Model details

The model which we study in this chapter is based on the ionic liquid which
was studied in Hansen et al. [2020]. That is, it consists of the cation 1-Butyl-1-
methylpyrrolidinium (Pyr14) and the anion bis(trifluoromethylsulfonyl)imide (TFSI).
An illustration of the molecules can be seen in Fig. 6.1.

Figure 6.1: An illustration of the molecules in this salt model. (Left)
The cation Pyr14 and (Right) the anion TFSI.
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This is a united atom model which means that each CH group will be considered
as one sphere, while all other atoms will be represented as individual spheres. Note
that the anion has an all-atom representation since it has no CH2 or CH3 groups.

On the basis of our previous versions of this model, we choose to apply partial
charges in this final version. This means that each atom/sphere have some charge
such that their sum is equal to the net-charge of the molecule.

6.1.1 Simulation parameters

All-atom parameters

When simulating detailed models we have to carefully consider the different pa-
rameters to insure that the model can represent reality. This has lead to the
development of different force fields such as the Assisted Model Building with En-
ergy Refinement (AMBER) force field, which was developed by Peter Kollman’s
group at the University of California, San Francisco. Another similar force field
is the Optimized Potentials for Liquid Simulations (OPLS) force field, which was
first developed in the 1980s in Jorgensen et al. [1983] and Jorgensen and Tirado-
Rives [1988] and has since been developed further in other works such as Jorgensen
et al. [1996]. Both of these force fields are commonly used, and we will therefore
be using parameters from both but transform them to OPLS.

The increased interest in ionic liquids has also lead to the development of
simulation parameters for this class of liquids. This is evident from papers such
as Sambasivarao and Acevedo [2009] where the all-atom OPLS parameters for
various ionic liquids have been developed and verified. This was later built upon
in Doherty et al. [2017].

The earliest set of OPLS parameters we found for the anion (TFSI) is in Canon-
gia Lopes and Pádua [2004]. This paper seems to be the primary reference for sim-
ulating TFSI, and provides all non-bonded interactions (including partial charges)
and all bonded interactions; bonds, angles, and dihedrals.

For our cation (Pyr14) we used the parameters from the paper Xing et al.
[2013]. They used standard bonded and non-bond parameters from Cornell et al.
[1996] and Liu et al. [2004]. Furthermore, Xing et al. [2013] obtained the partial
charges from the optimized geometry using the RESP method with the R.E.D.-
III.4 package.

Now we have obtained a full set of all-atom simulation parameters. However,
we wanted this to be a simpler united atom model of the molecule.
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The united atom

We only use united atoms for the CH2 and CH3 groups in Pyr14. In this work, we
used the non-bonded parameters from Jorgensen et al. [1984] which are identical
to those in Smondyrev and Berkowitz [1999]. To get the partial charges of the
united atoms we simply computed the total charge of the C and H.

The size of a single C from Xing et al. [2013] is σ = 3.400 Å, while a CH2 or
CH3 group from Jorgensen et al. [1984] is σ = 3.905 Å.

6.1.2 Simulation units

When it comes to the development of simulation-parameters there are differ-
ent standards in the choice of units. The most common units for distances are
Angstrom (Å) and nanometre (nm) which are easily converted. There are also two
standards for energy; kcal/mol and kJ/mol, with the conversion rate of 1 calorie
= 4.184 joules. In the end, we choose the unit system where distances will be
in Angstrom (Å), energies are in kilo calories pr. mole (kcal/mol), masses are in
dalton (u), and charges in elementary charge (e). The molecular number density
(ρ) will be presented it in nm−3 for convenience. A list of all the simulation units
and the corresponding SI units can be seen in Tab. 6.1.

Name Symbol Sim. unit SI unit

Length L Å 10−10 m
Energy E kcal

mol
6.948 · 10−21 J

Mass m u (g/mol) 1.661 · 10−27 kg
Charge q e 1.602 · 10−19 C

Boltzmann const. kB 1.987 · 10−3 kcal
mol

K−1 1.381 · 10−23 J K−1

Coulomb const. ke 3.321 · 102 kcal
mol

Å e−2 8.988 · 109 J m C−2

Time L
√
m/E 4.889 · 10−14 s

Velocity
√
E/m 2.045 · 103 m s−1

Diffusion L
√
E/m 2.045 · 10−7 m2 s−1

Force L−1E 6.948 · 10−11 N
Pressure L−3E 6.948 · 109 Pa

Viscosity L−2
√
mE 3.397 · 10−4 Pa s

Mass density mL−3 1.661 · 103 kg m−3

Table 6.1: List of the simulation units and the corresponding SI units
used in the simulations of the molecular salt model.
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6.1.3 Non-bonded interactions

Potential energy and cutoff

All the non-bonded interactions are modelled as LJ potentials (Eq. 2.27) together
with a first order inverse power law which represents the Coulomb interactions

Vαβ(rjk) = 4εαβ

[(
σαβ
rjk

)12

−
(
σαβ
rjk

)6
]

+ ke
qαqβ
rjk

, (6.1)

where rjk is the distance between particle j and k, with type α and β respectively.
We use the Lorentz-Berthelot combination rules when defining the energy εαβ
(Eq. 2.31), and distance σαβ (Eq. 2.32)

εαβ =
√
εαεβ and σαβ =

σα + σβ
2

. (6.2)

The shifted force method was used for all non-bonded interactions (see Sec. 2.4.1).
The cutoff of these LJ potentials are given by rcut,αβ = 2.5σαβ Å and the cutoff
for the Coulomb interactions was set to 18 Å. The choice 18 Å was based on the
simple atomic salt model (from Chap. 5) in which the cutoff was 6 and the particle
size (σ) was 1. However, in this model σ is between 2.9 and 4 Å, so we simply
scaled the cutoff of 6 with the particle size 3 to reach 18 Å.

United atoms in the cation

The cation contains both united atom representations of CH2- and CH3-groups.
However, we need to describe these with more than two types since they have
different partial charges. Instead of defining nine different CH-groups we added
some symmetry to the ring. The two CH2-groups in the ring closest to N+ will
be referred to as R1, the other two CH2-groups in the ring will be referred to as
R2. The four CH-groups in tail are represented by three types; the group closest
to the ring is T1, the two middle groups are Tm, and the fourth and last group is
T4. Lastly, the single CH3-group attached to N+ will be referred to as Ce.

When finding the partial charges, we simply added the charges of C and H.
In the cases where there are more than one of each type (e.g. R1, R2 and Tm)
the given partial charges were slightly different. Here the average partial charge
was used in keeping with the symmetry we have chosen to enforce. The partial
charges for Pyr14 from Xing et al. [2013] were given with 3-4 decimals. However,
to maintain charge neutrality of the system we did not round off the result when
calculating the united atom partial charges.
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Charge scaling

Previous studies have shown the importance of electronic polarization effects when
considering interactions between charges. A computationally costly method for
capturing this is using polarizable force fields. Because of this it is still common
to use nonpolarizable force fields which can lead to artifacts. However, there is a
simpler method to account for polarization effects, and it only involves scaling the
charges with some factor α. This method has been described in studies such as
Leontyev and Stuchebrukhov [2011] and Kirby and Jungwirth [2019]. It is common
to choose α = 0.8 but new studies have shown that it can be even lower depending
on the system [Doherty et al., 2017] [Barbosa et al., 2022]. We also made tests to
find the best choose of α for this model (see Sec. 6.2.3), but we ended up using
the standard 0.8 for the final version, which is presented in this work.

The full list of the non-bonded parameters used in this model and a particle-
type reference can be found in Tab. 6.2. The masses of Pyr14 and TFSI are 142.257
u and 280.143 u, respectively. We exclude the non-bonded interactions between
particles with bond, angle and dihedral potentials, see Sec. 2.4.2.

Non-bonded

Name σ [Å] ε [kcal/mol] m [u] q [e] q0.8 [e]

N+ 3.250 0.170 14.007 0.1040 0.0832
CH2 (R1) 3.905 0.118 14.026 0.1518 0.12144
CH2 (R2) 3.905 0.118 14.026 0.08365 0.06692
CH2 (T1) 3.905 0.118 14.026 0.1011 0.08088
CH2 (Tm) 3.905 0.118 14.026 0.05095 0.04076
CH3 (T4) 3.905 0.175 15.034 0.0279 0.02232
CH3 (Ce) 3.905 0.175 15.034 0.1942 0.15536

N− 3.25 0.170 14.007 -0.66 -0.528
S 3.55 0.250 32.065 1.02 0.816
O 2.96 0.210 15.999 -0.53 -0.424
C 3.50 0.066 12.011 0.35 0.280
F 2.95 0.053 18.998 -0.16 -0.128

Table 6.2: United atom OPLS parameters for non-bonded interactions.
The Pyr14 united atom ε and σ parameters for CH2 and CH3 are from
Jorgensen et al. [1984]. All Pyr14 charges are from Xing et al. [2013].All
TFSI parameters are from Canongia Lopes and Pádua [2004].
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6.1.4 Intra-molecular interactions

The potential for bonds and angles is simply the harmonic potential from Eq. 2.35.
The Pyr14 dihedral parameters from Xing et al. [2013] were written for the periodic
dihedral potential, Eq. 2.45 which is not implemented in RUMD. However, because
the angle θ0 = 0 and n = 3 in all cases they can be translated to Fourier dihedrals,
Eq. 2.46, and then Ryckaert-Bellemans function, Eq. 2.47, which is implemented
in RUMD.

A full list of all parameters for bonded interactions are shown in Tab. 6.3. The
dihedral parameters are shown in the Ryckaert-Bellemans Dihedral form because
this potential is implemented in RUMD and hence this was the version which
was used. However, in appendix B.3 the dihedral parameters can be found in the
Fourier Dihedral form where the parameters are simpler. When using the Fourier
Dihedral form it is clear that all dihedrals in the model except S-N-S-C can be
described by the function

V3 (1 + cos (3θ)) /2, (6.3)

where the S-N-S-C dihedral is more complex. To illustrate this the graphs of the
dihedral potential for C-C-C-C and S-N-S-C can be seen in Fig. 6.2. Here we also
see that the S-N-S-C potential is stronger than the others. From this C-C-C-C
dihedral we can also see that the ring in Pyr14 does not prefer to be flat, but rather
slightly twisted.
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Figure 6.2: Dihedral potentials for C-C-C-C and S-N-S-C.
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1

2
kb (rjk − l0)2

Bonds

Name l0 [Å] kb [kcal/(mol Å2)]

C-C 1.526 620.0
N-C 1.471 734.0

S-O 1.442 1274
S-N 1.570 744.0
S-C 1.818 470.8
C-F 1.323 883.6

1

2
ka (θjkl − θ0)2

Angles
Name θ0 [◦] ka [kcal/mol]

C-C-C 109.5 80.0
N-C-C 111.2 160
C-N-C 109.5 100

S-N-S 125.6 160
O-S-O 118.5 232
N-S-O 113.6 189
O-S-C 102.6 208
N-S-C 100.2 195
S-C-F 111.8 166
F-C-F 107.1 187

∑5
n=0 Cn (− cos (θ))n

Ryckaert-Bellemans Dihedrals
Name C0 C1 C2 C3 C4 C5 [kcal/mol]

C-C-C-C 0.180 0.540 0.0 -0.720 0.0 0.0
C-C-C-N 0.156 0.467 0.0 -0.622 0.0 0.0
C-C-N-C 0.156 0.467 0.0 -0.622 0.0 0.0

N-S-C-F 0.1580 0.4739 0.0 -0.6319 0.0 0.0
S-N-S-O -0.0018 -0.0054 0.0 0.0072 0.0 0.0
S-N-S-C 1.044 -5.062 2.490 1.527 0.0 0.0
O-S-C-F 0.1734 0.5202 0.0 -0.6936 0.0 0.0

Table 6.3: United atom OPLS parameters for bonded interactions. All
Pyr14 parameters are from Xing et al. [2013]. All TFSI parameters are
from Canongia Lopes and Pádua [2004].
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6.2 Test of model implementation

6.2.1 Test time step

To test the size of the time step (∆t) we ran a series of NVE-simulations at ρ = 4.0
nm−3 and T ≈ 500 K for 13107200 steps where energies were saved every 50th step.
All simulations started at the same configuration, and time steps between 0.25 fs
and 6.0 fs were tested with an interval of 0.25 fs. However, data from time steps
greater than 5.25 fs will not be shown as these simulations crashed.

The first part of Fig. 6.3 shows the variance of the total energy as a function
of time step. The black line is a 4th order power law, which is meant to guide the
eye. We start seeing bigger deviations from the power law for time steps smaller
than 0.75 fs and larger than 4 fs. The second part of Fig. 6.3 shows the total
energy as a function of time for ∆t = 1 fs, 2 fs, 3 fs, 4 fs, and 5 fs. There is a clear
drift in energy for 5 fs, which confirms that this time step is too large. However,
this is not the case for smaller time steps.

From this analysis, we find that it would be possible to use a ∆t up to approxi-
mately 4 fs at this state point. However, if we use this ∆t in the high density, high
temperature region (ρ = 4.8 nm−3 and T ≈ 998.15 K) the simulations might crash
due to fast vibrations. Consequently, we will use the same reduced (or isomorph
scaled) time step ∆̃t for all simulations. We choose ∆t = 2 fs at this state point
(ρ = 4.0 nm−3 and T ≈ 500 K) which corresponds to a ∆̃t ≈ 0.0150. This reduced
time step will be used for all the simulations going forward.
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Figure 6.3: NVE simulation at ρ = 4.0 nm−3 and T ≈ 500 K to test
time step. (Left) Variance of the total energy as a function of time
step. The black line is a power law with exponent 4, which is meant to
guide the eye. (Right) The total energy at selected ∆t.
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6.2.2 Test the cutoffs influence on pressure

Since this model will be compared with experimental data, it will be useful to
analyse the pressure of the model. Using a cutoff for the potential changes the
pressure due to the missing interactions. To get an idea of the change in pressure,
we performed some tests with different cutoff values. This was done separately for
the Lennard-Jones and electrostatic interactions. We analyse configurations from
simulations with the previously chosen cutoffs of rcut,LJ = 2.5σLJ and rcut,C = 18
Å and computed what the pressure would have been at different cutoffs. This was
done for 4 state points in the region, where we have experimental data;

• At ρ = 3.84 nm−3 with T = 10 ◦C and T = 75 ◦C.

• At ρ = 4.16 nm−3 with T = 10 ◦C and T = 75 ◦C.

Note the size of the simulation box gives an upper limit of approximately 24 Å for
the cutoff.

Lennard-Jones cutoff

The Lennard-Jones cutoff contribution to the pressure for different state points
can be seen in Fig. 6.4. Here we see that as the cutoff increases, the pressure
decreases and stabilises as the Lennard-Jones interactions become weaker at longer
distances. By analysing these (and other state points which have not been shown)
we find that the pressure decreases with approximately 100− 200 MPa depending
on the state point. This is more than we expected and will in some cases result
in negative pressure. Due to this big cutoff dependence we will not present data
as a function of pressure. This is also true when comparing dynamical quantities
between experiments and our models.

Electrostatic cutoff

We also test the pressure contribution from the electrostatic interactions, since we
used the shifted force cutoff method and not an Ewald summation. The pressures
dependents on the electrostatic cutoff can be seen in Fig. 6.5 for different state
points. The first thing we notice is that the pressure has not stabilised at the
largest cutoff that we can compute with our simulated configuration. However,
the changes in pressure is only a couple of MPa in the range we have access to.
That is a percent of the contribution from the Lennard-Jones interactions, and
comparable to the size of the error bars.
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Figure 6.4: Test of how the Lennard-Jones cutoff effects the pressure.
The error bars are smaller that the symbol size. The horizontal dashed
line indicates the pressure, that was obtained in the simulations.
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Figure 6.5: Test of how the electrostatic cutoff effects the pressure.
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6.2.3 Test Coulomb strength

It is common to scale the charges by a factor of 0.8 to account for electronic polar-
ization effects when simulating systems with electrostatic interactions. However,
since we have access to experimental data for our models real life counterpart
we decided to test if other scaling factors would bring the model closer to the
real system. To do this we simulate at the same density and temperature as the
experimental data. This experimental data comes from Harris et al. [2011].

We chose the following three ρ − T state points where experimental data was
available

• Point 1: ρ = 3.977 nm−3 and T = 75 ◦C

• Point 2: ρ = 3.978 nm−3 and T = 25 ◦C

• Point 3: ρ = 4.146 nm−3 and T = 25 ◦C

These points were chosen to represent different parts of the region with experi-
mental data. The state points with experimental data and our three chosen state
points can be seen in Fig. 6.6. We performed a set of simulations where we scaled
the charges of the atoms for each of the chosen state points. We refer to this
scaling factor as C-scale. This was done in an range from 0 to 1 with an interval
of 0.1. We do not expect the optimal C-scale to be close to zero, however, it is
still interesting to see how the system behaves at low to zero charge.
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Figure 6.6: Plot of the experimental state points and the three points
we simulated for this analysis.
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Pressure and viscosity

The pressure as a function of C-scale is shown in Fig. 6.7 for the three chosen
state points. Here only the atomic pressure is shown, but it is very similar to
the molecular pressure. Furthermore, the experimental pressure is shown as a
horizontal, dashed line. The intersection between the experimental and simulated
curves will ideally represent the optimal C-scaling. We see that this intersection is
between 0.8 and 0.9, but differs between the three state points. This means that
we can not choose a single C-scale that will match the experimental data at all
points, however, this was not expected. Based on this pressure analysis, we would
argue that the optimal C-scale is between 0.8 and 0.9.

We will now do a similar analysis for the viscosity to find how it compares with
the experimental data. The viscosity as a function of C-scale is shown in Fig. 6.8
for the three chosen state points. Since the viscosity at the three points are quite
different in magnitude so the results are shown on a logarithmic y-axis. Note that
error bars are included for our data, but in some cases they are smaller than the
symbol size.

From this we conclude again that the optimal C-scale is between 0.8 and 0.9,
however, no specific choice within this range seems to be preferred. Based on this
analysis of the pressure and viscosity, we do not find a reason to choose a specific
C-scale for this system. We will therefore be using the standard scaling of 0.8,
since this is within the range of our results.
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Figure 6.7: The pressure as a function of C-scale at three state points.
The horizontal, dashed lines represent the experimental pressure.
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Figure 6.8: The viscosity as a function of C-scale at three state points.
The horizontal, dashed lines represent the experimental viscosity.

Isomorph R and γ

It is interesting to see how the charges influence the correlation between U and W
(R from Eq. 4.18) and the density scaling exponent for configurational adiabats
(γ from Eq. 4.19). In Fig. 6.9, we see R as a function of C-scale. First, we
notice that R is very small which makes sense because on the bonded interactions
[Olsen et al., 2016]. Second, we see that R is largest at low C-scale. This means
that electrostatic interactions further decorrelate the potential energy and virial.
Furthermore, R is largest at point 3 which has a higher density than the other
two points. It is also noticeable that the curves for point 1 and 2 are close. This
means that R is more dependent on density than temperature.
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Figure 6.9: The correlation between U and W as a function of C-scale.
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Figure 6.10: The density scaling exponent for configurational adiabats
(γ) as a function of C-scale.

The density scaling exponent for configurational adiabats (γ) as a function of
C-scale can be seen in Fig. 6.10. Here we see a behaviour similar to that of R.
The values are largest at low C-scale, and γ is more dependent on density than
temperature.

The static structure factor

We also want to check how the static structure factor depends on the C-scale. The
total S(q) at point 2 with different C-scales can be seen in Fig. 6.11. Here we see
two peaks; the charge peak, and the main peak. It is clear that the charge peak is
strongly associated with the charges, since it disappears as C-scales approaches 0.
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Figure 6.11: The total structure factor at simulation point 2 (ρ = 3.978
nm−3 and T = 25 ◦C. ) with varying C-scale.
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6.3 Simulation details

6.3.1 Simulation protocol

For the main analysis of this united atom IL model we simulate two regions, that
are shown in Fig. 6.12;

• A limited density range at temperatures lower than 400 K. This region is for
comparison with experiments.

• A larger density region with temperatures up to 1000 K. This is to test the
model more broadly. We know from Xu and Cheng [2021] that the real
molecule breaks down around 720 K. However, we still find it interesting to
simulate at higher temperatures to get a better understanding of the model.

Fig. 6.12 has two coloured regions; a grey region that indicates negative pressure,
and a red region where the dynamics become slow. The line with P ≈ 0 was
found by fitting surrounding data to a simple polynomial. This was done for both
isotherms and isochores, that yielded the same results, which tells us that this is
not a plot-sensitive process. The red region was defined in a similar way, how-
ever, it indicates where simulations takes more than 1 ns for the self-intermediate
scattering function of N+ to reach a value of e−1 ≈ 0.368. In these cases, the
corresponding q was chosen to be the position of the main structure factor peak.
This is state point dependent, but it is between 0.7 and 0.9 Å−1.

All simulations contained 200 ion-pairs corresponding to 5000 spheres/atoms
and had periodic boundary conditions. They also used start configurations in
the liquid state. First, they equilibrated for 2 · 107 timesteps followed by a data
collecting run for 100 · 220 = 104 857 600 timesteps. All simulations used the same
isomorph-scaled timestep d̃t ≈ 0.015 which corresponds to a real timestep of 2 fs
at ρ = 4.0 nm−3 and T = 500 K (as was shown in Sec. 6.2.1).
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Figure 6.12: (Top) Plot of simulated state points in a ρ − T diagram
and (Bottom) the pressure at the simulated points as a function of
T . Simulation points in the grey region have negative pressure, and
points in the red region took more than 1 ns for Fs of N+ to reach a
value of e−1. The two isochores at ρ = 3.2 nm−3 and 4.8 nm−3 have
been highlighted with different colours because they will be used for an
example in the upcoming section.
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6.3.2 Calculating diffusion coefficient and viscosity

Calculating diffusion coefficient

We use Eq. 3.21 when calculating the diffusion coefficient. However, to do this we
first need to find the region of the mean square displacement, where the system
has become diffusive. We know this is the case when the MSD has the shape of a
power law with power 1. We did not fix the number of points used for the fit, in an
effort to get a better approximation of the diffusive region and thereby D. Instead
we made fits to different number of end points and chose the one where the power
of the fit was closest to 1. However, we set the restrictions that the fit will always
use the last 4 points, and never the first 2/3 of data (saved in log time).

When calculating the standard deviation of the diffusion coefficient the simu-
lation was separated into 10 parts from which D was calculated for each. These
calculations follow the same procedure as before.

Calculating viscosity

We used the Green-Kubo formula (Eq. 3.24) when calculating the viscosity. When
computing the integral we used on a combination of fitting and numerical inte-
gration. For each simulation we found the times t0.10 and t0.05 which represent
the first time at which the stress autocorrelation was equal to 10% and 5% of its
initial value at time zero, respectively. We then performed a numerical integration
from t = 0 to t0.05. For the long time region we fit the data for t > t0.10 to a
stretched-exponential

f(t) = A exp

(
−
(
t

τ

)β)
. (6.4)

Then a numerical integration of the fit is performed from t0.05 to a millionth of the
initial value. The fit also used data in the region between times t0.10 and t0.05 to
get a better estimate of β.

When calculating the standard deviation of the viscosity the simulation was
separated into 10 parts from which η was calculated for each. These calculations
follow the same procedure as before with the only difference, that the β used for
the fit is the one from the full simulation.
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6.4 Results: Dynamics

6.4.1 Comparing dynamics with experiments

In this section, we compare our simulation data with experimental data from Harris
et al. [2011]. We use two data sets from this paper:

• data for ρ, P , and η from Tab. 3.
The temperature range for this data is; 0◦C, 10◦C, 25◦C, 50◦C, and 75◦C.

• data for P , D+, and D− from Tab. 6.
The temperature range for this data is; 30◦C, 50◦C, 65◦C, and 75◦C.

When we tested the pressure in Sec. 6.2.2, we found that it depends greatly on
the cutoff of the potential interactions. Consequently, we find it more meaningful
to compare results as a function of density. To find the densities for the diffusion
data we used the equation of state from Hansen et al. [2020]

ρ(T, P ) =

(
V0 exp(α0T )

{
1− C ln

[
1 +

P

b0 exp(−b1T )

]})−1

, (6.5)

where ρ is in g/cm3, P is in MPa and T is in ◦C. The fitting parameters are
V0 = 0.706± 0.01, α0 = 6.36± 0.04 · 10−4, C = 8.6± 0.3 · 10−2, b0 = 188± 5 and
b1 = 4.4 ± 0.2 · 10−3. As a consistency check, we used Eq. 6.5 on the data from
Harris et al. [2011] where density was already given. The given and calculated
densities can be seen in Fig. 6.13. Here we find a good correspondence between
the data with the biggest difference being less than 0.3%. Based on this analysis
we use Eq. 6.5 to find ρ for the diffusion data from Harris et al. [2011].
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Figure 6.13: Comparison of ρ from Harris et al. [2011] and the corre-
sponding ρ calculated via Eq. 6.5 from Hansen et al. [2020].
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For this comparison we have simulated temperatures 10◦C, 25◦C, 50◦C, and
75◦C. These temperatures were chosen to have enough data to compare both η and
D directly. The simulated and experimental state points can be seen in Fig. 6.14.
Furthermore, Fig. 6.15 also shows the relation between ρ and P . The simulations
generally have higher pressure than the experiments in this region . However, the
experimental data generally look to be more density dependent than the simulated
data. This means that at higher densities the experimental pressure would exceed
the simulated pressure.
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Figure 6.14: Simulated and experimental temperature as a function of
density.
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Figure 6.15: Simulated and experimental pressure as a function of den-
sity.
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A comparison between our simulated data and the experimental diffusion coef-
ficient data from Harris et al. [2011] can be seen in Fig. 6.16. The data are shown
as a function of ρ which was calculated using Eq. 6.5. We show the data on a
logarithmic y-axis to emphasize the data’ approximate exponential behaviour. To
avoid confusion from an overload of data, we only show isotherms 50 ◦C and 75
◦C since they are available in both simulations and experiment. The simulations
are more diffusive than the experiments (approximately a factor of 2). However,
the shape of the curves (their slopes) matches very well.
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Figure 6.16: Simulated and experimental D as a function of density for
both the cation and anion. Error bars are included for the simulated
data, however, in many cases they is smaller that the symbol size.
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A comparison of our simulated viscosity with the experimental viscosity data
from Harris et al. [2011] Tab. 3 can be seen in Fig. 6.17 as a function of ρ. The
four temperatures have their own colours where experimental data are shown as
dashed lines, and simulation data as full lines. A logarithmic y-axis was again
used to emphasize the data’ approximate exponential behaviour. The exponential
behaviour is striking for the experimental data and the simulated isotherms 50◦C
and 75◦C. The first point on the simulated isotherms 10◦C and 25◦C does not
follow this behaviour. However, this could be related to the large negative pressure
at those points. The simulations are generally less viscous than the experiments
(approximately a factor of 2). Again, the shape of the curves (their slopes) matches
very well.

From this analysis we find that the model is a good qualitative representation
of the dynamics in the experiments.
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Figure 6.17: Simulated and experimental η as a function of ρ. Error
bars are included for the simulated data, however, in many cases it is
smaller that the symbol size.
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6.4.2 Dynamics along isochores

To get an idea of the dynamics and relaxation of the system, we analyse the self-
intermediate scattering function and the mean square displacement along the two
isochore at the boundary, i.e. ρ = 3.2 nm−3 and 4.8 nm−3, see red and blue points
in Fig. 6.12. Since the system contains 12 different particle types, we will only be
showing data from N+ here, see Fig. 6.18.

The wave-vector in Fs was automatically chosen as the position of the main
peak in S(q). For ρ = 3.2 nm−3 this was between 0.79 Å−1 and 0.82 Å−1, while for
4.8 nm−3 it was between 0.84 Å−1 and 0.87 Å−1. The dashed lines indicate points
with T < 580 K, i.e. points with negative pressure or slow dynamics, respectively.

The first thing, that should be noted is that the data in the slow-dynamics-
region (high density and low temperature) have not run long enough to relax.
This means that quantities like the diffusion coefficient can not be obtained without
running longer. The second thing to notice is the beginning of a two-step relaxation
as the system gets slower. This is mostly visible on the high density curves (red).
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Figure 6.18: Mean square displacement and self-intermediate scattering
function along isochore ρ = 3.2 nm−3 and 4.8 nm−3 in both SI and
isomorph scaled units. Dashed lines indicate negative pressure or slow
dynamics, see Fig. 6.12.
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The stress autocorrelation along the two isochore at the boundary ρ = 3.2
nm−3 and 4.8 nm−3 can be seen in Fig. 6.19. We notice that in SI units, the
stress-autocorrelation function has features in the range 10−13 < t < 10−11 s which
occur at the same real time for all the curves. These could be related to intra-
molecular vibrations.
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Figure 6.19: Graphs of the stress autocorrelation function along iso-
chore ρ = 3.2 nm−3 (blue) and 4.8 nm−3 (red). A zoom-in on the
long-time region is provided to better see this behaviour. (Top) Data
in IS units and (Bottom) data in isomorph scaled units. Dashed lines
indicate negative pressure or slow dynamics, see Fig. 6.12.

93



6.4.3 Does the model have isomorphs?

The isomorph R and γ for the simulated state points can be seen in Fig. 6.20.
Since R is close to zero, we should not expect this system to have isomorphs in the
region of the phase diagram, that we have simulated. This is not surprising due to
the bonded interactions in the model, as was discussed in Sec. 4.3.3. Additionally,
not even the simpler atomic model from Chap. 5 had isomorphs. We also see that
R is more dependent on density than temperature and looks approximately linear.

The γ is also mainly dependent on density, however, it becomes more tempera-
ture dependent at higher densities. It should also be noted that γ is approximately
linear as a function of density.
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Figure 6.20: The R and γ for all simulated state points. The dashed
lines are linear fits to the data meant to guide the eye. Isochore ρ = 3.2
nm−3 and 4.8 nm−3 are highlighted with blue and red, respectively.
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6.4.4 Does the model have isodynes?

To determine if this model could have lines of invariant dynamics we plot some
contours for the diffusion coefficient of N+ and the viscosity, see Fig. 6.21. We
choose contours which go through the points ρ = 3.2; 3.6; 4.0; 4.4; 4.8 nm−3 and
T = 598.15 K. From this we find that the contours cross each other in SI units, but
they have the same shape in isomorph scaled units. This means that the system
at least has curves along which both diffusion and viscosity are invariant.

Another way of showing this with a single parameter is with the Stokes-Einstein
relation (see Sec. 3.4.4). Thus Fig. 6.22 shows the effective hydrodynamic radius
and the product of η̃ and D̃. The effective hydrodynamic radius is approximately
6 Å, which is around the size of the molecules. The product η̃D̃, while not perfect,
is still remarkably independent of both ρ and T . This tells us that approximately

D̃(ρ, T ) ∝ 1

η̃(ρ, T )
(approximately) (6.6)

This confirms the existence of curves along which both quantities are invariant.
However, this result is actually stronger than the previous one from Fig. 6.21.
This is because Fig. 6.21 only confirms that the shape of the contours are the
same (nothing about their value), while Eq. 6.6 also confirms that the product of
the two is (approximately) invariant. Additionally, invariance is true for the entire
simulated region and not only for each contour.
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Figure 6.21: Contours for D+ (orange), and 1/η (black). These con-
tours were found using the contour function from the matplotlib python
package. (Left) Data in SI units and (Right) data in isomorph scaled
units.
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Figure 6.22: Test of the Stokes-Einstein relation. (a) A plot of the
effective hydrodynamic radius as a function of ρ. (b) A plot of η̃D̃ as
a function of ρ. The dashed lines are linear fits to the data meant to
show the ρ dependence.

Now that we know the system has curves where both η̃ and D̃ are invariant,
the question is how to trace these curves more precisely. To answer this question
we analyse the diffusion coefficient and the inverse viscosity i.e. the fluidity. We
choose fluidity instead of viscosity due to its relation with the diffusion coefficient
from Eq. 6.6. This leads us use a similar procedure when analysing both types of
data.
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We decided to fit the data as a function of T for each density. Initially a linear
fit was used, which was sufficient for the narrow density range from 3.84 to 4.16
nm−3. However, when a broader density range was analysed, it became clear that
a linear fit was not sufficient, especially at low densities. Consequently, we a 3rd
order polynomial was used to fit the 1/η̃ data instead. However, the D̃ data has
more noise so to avoid overfitting 2nd order polynomial was used. These can be
seen seen in Fig. 6.23.
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Figure 6.23: Plot of D̃ and 1/η̃ as a function of temperature for each
density. D̃ is fitted to a 2nd order polynomial, and η̃ is fitted to a 3rd
order polynomial. Error bars are included but are in most cases smaller
than the symbol size.
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All these fits (and the data) are monotonically increasing as a function of
temperature. Consequently, the fits have a unique inverse in the simulated region.
This means that for each of our simulated densities we can find the temperature
which gives a specific D̃ or 1/η̃ (assuming the value exists for that density in the
simulated temperature range). This allows us to choose a D̃ or 1/η̃ and get the
corresponding densities and temperatures where the chosen value is constant.

We find that D̃ and 1/η̃ result in very similar contours when using this method.
However, the polynomial fits seem slightly better for 1/η̃ and we therefore decide
to use these when choosing the curves.

This method was used to trace isodynes from which a total of 7 were simulated;
4 with the linear fit (isodyne 1-4), and 3 with the 3rd order polynomial fit (isodyne
5-7). Isodyne 5, 6 and 7 were chosen to cover the entire simulated range with
isodyne 5 being the slowest and isodyne 7 being the fastest. Furthermore, all points
along them have positive pressure which is not the case for the other isodynes. All
7 isodnes are shown in a ρ− T phase diagram in Fig. 6.24.
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Figure 6.24: All the simulated isodynes in a ρ− T phase diagram. As
in Fig. 6.12 there are two coloured regions; a grey region that indicates
negative pressure, and a red region where the dynamics become slow.
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A list of all ρ − T state points along the simulated isodynes can be found in
Tab. 6.4. All points along each isodyne have been given a unique ID which will be
used when referencing them in the upcoming analysis. This was done to lighten
the notation, and remove the need to specify ρ and T for every point.

Isodyne 1
ID ρ [nm−3] T [K]

d1:1 3.44 384.83
d1:2 3.60 456.05
d1:3 3.84 598.92
d1:4 3.92 645.92
d1:5 4.00 715.07
d1:6 4.08 776.18
d1:7 4.16 856.57

Isodyne 2
ID ρ [nm−3] T [K]

d2:01 3.60 383.94
d2:02 3.68 418.25
d2:03 3.76 454.64
d2:04 3.84 499.00
d2:05 3.92 535.75
d2:06 4.00 587.18
d2:07 4.08 639.75
d2:08 4.16 700.49
d2:09 4.24 767.31
d2:10 4.32 860.40
d2:11 4.40 948.98

Isodyne 3
ID ρ [nm−3] T [K]

d3:1 3.92 379.56
d3:2 4.00 406.65
d3:3 4.08 431.36
d3:4 4.16 465.18
d3:5 4.24 500.86
d3:6 4.32 529.89
d3:7 4.40 568.30
d3:8 4.48 619.21
d3:9 4.56 681.55

Isodyne 4
ID ρ [nm−3] T [K]

d4:01 3.20 413.26
d4:02 3.28 424.31
d4:03 3.36 460.14
d4:04 3.44 504.33
d4:05 3.52 547.21
d4:06 3.60 599.82
d4:07 3.68 659.61
d4:08 3.76 721.13
d4:09 3.84 794.59
d4:10 3.92 871.54
d4:11 4.00 975.28

Isodyne 5
ID ρ [nm−3] T [K]

d5:01 3.92 326.72
d5:02 4.00 343.93
d5:03 4.08 369.09
d5:04 4.16 399.41
d5:05 4.24 434.30
d5:06 4.32 466.85
d5:07 4.40 509.75
d5:08 4.48 555.83
d5:09 4.56 579.84
d5:10 4.64 646.32
d5:11 4.72 687.79
d5:12 4.80 752.92

Isodyne 6
ID ρ [nm−3] T [K]

d6:01 3.60 439.98
d6:02 3.68 479.65
d6:03 3.76 526.19
d6:04 3.84 577.76
d6:05 3.92 622.94
d6:06 4.00 679.57
d6:07 4.08 749.41
d6:08 4.16 822.87
d6:09 4.24 889.89
d6:10 4.32 973.35

Isodyne 7
ID ρ [nm−3] T [K]

d7:1 3.20 645.32
d7:2 3.28 708.10
d7:3 3.36 783.98
d7:4 3.44 876.86
d7:5 3.52 978.33

Table 6.4: List of ρ− T state points for all our simulated isodynes.
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6.4.5 Shape of isodynes and density scaling γ

We analyse the shape of the isodynes in the ρ− T diagram. Furthermore, we also
compute the density scaling exponent γ by using the first part of Eq. 4.19. Note
that this is not the same γ from Fig. 6.20 which applies for configurational adiabats.
Instead we analyse the shape of the curves. This analysis will be performed for
isodyne 5, 6, and 7, since they cover the simulated region.

First, we see if the shape of the curve can be described by a power law. To
visualise this the data can be seen in a linear and a log-log plot in Fig. 6.25.
The correlation between the data and the fits are greater than 0.998 in all three
cases. The γ is between 4.27 and 4.44 with the lowest value at isodyne 5 (the high
viscosity of the simulated isodynes). This is greater than the experimental value
from Hansen et al. [2020] which was 2.8.

3.5 4.0 4.5
ρ [nm−3]

400

600

800

1000

T
[K

]

(a)

P ≈ 0

P < 0 Fs > e−1 after 1 ns

Isodyne 5

Isodyne 6

Isodyne 7

3.2
× 10

0

3.4
× 10

0

3.6
× 10

0

3.8
× 10

0

4×
10

0

4.2
× 10

0

4.4
× 10

0

4.6
× 10

0

4.8
× 10

0

ρ [nm−3]

103

3× 102

4× 102

6× 102

T
[K

]

(b)

γ = 4.27

γ = 4.41

γ = 4.44

P ≈ 0

P < 0 Fs > e−1 after 1 ns

Isodyne 5

Isodyne 6

Isodyne 7

Figure 6.25: Plot of isodyne 5, 6, and 7 in a ρ − T diagram, in (a) a
linear plot, and (b) a log-log plot. The numbers next to the data are
the density scaling exponents γ.
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We also tested if the data could have the shape of an exponential function. In
this case γ is not constant along the curve. A plot of the isodyne curves and the
corresponding γ can be seen in Fig. 6.26. The correlation between the data and
the fits are greater than 0.999 in all cases. Again, we see that γ is bigger than the
experimental data from Hansen et al. [2020]. Here the changes in γ are the same
as for the density interval of the isodyne, i.e. 22%, 20% and 10%.

We can conclude that the data have a shape similar to both a power law and an
exponential function. However, with the data we have available we cannot argue
if one is better than the other. In either case, the density scaling γ is bigger than
in the experimental observations where γ = 2.8 [Hansen et al., 2020].
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Figure 6.26: (a) Plot of isodyne 5, 6, and 7 and their exponential fits
in a lin-log ρ − T diagram. (b) The density scaling exponent γ from
the exponential fits. For comparison the γ from the power law fit (see
Fig. 6.25) are included as dashed black lines.

101



6.4.6 Dynamics along isodynes (check)

Our isodynes were chosen to have invariant viscosity, and consequently invariant
diffusion coefficient. To test how well our tracing method worked we show D̃ for
N+ and η̃ along the simulated isodynes in Fig. 6.27. As expected the data is not
perfectly invariant, however, it will still prove useful for the purpose of this work.

We also analyse the shape on the data used to calculate these quantities to find
if this dynamical invariance is more general. Thus, examples of the mean square
displacement and the self-intermediate scattering functions for N+ along isodyne 2
in scaled units can be seen in Fig. 6.28. Here we see that the curves collapses, which
is even striking when comparing the similar curves along isochores, see Fig. 6.18.
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Figure 6.27: Dynamics data in isomorph scaled units along the simu-
lated isodynes. (Top) D̃ for N+ and (Bottom) 1/η̃.
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Figure 6.28: Dynamics for N+ along isodyne 2 in isomorph scaled units.
(Left) Mean square displacement, and (Right) self-intermediate scatter-
ing function. A list of isodyne labels can be found in Tab. 6.4.

We also analysed the stress-autocorrelation function used for calculating the
viscosity, see Fig. 6.29. A zoom-in of the long-time behaviour is also shown. The
curves do not collapse as well at time t = 0 as in the long-time domain. This
means that either this is not really invariant or it is a sign that this is only an
approximate isodyne. On the other hand, the long-time domain collapses well
in scaled units, which means that it is important for the viscosity. The general
collapse of these curves is in contrast to the stress-autocorrelation function curves
along isochores from Fig. 6.19.
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Figure 6.29: Stress-autocorrelation function along isodyne 2 in scaled
units. A zoom-in on the long-time region is provided to better see this
behaviour. A list of isodyne labels can be found in Tab. 6.4.
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Figure 6.30: The stretching exponent β from the viscosity calculation
as a function of density.

To quantify the collapse of the data in the long-time domain we plotted the
stretching exponent β from the stretched exponential fit that was used to calculate
η, see Fig. 6.30. We see that β changes, but it seems to only depend on density
and not temperature. Thus the long time domain becomes more stretched as the
density increases. This also means that the collapse is not perfect.

6.4.7 Rotation of molecules

In addition to the measures of dynamics that we have shown so far, we would like
to analyse the rotations of the molecules. This is possible since molecular dynamics
simulations give us access to atomic configurations at different times. Thus, we
can define different normalised vectors (n) between atoms within a molecule and
compute the autocorrelation function in time to gain rotational information

R
(
t̃
)
≡
〈
n(0) · n(t̃)

〉
. (6.7)

This will be done for isodyne 2, isodyne 5, and isodyne 6. Furthermore, for com-
parison purposes we also analyse isotherm 325 ◦C, but only within the same density
range as isodyne 5 to make the comparison more useful.
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Molecular rotation of the cation

We would like to analyse the rotation of the ring. This will be done in two ways.
First, we define the normal-vector to the plane spanned by N+, and the two R1

groups. The autocorrelation function for this vector can be seen in Fig. 6.31. Here
there is a clear change along the isotherm, while all the isodynes show invariance.
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Figure 6.31: Autocorrelation function of the normal-vector to the plane
spanned by N+, and the two R1 groups. (a) Isotherm 325 ◦C, (b)
isodyne 5, (c) isodyne 2 and (d) isodyne 6. A list of isodyne labels can
be found in Tab. 6.4.
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The second way we analyse the rotation of the ring is by defining the vector
from N+ to the point between the two R2 groups.The autocorrelation function for
this vector can be seen in Fig. 6.32. Here we see the same behaviour as for the
other ring rotation.
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Figure 6.32: Autocorrelation function of the vector from N+ to the
point between the two R2 groups. (a) Isotherm 325 ◦C, (b) isodyne 5,
(c) isodyne 2 and (d) isodyne 6. A list of isodyne labels can be found
in Tab. 6.4.
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We also study the rotation of the tail in the cation. This was defined as the
normalised vector between N+ and the end of the tail (T4).The autocorrelation
functions are shown in Fig. 6.33. Again, we see a clear change along the isotherm
and invariance along the isodynes. However, there is greater variation along iso-
dyne 5 than the other isodynes at long times. We do not believe this is related to
the quality of the isodyne since this would also have affected the rotation of the
ring which did not show this variance. Isodyne 5 does have the highest viscosity
of all the simulated isodynes, however, we do not know if this is related.
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Figure 6.33: Autocorrelation for the normalised vector between N+ and
T4. (a) Isotherm 325 ◦C, (b) isodyne 5, (c) isodyne 2 and (d) isodyne
6. A list of isodyne labels can be found in Tab. 6.4.
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Molecular rotation of the anion

For the anion we start by defining the normalised vector between the two S atoms to
find its rotational behaviour. The autocorrelation functions are shown in Fig. 6.34.
Not surprisingly we again see a clear change along the isotherm, and invariance
along the isodynes. However, isodyne 5 shows less invariance than the other iso-
dynes, as was the case for the tail in the cation. We are not certain of the reason
for this.
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Figure 6.34: Autocorrelation function of the vector between the two
S atoms. (a) Isotherm 325 ◦C, (b) isodyne 5, (c) isodyne 2 and (d)
isodyne 6. A list of isodyne labels can be found in Tab. 6.4.
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To confirm this isodyne rotational invariance, we also define the normalised
vector between the two C atoms. The autocorrelation functions are shown in
Fig. 6.35. Here we see the same behaviour as before in Fig. 6.34, including the
small changes along isodyne 5.
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Figure 6.35: Autocorrelation function of the vector between the two
C atoms. (a) Isotherm 325 ◦C, (b) isodyne 5, (c) isodyne 2 and (d)
isodyne 6. A list of isodyne labels can be found in Tab. 6.4.
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To analyse a different axis of rotation we define the normal-vector to the plane
spanned by N− and the two S atoms. The autocorrelation functions are shown in
Fig. 6.36. This is our first example of a rotation that changes for both the isotherm
and all the isodynes. This tells us that this rotational axis is not important for
dynamical properties such as the diffusion coefficient.
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Figure 6.36: Autocorrelation function of the normal-vector to the plane
spanned by N− and the two S atoms. (a) Isotherm 325 ◦C, (b) isodyne
5, (c) isodyne 2 and (d) isodyne 6. A list of isodyne labels can be found
in Tab. 6.4.
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To confirm this, we analysed the normalised vector from N− at the point be-
tween the two S atoms, see Fig. 6.37. Again, there is a clear change along both
the isotherm and isodyne. As before, this tells us that this axis of rotation is not
important for dynamical properties such as the diffusion coefficient.

From this analysis we see that the rotations which show invariance are along
the directions of high moment of inertia. This also makes intuitive sense.
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Figure 6.37: Autocorrelation function of the vector from N− at the
point between the two S atoms. (a) Isotherm 325 ◦C, (b) isodyne 5,
(c) isodyne 2 and (d) isodyne 6. A list of isodyne labels can be found
in Tab. 6.4.
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C-S-S-C dihedral rotation in the anion

So far we have analysed the rotation of the molecules. However, inspired by the
findings in Philippi et al. [2020], we also analysed the dihedral angle between C-S-S-
C (see Fig. 6.38). This does not have a dihedral potential in the model, but we can
still analyse it. It should be noted that in contrast to the other rotations we have
studied this is an intra-molecular angle. This means that there might be a preferred
angle so the autocorrelation function does not approach zero. We calculated the
autocorrelation function for the difference in the angle i.e. cos (θ(t)− θ(0))
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Figure 6.38: Autocorrelation function of the C-S-S-C dihedral angle.
(a) Isotherm 325 ◦C, (b) isochore 3.92 nm−3, (c) isodyne 2.
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6.5 Results: Structure

6.5.1 The structure factor along isodynes

We would like to calculate the total structure factor along isodynes and comapre
the peaks with the experimental data from Hansen et al. [2020]. The experimental
structure data was obtained with X-ray scattering, which scatters from the elec-
trons in the sample. To represent this we choose to scale our partial structure
factors with the number of electrons minus the partial charge from Tab. 6.2. This
corresponds to using the X-ray form factors with q = 0. The X-ray form factors
are defined as [Mc Kie and Mc Kie, 1986]

f(q) = ∫ ρc(r)eiq·rd3r, (6.8)

where ρc(r) is the electron charge density. An example of the total structure factor
where the q dependent form factors were used can be found in Mackoy et al. [2019].
The shape of their data is similar to ours. The total structure factors along isodyne
5 and 7 can be seen in Fig. 6.39 in both SI and isomorph scaled units.
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Figure 6.39: Total structure factor along isodynes in SI and scaled
units. (Top) S(q) along isodyne 5 and (Bottom) S(q) along isodyne 7.
A list of isodyne labels can be found in Tab. 6.4.
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The data have both the charge peak (≈ 5 Å) and the main peak (≈ 8 Å)
However, the charge peak becomes less pronounced and in some cases gets reduced
to a shoulder as density increases. The height of the charge peak decreases with
increasing density for all the isodynes. In SI units, the position does not change
much but moves to lower q-values. This effect is even more pronounced when using
isomorph scaled units. The behaviour of the position and height of the charge peak
is the same as in the experimental observations from Hansen et al. [2020].

The height of the main peak is not invariant, but it changes less than the
charge peak. Furthermore, the position of the main peak does not change much
in isomorph scaled units. The main peak in the experimental data from Hansen
et al. [2020] was invariant in isomorph sclaed units. However, the density change
in the experimental data is 2%, where isodyne 6 covers a 20% density change.
When presenting the data from isodyne 5 in a similar density range, the main
peak is invariant, see Fig. 6.40. The axis for the simulated and experimental data
are different, however, the shape and changes of the curves are similar.
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Figure 6.40: Comparison of the total structure factor between experi-
ments and simulations. The data is in a similar density range (≈ 2%)
and is presented in isomorph scaled units. (Left) Figure 5b from Hansen
et al. [2020]. (Right) The first two points along isodyne 5.
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Figure 6.41: The partial structure factors between molecules. Here
is shown cation-cation (blue), cation-anion (orange), and anion-anion
(red) along isodyne 5. (Left) Real units, (Right) isomorph scaled units.

To better understand the behaviour of the total structure factor we calculated
the partial structure factors between the two molecules (again weighted by the
X-ray form-factors). These can be seen along isodyne 5 in both IS and isomorph
scaled units in Fig. 6.41. The first thing we find striking is how high the charge
peaks are when compared with the other features in this structures data, including
those which make up the main peak. It is also clear that the position of the charge
peak does not change much in real units, but changes noticeably in scaled units.

We would like to know if N+ and N− are representable of the structure factor.
To do this we compare these structure factors between molecules (Fig. 6.41) with
the structure factors between N+ and N− to see if they behave the same, see
Fig. 6.42. The main noticeable difference is that the structure features which
make up the main peak are more pronounced here than in the structure factors
between molecules.
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Figure 6.42: The partial structure factors for N+N+ (blue), N+N− (or-
ange), and N−N− (red) along isodyne 5. (Left) Real units, (Right)
isomorph scaled units.
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6.5.2 The radial distribution function along isodynes

We found that the total structure factor changes along isodynes in a similar way
to the experimental data from Hansen et al. [2020]. This is for small density
intervals the main peak is invariant and the charge peak decreases in intensity
and position as temperature increases. We could try to interpret this using the
general interpretation of these peaks, i.e. the main peak describe neighbouring
molecule distances and the charge peak describe distances between molecules with
the same charge (in this case same type). Based on this we would expect the dis-
tance between molecules to be invariant (or change little depending on the density
interval), while the distances between molecules of the same type must increase.
This would create different angles between triplets of ions and consequently the
molecular packing would change, this is illustrated in Fig. 6.43.

This interpretation of these peaks and this resulting hypothesis is very sim-
plifying due to the complexity of liquid structures. However, this hypothesis can
still be tested by analysing the partial radial distribution function between N+N+,
and N−N−, and N+N−. This was done for isodynes 5, 6 and 7, however, we only
show results from isodynes 5 and 7 due to the similarities between isodyne 5 and 6.
Furthermore, isodyne 7 did not have a strong charge peak, so comparing isodyne
5 and 7 might inform which features cause the charge peak.

We start by testing if the distance between neighbouring molecule is approx-
imately invariant. To do this we analyse the partial radial distribution function
between N+N− which can be seen in Fig. 6.44 along isodyne 5 and 7. There are still
clear changes along both isodynes, but these are small and becomes insignificant
at smaller density interval.

Along isodyne 5 there is a shoulder/peak r̃ ≈ 0.7 which disappears as den-
sity increases, and is not present along isodyne 7. This shoulder/peak will be
investigated later in Sec. 6.5.3.

+ −

−−

Figure 6.43: Illustration of two ion triplet configurations. The distance
between neighbouring molecules is invariant. If the distance between
the two anions (red) increases there must be a difference in the triplet
angle and consequently the molecular packing.
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Figure 6.44: The partial radial distribution function between N+N−

along (Left) isodyne 5 and (Right) isodyne 7.

Next we analyse the partial radial distribution function between N+N+ along
isodyne 5 and 7. They can be seen in Fig. 6.45. There are clear changes along both
isodynes, however, no new features are introduced along either. Isodyne 5 has two
peaks around r̃ = 1.5 which is only a single peak along isodyne 7. This could be
because isodyne 7 is at both lower densities and higher temperatures than isodyne
5. Along both isodynes the intensity of the peaks decreases as density increases,
and longer distances becomes more common since the minimum at r̃ ≈ 2 becomes
slightly higher. This shift in preference towards longer distances might be an
important feature for the behaviour of the charge peak. This could be related to
why the charge peak gets shifted to lower q, and why its intensity decreases.
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Figure 6.45: The partial radial distribution function between N+N+

along (Left) isodyne 5 and (Right) isodyne 7.
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Lastly we analyse the partial radial distribution function between N−N− along
isodyne 5 and 7. They can be seen in Fig. 6.46. Again we see clear changes in the
structure along both isodynes. However, along isodyne 5 a shoulder is formed at
longer distances which turns into an extra peak at high densities and temperatures.
This means that longer distances between N−N− become more common along
isodyne 5. This is significant since it is in agreement with, and might be an
important feature for, the behaviour of the charge peak in the structure factor
which moves to smaller q as density increases.

From this we find that along isodynes the distances between unlike molecules
does not change much (comparable to the main peak in the structure factor). Ad-
ditionally the distributions for distances between like molecules generally becomes
broader and prefers longer distances as density and temperature increases.
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Figure 6.46: The partial radial distribution function between N−N−

along (Left) isodyne 5 and (Right) isodyne 7.
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6.5.3 The radial distribution function N+N− shoulder/peak

When analysing the partial radial distribution function between N+N− along iso-
dynes we found an shoulder/peak which disappears as density and temperature
increases, see Fig. 6.44. To better understand the density and temperature depen-
dence of this shoulder/peak we analyse the partial radial distribution function at
four boundary state points, see Fig. 6.47. Here we find that this shoulder/peak
is mainly temperature dependent, but is also more pronounced at high density.
Based on this we looked at all the partial radial distribution function between
N− and all particle types in the cation at ρ = 4.8 nm−3 and T = 373.15 K, see
Fig. 6.47. All these radial distribution functions have a similar shape to the N+N−

partial radial distribution function, but they are shifted to smaller distances.
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Figure 6.47: (Top) The partial RDF between N+N− at four state points
at the boundary of the simulated region. (Bottom) The partial RDF
between N− and all cation types at ρ = 4.8 nm−3 and T = 373.15 K.

119



We also analysed the partial RDF between N+ and all particle types in the
anion, see Fig. 6.48. Here we see that the distance between N+ and S is generally
greater than the distance between N+ and N− for the shoulder/peak, but smaller
than the main peak. This means that for the relative orientations between these
ions S is pointed away from N+ for the shoulder/peak structure.

We would like to find if this N+N− shoulder/peak is a local substructure or
evenly distributed throughout the configurations. However, before doing this we
need to define what we are looking for. Based on the position of the N+N− shoul-
der/peak in Fig. 6.47 we choose to investigate molecule pairs where the distance
between N+N− is less than 4.5 Å. Thus when analysing particle configurations
we only show molecule pairs which satisfy this condition. An example of such a
molecule pair can be seen in Fig. 6.48. Here the yellow S atoms are pointing away
from the cation as we saw in the RDF.
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Figure 6.48: (Top) The partial RDF between N+ and all types in the
anion at ρ = 4.8 nm−3 and T = 373.15 K. (Bottom) Example of a
molecule pair where the distance between N+ and N− is less than 4.5
Å. The blue line is drawn between N+ and N−.
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Distribution of the substructure in the liquid

To find if this is a local substructure or evenly distributed throughout the config-
uration we analysed different particle configurations. Examples at four different
state points can be seen in Fig. 6.49. Here we see that the molecule pairs are
spread out through the configuration.

(a) ρ = 3.84 nm−3 and T = 998.15 K (b) ρ = 4.16 nm−3 and T = 998.15 K

(c) ρ = 3.84 nm−3 and T = 283.15 K (d) ρ = 4.16 nm−3 and T = 283.15 K

Figure 6.49: Example of molecule configurations. Only ion-pairs where
the distance between N+ and N− is less than 4.5 Å are shown. The
blue lines indicate close pairs.
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To confirm this, we make a more qualitative analysis of the distributions that
the one in Fig. 6.49. For this we calculate the partial radial distribution functions
between N+N+ and N−N−, however, we only use the atoms which is a part of a
close pair. This means that if the shoulder/peal substructure is evenly distributed
throughout the liquid we will simply obtain the normal partial radial distribution
functions which we have already seen (but with worse statistics). Alternatively,
of the substructure cluster together at specific distances these new partial radial
distribution functions should deviate significantly from the normal partial radial
distribution functions to reflect this.

The resulting distributions can be seen in Fig. 6.50. We see that N− has a
small preference at small distances (we will get back to this), but despite this and
worse statistics the distributions follow each other meaning that the substructure
does not cluster together at specific distances.
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Figure 6.50: Analysis of the distribution of the shoulder/peak substruc-
ture at ρ = 4.16 nm−3 and T = 283.15 K. Partial radial distribution
functions between N+N+ and N−N−, however, only atoms which is a
part of a close pair are used. These curves are normalised by hand. The
full partial radial distribution functions are also shown for comparison.
(a) Partial RDF between N+N+. (b) Partial RDF between N−N−.
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Figure 6.51: Analysis of the number of close pairs along isochores ρ =
3.2 nm−3 (blue) and ρ = 4.8 nm−3 (red) and isodyne 5 (orange). Here
is shown the percent of cations (N+, full line) and anions (N−, dashed
line) in a close pair as a function of temperature.

Inspired by the configurations in Fig. 6.49 we analyse how many molecules
is a part of this short distance structure. This is done for isodyne 5 and the
boundary isochores ρ = 3.2 nm−3 and ρ = 4.8 nm−3, see Fig. 6.51. We confirm
that the short distances are more present at high densities and low temperatures
which also makes sense. Furthermore, the number of close neighbours decrease
with increasing temperature which is in agreement with the configurations we saw
in Fig. 6.49. The number of close neighbours increases along the isodyne. This
could be because we define close neighbours using the real distance 4.5 Å instead
of a reduced distance. Lastly, we notice that the number of anions in close pairs
are greater than the number of cations in close pairs. Consequently, some cations
must be a part of multiple close pairs. This could explain why the N− distribution
from Fig. 6.50 has a small preference at short distances.

Based on this we analyse the number of close pair for each molecule, see
Fig. 6.52. We find that the majority of molecules only is a part of a single close
pairs. Furthermore, the number of molecules which is a pair of more than one close
pair decreases as temperature increases. We also see that anions are only a part
of one close pair, while cations can be a pair of multiple pairs (but most is only a
part of one). At high densities there are more cations in multiple close pairs than
at low densities. It is also only at high density that we see cations being a part of
three or four pairs. However, this happens very rarely and thus the statistics on
these curves are not as great.
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Figure 6.52: Analysis of the number of close pairs along isochores ρ =
3.2 nm−3 (blue) and ρ = 4.8 nm−3 (red) and isodyne 5 (orange). Here
we only consider the cations and anions which is a part of a close pair
(the distance between N+ and N− is less than 4.5 Å).
(a) The percent of anions (N−) with 1 and 2 close neighbours.
(b) The percent of cations (N+) with 1 and 2 close neighbours.
(c) The percent of cations (N+) with 3 and 4 close neighbours.
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Radial distribution function between the individual close molecules

In an attempt to further understand the local structure we define three length-
scales;

• Short distances covering the shoulder/peak, between 0 and 4.5 Å.

• Middle distances covering the main peak, between 4.5 and 9 Å.

• Long distances covering the rest, greater than 9 Å.

Then we computed the distance between all pairs of N+ and N− and thus sepa-
rated the corresponding ion-pairs into these three categories. Note than this only
restricts the distance of N+ and N− within the ion-pair, while the other particles
within the ion could be in other categories. This allows us to compute the partial
g(r) between all ion-pairs within each category. As a consequence of this construc-
tion the sum of the partial g(r) from each category will result in the conventional
partial g(r) which has been used previously. The partial g(r) at these three length-
scales was calculated between N− and the particles in the cation, and N+ and the
particles in the anion.

Fig. 6.53 shows g(r) for N− with CR1, CT1, and Ce. In Pyr14 the N+ and
the closest bonded particles form a tetrahedron structure. All the short distances
distributions (blue curves) have the same shape, eg. a main peak around 3.7
Å and a smaller peak around 5.7 Å. This tells us that N− prefers to be close
to the centre of faces in the tetrahedron and not its edges. By comparing short
(blue) and middle (orange) distances with the total (black) we see than the middle
distances are responsible for the main peak in the total, and the short distances are
responsible for the shoulder/peak. Based on this we believe that this tetrahedron
structure is very important for this substructure.

Fig. 6.54 shows g(r) with CR2, CTm, and CT4. At short distances for N−CR2

there is a peak around 3.7 Å (like in the tetrahedron), but there is a shoulder
instead of a second peak. The peak arises from the instances where N− are close
to the faces of the tetrahedron structure. However, the distances are not as well
defined when N− is close to the faces further away from the ring which creates the
shoulder. On the other hand the g(r) for N−CTm and N−CT4 have no significant
features, and because of this we do not believe that they (the tail) is important
for the formation of this substructure.

Fig. 6.55 shows g(r) for N+ with the anion. At short distances for N+S there
is only a single peak around 5 Å. Since there are two S in TFSI this could imply
that there is a preferred orientation. Additionally we also see that all the short
N+S distances are within the main peak of the total and not its shoulder.
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Figure 6.53: Radial distribution function for N− with CR1, CT1, and
Ce (the tetrahedron structure in Pyr14) for different separations of N+

and N−. The data is from ρ = 4.16 nm−3 and T = 283.15 K (low
temperature and high density where the structure most pronounced).
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Figure 6.54: Radial distribution function for N− with CR2, CTm, and
CT4 for different separations of N+ and N−. The data is from ρ = 4.16
nm−3 and T = 283.15 K (low temperature and high density where the
structure most pronounced).
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Figure 6.55: Radial distribution function for N+ with TFSI for different
separations of N+ and N−. The data is from ρ = 4.16 nm−3 and
T = 283.15 K.
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Orientation between ion pairs

Based on our precious analysis of the partial RDF (Fig. 6.48, Fig. 6.53 and
Fig. 6.55), we believe there are preferred orientations between close ion pairs.
As before we categorise the ion pairs based on the distance between N+ and N− in
each ion; short distances (between 0 and 4.5 Å), middle distances (between 4.5 and
9 Å) and long distances (greater than 9 Å). To analyse the different orientations
we define two vectors; the normalised vector between N+ and N− in each ion pair,
and the normalised vector from N− to the point between the two S atoms. The
angle between these two vectors can be seen in Fig. 6.56 (the distributions are
normalised such that the integral is 1).

Here we see a clear difference in the distance dependence of the ion orienta-
tions. At short distances the sulphur atoms in the anion prefer to point away from
the cation (se we suspected from the previous RDFs). At middle distances the
distribution is much broader with a small preference where the sulphur atoms in
the anion are close to the cation. Lastly, there is no preferred orientations at long
distances.
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Figure 6.56: Preferred orientations between ion pairs at different dis-
tances. The data is from ρ = 4.16 nm−3 and T = 283.15 K (low
temperature and high density where the structure most pronounced).
The data is normalised so the integral is 1.
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6.5.4 Number of nearest neighbour molecules

We would like to analyse the number of nearest neighbouring molecules. This
is to test the charge ordering and compare with the simple atomic model from
Chap. 5. To do this we analyse the partial radial distribution function between
N+ and N− atoms. This approach was chosen over a molecular centre approach
based on simplicity and the fact that these atoms are centred in the structure of
each molecule. In this analysis we refer to the cation (represented by N+) as type
+, and the anion (represented by N−) as type −. The number of nearest neighbour
molecules (of type α) around a molecule (of type β) is calculated by

Nαβ = 4πcαρ

∫ R

0

gαβ(r)r2dr, (6.9)

where cα is the concentration of α, ρ is the density, and R is the integration limit,
which often is chosen to be the first minimum in gαβ(r). By analysing partial
RDFs in the boundary of the simulated region (ρ = 3.2 nm−3 and ρ = 4.8 nm−3)
we find that position of the first minimum in g+−(r̃) changes, but not drastically,
see Fig. 6.57. We choose a fixed integration limit R̃++ = R̃−− = R̃+− = 1.5. The
same limit was chosen to give more meaning to the neighbour concentrations.
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Figure 6.57: Examples of partial radial distribution functions for locat-
ing the first minimum. Data from isochore ρ = 4.8 nm−3 (full lines)
and isochore ρ = 3.2 nm−3 (dashed lines) are shown.
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We start by analysing the number of nearest neighbour molecules for the
cations. We define the number of cation neighbours as N++, the number of anion
neighbours as N+−, and the total number of neighbours Z+ = N++ +N+−. Lastly
we define the concentration of cation neighbours around cations f++ = N++/Z+.
These can be seen in Fig. 6.58 for selected isotherms and isodyne 5-7.

The number of unlike neighbours (N+−) generally increases as a function of
both density and temperature. This is in contrast to the number of like neigh-
bours (N++) which decreases as a function of both density and temperature. Con-
sequently, the concentration of like neighbours also decreases as a function of both
density and temperature.
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Figure 6.58: The number of nearest neighbouring molecules for cations
as a function of density. Points with negative pressure are not shown.
(a) the number of anion neighbours around the cations N+−,
(b) the number of cation neighbours around the cations N++,
(c) the total number of neighbour molecules around cations Z+, and
(d) the concentration of cation neighbours around cations f++.
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We also analyse the number of nearest neighbour molecules for the anion. We
define the number of anion neighbours as N−−, the number of cation neighbours
as N+−, and the total number of neighbours Z− = N−− + N+−. Lastly we define
the concentration of anion neighbours around anions f−− = N−−/Z−. These can
be seen in Fig. 6.59 for selected isotherms and isodyne 5-7.

All the conclusions from the analysis of the cation nearest neighbours also apply
here for the anion nearest neighbours. We find it counter-intuitive that the number
of nearest neighbour molecules increases as a function of temperature. Since this
was not the case for the simple atomic model from Chap. 5, we believe this to
be a consequence of the molecular structure. More specifically, we suspect this
might be caused by our choice of using the position of N+ and N− instead of the
geometric or mass centre. Additionally, this analysis is generally very sensitive to
the choice of integration limit, and other choices might give a better understanding
of the model’s behaviour. For example, we found that if the integration limit for
the like types were changed to R̃ = 2.1 it behaved the same as the unlike types
(this is not shown).
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Figure 6.59: The number of nearest neighbouring molecules for anions
as a function of density. Points with negative pressure are not shown.
(a) The number of cation neighbours around the anions N+−,
(b) the number of anion neighbours around the anions N−−,
(c) the total number of neighbour molecules around anions Z−, and
(d) the concentration of anion neighbours around anions f−−.
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6.5.5 Preferred orientation of the cation tail

The tail is the most flexible part of Pyr14 and therefore an important aspect of the
structure. This begs the question of how it is oriented with respect to the ring, and
whether it tends to be stretched or curled up. When testing the implementation
of the non-bonded interactions in Sec. B.2, we found that the bonds and angles
do not change much and stay around the distances and angles favoured by the
intra-molecular interactions. On the other hand, the dihedral-potentials are more
flexible than the other bonded interactions, resulting in a broader distribution of
dihedral-angles. Because of this, we calculated different dihedral-angles to gain
information on the tail’s orientation and computed the distance between N+ and
the end of the tail (T4). This is the distance between atom 0 and 4 and will
therefore be referred to as r04. A reference for the atom numbering in Pyr14 can
be seen in Fig. 6.60.

We study dihedral-angles 0123 and 1234 to gain direct information about the
tail, but also the dihedral-angle 2345 to see the tail’s orientation relative to the
ring. Dihedral-angle distributions and their correlation with the tail distance r04

will be shown for two isochore 3.2 nm−3 and 4.8 nm−3 and isodyne 2.
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Figure 6.60: Reference for the atom numbering in the cation.
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Firstly, we show the distribution of tail distances r04, see Fig. 6.61. It is clear
that this distribution is not invariant along the isodyne or the isochores. However,
it is also clear that there are two peaks meaning that the system has two preferred
distances. The long distance peak (≈ 4.7 Å) is dominant at low densities, while
the short distance peak (≈ 4.0 Å) is dominant at high densities. This means that
the packing of molecules depends greatly on the density, which intuitively makes
sense. The peaks are also generally pronounced at low temperatures, but at high
temperatures they get smeared together and in some cases one gets reduced to a
shoulder of the other.
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Figure 6.61: Distribution of the tail distance r04 (the distance between
N+ and T4). (a) Data from two isochores where the colours represent
density, and (b) data from isodyne 2.
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Secondly, we study the distribution of the dihedral-angle θ2345, see Fig. 6.62.
Part (a) and (b) of the figure shows that the system prefers a π/3 angle with a small
peak at π. These are also the angles that are preferred by the dihedral potential
(see Fig. 6.2), however, we see a clear preference towards π/3. We believe this is
caused by the non-bonded interactions between R2 and Tm which are not excluded.
This would also explain why the data is much more dependent on temperature than
density. It is also interesting how all the curves intersect around π/2. However,
the curves also intersect around π/6 for the isodyne. Part (c), (d), (e) and (f) of
the figure shows that there is no correlation between this dihedral-angle and the
tail distance from N+.
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Figure 6.62: Distribution of dihedral angle 2345 along (a) isochores,
and (b) isodyne 2. (c), (d), (e) and (f) show the correlation between
dihedral angle 2345 and distance r04 at the isochore state points.
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Thirdly, we study the distribution of the dihedral-angle θ1234, see Fig. 6.63.
Part (a) and (b) of the figure shows that there is a clear preference for an angle
of π. We believe that this strong preference is caused in part by the dihedral
potential and by the non-bonded interactions with the ring. As before this would
explain why the data is much more dependent on temperature than density. It is
also interesting how all the curves intersect around (5/6)π.

Part (c), (d), (e) and (f) of the figure shows that there is no correlation between
this dihedral-angle and the tail distance from N+.
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Figure 6.63: Distribution of dihedral angle 1234 along (a) isochores,
and (b) isodyne 2. (c), (d), (e) and (f) show the correlation between
dihedral angle 1234 and distance r04 at the isochore state points.
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Lastly, we study the distribution of the dihedral-angle θ0123, see Fig. 6.64. Part
(a) and (b) of the figure shows that the angle distributions are dependent on both
density and temperature. This reflects the density dependence of the tail distance
which we saw in Fig. 6.61. Furthermore, the angle distributions along isodyne 2
seems invariant in the interval π/6 < θ0123 < (5/6)π. This is interesting since it
shows an aspect of structure being invariant, however, this is not well understood.

Part (c), (d), (e) and (f) of the figure shows that there is a clear correlation be-
tween this dihedral-angle and the tail distance from N+. The tail is only stretched
when this dihedral-angle is around π.
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[Å
]

ρ = 3.2 nm−3 T = 373.15 K

(e)

0 1
6π

2
6π

3
6π

4
6π

5
6π π

θ0123

3

4

5

r 0
4

[Å
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Figure 6.64: Distribution of dihedral angle 0123 along (a) isochores,
and (b) isodyne 2. (c), (d), (e) and (f) show the correlation between
dihedral angle 0123 and distance r04 at the isochore state points.
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6.6 Conclusion

Comparing dynamics with experiments

In Sec. 6.4.1 we made a comparison of viscosity and diffusion coefficient between
the model and experimental data from Harris et al. [2011]. We found that the
model was approximately a factor of 2 faster that the experiments. Furthermore,
the shape of the curves are also similar meaning that the model is a good qualitative
representation of the dynamics in the experiments.

Existence of isodynes

We find that this model obeys the Stokes-Einstein relation in the simulated range
when isomorph scaling is applied (see Fig. 6.22). Consequently, both the isomorph
scaled diffusion coefficient (D̃) and viscosity (η̃) have the same lines of invariance
in the phase diagram. For this model, we referred to these curves as isodyens.

We traced out different isodynes to find which other dynamical properties are
invariant along them. We found that for N+ in the cation the mean square dis-
placement and self-intermediate scattering function do not change significantly
(see Fig. 6.28). This is even more clear when comparing with similar data along
isochores which change a lot (see Fig. 6.18). We made a similar analysis of the
stress autocorrelation function which was used to calculate the viscosity. We found
that the short-time behaviour of the data varied in a systematic way, which lead
us to believe that this is a feature and not an artefact of the quality of the isodyne.
The long-time behaviour looked invariant (see Fig. 6.29). Upon further analysis
we found that it changes slightly over the isodyne. However, this still lead us to
believe that the long-time behaviour is of the stress autocorrelation function is
important and almost invariant along isodynes.

In Sec. 6.4.7 we also analysed rotations of the molecules and found that some
are invariant along isodynes while others are not. For the anion the rotations
who showed invariance seemed to be the ones with high moment of inertia (see
Fig. 6.34 - 6.37). The reason for this is not well understood, however, it does
make sense that the molecule can rotate more freely along axis of low moment of
inertia without influencing the overall dynamics of the system. On the other hand
all the rotations analysed for the cation showed invariance (see Fig. 6.31 - 6.33).
However, the isodyne with the highest viscosity of the one we studied, was slightly
less invariant for some (but not all) of the rotations. The cause of this is unknown.

Thus, isodynes were shown to have invariance of multiple dynamical properties
other than D̃ and η̃ for this model. Next we analyse different structures of the
model.
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Structure factor peaks along isodynes

In Sec. 6.5.1 we computed the total static structure factor and compared it with
the experimental data from Hansen et al. [2020]. We found the charge peak to
decrease in intensity and get shifted to lower q̃ as temperature increased, which
is in agreement with Hansen et al. [2020]. However, the main peak decreased in
intensity and slightly shifted to higher q̃ as temperature increased (see Fig. 6.39).
This is in contrast to Hansen et al. [2020] in which the main was invariant. Upon
further analysis this was shown to be a product of different density intervals. When
the simulated data are shown in the same density interval as the experimental data
of 2% the main peak looks invariant (see Fig. 6.40).

To better understand the behaviour of the structure factor we also analysed
the partial redial distribution functions.

Partial redial distribution functions

In Sec. 6.5.2 we analysed the partial redial distribution functions between N+N−,
N+N+ and N−N− along isodynes. We found that for all three partial RDFs the
height of the first peak decreased with increasing density. Furthermore, the first
minimum in N+N+ and N−N− got shifted to higher r̃ and increased in height with
increasing density (see Fig. 6.45 and Fig. 6.46). This means that these RDFs
along isodynes generally becomes more flat as density and temperature increases.
In contrast both the position and height of the first minimum in the RDF for
N+N− changed very little and is one of the most invariant structural features we
have observed in this model (see Fig. 6.44).

Lastly, in the RDF for N+N− at low densities and temperatures we observed
an extra pre-peak which evolved to a shoulder and eventually disappears as tem-
perature increases. This shoulder/peak substructure was studied in more detail.

Shoulder/peak substructure between ion pairs

In Sec. 6.5.3 we analysed a substructure between ion pairs. We found that it is
more prevalent at low temperatures and high densities. The substructure involved
the N+ and N− atoms in the ion pair to be close, which also resulted in preferred
orientations between the ions involved. We believe it arises from the interactions
between the anion and the tetrahedron structure in the cation. The substructure
was also shown to be evenly spread throughout the configurations and not localised.
The significance of this substructure is still unknown. However, it is not invariant
along isodynes.
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Number of nearest neighbour molecules

In Sec. 6.5.4 we analysed the number of nearest neighbour molecules for both
the cations and anions. First we found that they behave the same behaviour
and even very similar values. The number of unlike types were increasing as a
function of both density and temperature. However, the number of like types
were decreasing as a function of both density and temperature. We found the
later counter-intuitive because we expect the system to be more gas-like at high
temperatures. We suspect it might be related to our choice of using N+ and N−

when defining the number of neighbour. If the molecules pack in such a way that
N+ and N− are for from each other that would result in fewer neighbours at low
temperatures. However, such a preferred packing would not be as pronounced at
high temperatures which would result in more neighbours.

It is important to remember that this analysis is very dependent in the choice
of integration limit. We found that if the integration limit for the like types were
changed to R̃ = 2.1 it behaved the same as the unlike types.

Preferred orientation of the Pyr14 tail

In Sec. 6.5.5 we analysed the orientation of the tail in Pyr14 relative to its ring.
This was done by computing the distribution of three dihedral angles at different
state points. We found that shape of distributions for tail distances (the distance
between N+ and the end of the tail T4) was mostly dependent on density, while
increasing temperature generally broadened the distributions (see Fig. 6.61). Two
of the three dihedral angle distributions were much more dependent on temperature
than density, and has little influence on the tail distances (see Fig. 6.62 - Fig. 6.63).
The last dihedral angle (the one for the four spheres in the tail) is more dependent
on density than temperature (see Fig. 6.64) This dihedral angle is correlated with
the tail distance, and the dihedral angle distribution was roughly invariant along
an isodyne.
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Chapter 7

All-atom Ionic Liquid Model

In this chapter we analyse an all-atom version of the ionic liquid from Hansen
et al. [2020]. This model will not be studied as thoroughly as the united atom
model from the previous chapter. Instead the purpose is to compare the two mod-
els and find in what ways they behave the same.

7.1 Model details

Since only the cation contained hydrogen, the anion will remain unchanged be-
tween the two models. We will therefore only describe the all-atom parameters for
the cation in this section (parameters for the anion are in Chap. 6). Consequently,
both models will be using many of the same parameters, and therefore the same
unit system, that was shown in Tab. 6.1. The same is true for the isomorph scaling,
Tab. 4.2. An illustration of the all-atom cation can be seen in Fig. 7.1.
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Figure 7.1: All-atom illustration of the cation 1-Butyl-1-methyl-
pyrrolidinium.
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7.1.1 Non-bonded interactions

For the non-bonded interactions, we use Eq. 6.1 and the Lorentz-Berthelot com-
bination rules. This model has two categories of hydrogen; small hydrogen (Hs),
and large hydrogen (Hl). They each have three subtypes differing by their charge,
which depends on which C they are bounded to. We therefore name the H after
their C. The parameters for the all-atom cation can be seen in Tab. 7.1, and the
parameters for the anion can be seen in Tab. 6.2.

R2
R1

HR1

HR1

N+

Ce

HCeHCe

HCe

T1

HT1HT1

Tm

HTm

HTm

Tm

HTmHTm

T4

HT4

HT4

HT4

R1

HR1

HR1

R2
HR2

HR2

HR2

HR2

Non-bonded

Name σ [Å] ε [kcal/mol] m [u] q [e] q0.8 [e]

N+ 3.250 0.1700 14.007 0.1040 0.0832
C (R1) 3.400 0.1094 12.011 -0.0307 -0.02456
C (R2) 3.400 0.1094 12.011 -0.03105 -0.0248
C (T1) 3.400 0.1094 12.011 -0.0545 -0.0436
C (Tm) 3.400 0.1094 12.011 -0.00615 -0.00492
C (T4) 3.400 0.1094 12.011 -0.0846 -0.06768
C (Ce) 3.400 0.1094 12.011 -0.1244 -0.09952

H (HR2) 2.650 0.0157 1.008 0.05735 0.04588
H (HTm) 2.650 0.0157 1.008 0.02855 0.02284
H (HT4) 2.650 0.0157 1.008 0.0375 0.0300
H (HR1) 2.471 0.0157 1.008 0.09125 0.0730
H (HT1) 2.471 0.0157 1.008 0.0778 0.06224
H (HCe) 2.471 0.0157 1.008 0.1062 0.08496

Table 7.1: All-atom non-bonded parameters for Pyr14 from Xing et al.
[2013]. As in the united atom model we used the average charge to
define R1, R2, and Tm, and gain symmetry.
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7.1.2 Intra-molecular interactions

The bonded parameters for the all-atom cation can be seen in Tab. 7.2.
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Hs
Hs
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C
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Hs Hs

C

Hl

Hl

C

Hl Hl

C

Hl

Hl

Hl

C

Hs
Hs

C
Hl

Hl

Hl

Hl

1

2
kb (rjk − l0)2

Bonds

Name l0 [Å] kb [kcal/(mol Å2)]

C-C 1.526 620.0
N-C 1.471 734.0
C-H 1.090 680.0

1

2
ka (θjkl − θ0)2

Angles
Name θ0 [◦] ka [kcal/mol]

C-C-C 109.5 80.0
N-C-C 111.2 160
C-N-C 109.5 100
H-C-N 109.5 100
H-C-C 109.5 100
H-C-H 109.5 70.0

∑5
n=0Cn (− cos (θ))n

Ryckaert-Bellemans Dihedrals
Name C0 C1 C2 C3 C4 C5 [kcal/mol]

C-C-C-C 0.180 0.540 0.0 -0.720 0.0 0.0
C-C-C-N 0.156 0.467 0.0 -0.622 0.0 0.0
C-C-N-C 0.156 0.467 0.0 -0.622 0.0 0.0

Hs-C-C-C 0.156 0.468 0.0 -0.624 0.0 0.0
Hs-C-N-C 0.156 0.467 0.0 -0.622 0.0 0.0
Hs-C-C-Hl 0.156 0.468 0.0 -0.624 0.0 0.0
Hl-C-C-Hl 0.150 0.450 0.0 -0.600 0.0 0.0
Hl-C-C-N 0.156 0.467 0.0 -0.622 0.0 0.0
Hl-C-C-C 0.160 0.480 0.0 -0.640 0.0 0.0

Table 7.2: All-atom bonded parameters for Pyr14 from Xing et al.
[2013]. The translation between the two dihedral potentials can be
found in Sec. 2.4.2.
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7.2 Test of model implementation

7.2.1 Test time step

To test the size of the time step (∆t) we ran a series of NVE-simulations at
ρ = 3.84 nm−3 and T ≈ 273 K. This state point was chosen because it is at the
lowest density and lower temperature than we will simulate in our main analysis.
Each simulation started from the same equilibrated configuration and had a data
collecting run for 100 · 217 = 13107200 steps. As for the united atom model, we
tested ∆t from 0.25 fs to 5.5 fs with in interval of 0.25 fs. However, we found
that the simulations already started crashing at ∆t greater than 2 fs, whereas the
united atom model only crashed at ∆t greater than 5 fs. This can also be seen in
Fig. 7.2 which show the variance in the total energy as a function of ∆t. Here we
see that the data starts deviating from the power law much earlier than for the
united atom model (see Fig. 6.3). We also see a big drift in the total energy for
∆t = 2.

This big difference in stability is related to the vibrations of the hydrogen
bonds in the cation. This is not due to the spring constants, which are of equal
magnitude (see Tab. 7.2), but rather to the factor 12 difference in mass between
H and C (see Tab. 7.1). To get an idea of this effect we assume that the C is
stationary and calculate the resonance period

√
mH/kb,C−H = 1.88 fs.

Based on this, we choose a ∆t = 1 fs at this state point (ρ = 3.84 nm−3 and
T ≈ 273 K), and use the corresponding reduced time step for all simulations of
this model. This means that ∆t < 1 fs for all our simulations.
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Figure 7.2: Test of the time step at ρ = 3.84 nm−3 and T ≈ 273 K.
(Left) The variance of the total energy as a function of ∆t. The black
line is a power law with exponent 4 which is meant to guide the eye.
(Right) The total energy is a function of time. This is to show a drift
in the total energy as an indication of the too large ∆t.
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7.3 Simulation details

Simulation time - United atom vs. all-atom

As previously mentioned this, model will mainly be used for comparison with the
united atom model from Chap. 6. The two main reasons for this are partially sci-
entific and practical; Firstly, we do not find it necessary to make an investigation
as detailed as previously when our main goal is a simple comparison. However, this
does not mean that such a project would not be interesting. Secondly, a simulation
of the all-atom model takes significantly longer to run, than a corresponding sim-
ulation of the united atom model. The reason for this is a combination of different
factors; there is a factor of 2 from the difference in timestep, there is approximately
a factor of 2 from the increase of the number of atoms, and each atom has more
neighbours due to the increased atomic number density (approximately another
factor of 2). Furthermore, the number of bonded interactions (especially angles
and dihedrals) are much greater in the all-atom model, see Tab. 7.3. Based on this
we expect a simulation of the all-atom model to take approximately 8 times longer
than a corresponding simulation of the united atom model. This corresponds fairly
well to what we experienced when simulating the two models.

Model Atoms Bonds Angles Dihedrals

United atom 10 10 13 14
All-atom 30 30 60 90

Table 7.3: The number of bonded interactions in the cation for both
the united and all-atom models.

Simulation protocol

We want these simulations to be comparable to the united atom model, so we
use a similar simulation protocol. As for the united atom model, we simulated
200 ion pairs corresponding to 9000 atoms (this was 5000 spheres in the united
atom model). However, since we use a time step that is roughly half of that in
the united atom model we simulate this model for twice the number of steps. So
each simulation equilibrated for 4 · 107 steps, followed by a data collecting run of
100 · 221 = 209715200 steps. All simulations used the same isomorph-scaled time
step which corresponds to a real time of 1 fs at ρ = 3.84 nm−3 and T = 273 K.

We would like to compare the models in two ways; firstly in the region with
experimental data, and secondly to test if the all-atom model also has isodynes. To
test the former, we have different experimental isotherms to choose from, however,
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only 50 ◦C and 75 ◦C have data for both η and D. We decided to simulated
the isotherm at 50 ◦C at corresponding densities to the united atom model. For
the latter, we simulate points along isodyne 5 from the united atom model to
see if this too is an isodyne for this model. We choose isodyne 5 because it has
the highest viscosity and is closer to the room temperature region of interest for
experiments. Here it is important to remember that even if isodyne 5 is not an
isodyne in this model, that does not mean that the model cannot have isodynes.
But, as mentioned earlier, tracing out the isodynes for this model, as was done for
the united atom model, would be much more demanding on time and resources.

All the simulated points are shown in a ρ−T diagram in Fig. 7.3 accompanied
by the P as a function of ρ (the corresponding data from the united atom model
are also shown for comparison). The pressure of the all-atom model is generally
greater than the united atom model.
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Figure 7.3: Simulated points along isodyne 5 and the isotherm 50 ◦C.
(Top) A ρ − T diagram and (Bottom) the pressure as a function of
density.
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7.4 Results: Dynamics

7.4.1 Compare dynamics with experiments

As was done for the united atom model, we compare the all-atom model with
experimental data from Harris et al. [2011]. We get ρ, T , P , and η data from
Harris et al. [2011][Tab. 3] , and we get P , D− and D+ data from Harris et al.
[2011][Tab. 6]. However, we will again use Eq. 6.5 from Hansen et al. [2020] to
obtain the densities for the D− and D+ data. In this section, we compare the
all-atom model with both the experimental data, and the united atom model. To
keep focus and avoid confusion, we only show data from isotherm 50 ◦C.

The pressure for this data is shown as a function of density in Fig. 7.4. Here
we see that P for the all-atom model is 60 − 100 MPa greater than both the
united atom model and experimental data. This makes the data more difficult to
compare. However, if the simulated curves are shifted down we find that the shape
of the all-atom model matches the experimental data better than the united atom
model.
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Figure 7.4: The experimental and simulated pressure P as a function
of density ρ at T = 50 ◦C.
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The diffusion coefficient for the cation D+ and anion D− for both simulations
and experiments can be seen in Fig. 7.5. First we notice that the data fits nicely
within the same range. However, the slope of the simulated data does not match
that of the experimental data for either molecule. This is in contrast to the united
atom model where the slope of the data matched while the curves themselves were
shifted (see Fig. 6.16).

3.9 4.0 4.1
ρ [nm−3]

10−11

10−10

D
+

[m
2
/s

] slope = −4.791

slope = −7.0388

slope = −5.5919

United atom

All-atom

Experimental data

3.9 4.0 4.1
ρ [nm−3]

10−11

10−10

D
−

[m
2
/s

] slope = −4.6578

slope = −6.826

slope = −5.6175

United atom

All-atom

Experimental data

Figure 7.5: The experimental and simulated diffusion coefficients func-
tion of density at T = 50 ◦C. The dashed lines are exponential fits
where the slopes are given.
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The viscosity data for both simulations and experiments can be seen as a
function of ρ in Fig. 7.6. The all-atom model has greater viscosity than the united
atom model and experimental data. The simulated data has error bars which
increase with density, but in some cases they are smaller than the symbol size.
The data is shown on a logarithmic y-axis. From this we found that the data can
be approximated by an exponential functions. To emphasize this, we included fits
and show the slope.
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Figure 7.6: The experimental and simulated viscosity as a function of
density at T = 50 ◦C. The dashed lines are exponential fits where the
slopes are given.
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7.4.2 Does the model have isomorphs?

Even though we presume that the model does not have isomorphs, we still compute
the isomorph R and γ from Eq. 4.18 and 4.19, see Fig. 7.7. Both R and γ are lower
for the all-atom model than for the united atom model. This could be related to
the extra hydrogen bonds, that further decouple the potential energy and virial.

As expected, R is low for all simulations so the system does not have isomorphs
in this range. However, it is notable how linearR is as a function of ρ. To emphasise
this, linear fits are shown as dashed lines with the slope a. This was also generally
the case in the united atom model (see Fig. 6.20).

The γ has negative curvature, but the all-atom model seems to be more linear
than the united atom model.
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Figure 7.7: The isomorph R and γ for the all-atom model.
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7.4.3 Does the model have isodynes?

The Stokes-Einstein relation

An easy way to test if the model could have isodynes is by using the Stokes-Einstein
relation (see Sec. 3.4.4). In Fig. 7.8, both the effective hydrodynamic radius and
the product η̃D̃ can be seen as a function of density for both the isotherm and
isodyne 5. From this we see that the all-atom model fulfils the reduced Stokes-
Einstein relation to the same extent as the united atom model. Furthermore, they
even seem to have the same (or similar) reduced constants.
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Figure 7.8: Test of the Stokes-Einstein relation. Both the isodyne and
isotherm data are shown. (Top) A plot of the effective hydrodynamic
radius as a function of ρ. (Bottom) A plot of η̃D̃ as a function of ρ to
test the reduced Stokes-Einstein relation for the model.
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Guess isodyne from the united atom model

The diffusion coefficients and viscosities along isodyne 5 can be seen for both the
all-atom model and the united atom model in Fig. 7.9 (in some cases the error
bars are smaller than the symbol size). First we notice that the all-atom model
generally has slower dynamics than the united atom model.

The all-atom data looks less noisy than the united atom data. A part of the
reason for this is that only every second point along isodyne 5 was simulated for
the all-atom model. The data at low densities are generally greater than at high
densities. However, since this is also the case for the united atom model we believe
this is an artefact of the chosen “isodyne” and not a difference between the models.

Based on this, it seems like the isodynes of the united atom model are closely
related to the isodynes of the all-atom model.
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Figure 7.9: Plot of D̃ and 1/η̃ along isodyne 5 in scaled units for both
models.
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7.4.4 Rotation of molecules

As in Sec. 6.4.7, we will analyse the time autocorrelation function for vectors
between atoms. This will be done for isodyne 5 which has been simulated for this
model. It should be noted that isodyne 5 did not show the same level of invariance
as e.g. isodyne 2. This will be taken into account when analysing the data, since
we do not expect this model to show more invariance along isodyne 5 than the
united atom model did.

We see that not all the autocorrelation functions reach 0 within the simulated
time. This means that the molecular rotations in this model generally are slower
than in the united atom model for which all the autocorrelation functions reach 0.

Molecular rotation of the cation

We analysed the rotation of the ring in two ways. First, we defined the normal
vector for N+ and the two R1 atoms. The autocorrelation functions can be seen in
Fig. 7.10. Here we see an invariance comparable to that of the united atom model,
maybe with the exception of the longest time range.
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Figure 7.10: Autocorrelation function of the normal-vector to the plane
spanned by N+, and the two R1 groups. (a) The all-atom model and
(b) the united atom model.
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Figure 7.11: Autocorrelation function of the vector from N+ to the
point between the two R2 groups. (a) The all-atom model and (b) the
united atom model.

The second way we analysed the rotation of the ring was by defining the nor-
malised vector from N+ to the point between the two R2 atoms. The autocorrela-
tion functions can be seen in Fig. 7.11. Again we see an invariance comparable to
that of the united atom model.

To analyse the rotation of the tail we defined a normalised vector from N+

to T4. The time autocorrelation function of this vector can be seen in Fig. 7.12.
First, we notice that the data only reaches 0.25 within 1% of the simulated time.
This is significantly slower than the united atom model. Secondly, we see that the
curves are not collapsed at long times. This is the same behaviour as the united
atom model.
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Figure 7.12: Autocorrelation for the normalised vector between N+ and
T4. (a) The all-atom model and (b) the united atom model.
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Molecular rotation of the anion

Next we analyse the normalised vector between the two S atoms. The time auto-
correlation function of this vector can be seen in Fig. 7.13. It behaves the same as
the united atom model, but changes slightly more.

To confirm this behaviour we analyse the normalised vector between the two C
atoms. The time autocorrelation function of this vector can be seen in Fig. 7.14.
It also varies slightly more than the united atom model.
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Figure 7.13: Autocorrelation function of the vector between the two S
atoms. (a) The all-atom model and (b) the united atom model.
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Figure 7.14: Autocorrelation function of the vector between the two C
atoms. (a) The all-atom model and (b) the united atom model.
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Figure 7.15: Autocorrelation function of the normal-vector to the plane
spanned by N− and the two S atoms. (a) The all-atom model and (b)
the united atom model.

We also analysed the normal vector for the plane spanned by N− and the two
S atoms. The time autocorrelation function of this vector can be seen in Fig. 7.15.
This changes like the united atom model.

Lastly, se analysed the vector between N− and the point between the two S
atoms. The time autocorrelation function of this vector can be seen in Fig. 7.16.
This changes like the united atom model.
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Figure 7.16: Autocorrelation function of the vector from N− at the
point between the two S atoms. (a) The all-atom model and (b) the
united atom model.
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7.5 Results: Structure

7.5.1 The structure factor along isodyne

To analyse the structure along the isodyne, we calculated the total static structure
factor. More specifically, we computed the sum of the partial structure factors
weighted by the form-factors that are related to the charge. This was done to
better compare with the experimental data from Hansen et al. [2020]. This total
S(q̃) can be seen in Fig. 7.17 along isodyne 5.

All the curves show both the charge peak (q ≈ 0.8 Å) and the main peak (q ≈
1.4 Å). The height of both peaks decreases with increasing density. Furthermore,
the charge peak does not change notably in SI units, which is not the case for the
main peak. In contrast to this, the opposite is true when the data are presented
in isomorph scaled units. This means that with,the exception of the height of the
main peak, the data behaves the same as the experimental data from Hansen et al.
[2020]. However, this is caused by the difference in density intervals. This overall
behaviour is the same as that of the united atom model (see Fig. 6.39).
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Figure 7.17: Plot of the total static structure factor weighted by the
form-factors for points along isodyne 5.
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7.5.2 The radial distribution function along isodynes

We also compare the partial radial distribution function for N+N−, N+N+, and
N−N− between the united atom and all-atom model. We generally see that the two
models behave very similar, even down to the positions and heights of the peaks.
From this the addition of hydrogen does not appear to change the nano-structure
significantly, however, further studies would be needed to know for certain.

Starting with N+N−, we see that both models have a peak at r̃ ≈ 1.0, see
Fig. 7.18. Furthermore, the all-atom model also has the extra peak at r̃ ≈ 0.7
which indicates that this model most likely also has the substructure which is
described for the united atom model in Sec. 6.5.3. Additionally the extra peak
seems even stronger and more stable along the isodyne in this model than the
united atom model. We hypothesise this could be caused by the attractive forces
between N− (in the anion) and the hydrogen in the tetrahedral structure (in the
cation), however, this has not been tested.
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Figure 7.18: The partial radial distribution function between N+N−

along isodyne 5. (Left) All-atom model , and (Right) united atom
model.
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Figure 7.19: The partial radial distribution function between N+N+

along isodyne 5. (Left) All-atom model , and (Right) united atom
model.

Next we study the partial radial distribution function between N+N+ along
isodyne 5, see Fig. 7.19. We see two peaks in the region 1 < r̃ < 2 for both
models. These peaks seem to behave the same along the isodyne in both models,
however, the first peak in the all-atom becomes more narrow and defined than its
united atom counterpart. The reason for this is not known.

Lastly we study the partial radial distribution function between N−N− along
isodyne 5, see Fig. 7.20. Both models have a peak at r̃ ≈ 1.3 which decreases in
intensity as temperature increases along the isodyne. Furthermore, they also both
gain a shoulder which evolved to a peak at the higher temperatures.
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Figure 7.20: The partial radial distribution function between N−N−

along isodyne 5. (Left) All-atom model , and (Right) united atom
model.
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7.6 Conclusion

Comparison dynamics with experiments

In Sec. 7.4.1 we compared data from an isotherm with experimental data from
Harris et al. [2011]. We found that the pressure in the simulations is much greater
than in the experiments (see Fig. 7.4). The simulated viscosity and diffusion
coefficient data is within the same region as the experimental (see Fig. 7.6 and
Fig. 7.5). However, the slope of the simulation data is noticeably different from
that of the experiments. Consequently, it is difficult to say exactly how much
slower the model is than the experiments, but it is a bit less than a factor of 2.

Existence of isodynes

In Fig. 7.8 we saw that the system obeys the Stokes-Einstein relation which means
that the system has isodynes (at least of D and η). We also see that the dimen-
sionless constant in the relation is the same (or similar) for both models.

We also simulated isodyne 5 from the united atom model. This was to test if
the all-atom model has isodynes, and if they are the same as for the united atom
model. As was seen in Fig. 7.9 the exact values of D̃ and 1/η̃ are different, but
they show the same degree of invariance. At low densities we see higher values,
but since this is the case for both models we interpret this as an artefact of the
simulated “isodyne” and not the model.

In Sec. 7.4.4, we analysed the rotation of the molecules by calculating the time
autocorrelation function. We found that the molecules generally rotates slower in
this model when compared with the united atom model. However, the general
behaviour of these rotations show that the invariance are consistent between the
two models.

Structure factor peaks along isodynes

In Sec. 7.5.1, we analysed the static structure factor S(q̃) along the isodyne. The
isodyne showed the same behaviour as the experimental data from Hansen et al.
[2020] with the exception that the height of the main peak is not invariant. This
is consistent with previous results for the united atom model.

Partial redial distribution functions

In Sec. 7.5.2 we analysed the partial redial distribution functions between N+N−,
N+N+ and N−N− along isodynes. We found that all three partial RDFs behave
the same between the two models with only miner differences. The RDF for N+N−

even has the shoulder/peak which was seen in the united atom model.
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Chapter 8

Summary and Conclusions

In this chapter we summarise the important results and conclusions from this
work, i.e. Chap. 5, Chap. 6 and Chap. 7. In some cases, this will include a further
discussion with comparisons between the three salt models. Lastly, suggestions for
further studies are provided.

When starting this project we set out to answer the following questions:

1. Do simulated ILs have lines in the phase diagram where multiple dynamical
quantities are invariant? If so, how can these lines be found, and what
dynamical quantities are invariant along them?
The answer to this question is summarised in Sec. 8.1.

2. Which aspects of structure are invariant, and which ones are not invariant,
along these lines of invariant dynamics?
The answer to this question is summarised in Sec. 8.2.

3. What insight in the physics of ILs can be learned from the existence of
lines with invariant dynamics, and which microscopic properties are invari-
ant along them?
For dynamics we analysed molecular rotations (see Sec. 8.1), and for struc-
ture we analysed the cation tail and close ion pairs (see Sec. 8.2). We also
compared both structure and dynamics between the united atom and all-atom
model (see Sec. 8.3). However, there are still many more things to study,
some of which are suggested in Sec. 8.4.
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8.1 Lines of invariant dynamics

None of the three ionic liquid models, that were studied in this work, have iso-
morphs in the regions in which they were simulated. This was due to a lack of
structural invariance. However, this is in agreement with the experimental results
from Hansen et al. [2020]. Instead, all three models were shown to have lines in
the phase diagram with invariant dynamics; isodynes.

Invariant dynamical quantities along isodynes

For all three models we found that the following dynamical quantities are invariant
along isodynes when isomorph scaling is applied;

• The self-intermediate scattering function.

• The mean squared displacement, and consequently the diffusion coefficient.

• The viscosity.

• Furthermore, the product of the diffusion coefficient and the viscosity (D̃η̃)
is also invariant for the simulated region. Thus, the reduced Stokes-Einstein
relation from Costigliola et al. [2019] is satisfied.

For the two molecular models we also found that some molecular rotations
showed invariance while others did not. The rotations that showed invariances,
seemed to be the ones with high moment of inertia. This is not well understood,
however, it would make sense that the molecule can rotate more freely around an
axis of low moment of inertia without influencing the overall dynamics significantly.

Tracing isodynes

In the simple atomic model, isodynes can be traced out as configurational adiabats.
This was not the case for the molecular models. For the united atom model many
simulations were performed, and the data was fitted to trace the isodynes. We
found that the density scaling exponent γ for the molecular isodynes was greater
than that for the configurational adiabats.

Existence of isodynes

One of the most remarkable features of isodynes is how stable they seem to be, i.e.
they exist in at large part of the phase diagram. This is new, since experiments
often study small density intervals in the super-cooled region, where we have shown
that the existence of isodynes remain in the high temperature region as well. This
robustness of isodynes is new, and one of the main results of this work. The reason
for this stability or a potential relation to isomorph theory is unknown.
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8.2 The structure of ionic liquids

8.2.1 The structure factor peaks along isodynes

We analysed the total static structure factor for all three models (see Sec. 5.5.2,
Sec. 6.5.1, and Sec. 7.5.1). The focus was to explain the behaviour of the main
peak and charge peak along isodynes, which would then be compared with the
experimental data from Hansen et al. [2020].

The charge peak

We clearly see the charge peak in all three salt models. Tests of the united atom
model confirm that the charge peak disappears as the charges are turned off.
Furthermore, due to the simplicity of the simple atomic salt model from Hansen
and McDonald [1975], it can be shown analytically that the charge peak will be
absent if the charges are removed. This is not a new result but it is important.

We found that for all three models the charge peak decreased in intensity and
got shifted to lower q as density and temperature increased. This behaviour is in
agreement with the experiments from Hansen et al. [2020].

This means that the presence of charges introduces a structural feature which
is not invariant along configurational adiabats (or lines of invariant dynamics).
Consequently, these models do not have isomorphs which would be associated
with invariant structure. However, it is important to remember that the charge
interactions become less relevant with increasing density. This means that at
sufficiently high densities the charge peak of these systems could be invariant or
disappear.

The main peak

The experiments from Hansen et al. [2020] show that the main peak is invariant.
This was not the case for our models, as the main peak changed noticeably in
both position and height. However, this turned out to be caused by a much bigger
density interval. When our data was presented in a density range similar to the
experimental (2%) we also observed the main peak to be invariant (see Fig. 5.18
and Fig. 6.40).

Regarding the changes in the main peak, it turns out to be different between
the atomic and molecular salt models. In the atomic model (from Chap. 5) the
main peak increases in intensity and gets shifted slightly to lower q̃ as density
and temperature increases along the isodynes (see Fig. 5.17). This is in contrast
to both molecular models (from Chap. 6 and Chap. 7). Here the main peak de-
creases in intensity and gets shifted slightly to higher q̃ as density and temperature
increases along the isodynes (see Fig. 6.39 and Fig. 7.17). Thus the main peak
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behaves opposite between the atomic and molecular models. However, the change
in position is small when compared to the change in height for all three models.

To better understand this (and IL structure in general), we also analysed the
partial radial distribution functions along isodynes.

8.2.2 The radial distribution function along isodynes

The molecular models have several different particle types resulting in many partial
radial distribution functions. However, since these features are also present in the
simple atomic model we try to find an explanation that does not involve the
complexity of the molecular structure. That is, we focus on the overall behaviour
of the first peaks and minima instead of the small details.

For the simple atomic model, which only has two atom types, we study g++(r̃)
and g+−(r̃) (remember that due to symmetry in this model g++(r̃) = g−−(r̃)).
For both molecular models, we analysed the partial radial distribution functions
between N+N+, N+N− and N−N−, which we here refer to as g++(r̃), g+−(r̃) and
g−−(r̃), respectively.

The simple atomic model

We analysed the partial radial distribution functions for the simple atomic model
in Sec. 5.5.1. The height of the first g+−(r̃) minima increases slightly but not
much when considering the density range. The height of the first g++(r̃) minimum
decreases along the isodyne as density and temperature increase.

At high densities, the position of the first peak in both g++(r̃) and g+−(r̃) does
not change much (see Fig. 5.14). The former moves slightly to smaller r̃ and the
latter moves slightly to bigger r̃. The height of the g++(r̃) peak increases along
isodynes as density and temperature increase. Correspondingly, the height of the
g+−(r̃) peak decreases along isodynes.

Based on this, we believe that the height of the g++(r̃) minima is the main
reason why the main structure factor peak increases in height along isodynes.
When the g++(r̃) minimum decreases in height it consequently enhances its first
peak. The height of first g++(r̃) peak also increases along isodynes, but we are not
sure if this is important. This is because both g++(r̃) and g+−(r̃) contribute to the
main structure factor peak, and the height of the first g+−(r̃) peak decreases along
isodynes such that the total number on neighbours is approximately constant.
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The molecular models

The partial radial distribution functions behaved the same for both molecular
models, so they will both be described here. The first minima in g+−(r̃) was
invariant in both position and height in the simulated range. Furthermore, the
height of the first peak decreased along isodynes. This behaviour is similar to the
simple atomic model.

The first minima in both g++(r̃) and g−−(r̃) increased in height along isodynes.
Furthermore, the first peak in both g++(r̃) and g−−(r̃) decreased in height as
density increased along the isodyne. This behaviour is opposite to the simple
atomic model.

Based on this, we again think that the first minima in both g++(r̃) and g−−(r̃)
is an important part of why the main structure factor peak decreases in height
along isodynes in the molecular models. The fact that the height of the first peak
also decreases would amplify this behaviour.

We believe this difference in behaviour between the atomic and molecular mod-
els comes from the added disorder in the molecular packing. Additionally, the
molecules are flexible meaning that their closest separation is not as clearly delin-
eated as for the atomic model.

8.2.3 Molecular substructure: Shoulder/peak

When analysing the partial radial distribution functions along isodynes for both
molecular models, we found an interesting feature (see Sec. 6.5.2 and Sec. 7.5.2).
At low temperatures and high densities the partial radial distribution function
between N+ and N− had an extra shoulder/peak at short distances which disap-
peared as temperature increased (consequently it is not invariant along isodynes).
This lead to the discovery of a substructure between close ion pairs which is de-
scribed for the united atom model in Sec. 6.5.3. A corresponding analysis was
not performed for the all-atom model, however, the existence of the shoulder/peak
gives us reason to believe it is also present in that model. It might even be more
important in the all-atom model since the shoulder/peak (despite getting smaller)
never disappeared along the simulated isodyne which was the case for the united
atom model (see Fig. 7.18).

We found that more anions are a part of this substructure than cations (see
Fig. 6.51). Additionally, we found that anions are only a part of one close pair
while cations can be a part of multiple, but most are only a part of one close pair
(see Fig. 6.52). We did not observe any cases where a cation was a part of three
pairs.

The tetrahedron structure in Pyr14 is important for the formation of this struc-
ture. The structure arises when N− in the anion comes close of one of the four faces
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in the tetrahedron structure (see Fig. 6.53). This creates a preferred orientation of
the anion relative to the cation, specifically such that the two S atoms are pointed
away from the cation (see Fig. 6.56). We believe this orientational preference is
the reason why each anion is only part of one close pair.

The significance of this substructure is still unknown. It is not invariant along
isodynes as the shoulder/peak disappears at high temperatures.

8.2.4 Preferred orientation of the cation tail

In Sec. 6.5.5, we studied the preferred orientation of the cation tail for the united
atom model. This analysis was done for two isochores and one isodyne. For this
we used two measures:

• The distance between the start and end of the tail (N+ and T4), also referred
to as the tail distance. This was to get an idea of whether the tail is curled
up or stretches.

• Three dihedral-angles between atoms in the tail and two extra atoms (N+

and Ce) to gain information about the orientation relative to the ring.

We found that distribution of the the tail distance depended on both density and
temperature. The tail prefers to be stretched at low densities and curled up at
high densities, and increasing the temperature generally broadens the distribution
(see Fig. 6.61).

We found that the two dihedral-angles between atoms closest to the ring were
very temperature dependent (see Fig. 6.62 and 6.63). This combined with our
knowledge of the model (specifically which non-bonded interactions are excluded)
lead us to believe this is caused by the non-bonded interaction between the tail
and the rest of the molecule.

Lastly, we studied the dihedral-angle between the four atoms in the tail (see
Fig. 6.64). We found that this is dependent on both density and temperature.
Furthermore, we found that this dihedral-angle distribution is invariant in the
interval π/6 < θ0123 < (5/6)π along the isodyne. The significance on this is
unknown, however, it could mean that this dihedral-angle is important for the
dynamics. We also found a strong correlation between this dihedral-angle and the
tail distance. This means that when this dihedral-angle is π, the tail is stretched,
and curled up when the angle is 0.
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8.3 United atom vs. all-atom model

Both models show the same overall behaviour, however, the united atom model
has a lower pressure and is generally faster than the all-atom model (Fig. 7.3 and
Fig. 7.9). We also see that the united atom model generally is faster than the
all-atom model.

8.3.1 Comparison with experiments

Pressure

In Sec. 7.4.1, we compared an isotherm with T = 50 ◦C for both models with
experimental data from Harris et al. [2011]. We found that the pressure of the
united atom model was within the same range as the experimental data, but the
shape of the curve was different (see Fig. 7.4). The all-atom model has a pressure
around 100 MPa greater than the experimental data, however, if the curve is
shifted down we see that its shape more closely resembles the experimental data
than the united atom model. We showed for the united atom model that the choice
of cutoff for the potential greatly affects the pressure. Thus, a longer cutoff could
make the all-atom model the better of the two in this respect.

Dynamics

We also compared the viscosities and diffusion coefficients with the experiments
(see Fig. 7.6 and Fig. 7.5). All the data fitted fairly well to an exponential func-
tion with variable ρ. In both cases, the united atom model was faster than the
experimental data, while the all-atom model was slower than the experimental
data. However, it is difficult to determine which of the two models is a better
representation of the experimental data.

8.3.2 Isodynes

The biggest question when comparing dynamics between the two models is whether
they have the same isodynes in the ρ−T phase diagram. We tested this in Sec. 7.4.3
where we simulated isodyne 5 from the united atom model with the all-atom model.

First, we found that both the correlation between potential energy and virial
(Eq. 4.18) and density scaling exponent (Eq. 4.18) are bigger for the united atom
model than for the all-atom model (see Fig. 7.7). This is not surprising given the
extra hydrogen bonds in the all-atom model.

Next, we found that not only do both models satisfy the reduced Stokes-
Einstein relation, they also have a similar value (see Fig. 7.8). We compared
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the viscosities and diffusion coefficients to further test if isodyne 5 is also an iso-
dyne for the all-atom model (see Fig. 7.9). Here we do not see perfect invariance
but comparable to that of the united atom model.

Lastly, we analysed the rotations of the molecules (see Fig. 7.10 - 7.16). We
generally saw a similar degree of invariance between the two models, but in some
cases the all-atom model seemed to be slightly less invariant. The cause of this is
unknown, however, for the united atom model we found isodyne 5 to be slightly
less invariant than the other isodynes. This could be related.

In conclusion, the isodynes from the united atom model might not have the
exact same shape in the ρ − T phase diagram as the isodynes from the all-atom
model. However, they are very good approximations.

8.3.3 Structure

Structure factor peaks along isodynes

In Sec. 6.5.1 and 7.5.1, we analysed the static structure factor S(q̃) along isodyne
5. The two models generally behaved the same, and even behaved the same is the
experimental data from Hansen et al. [2020] when presented in a similar density
interval. From this is seems like the essential structural features are the same.

Partial radial distribution functions

In Sec. 7.5.2, we analysed the partial radial distribution functions between N+N−,
N+N+, and N−N− for both models. We found that all three partial radial distri-
bution functions looked and behaved the same with only slight differences. Our
two examples of this are:

• The first peak in the partial radial distribution functions between N+N+ is
slightly more defined in the all-atom model (see Fig. 7.19).

• The shoulder/peak in the partial radial distribution functions between N+N−

does not disappear in the simulated range (see Fig. 7.18).
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8.4 Further studies

8.4.1 Structure in the united atom model

The N−N− partial radial distribution function

It would be interesting to perform further analysis of structure. Examples of
this could be the extra peak which arises in the N−N− partial radial distribution
function along isodynes. Such an analysis could lead to a substructure as the one
we described in Sec. 6.5.3.

Partial invariance of the cation tail

We found that the dihedral angle distribution in the end of the cation tail showed
partial invariance (see Sec. 6.5.5). It would be interesting to analyse and under-
stand this further, since this is one of the few aspects of structure which showed
invariance along isodynes.

8.4.2 The all-atom model

Existence of isodynes

We found that the isodyne we tested from the united atom model also is a very
good approximation on an isodyne for the all-atom model. However, it would be
very interesting to further test the existence and shape of isodynes for the all-atom
model. This will tell us if the slightly less invariant molecular rotations were caused
by our choice of isodyne or if it is a general feature of the all-atom model. This
could be done by simulating other isodynes from the united atom model. That
approach would also inform where in the phase diagram the two models have the
same/similar isodynes. If this method turns to be insufficient for other parts of
the phase diagram (i.e. the united atom isodynes are not isodynes for the all-atom
model), a more extensive study where isodynes are traced out for the all-atom
model would be interesting.

Orientation on the cation tail

It would be interesting to find how the presence of hydrogen affects the preferred
orientations of the cation tail. We found that one of the three dihedrals showed
slight invariance along isodynes. It would be interesting to see if this is still the
case with the additional hydrogen.
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Existence of shoulder/peak substructure

Based on the partial radial distribution function between N+ and N−, we do believe
that the shoulder/peak substructure is also present in the all-atom model. The
fact that the shoulder/peak seems more stable in this model makes us hypothesize
that the substructure could be even more pronounced here. It would be interesting
to find if this is the case.

8.4.3 Existence of isodynes in other models

It would be interesting to analyse variations of our molecular models and test how
that affects the existence of isodynes. This would test the robustness of isodynes.
Examples of variation could be;

• Varying the length of the tail in the cation. This would be interesting since
many ILs are designed with long tails.

• Add lithium ions (Li) to the simulations. This would be interesting since
one of the main potential applications for ILs are as solvents in batteries.

Other studies (both experimental and computational) have already studied these
IL groups, so they are of interest in the scientific community. An example of a
study which did both could be Aguilera et al. [2015]. However, here the main focus
was on how they affected the structure.

Additionally, it would be interesting to find if isodynes also exist in other IL
models with very different chemical structures. This would tell us how universal
isodynes are.

Thank you for reading.
I hope you enjoyed!
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Appendix A

Notation and Terminology

This is a list of the most important notation used in this work. This notation
system is not universal, but we have tried to use the most common notation.

A.1 Physics notation

Name Symbol

Mass m or M

Charge q

Time t

Position r, x, y, or z

Velocity v

Acceleration a

Momentum p

Force F

Potential energy V (r)

Name Symbol

Density ρ

Temperature T

Pressure P

Volume V

Diffusion coefficient D

Viscosity η

Table A.1: List of symbols for physics notation used in this work.

181



A.2 Mathematical notation

Name Symbol Description

Vector v An ordered set of numbers. Has many
uses, for example represent positions
in space, r = (x; y; z).

Vector norm |v| We use the Euclidean norm, |v| =√∑
j v

2
j

The imaginary unit i An mathematical element with the
property i2 = −1.

Complex conjugate c∗ Given a complex number c = a + ib
then c∗ = a− ib.

First time derivative ḟ(t) =
df

dt
The first order derivative of a function
f(t) with respect to time t.

Second time derivative f̈(t) =
d2f

dt2
The second order derivative of a func-
tion f(t) with respect to time t.

Table A.2: Mathematical notation used in this work.

The dot product is an operator which takes two vectors of the same size and
gives a real number , that is Rn × Rn → R;

v · u =




v1

v2
...
vn


 ·




u1

u2
...
un


 =

n∑

j=1

vjuj (A.1)

The cross product is an operator which takes two vectors of size 3 and gives a
third vector of size 3, that is R3 × R3 → R3. This resulting vector is orthogonal
to the other two.

v × u =



vx
vy
vz


×



ux
uy
uz


 =



vyuz − vzuy
vzux − vxuz
vxuy − vyux


 (A.2)
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A.3 Simulation notation

Table A.3: List of notation related to simulation used in this work.

Name Symbol Description

Position vector rj Spacial position of particle j, rj = (xj; yj; zj).

Relative position vector rjk Vector from particle j to k, rjk = rk − rj

Relative distance rjk Distance between particle j and k, rjk = |rjk|.

Unit vector ejk Unit vector between particle j and k, ejk =
rjk/rjk.

Normal vector njkl A vector normal to the plane spanned by three
points, rj , rk, and rl.

Configuration vector R A vector containing positions of all N particles in
a d-dimensional system. It has length of dN .

Configuration vector
(CM)

RCM A vector containing the center of mass positions
of all N molecules/particles in a d-dimensional
system.

The wave-vector q Has units of inverse distance, and is used in e.g.
the structure factor, see Sec. 3.3.2.

Potential energy V (r) The potential energy between particles.

Truncation/cutoff rcut The distance at which a potential is set to be 0,
see section 2.4.1.

Simulation box length Lx, Ly,
Lz

The different side lengths of the simulation box.

Continued on next page
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Table A.3 – continued from previous page

Name Symbol Description
Image positions Imx,

Imy,
Imz

Integers representing the number of times a par-
ticle has been moved to the other side of the box
when periodic boundary conditions are applied.
This is used for analysis of the dynamics (see sec.
2.5).

Ensemble average 〈· · · 〉 Averaging of the quantity ” · · · ” weighted by the
probability of their microstate.
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A.4 Physics terminology

Table A.4: List of physics terminology used in this work.

Name Description

Macroscopic scale Properties at this length scale can be observed with the
naked eye. Such as, temperature, volume, and pressure.

Microscopic scale Properties at this length scale are dependant on the posi-
tions of the atoms. Such as, the multiplicity, and entropy.

Amorphous From Greek; ’without’-’shape/from’. Used to describe
materials with no long range structure.

Isotropic From Greek; ’equal’-’way’. In the context of material sci-
ence means independents of direction.

Adiabatic A process with no transfer of heat, Q = 0.

Isobaric A process at constant pressure, ∆P = 0.

Isothermal A process at constant temperature, ∆T = 0.

Isochoric A process at constant volume, ∆V = 0.

Quasistatic A process which happens slow enough that the system
remains in internal equilibrium.

Excess entropy, Sex The entropy of the system minus the entropy from an
ideal gas at equal temperature and density state point.

Configurational adiabat Constant excess entropy, ∆Sex = 0 [Bailey et al., 2013].

Isomorphs From Greek; ’equal’-’shape/from’. Describes configura-
tional adiabats with high correlation between the virial
and the potential energy, R > 0.9 (see chapter 4).
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Appendix B

Extra Theory, Results and
Parameters

B.1 Molecular Dynamics - Initial Configuration

As stated earlier, MD is a method which can be used to describe how a system
moves and behaves using Newton’s equations of motion. However, before we can
find the positions and velocities of particles in a system at a given time, t, we
need their positions and velocities at an initial time, t0. In this section, we will
explain how to define an initial configuration. However, in this work the initial
configuration itself is not of interest, since the system will be equilibrated before
data is collected.

System size

The first thing we need to consider is how many particles and/or molecules should
be simulate. This is referred to as the system size. Ideally, we would like to simulate
large systems to represent reality, but this would also lead to long simulation times.
The question then becomes:

How small can the system be and still give reliable results in a “ reasonable”
time?

Unfortunately, there is no universal answer to this question, since it depends both
on the system and the computers used to perform the simulation. It can therefore
be a good idea to test different system sizes. However, there are some guidelines for
the minimal system size, that will be described in Sec. 2.5. Furthermore, different
optimization methods, such as neighbour-lists, has been developed to help with
this issue.
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Particle positions

Once the system size has been decided one should choose the initial positions of
the particles/molecules. It is very common to place them in a lattice structure,
such as a body-centered cubic or face-centered cubic lattice, see Fig. B.1. They
can be ordered by types for multicomponent system or randomly distributed on
the lattice cites. However, it is important to note that the system most likely will
not form this structure naturally, and it is therefore important to equilibrate the
system before collecting data. When studying liquids, this equilibration is often
performed at high temperatures to ensure that the initial lattice structure gets
erased in the process.

For molecular systems one would define a xyz-file with the positions of the
atoms in the molecule. Likewise a top-file (topology) with a list of the bonded
interactions within the molecule would also be needed.

Simple cubic

a

a

Body-centered cubic Face-centered cubic

Figure B.1: Illustrations of the unit cells of the simple cubic, the body-
centered cubic, and the face-centered cubic lattice. The lattice sites
which should be added to the SC to obtain the BCC and FCC are
marked with red.

Particle velocities

The initial velocities are often chosen randomly since the system will need equi-
libration anyway. It is common to choose these velocities such that the total
momentum of the system is zero. However, for large systems this is also true of
the velocities are chosen randomly. Some simulation programs, like RUMD, will
occasionally enforce this criterion and update the velocities during the simulation.
This is done to avoid drift and for conservation of momentum.

The relation between particle velocities and temperature will be explained later
in Sec. 2.2.
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B.2 United Atom Model - Test Intra Atomic In-

teractions

We performed a series of simulations with varying amount of detail to test the
intra-molecular interactions. For consistency all these simulations were run at the
same state point, ρ = 3.2 nm−3 and T = 498.15 K, with a mixture of 200 ion pairs.
We initially ran three simulations:

• one with bond, angle, and dihedral potentials (”B1 A1 D1”)

• one with bond, and angle potentials (”B1 A1 D0”)

• one with only bond potentials (”B1 A0 D0”)

It is important to remember that when we add intra-molecular potentials between
atoms we also exclude the non-bonded Lennard-Jones and Coulomb potentials,
see Sec. 2.4.2. Consequently, we decided to run two extra simulations where the
Lennard-Jones and Coulomb potentials were excluded while the bonded potential
was inactive:

• one with bond, and angle potentials, but dihedral exclusion (”B1 A1 De”)

• one with only bond potentials, but angle and dihedral exclusion (”B1 Ae De”)

To get an idea of how these interactions affect the entire system, we decided to
calculate the pressure (P ) and diffusion coefficient (D) for the two atoms N+

and N−, see Tab. B.1. We see that these interactions have great impact on the
dynamics and pressure of the system.

Simulation name P [Pa] DN+ [m2 s−1] DN− [m2 s−1]

B1 Ae De −2.7211 · 107 2.3315 · 10−12 8.4663 · 10−13

B1 A1 De −8.9056 · 106 1.8186 · 10−9 1.6451 · 10−9

B1 A1 D1 −3.7267 · 106 1.7379 · 10−9 1.6449 · 10−9

B1 A1 D0 1.5330 · 107 1.4084 · 10−9 1.3349 · 10−9

B1 A0 D0 1.2360 · 108 8.1044 · 10−10 7.3834 · 10−10

Table B.1: List of the pressure and diffusion coefficient for simulations
at ρ = 3.2 nm−3 and T = 498.15 K with different a number of intra-
molecular interactions.
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To test the effectiveness of the constraints we calculated the distribution of
bonded atom distances, the angles, and the dihedral angles. The distribution of
these distances and angles can be seen in Fig. B.2, B.3, and B.4.

When looking at the bonds the first thing we notice is that ”B1 A0 D0” gen-
erally is pushed to further distances than the potential intends. This was counter-
intuitive at first until we remembered the strong Coulomb interactions which are
no linger excluded.
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C-C / B1 Ae De

1.0 1.5 2.0
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0.00
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0.10
N-C / B1 A1 D1
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N-C / B1 A1 De

N-C / B1 Ae De

1.0 1.5 2.0
r [Å]
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S-O / B1 Ae De
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Figure B.2: Test of bond-distributions. The vertical dashed line indi-
cate the distance preferred by the potential.
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Figure B.3: Test of angle-distributions. The vertical dashed line indi-
cate the angle preferred by the potential.
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Figure B.4: Test of dihedral-distributions. The dashed line indicate the
(scaled) dihedral-potential.
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B.3 Molecular Models - Dihedral Parameters

The dihedral parameters for the united atom model can be seen in Tab. B.2 in
both Fourier (OPLS) and Ryckaert-Bellemans notation.

1

2

∑4
n=1 Vn

[
1 + (−1)n+1 cos (nθ)

]

Fourier Dihedrals (OPLS)
Name V1 V2 V3 V4 [kcal/mol]

C-C-C-C 0.0 0.0 0.360 0.0
C-C-C-N 0.0 0.0 0.311 0.0
C-C-N-C 0.0 0.0 0.311 0.0

N-S-C-F 0.0 0.0 0.3160 0.0
S-N-S-O 0.0 0.0 -0.0036 0.0
S-N-S-C 7.8329 -2.4904 -0.7636 0.0
O-S-C-F 0.0 0.0 0.3468 0.0

∑5
n=0 Cn (− cos (θ))n

Ryckaert-Bellemans Dihedrals
Name C0 C1 C2 C3 C4 C5 [kcal/mol]

C-C-C-C 0.180 0.540 0.0 -0.720 0.0 0.0
C-C-C-N 0.156 0.467 0.0 -0.622 0.0 0.0
C-C-N-C 0.156 0.467 0.0 -0.622 0.0 0.0

N-S-C-F 0.1580 0.4739 0.0 -0.6319 0.0 0.0
S-N-S-O -0.0018 -0.0054 0.0 0.0072 0.0 0.0
S-N-S-C 1.044 -5.062 2.490 1.527 0.0 0.0
O-S-C-F 0.1734 0.5202 0.0 -0.6936 0.0 0.0

Table B.2: Bonded parameters for Pyr14 and TFSI. All Pyr14 parame-
ters are from Xing et al. [2013]. All TFSI parameters are from Canon-
gia Lopes and Pádua [2004]. The translation between the two dihedral
potentials can be found in Sec. 2.4.2.
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The dihedral parameters for the all-atom model can be seen in Tab. B.3 in
both Fourier (OPLS) and Ryckaert-Bellemans notation.

1

2

∑4
n=1 Vn

[
1 + (−1)n+1 cos (nθ)

]

Fourier Dihedrals (OPLS)
Name V1 V2 V3 V4 [kcal/mol]

C-C-C-C 0.0 0.0 0.360 0.0
C-C-C-N 0.0 0.0 0.311 0.0
C-C-N-C 0.0 0.0 0.311 0.0

Hs-C-C-C 0.0 0.0 0.312 0.0
Hs-C-N-C 0.0 0.0 0.311 0.0
Hs-C-C-Hl 0.0 0.0 0.312 0.0
Hl-C-C-Hl 0.0 0.0 0.300 0.0
Hl-C-C-N 0.0 0.0 0.311 0.0
Hl-C-C-C 0.0 0.0 0.320 0.0

∑5
n=0 Cn (− cos (θ))n

Ryckaert-Bellemans Dihedrals
Name C0 C1 C2 C3 C4 C5 [kcal/mol]

C-C-C-C 0.180 0.540 0.0 -0.720 0.0 0.0
C-C-C-N 0.156 0.467 0.0 -0.622 0.0 0.0
C-C-N-C 0.156 0.467 0.0 -0.622 0.0 0.0

Hs-C-C-C 0.156 0.468 0.0 -0.624 0.0 0.0
Hs-C-N-C 0.156 0.467 0.0 -0.622 0.0 0.0
Hs-C-C-Hl 0.156 0.468 0.0 -0.624 0.0 0.0
Hl-C-C-Hl 0.150 0.450 0.0 -0.600 0.0 0.0
Hl-C-C-N 0.156 0.467 0.0 -0.622 0.0 0.0
Hl-C-C-C 0.160 0.480 0.0 -0.640 0.0 0.0

Table B.3: All-atom bonded parameters for Pyr14 from Xing et al.
[2013]. The translation between the two dihedral potentials can be
found in Sec. 2.4.2.
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Appendix C

RUMD Molecule Files

C.1 RUMD configuration and topology files

In RUMD topology files the first column indicates which molecule; the last column
indicates which bond/angle/dihedral interaction is used; the central columns show
the number of the particles in the interaction. So a bond between particle 4 and
5 of bond-type 2 in molecule 0 would be ”0 4 5 2”.
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C.1.1 Pyr14 (united atom)

CH2
CH2

N+

CH3

CH2

CH2

CH2

CH3

CH2
CH2

7
6

4

5

3
2

1
0

9
8

Atom N CH2 CH2 CH2 CH2 CH3 CH3

Name N+ R1 R2 T1 Tm T4 Ce

Type 0 1 2 3 4 5 6

Table C.1: United atom names and types in the cation.

1 10
numTypes=7 mass=14.007 , 14 .026 , 14 .026 , 14 .026 , 14 .026 ,

15 .034 , 15 .034
5 1.000000 1.000000 0.000000
4 −0.519000 1.000000 0.000000
4 −1.096000 1.000000 1.421000

6 3 −2.624000 1.002000 1.345000
0 −3.336000 1.000000 2.713000
6 −2.939000 −0.216000 3.535000
1 −4.861000 0.975000 2.458000
2 −5.223000 2.437000 2.318000

11 2 −4.419000 3.085000 3.423000
1 −3.110000 2.308000 3.502000
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1 [ bonds ]
;

3 0 0 1 0
0 1 2 0
0 2 3 0
0 3 4 1
0 4 5 1

8 0 4 6 1
0 6 7 0
0 7 8 0
0 8 9 0
0 4 9 1

13

[ angles ]
18 ;

0 0 1 2 0
0 1 2 3 0
0 2 3 4 1
0 3 4 5 2

23 0 3 4 6 2
0 4 6 7 1
0 6 7 8 0
0 3 4 9 2
0 5 4 9 2

28 0 4 9 8 1
0 6 4 9 1
0 5 4 6 2
0 7 8 9 0

33

[ dihedrals ]
;
0 0 1 2 3 0
0 6 7 8 9 0

38 0 1 2 3 4 1
0 7 8 9 4 1
0 8 7 6 4 1
0 2 3 4 5 2
0 2 3 4 6 2

43 0 2 3 4 9 2
0 7 6 4 3 2
0 7 6 4 5 2
0 7 6 4 9 2
0 8 9 4 3 2

48 0 8 9 4 5 2
0 8 9 4 6 2
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C.1.2 TFSI (united atom)

F
C

F

F

S

O O

N−
S

OO

C
F

F

F

13
11

12

14

1

0 2

3

4

56

7
9

8

10

Atom N S O C F
Name N− S O C F
Type 7 8 9 10 11

Table C.2: United atom names and types in the anion.

1 15
numTypes=5 mass=14.007 , 32 .060 , 15 .999 , 12 .011 , 18 .998
9 1.000000 1.000000 0.000000
8 −0.449000 1.000000 0.000000

5 9 −1.174000 1.000000 1.255000
7 −0.922000 2.384000 −0.808000
8 −0.288000 3.853000 −0.337000
9 −0.995000 4.793000 −1.195000
9 −0.479000 3.964000 1.096000

10 10 1.531000 3.825000 −0.788000
11 1.830000 2.822000 −1.659000
11 1.897000 4.984000 −1.409000
11 2.337000 3.695000 0.300000
10 −1.117000 −0.357000 −1.093000

15 11 −1.834000 0.167000 −2.132000
11 −0.140000 −1.130000 −1.637000
11 −1.966000 −1.183000 −0.422000
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1 [ bonds ]
;

3 0 0 1 2
0 1 2 2
0 1 3 3
0 3 4 3
0 4 5 2

8 0 4 6 2
0 4 7 4
0 7 8 5
0 7 9 5
0 7 10 5

13 0 1 11 4
0 11 12 5
0 11 13 5
0 11 14 5

18 [ angles ]
;
0 0 1 2 4
0 0 1 3 5
0 1 3 4 3

23 0 3 4 5 5
0 3 4 6 5

0 3 4 7 7
0 4 7 8 8
0 4 7 9 8

28 0 4 7 10 8
0 0 1 11 6
0 1 11 12 8
0 1 11 13 8
0 1 11 14 8

33 0 12 11 13 9
0 3 1 11 7
0 12 11 14 9
0 9 7 10 9
0 8 7 9 9

38 0 13 11 14 9
0 5 4 6 4
0 2 1 3 5
0 2 1 11 6
0 5 4 7 6

43 0 8 7 10 9
0 6 4 7 6

[ dihedrals ]
;

48 0 3 4 7 8 3

0 3 4 7 9 3
0 3 4 7 10 3
0 3 1 11 12 3
0 3 1 11 13 3

53 0 3 1 11 14 3
0 1 3 4 5 4
0 1 3 4 6 4
0 4 3 1 0 4
0 4 3 1 2 4

58 0 1 3 4 7 5
0 4 3 1 11 5
0 5 4 7 8 6
0 5 4 7 9 6
0 5 4 7 10 6

63 0 6 4 7 8 6
0 6 4 7 9 6
0 6 4 7 10 6
0 0 1 11 12 6
0 0 1 11 13 6

68 0 0 1 11 14 6
0 2 1 11 12 6
0 2 1 11 13 6
0 2 1 11 14 6
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C.1.3 Pyr14 (all-atom)

R2
R1

Hs1
Hs1

N+

Ce

Hs3Hs3

Hs3

T1

Hs2 Hs2

Tm

Hl2

Hl2

Tm

Hl2 Hl2

T4

Hl3

Hl3

Hl3

R1

Hs1
Hs1

R2
Hl1

Hl1

Hl1

Hl1

7
6

22
23

4

5

21 20
19

3

18 17

2

16
15

1

14 13

0

12
11

10
9

28
29

826

27

24

25

Atom N C C C C C C H H H H H H
Name N+ R1 R2 T1 Tm T4 Ce Hl1 Hl2 Hl3 Hs1 Hs2 Hs3

Type 0 1 2 3 4 5 6 7 8 9 10 11 12

Table C.3: All-atom names and types in the cation.

1 30
numTypes=13 mass=14.007 , 12 .011 , 12 .011 , 12 .011 , 12 .011 ,

12 .011 , 12 .011 , 1 . 008 , 1 . 008 , 1 . 008 , 1 . 008 , 1 . 008 , 1 .008
5 1.000000 1.000000 0.000000

4 4 −0.521000 1.000000 0.000000
4 −1.073000 1.000000 1.428000
3 −2.603000 1.066000 1.419000
0 −3.223000 1.134000 2.833000
6 −2.811000 −0.074000 3.664000

9 1 −4.762000 1.160000 2.709000
2 −5.089000 2.627000 2.554000
2 −4.152000 3.296000 3.534000
1 −2.881000 2.456000 3.548000
9 1.379000 0.999000 −1.026000

14 9 1.392000 0.114000 0.509000
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9 1.390000 1.890000 0.506000
8 −0.883000 0.117000 −0.538000
8 −0.879000 1.884000 −0.541000
8 −0.644000 1.849000 1.968000

19 8 −0.731000 0.090000 1.930000
11 −3.016000 0.173000 0.935000
11 −2.947000 1.951000 0.872000
12 −3.059000 −0.977000 3.100000
12 −3.359000 −0.050000 4.610000

24 12 −1.738000 −0.016000 3.863000
10 −5.182000 0.766000 3.642000
10 −5.074000 0.537000 1.866000
7 −6.139000 2.840000 2.777000
7 −4.888000 2.967000 1.532000

29 7 −4.596000 3.312000 4.536000
7 −3.944000 4.334000 3.253000
10 −2.566000 2.231000 4.574000
10 −2.068000 2.957000 3.020000

1 [ bonds ]
;

3 0 1 0 0
0 2 1 0
0 3 2 0
0 4 3 1
0 5 4 1

8 0 6 4 1
0 7 6 0
0 8 7 0
0 9 4 1
0 9 8 0

13 0 10 0 2
0 11 0 2
0 12 0 2
0 13 1 2
0 14 1 2

18 0 15 2 2
0 16 2 2
0 17 3 2
0 18 3 2
0 19 5 2

23 0 20 5 2

0 21 5 2
0 22 6 2
0 23 6 2
0 24 7 2

28 0 25 7 2
0 26 8 2
0 27 8 2
0 28 9 2
0 29 9 2

33

[ angles ]
;
0 0 1 2 0

38 0 1 2 3 0
0 2 3 4 1
0 3 4 5 2
0 3 4 6 2
0 4 6 7 1

43 0 6 7 8 0
0 3 4 9 2
0 1 0 10 4
0 1 0 11 4

0 1 0 12 4
48 0 0 1 13 4

0 0 1 14 4
0 1 2 15 4
0 1 2 16 4
0 2 3 17 4

53 0 2 3 18 4
0 4 5 19 3
0 4 5 20 3
0 4 5 21 3
0 4 6 22 3

58 0 4 6 23 3
0 6 7 24 4
0 6 7 25 4
0 7 8 26 4
0 7 8 27 4

63 0 4 9 28 3
0 4 9 29 3
0 22 6 23 5
0 8 7 24 4
0 15 2 16 5

68 0 2 1 13 4
0 2 1 14 4
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0 10 0 12 5
0 9 8 27 4
0 8 9 28 4

73 0 20 5 21 5
0 5 4 9 2
0 19 5 21 5
0 4 9 8 1
0 6 4 9 2

78 0 8 9 29 4
0 7 6 22 4
0 10 0 11 5
0 5 4 6 2
0 11 0 12 5

83 0 13 1 14 5
0 4 3 18 3
0 26 8 27 5
0 24 7 25 5
0 8 7 25 4

88 0 3 2 15 4
0 3 2 16 4
0 7 6 23 4
0 19 5 20 5
0 7 8 9 0

93 0 4 3 17 3
0 17 3 18 5
0 9 8 26 4
0 28 9 29 5

98 [ dihedrals ]
;
0 3 2 1 0 0
0 9 8 7 6 0
0 8 7 6 4 1

103 0 7 8 9 4 1
0 7 6 4 3 2
0 8 9 4 6 2
0 8 9 4 5 2
0 8 9 4 3 2

108 0 7 6 4 5 2
0 9 4 6 7 2
0 9 4 3 2 2

0 5 4 3 2 2
0 6 4 3 2 2

113 0 22 6 7 8 3
0 16 2 1 0 8
0 15 2 1 0 8
0 12 0 1 2 8
0 25 7 8 9 8

118 0 26 8 7 6 8
0 23 6 7 8 3
0 11 0 1 2 8
0 29 9 8 7 3
0 27 8 7 6 8

123 0 18 3 2 1 8
0 13 1 2 3 8
0 14 1 2 3 8
0 24 7 8 9 8
0 28 9 8 7 3

128 0 17 3 2 1 8
0 10 0 1 2 8
0 16 2 1 13 6
0 24 7 6 23 5
0 18 3 2 16 5

133 0 14 1 0 12 6
0 28 9 8 26 5
0 13 1 0 10 6
0 25 7 6 22 5
0 17 3 2 15 5

138 0 24 7 6 22 5
0 15 2 1 14 6
0 25 7 6 23 5
0 13 1 0 11 6
0 14 1 0 10 6

143 0 27 8 7 25 6
0 27 8 7 24 6
0 29 9 8 26 5
0 15 2 1 13 6
0 26 8 7 25 6

148 0 28 9 8 27 5
0 18 3 2 15 5
0 29 9 8 27 5
0 13 1 0 12 6

0 14 1 0 11 6
153 0 26 8 7 24 6

0 17 3 2 16 5
0 16 2 1 14 6
0 16 2 3 4 7
0 26 8 9 4 7

158 0 24 7 6 4 7
0 25 7 6 4 7
0 27 8 9 4 7
0 15 2 3 4 7
0 22 6 4 5 4

163 0 23 6 4 9 4
0 17 3 4 5 4
0 28 9 4 3 4
0 22 6 4 9 4
0 20 5 4 9 4

168 0 23 6 4 3 4
0 19 5 4 3 4
0 21 5 4 3 4
0 21 5 4 9 4
0 22 6 4 3 4

173 0 23 6 4 5 4
0 19 5 4 9 4
0 18 3 4 9 4
0 19 5 4 6 4
0 20 5 4 3 4

178 0 28 9 4 6 4
0 18 3 4 5 4
0 20 5 4 6 4
0 28 9 4 5 4
0 29 9 4 6 4

183 0 17 3 4 9 4
0 18 3 4 6 4
0 29 9 4 3 4
0 21 5 4 6 4
0 17 3 4 6 4

188 0 29 9 4 5 4
0 4 3 2 1 1

202



C.1.4 TFSI (all-atom)

The only difference between the united atom and all-atom versions of the TFSI-
files is the atom-type number, the bond-type number, angle-type number, and
dihedral-type numbers. These were changed to make room for the six types of
hydrogen.

F
C

F

F

S

O O

N−
S

OO

C
F

F

F

13
11

12

14

1

0 2

3

4

56

7
9

8

10

Atom N S O C F
Name N− S O C F
Type 13 14 15 16 17

Table C.4: All-atom names and types in the anion.

1 15
numTypes=5 mass=14.007 , 32 .060 , 15 .999 , 12 .011 , 18 .998
15 1.000000 1.000000 0.000000
14 −0.449000 1.000000 0.000000
15 −1.174000 1.000000 1.255000

6 13 −0.922000 2.384000 −0.808000
14 −0.288000 3.853000 −0.337000
15 −0.995000 4.793000 −1.195000
15 −0.479000 3.964000 1.096000
16 1.531000 3.825000 −0.788000

11 17 1.830000 2.822000 −1.659000
17 1.897000 4.984000 −1.409000
17 2.337000 3.695000 0.300000
16 −1.117000 −0.357000 −1.093000
17 −1.834000 0.167000 −2.132000

16 17 −0.140000 −1.130000 −1.637000
17 −1.966000 −1.183000 −0.422000
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1 [ bonds ]
;

3 0 0 1 3
0 1 2 3
0 1 3 4
0 3 4 4
0 4 5 3

8 0 4 6 3
0 4 7 5
0 7 8 6
0 7 9 6
0 7 10 6

13 0 1 11 5
0 11 12 6
0 11 13 6
0 11 14 6

18 [ angles ]
;
0 0 1 2 7
0 0 1 3 8
0 1 3 4 6

23 0 3 4 5 8
0 3 4 6 8

0 3 4 7 10
0 4 7 8 11
0 4 7 9 11

28 0 4 7 10 11
0 0 1 11 9
0 1 11 12 11
0 1 11 13 11
0 1 11 14 11

33 0 12 11 13 12
0 3 1 11 10
0 12 11 14 12
0 9 7 10 12
0 8 7 9 12

38 0 13 11 14 12
0 5 4 6 7
0 2 1 3 8
0 2 1 11 9
0 5 4 7 9

43 0 8 7 10 12
0 6 4 7 9

[ dihedrals ]
;

48 0 3 4 7 8 9

0 3 4 7 9 9
0 3 4 7 10 9
0 3 1 11 12 9
0 3 1 11 13 9

53 0 3 1 11 14 9
0 1 3 4 5 10
0 1 3 4 6 10
0 4 3 1 0 10
0 4 3 1 2 10

58 0 1 3 4 7 11
0 4 3 1 11 11
0 5 4 7 8 12
0 5 4 7 9 12
0 5 4 7 10 12

63 0 6 4 7 8 12
0 6 4 7 9 12
0 6 4 7 10 12
0 0 1 11 12 12
0 0 1 11 13 12

68 0 0 1 11 14 12
0 2 1 11 12 12
0 2 1 11 13 12
0 2 1 11 14 12

204



Appendix D

Posters and Papers

D.1 Posters

D.1.1 Poster 1 - Simple atomic model

The first poster presents some of the results from the Hansen & McDonald simple
atomic salt model described in Chap. 5. The focus is on the invariant dynam-
ics (self-intermediate scattering function and mean square displacement), and the
varying structure (the position of the first peak in the partial radial distribution
function).

One will notice that this is an early poster, since we refer to the configurational
adiabats as “isomorphs” which they are not due to the lack of structural invariance.

D.1.2 Poster 2 - United atom model

The second poster presents some of the results from the united atom model de-
scribed in Chap. 6. The focus is on the existence of isodynes (same shape of D̃ and
1/η̃ contours), and comparing structure and dynamics with experimental data.

Here one will notice that the shape and value of the viscosity are more in
agreement with experimental data than what we presented in Fig. 6.17. This is
because this data is from a previous version of the united atom model in which
some parameters were different. In this early version, the intra-molecular angle
potential between OSO in the anion was wrong (the angle preferred by the potential
θ0,OSO was accidentally set equal to the θ0,OSC angle). Consequently, the different
pressure guided us to scale the charges by 0.9 instead of the 0.8, which was used in
the final version. However, one should be aware that η is presented as a function
of pressure which we have since shown is very dependent on the cutoff for the
non-bonded interactions.
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An investigation of isomorphs in the Hansen
and McDonald molten salt model

Peter Alexander Knudsen (pealkn@ruc.dk) Kristine Niss Nicholas Bailey
Department of Science and Environment, Roskilde University

I. What Are We Working With?
I Experimental results for structure in the ionic liquid PYR+

14 TFSI− have shown invariance in the main structure factor peak, along curves of
equal electrical conductivity. It was also shown that the charge structure factor peak is not invariant along these curves.

I We have studied the structure and dynamics of a simple model of an ionic liquids with molecular dynamics computer simulations.

II. Which Model Are We Using?

I We have worked with the simple salt model described in Hansen and McDonald [1]. This model
contains two types of spherical particles (A and B) who are identical except for their opposite charge.

I The potential between the particles is

Vαβ(r) = 1
9




1
r




9
+ εαβ




1
r




where εAA = εBB = 1 and εAB = εBA = −1.
I Furthermore periodic boundary conditions and the shifted force cut-off method was implemented. 0 2 4 6

r

0

2

4

V
(r

)

AA, shifted force
AB, shifted force
AA
AB

III. What Did We Find?

I Three different isomorphs were simulated and the results were compared with six different isotherms.

We found that:
I the self-intermediate scattering function (Fs), and the mean square displacement (msd) are invariant

along isomorphs which is not the case for the isotherms.
I the structure is not invariant, but it generally changes less along the isomorphs than the isotherms. 0.5 1.0 1.5 2.0
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Structure
I Example of radial distribution function data along isomorph 1 and

isotherm T = 1.0.
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I We have analysed the position of the first peak in g(r̃).
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Dynamics
I The red curves in Fs and msd are points along the isotherm

T = 1.0, and the blue curves are points along isomorph 1.
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I The time at which Fs is equal to e−1, and msd is equal to 1.

0.5 1.0 1.5 2.00

200

400

600

t

Time when Fs = e 1

Isotherm, T = 1.0
Isotherm, T = 0.5
Isotherm, T = 0.3
Isotherm, T = 0.2
Isotherm, T = 0.15
Isotherm, T = 0.1
Isomorph 1
Isomorph 2
Isomorph 3

0.5 1.0 1.5 2.00.0

2.5

5.0

7.5

10.0

t

Time when reduced msd = 1
Isotherm, T = 1.0
Isotherm, T = 0.5
Isotherm, T = 0.3
Isotherm, T = 0.2
Isotherm, T = 0.15
Isotherm, T = 0.1
Isomorph 1
Isomorph 2
Isomorph 3

IV. References
[1] Jean Pierre Hansen and Ian R. McDonald.

Statistical mechanics of dense ionized matter. iv. density and charge fluctuations in a simple molten salt.
Phys. Rev. A, 11:2111–2123, Jun 1975.

[2] Henriette Wase Hansen, Filippa Lundin, Karolina Adrjanowicz, Bernhard Frick, Aleksandar Matic, and Kristine Niss.
Density scaling of structure and dynamics of an ionic liquid.
Physical Chemistry Chemical Physics, 22, 2020.

pealkn@ruc.dk



An Investigation of Structure and Dynamics in
a Molecular Model of an Ionic Liquid

Peter Alexander Knudsen (pealkn@ruc.dk) Kristine Niss Nicholas Bailey
Department of Science and Environment, Roskilde University

I. What Are We Working With?
I Experimental results for structure in the ionic liquid PYR+

14 TFSI− have shown invariance in the main structure factor peak along curves of
equal electrical conductivity. It was also shown that the charge structure factor peak is not invariant along these curves.

I We have studied the structure and dynamics of a molecular model of PYR+
14 TFSI− with molecular dynamics computer simulations.

II. Which Model Are We Using?

I We have used a united atom model of the ionic liquid PYR+
14 TFSI−.

I In united atom modelling CH-groups are considered as a single
sphere.

I The model also used partial charges for the Coulomb interactions.

PYR+
14 TFSI−

III. What Did We Find?
Lines of invariant dynamics (isodynes)

I We analysed the model and found lines of invariant diffusion
coefficient (D) and viscosity (η).

I These lines are shown in both SI and isomorph scaled units.
I Lines collapses in isomorph scaled units.

Conclusion: The system has isodynes.

SI units Isomorph scaled units

Comparing viscosity with experimental data
I Experimental data is shown with coloured lines.
I Our simulated data is shown with dashed black lines.

Conclusion: There is a remarkable correspondence between the data.

Structure along isodynes
I We looked at the structure factor along isodynes in the model and

experiments.
I The experimental data has a density change of 2%.
I The simulation data has a density change of 5.56%.

Experimental data Simulation data

Conclusion: The overall features of the data are the same.

Conclusion
I This model has lines of invariant dynamics when isomorph scaling is applied (isodynes).
I There is a remarkable correspondence between model and experiment for both diffusion coefficient (D) and viscosity (η) data.
I The overall features of the structure factor along isodynes are the same in the experiment and in the model.

IV. References
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Density scaling of structure and dynamics of an ionic liquid.
Physical Chemistry Chemical Physics, 22, 2020.
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D.2 Papers

D.2.1 Upcoming papers

One paper based on this work has been published, as of the completion of this
thesis. This paper covers the main results from our analysis of the Hansen & Mc-
Donald simple atomic salt model described in Chap. 5. However, we are currently
writing papers based on the united atom model from Chap. 6, and the all-atom
model from Chap. 7. We expect at least two new papers from this:

• A paper focusing on dynamics and the existence of isodynes.

• A paper focusing on structure.

These molecular papers are done in collaboration with Professor David M. Heyes
and Professor Daniele Dini from Imperial College London, Department of Mechan-
ical Engineering.

D.2.2 Paper 1 - Knudsen et al. (2021)
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ABSTRACT

Recent experimental results for the structure in the ionic liquid PYR+14 TFSI− have shown invariance in the main structure factor peak along
curves of equal electrical conductivity [Hansen et al., Phys. Chem. Chem. Phys. 22, 14169 (2020)]. The charge peak decreases slightly with
increasing temperature at fixed conductivity, however. For simple liquids, curves with invariant dynamics and structure, known as isomorphs,
can be identified as configurational adiabats.While liquids with strong-Coulomb interactions do not have good isomorphs, ionic liquids could
be an intermediate case with approximate isomorphs along which some aspects of structure and dynamics are invariant. We study a simple
molten salt model using molecular dynamics simulations to test this hypothesis. Simple measures of structure and dynamics are investigated
along with one transport property, the shear viscosity.We find that there is a substantial degree of invariance of the self-intermediate scattering
function, the mean square displacement, and the viscosity along configurational adiabats over a wide range of densities for the three adiabats
simulated. The density range studied is more than a factor of two and extends from the strong-Coulomb regime at low densities to the weak-
Coulomb regime at high densities. The structure is not invariant over the full range of density, but in the weak-Coulomb regime, we see
behavior similar to that seen experimentally over density changes of order 15%. In view of the limited structural invariance but substantial
dynamical invariance, we designate the configurational adiabats as isodynes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055794

I. INTRODUCTION

There is growing interest in using room temperature ionic liq-
uids (ILs), e.g., as electrolytes in lithium batteries tomake themmore
stable and safe to use. This is because ILs can be designed with pro-
perties such as low vapor pressure and low flammability, which are
desirable for a solvent.1–3 Modern ionic liquids (from now on, the
qualifier “room temperature” is to be understood) are salts that are
molten at room temperature, typically combining a large organic
cation, such as imidazolium, pyridinium, and pyrrolidinium, with
an inorganic anion, such as PF6, BF4, or N(CF3SO2)2. The flexibility
in the choice of the ions enables the optimization of a range of phys-
ical properties providing functionality. This has resulted in great
interest in ILs for a range of different applications, including electro-
chemistry,4 lubrication,5 catalysis,6 bio-preservation,7 and materials
synthesis.8 As a relatively new class of materials, it is important to

carry out extensive studies in order to gain knowledge about their
properties in a wide range of thermodynamic conditions. The pro-
perties of interest include (1) structural properties that are important
for understanding a material’s behavior under different conditions;
(2) microscopic dynamics, for example, the self-diffusion coefficient
that is related to the conductivity and as such clearly important for
battery materials; and (3) transport coefficients such as viscosity,
which is relevant generally for technological uses of liquids and also
because it correlates with diffusivity.

There is a long history of investigating “classical” molten salts,
such as the alkali halides (e.g., NaCl) both theoretically and with
simulations, and it has long been understood that in these cases,
charge ordering plays an important role, leading to the suppression
of concentration fluctuations compared to non-charged mixtures at
long wavelengths and effective screening of the Coulomb interac-
tions at long ranges.9–11 There have also been many attempts in the
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literature to understand the dynamics and transport properties of
molten salts using the so-called “corresponding states” principle, by
which systems can be mapped to a reference system usually involv-
ing scaling by the density and temperature of the critical point (or
triple point).12–14

While measurements at ambient pressure would seem to be
sufficient formaterials that are intended for applications at that pres-
sure, greater insight can often be obtained by varying pressure as
well as temperature. An example of this is the phenomenon of den-
sity scaling, whereby dynamical properties are found to be a function
not of pressure p and temperature T separately or of (number) den-
sity (ρ) and temperature (T) separately but of the combined variable
ργ/T, where the density scaling exponent γ is often taken to be a
material dependent constant.15–17 The insight arising from density
scaling is twofold: (1) The phase diagram is simpler than otherwise
would be considered, being effectively one-dimensional instead of
two-dimensional, at fixed composition, and (2) the density (or vol-
ume), rather than pressure, is shown to be a more relevant thermo-
dynamic parameter for understanding the structure and dynamics.
Density scaling may also be described by saying that one or more
dynamical or structural parameters are invariant along curves in the
phase diagram, given in the above case by T ∝ ργ.

Density scaling has been found to hold for conductivity and/or
viscosity of many different ionic liquids.18–20 Of particular interest
for this work are studies on the ionic liquid PYR+14 TFSI− [1-butyl-1-
methylpyrrolidinium bis(trifluoromethanesulfonyl)imide] where it
has been demonstrated that the viscosity, diffusion coefficient, con-
ductivity, and intermediate scattering function studied with inelastic
neutron scattering all obey density scaling with γ = 2.8.21–23 In addi-
tion to density scaling of various transport properties and dynamics,
it was shown by Hansen et al.23 that the main peak’s position and
height in the structure factor S(q) determined by x-ray scattering
also followed density scaling with γ = 2.8 when analyzed in terms
of the dimensionless wavenumber q̃ = qρ−1/3. In other words, it was
found that the main peak of S(q) was invariant along the same
curves in the phase diagram as the dynamical properties. However,
the smaller peak at a lower wavenumber, sometimes referred to as
the charge peak, was less invariant, reducing in amplitude and mov-
ing toward lower values of q̃ as temperature increased at constant
conductivity. The density change in these experiments was a little
over 2%.

The study of invariances of physical quantities along certain
curves in the phase diagram is greatly aided by the theoretical frame-
work known informally as isomorph theory. The existence of a curve
in the phase diagram along which some quantity, for example, the
conductivity, is constant is trivial: For any substance, one can iden-
tify invariant curves as contours of conductivity. What is non-trivial
is when the contours of one physical quantity coincide with those of
another. For certain systems, termed R-simple systems, the contours
of many structural and dynamical quantities coincide and these
curves are then designated as isomorphs. The theory specifies that
to see the invariances, it is essential to compare the correctly scaled
dimensionless versions of physical quantities, referred to as putting
them in “reduced units.” The theory also is quite precise about which
physical quantities should be invariant in reduced units.24

In the formal development of isomorph theory,25 iso-
morphs are defined as curves of constant excess entropy Sex(ρ,T)≡ S(ρ,T) − SIG(ρ,T), the entropy after subtracting the ideal gas

contribution for the same density and temperature. These so-called
configurational adiabats can be readily identified in computer simu-
lations, as explained in Sec. II. R-simple systems are understood, as a
rule, to be those dominated by van der Waals or metallic bonding.26
Strongly directional bonding and strong Coulomb interactions26–28
are known to spoil R-simplicity. Since Coulomb interactions are
important in ionic liquids, it is not a priori clear that these liquids
have good isomorphs. However, the experimental results of Hansen
et al.23 suggest that an analysis in terms of isomorphs could be fruit-
ful. Indeed, the coincidence of the invariant main peak in S(q) and
the invariance of conductivity points strongly toward the existence
of underlying approximate isomorphs. We say approximate because
the charge peak in S(q) was not observed to be invariant.

A possible interpretation of these results is that the Coulomb
interactions play a limited role in determining the structure as given
by the main peak of S(q) and a limited role in determining the
dynamical and transport properties. Therefore, approximate iso-
morphs exist along which these quantities are nearly invariant. On
the other hand, the charge peak, which is ascribed to charge ordering
and therefore is solely due to the Coulomb interactions, is somehow
decoupled from the interactions that determine the main structural
and dynamical properties.

In systems that do not have good isomorphs or have at best
approximate isomorphs, we can still identify configurational adi-
abats and investigate structural and dynamical invariances along
them. However, it is not appropriate to refer to them as isomorphs.
In this work, we will therefore refer to the identified curves as adi-
abats for correctness (the qualifier “configurational” will always be
understood if omitted).

Our goal is to get a better understanding of this behavior—
substantial, but not complete invariance of structure and dynamics
along the same curves in the phase diagram of an ionic liquid—by
studying a simple model system using computer simulations. For
this, we have used the simple salt model of Hansen and McDonald,29
which contains two types of spherical particles differing only in
the sign of their charge. This model, described more completely in
Sec. III, is designed to be the simplest possible model of an ionic liq-
uid. It consists of point particles interacting via a short-range repul-
sive inverse power law (IPL) together with Coulomb interactions
that are repulsive or attractive for like or unlike particles, respec-
tively. The IPL term by itself would give perfect isomorphs due to
the well-known scaling properties of power law functions.30 The
Coulomb interactions, as argued above and in previous work, tend
to spoil the pressure–energy correlations that give rise to isomorphs.
Inspired by the experimental results, we hypothesize that in this
model, there is a similar division into structural [main peak of S(q)]
and dynamical properties, which are insensitive to the Coulomb
interaction, and structural properties [the “charge peak” in S(q)],
which are sensitive to the Coulomb interaction. We will argue below
that because the exponent of the Coulomb interaction (n = 1) is
much smaller than that of the short-range repulsive IPL (n = 9),
the charge peak should decrease as density increases along an iso-
morph (the temperature that would tend to preserve the charge peak
is lower than that which preserves the main peak, so the charge peak
experiences greater thermal disruption).

Briefly, ourmain results are that dynamical and transport prop-
erties are invariant along configurational adiabats over more or less
the full range of densities simulated, while structural properties vary
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substantially when the full range of simulated densities is considered.
When considering a smaller density range, around a 15% increase,
in the high density (weak-Coulomb) regime, the structure appears
more invariant; in particular, the main peak in the structure factor,
corresponding to the number fluctuations, is quite invariant, while
the charge peak, corresponding to concentration fluctuations, varies
slightly, in a manner similar to the experiments of Hansen et al.,23
getting smaller and moving toward lower reduced wavenumbers as
density increases.

II. ISOMORPH THEORY

Isomorph theory is a theoretical framework that was first pre-
sented in Ref. 24. The theory describes curves in the phase dia-
gram, called isomorphs, along whichmany structural and dynamical
properties are invariant when the quantities of interest are scaled
appropriately. Not all systems have isomorphs, and the theory is
only exact for systems where the potential energy between par-
ticles can be described with an inverse power law, V(r) = εr−n.
However, this does not mean that it can only describe these sys-
tems. For example, in most soft-sphere models, to avoid overlapping
particles, the potential energy between particles will monotonically
approach infinity as r goes to 0. This suggests that for small val-
ues of r the potential can be approximated with an inverse power
law. This is why we often expect isomorphs at higher densities for
these systems. A concrete way to test the “quality” of a potential
isomorph through a given state point is by calculating the Pear-
son correlation coefficient R between the potential energy and the
virial,

R = ⟨ΔWΔU⟩√⟨(ΔW)2⟩⟨(ΔU)2⟩ , (1)

where ΔW is the deviation of the virial from its thermodynamic
average, ΔU is the deviation in potential energy, and ⟨⋅ ⋅ ⋅⟩ denotes
the canonical (NVT) ensemble average. The R-value can be calcu-
lated for any state point, but a system is usually expected to only
have good isomorphs in parts of the phase diagram where R > 0.9.24

In order to trace the isomorph in the phase diagram, one has
to calculate another important quantity for isomorphs, the density
scaling exponent γ,

γ(ρ,T) ≡ (d ln T
d ln ρ

)
Sex

= ⟨ΔWΔU⟩⟨(ΔU)2⟩ , (2)

where T is the temperature, ρ is the density, and Sex is the excess
entropy.24 Thus, γ defined in this way is the slope of the configu-
rational adiabat through a given state point in a double-logarithmic
representation of the ρ,T phase diagram. This is a general statistical
mechanical identity; for systems with good isomorphs, the (configu-
rational) adiabats are the isomorphs. Moreover, if γ is independent
of density and temperature, then the adiabats have the form T ∝ ργ;
this is the case referred to in the Introduction in the context of exper-
imental results on density scaling. In computer simulations, larger
changes in ρ can be explored and γ is generally seen to depend on
it and, to a lesser extent, on T.31 By treating Eq. (2) as a first order
differential equation, we can trace adiabats in the phase diagram via
a simple Euler numerical integration,

TABLE I. Table of scaling factors for conversion to reduced units.

Name Symbol Reduced symbol Scaling factor

Distance r r̃ ρ1/3

Inverse
distance q q̃ ρ−1/3
Time t t̃ ρ1/3√kBT/m
Mean square
displacement MSD MSD (reduced) ρ2/3

Viscosity η η̃ ρ−2/3(mkBT)−1/2

Tn+1 = Tn(ρn+1
ρn
)γn

. (3)

As mentioned in the beginning, the invariance in structure and
dynamics can only be seen when scaled appropriately. These scal-
ing factors are defined for the characteristic properties of the system,
such as the density ρ, the (mean) mass of the particles m, and the
temperature T. As an example, the scaled distance is r̃ ≡ ρ1/3r. A list
of the reduced units and the necessary scaling factors, which we will
use in this paper, can be seen in Table I.

III. SIMULATIONS
A. Simple salt model

We have worked with the simple salt model described in
Ref. 29. This model contains two types of spherical particles, desig-
nated A and B, which are identical except for their opposite charge.
The potential contains an inverse power law term with exponent
n = 9, which ensures that all particles are repelled at small distances.
It also contains an inverse power law term with exponent 1 that
represents the electrostatic interactions between the particles. This
means that this term is repulsive for particles of the same type and
attractive for particles of different types. The pair potential of this
model is thus given by

Vαβ(r) = 1
9
(1
r
)9 + εαβ(1r ), (4)

where r is the distance between the particles, εAA = εBB = 1, and
εAB = εBA = −1. Due to the symmetry of this potential, we will be
referring to AA as the like-part and AB as the unlike-part.

Traditionally, in computer simulations, Coulomb interactions
have been implemented using some variant of the Ewald-summation
method in order to handle the long range part of the interactions
as efficiently as possible.32 It has been shown, however, that for
bulk systems a simpler approach, omitting the long range part of
the interactions, is sufficiently accurate.33 In particular, the use of
the so-called shifted-force cutoff, whereby a constant term is added
to the pair-force such that it vanishes at the cutoff, gives accurate
results without requiring excessively large cutoffs.34,35 This ensures
the continuity of the force at the cutoff, giving greater energy sta-
bility, although it involves changing the pair potential (by a linear
term) at distances less than the cutoff. In this work, we use a shifted-
force cutoff for the entire interaction, with a cutoff distance of rc = 6.
To confirm that this is sufficiently accurate, we have investigated the
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effect of systematically reducing the cutoff to 3 at the lowest den-
sity of ρ = 0.75 by focusing on the partial structure factors. For the
smallest cutoff values, 3 and 4, effects can be seen in the charge-
density fluctuations at low wavenumbers (see Fig. 1 of the supple-
mentary material). There is little change once the cutoff exceeds 5,
however. The graph of the potential is shown in Fig. 1. Note that
the minimum of the unlike interaction occurs at r = 1, so naïvely we
expect (Coulomb) attractions to be most relevant at densities below
approximately unity (taking the interparticle spacing to be roughly
ρ−1/3).

At short distances, the purely repulsive n = 9 term dominates
so that we expect the Coulomb interaction to play a decreasing role
as density increases. In fact, it can be shown mathematically that
reducing the contribution of the Coulomb interaction term can be
absorbed by a redefinition of length and energy scales or equiva-
lently changing temperature and density to higher values (see Sec. I
of the supplementary material). We therefore simulate a wide range
of densities, much wider than would normally be covered in a real
experiment on a given material, to probe the effect of effectively
reducing the Coulomb interactions. In experiments, one would have
to vary the charges, or more likely, vary the size of themolecule while
keeping the charges fixed, thus “diluting” their effect.

Hansen and McDonald studied their model at one particular
density, 0.3676, and one particular temperature, 0.0177. This den-
sity is significantly lower than unity and lower than the densities
we study by at least a factor of 2. When converted to real units
corresponding to NaCl, the state point is roughly in the vicinity of
the experimental triple point of NaCl (20% higher in temperature
and 10% lower in density). NaCl is of course a strongly ionic liq-
uid, where the Coulomb interaction very much dominates. In this
low density, low temperature regime (compared to the location and
depth of the attractive minimum), one expects very weak correla-
tions and no isomorphs. Our interest is inspired by room tempera-
ture ionic liquids, on the other hand, in which the Coulomb inter-
actions do not dominate so much, giving an intermediate situation
whereby a higher degree of W,U-correlation, and thereby potential
for isomorph-like invariances, can be expected. As shown below, the
part of the phase diagram we investigate covers values of the cor-
relation coefficient R ranging from low-to-intermediate (R ∼ 0.7) to
very high (R > 0.95). Since the region we simulate is well above the

FIG. 1. Potential energy between particles in the simple salt model with a shifted-
force cutoff implemented at rc = 6. Interactions between particles of the same
type, AA and BB, are identical. The minimum for the unlike interaction is at r = 1.

critical temperature and density,36 one may prefer the term
“supercritical fluid” rather than “liquid.”37 In the context of iso-
morph theory, this distinction has little physical meaning, however,
at least where good isomorphs exist, since one can follow an iso-
morph from the liquid into the supercritical fluid and observe no
essential differences at the microscopic scale; we therefore choose to
stick with the term “liquid.”

In the weak-Coulomb regime at high density, we hypothe-
size that the main effect of Coulombic interactions is to induce a
mild degree of charge ordering, while the short-range repulsive term
dominates most of the properties, including the slope of the adiabats
(that is, γ is close to 3 in this limit). For a pure Coulomb system, the
adiabats would have amuch lower slope of 1/3; thus, the temperature
along the actual adiabats is “too high” for the Coulomb interac-
tions, which is expected to lead to a decrease in charge ordering with
increasing density along an adiabat.

B. Simulation details
We simulated 8000 particles in a rectangular box with sides

2L × L × L. The doubled length in the x-direction was chosen
to achieve higher resolution in the structure factor.38 Periodic
boundary conditions were implemented to create the perception of a
larger system, removing the need to define particle interactions with
walls. For simplicity, we chose the masses of both types of atoms to
be unity.

The time step was chosen to have a fixed value in reduced
units, dt̃ = 0.004, or dt = 0.004ρ−1/3(T/m)−1/2. Keeping a fixed value
is convenient when comparing dynamical quantities along an iso-
morph, although it is not essential. For the initial configurations,
the particles were placed on an fcc lattice with types assigned ran-
domly. This lattice is not thermodynamically stable and immediately
melts at all simulated densities and temperatures. The state points
along the isotherms was simulated in parallel (at the same time)
since they are independent of each other. Each state point equili-
brated for 2 ⋅ 106 time steps before data was collected. The adiabats
on the other hand have to be run in series (in order) because the
next state point is dependent on the current one [since γ deter-
mined in one simulation determines the temperature of the next one
via Eq. (3)]. After the initial equilibration, all simulations collected
data for 217 ⋅ 100 = 13 107 200 time steps. The simulations were per-
formed using RUMD (Roskilde University Molecular Dynamics),39
which is designed for a GPU-cluster.

C. Simulation protocol
Figure 2 shows all simulated points in a ρ − T phase diagram.

We choose three different adiabats to study: one going through
the point ρ = 0.75 and T = 0.1, another going through ρ = 1.00 and
T = 0.1, and finally one through ρ = 1.20 and T = 0.1. These will be
referred to as adiabats 1, 2, and 3, respectively. These three starting
densities were chosen such that the forces between unlike particles
would be mostly attractive for adiabat 1, neutral for adiabat 2, and
repulsive for adiabat 3. This can be seen in Fig. 1 by remembering
that the average distance between the particles is given approxi-
mately by ρ−1/3. All three adiabats were simulated from their starting
density to ρ = 2. The results from these adiabats will be compared
with six different isotherms T = 0.10, 0.15, 0.20, 0.30, 0.50, 1.00.
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FIG. 2. Simulated adiabats and isotherms in a ρ − T phase diagram. The state
points where crystallization was observed are marked with an X.

These temperatures were chosen to overlap with the temperature
range of the adiabats. These isotherms were simulated in a density
interval from ρ = 0.75 to 2.0 with a spacing of 0.05.

At the lowest temperatures and highest densities, crystallization
occurred; these points are indicated with a cross in Fig. 2 and omitted
from further analysis.

IV. RESULTS

Figure 3 shows R and γ for all adiabats and isotherms plot-
ted as a function of density. For both adiabats and isotherms, R
and γ increase monotonically as the density increases. In the high
density limit, they must approach 1 and 3, respectively, since the
potential is better approximated by the IPL at high densities at
which the isomorph theory is exact and for which γ is given by
one third of the exponent n = 9. In this limit, there are perfect iso-
morphs and there is no need to simulate; most of our simulated state
points (primarily those at lower densities), on the other hand, have
R < 0.9; thus, we expect less than perfect invariance, with poten-
tially some quantities more invariant than others. The fact that γ < 3
in general is not obvious a priori; indeed, for the Lennard-Jones
potential, which has the same form as the attractive (unlike parti-
cles) potential in this model, γ converges to 12/3 = 4 from above
rather than below. The dependence of γ on density will be discussed
below.

A. Dynamics and transport
As measures of microscopic dynamics, we consider the mean

square displacement (MSD) and self-intermediate scattering func-
tion, Fs(q, t). The tagged-particle MSD was calculated as an average
over particles and time-origins,

MSD(t) = ⟨∣r(t) − r(0)∣2⟩, (5)

where r(t) is the position of a particle at time t, ∣⋅ ⋅ ⋅∣ denotes the
absolute value, and ⟨⋅ ⋅ ⋅⟩ denotes the ensemble average.

Figure 4(a) shows reduced-unit MSD curves in blue for adi-
abat 1 and in red for isotherm T = 0.1. The blue curves collapse
perfectly, indicating a strong invariance of this dynamical quantity

FIG. 3. (a) Correlation coefficient R along adiabats and isotherms as a function
of density. (b) Scaling exponent γ along adiabats and isotherms as a function of
density.

along configurational adiabats. The curves show the usual transi-
tion from a ballistic regime at short times (slope 2 in a double-log
plot) to a diffusive regime (slope 1) at long times. The absence of a
plateau between these two regimes is characteristic of non-viscous
behavior. This is consistent with the relatively easy crystallization
we observe when the high density/low temperature region of the
phase diagram is simulated (the crosses in the lower right corner in
Fig. 2): The latter indicates that this model cannot be readily super-
cooled, which implies that we should not expect to find any viscous
liquid states. Because the MSD in the ballistic regime depends on
temperature and particle mass but not on the potential, it is straight-
forward to show that it is always equal to 3t̃2, and therefore, all data
must collapse trivially in that regime. The collapse of the diffusive
regime along the adiabat, on the other hand, is a non-trivial result.
To show data from all simulations in a concise way, we determine
the diffusion coefficient from a linear fit to the MSD data, shown in
Fig. 4(b) for all state points. The dynamical invariance along configu-
rational adiabats is manifested over the whole density range on each
adiabat.

The self-intermediate scattering function was calculated by

Fs(q, t) = ⟨exp[iq ⋅ (r(t) − r(0))]⟩, (6)

where r(t) is the position of a particle at time t.40 Figure 5(a) shows
the intermediate scattering function, plotted as a function of reduced
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FIG. 4. (a) Reduced MSD as a function of reduced time for all densities where
crystallization did not occur on isotherm T = 0.1 (red curves) and all state points
along adiabat 1 (blue curves). The blue curves collapse on each other. (b) Diffusion
coefficient (determined from the long time slope of the MSD) for all adiabats and
isotherms. The horizontal dashed lines at the three adiabats are to guide the eye.
They pass through the first (lowest density) point of each adiabat.

time t̃, for adiabat 1 (blue) and isotherm T = 0.1 (red). The q-value
was chosen to be 7.1ρ1/3, ensuring that it is fixed in reduced units
and close to the maximum of SNN (see Sec. IV B). At all the inves-
tigated state points, a simple, near-exponential decay is observed,
corresponding to ordinary non-viscous liquid dynamics, and con-
sistent with the absence of a plateau in the MSD data. The red
curves in Fig. 5(a) move toward longer times (slower dynamics) as
the density increases, while the blue curves collapse on each other,
showing that also this measure of dynamics is invariant along adi-
abat 1. The data for other isotherms and adiabats behave similarly
(see Figs. 2–6 of the supplementary material). In Fig. 5(b), we plot
the reduced time at which Fs has fallen to e−1, denoted as t̃1/e, as a
function of density for all adiabats and isotherms. This time scale
increases rapidly with increasing density at fixed temperature but
increases only slightly along adiabats, again indicating rather invari-
ant dynamics. This plot shows that the invariance is not perfect [the
slight deviation is hidden in panel (a) of Fig. 5 due to the logarith-
mic axis] but nevertheless impressive given the large density changes
involved. Note that the change in a real time scale over this range of
densities is about a factor of 4.5 for adiabat 1. The collapse of the
Fs curves themselves means that the invariance applies to the whole
time-dependent relaxation curve, not just the characteristic time
scale. Indeed, the shape-parameter β in the stretched-exponential fits

FIG. 5. (a) Fs plotted as a function of reduced time for all simulated densities at
T = 0.1 (red curves) and all simulated state points on adiabat 1 (blue curves).
The latter collapse almost perfectly on each other. The horizontal dashed line indi-
cates the value 1/e ≈ 0.368. (b) Reduced time at which Fs = 1/e, for all adiabats
and isotherms. The horizontal dashed lines pass through the first points (lowest
density) of the adiabats and are intended to guide the eye.

is more invariant than the characteristic time except at low densi-
ties (left panel of Fig. 9 of the supplementary material). It should be
emphasized that the approximate invariance shown by the reduced
self-intermediate scattering function applies over the whole simu-
lated range of density, even though the W,U-correlation coefficient
R is less than 0.9 for most of the density range of each adiabat, and as
such, we do not expect the configurational adiabats to be isomorphs.
Note that at smaller wavenumbers the time scale for the interme-
diate scattering function becomes more invariant (see Fig. 7 of the
supplementary material), consistent with the excellent collapse of
the diffusivity data, since diffusion is a long wavelength process.

Finally, in this section, we investigate the viscosity as an impor-
tant example of a macroscopic transport coefficient. The viscosity
was calculated using the Green–Kubo formula,32

η = V
kBT∫

∞
0
⟨σxy(0)σxy(t)⟩dt, (7)

where V is the volume of the simulation box, kB is the Boltzmann
constant, T is the temperature, and σxy(t) is the xy component
of the stress tensor as a function of time t. The calculation of the
integral in Eq. (7) is done analytically after fitting the normalized
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autocorrelation function at short (reduced) times (t̃ ≤ 0.06) to a
polynomial a0 + a2 t̃2 + a3 t̃3 (note that the slope must be zero at
t̃ = 0) and at longer (reduced) times (t̃ ≥ 0.06) to a sum of two expo-
nential functions. The data up to where the normalized function
first goes below 0.001 are included in the fit. Figure 6(a) shows
four examples of the normalized stress autocorrelation function
and the corresponding fits. The plot is in reduced units; the two
curves from the same adiabat are somewhat similar but not iden-
tical when plotted this way. Figure 6(b) shows the reduced viscosity
as a function of density along the isotherms and adiabats. As with
the self-intermediate scattering function and the mean squared dis-
placement, we find a striking invariance across the whole range of
densities for each of the three adiabats. Given that the two curves
in Fig. 6(a) from the same adiabat differ at long times, giving differ-
ent values for the integral of the normalized correlation function,
it is surprising that viscosity seems so invariant. The formula for
η̃ can be written as the product of the reduced infinite frequency
shear modulus G̃∞ and the integral of the normalized shear stress
autocorrelation function with respect to reduced time. Figure 10 of
the supplementary material shows G̃∞, which is not invariant but
rises noticeably with density along adiabats. This increase compen-
sates for the decrease in the integral of the normalized correlation
function, yielding a rather invariant reduced viscosity.

FIG. 6. (a) Examples of the normalized stress autocorrelation data and double-
exponential fit. The plot is in reduced units to facilitate the comparison of data from
the same adiabat. (b) Comparison of the viscosity along adiabats and isotherms.
The horizontal dashed lines at the three adiabats are to guide the eye. They pass
through the first point of each adiabat.

B. Structure
To study the structure, we consider both the radial distribution

function and the structure factor. We consider partial pair correla-
tion or radial distribution functions gαβ(r) defined in the usual way,
where the indices α and β refer to particle types A and B. Only two
of these, the AA and AB functions, are independent since the AA
and BB interactions are identical and the composition is equimo-
lar. The corresponding partial structure factors Sαβ(q), known as the
Faber–Ziman (FZ) structure factors, can be defined by Fourier trans-
forming these, but we choose a different representation known as the
Bhatia–Thornton (BT) partial structure factors (see Fig. 16 of the
supplementary material for some FZ structure factor data). These
are defined for binary mixtures38,41 as certain linear combinations of
the FZ structure factors, denoted as NN, NC, and CC, where N refers
to number density fluctuations and C refers to concentration density
fluctuations. Section II of the supplementary material explains how
this representation is equivalent to defining sum and difference vari-
ables of the Fourier components of density fluctuations.9 If cA and cB
are the concentrations of species A and B, respectively, then the BT
partial structure factors are defined by38,41

SNN(q) = c2ASAA(q) + c2BSBB(q) + 2cAcBSAB(q) > 0, (8)

SCC(q) = cAcB[1 + cAcB(SAA(q) + SBB(q) − 2SAB(q))] > 0, (9)

FIG. 7. Partial radial distribution functions for three state points on (a) adiabat 1
and (b) isotherm T = 1.0, plotted as functions of reduced distance r̃ .
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SNC(q) = cAcB[cA(SAA(q) − SAB(q)) − cB(SBB(q) − SAB(q))]. (10)

In our system, SAA(q) = SBB(q) and cA = cB = 0.5, and thus
SNC = 0, and we do not include it in our analysis. The utility of this
representation stems from the way in which the coherent part of the
total neutron scattering signal is written38 (taking SNC = 0),

1
N
[ dσ
dΩ
(q)]coh = ∣⟨b⟩∣2SNN(q) + ∣b̄A − b̄B∣2SCC(q), (11)

where b̄α is the spin- and isotope-averaged scattering length for
species α and the angle brackets denote averaging over different
species. For x-ray scattering, the scattering lengths should include
an additional q-dependence from the atomic form factor, while
the spin-averages can be dropped (the total cross section will also
include other effects38). Thus, the NN part of the structure factor
is coupled to the mean scattering length and thus is what would be
measured by a probe insensitive to chemical species. Fischer refers
to it as the “colour-blind” scattering cross section.38 The CC part
is measured only when the scattering length differs between chem-
ical species and describes chemical ordering. For our ionic system,
we can associate the charge peak in the total scattering signal with a
peak in SCC(q). As mentioned, one can obtain the BT partial struc-
ture factors by appropriately Fourier transforming the partial pair
correlations to get the FZ structure factors. To avoid truncation

FIG. 8. Bhatia–Thornton structure factors for three state points on (a) adiabat 1
and (b) isotherm T = 1.0, plotted as functions of reduced wavenumber q̃.

of the Fourier transform, we used instead the more rigorous method
of saving Fourier components of the density fluctuations for each
species at regular intervals and then taking the relevant (co-)
variances before taking appropriate linear combinations to form the
BT partial structure factors (Sec. II of the supplementary material).
When calculating S(q) this way, only Fourier modes that fit into
the simulation box are allowed. We take the first 88 modes in the
x-direction, which gives sufficient resolution to resolve the peaks. By
considering modes that fit into the box, we have different q-values
at different densities, but the reduced-unit wavenumbers q̃ ≡ ρ−1/3q
are identical, which is necessary for isomorph-compatible compar-
ison. Note that SCC(q) tends toward the product of concentrations
cAcB = 1/4 in the limit of zero chemical ordering.

Figure 7 shows the partial radial distribution functions for
selected densities on adiabat 1 and isotherm T = 1.0, while Fig. 8
shows the BT partial structure factors on the same state points.
Reduced units r̃ and q̃ have been used in the plots for both quan-
tities. There is substantial variation in both structural measures as
the density varies, confirming that the adiabats we have simulated
are not isomorphs despite the fact that dynamical quantities are
remarkably invariant along them. The most that can be said is that
the structural measures vary less with density on adiabats than on
isotherms. A general feature for all adiabats and isotherms is that
the features in both gAA(r̃) and SNN(q̃) become more pronounced
as the density increases. Furthermore, as density increases along the

FIG. 9. Dependence of (a) the reduced-unit position and (b) the height for the first
peak of the AA partial radial distribution function on density for all six isotherms
and all three adiabats.
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adiabats, the first peak in SCC(q̃) moves to lower q̃-values and the
peak height decreases. Recalling that the CC peak can be identified
with the charge peak, this is the same behavior as seen in Ref. 23,
and it is not shared with the isotherms. Indeed, Fig. 8(b) shows that
the peak in SCC(q) is actually rather invariant along the isotherm; its
height and position depend mainly on temperature alone.

Recall that we expect more isomorph-like behavior, that is, bet-
ter invariance, in the limit of high density. To investigate how this
occurs, and to get a more simple view of how the structure changes
along the adiabats and isotherms, we have analyzed the position and
height of the first peaks in g(r̃) and S(q̃). This was done by fitting
a fourth order polynomial to data around the peak. Focusing on the
peak position and height makes it easier to analyze trends in the data
across the whole range of densities. Considering the radial distribu-
tion function first peaks, Figs. 9 and 10, both the peak position and
peak height vary significantly along adiabats, but it is also clear that
they are beginning to level off at the highest densities, whereas the
data for isotherms give no indication of leveling. The leveling off
for the adiabats is clearer for the peak positions than for the peak
heights, although we note that for gAA(r) the overall variation in
the peak position is greater for adiabats than for isotherms, which
exhibit a shallow minimum at low densities. Another feature of the
adiabats is that the AA peak position starts at values around 1.15 and
decreases to values around 1.05, while the AB peak position starts at
values below unity and increases to values just above unity. Thus,

FIG. 10. Dependence of (a) the reduced-unit position and (b) the height for the first
peak of the AB partial radial distribution function on density for all six isotherms
and all three adiabats.

for each adiabat, both peaks start significantly separated, by about
20%–30%, and converge with increasing density, being separated by
only a few percent at the highest densities shown. This convergence
is consistent with the hypothesis that charge ordering, and hence
particle identity, becomes less important as the density increases.

While both peak heights increase with density on isotherms,
which is expected, they move oppositely along adiabats, increasing
sharply for AA from low values and decreasing gently for AB from
high values. That is, they move toward each other, again reflecting
the tendency for AA and AB structures to become more alike as
charge ordering diminishes along adiabats.

We turn next to the peak analysis of the BT partial structure fac-
tors, SNN(q̃) (Fig. 11) and SCC(q̃) (Fig. 12). The leveling out observed
in the radial distribution functions is more pronounced in the NN
peak heights and positions, whereas it is less pronounced in the CC
plots. Over the last 0.5 or so of density, the relative change in the
NN peak heights is small, while the relative change in the CC peak
heights is substantial. It must be noted, however, that the absolute
value of the CC peak is initially quite small, and therefore, the abso-
lute changes in NN and CC peak heights are rather comparable.
Recall that we expect that at sufficiently high density the Coulomb
interactions become irrelevant, and therefore, charge ordering will
be negligible; as mentioned above, SCC(q) should tend toward
cAcB = 0.25, which is consistent with the observed behavior; the vari-
ation in the CC peak height is the already rather small degree of

FIG. 11. Dependence of (a) the (reduced-unit) position and (b) the height for the
first peak of the NN Bhatia–Thornton partial structure factor on density for all six
isotherms and all three adiabats.
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FIG. 12. Dependence of (a) the (reduced-unit) position and (b) the height for the
first peak of the CC Bhatia–Thornton partial structure factor on density for all six
isotherms and all three adiabats.

charge ordering getting even smaller. To illustrate the high density
behavior more directly, we show a collapse of both Bhatia–Thornton
structure factors for adiabat 2 over the density range of 1.75–2.00
in Fig. 13 and a density increase of 14%. Similar plots can be made

FIG. 13. NN (blue) and CC (red) Bhatia–Thornton partial structure factors for adia-
bat 2, including densities from 1.75 to 2.0. There are seven red curves and seven
blue curves, with the intensity of the lines increasing with increasing density. The
NN curves increase slightly but systematically in peak height with increasing den-
sity, while a slight but systematic decrease of both the CC peak height and CC
peak position is noticeable.

for the other adiabats and also over the density range of 1.5–1.75
(Figs. 13–15 of the supplementary material). The most important
point here is that the structure is in fact rather invariant over this
density range, comparable to what is seen with good isomorphs
(indeed, this density range is larger than that investigated in the first
isomorph paper24). Second, the visible deviations are very small and
confined to very top of the peak for NN, while they are more spread
out for CC, related to the fact that the CC peak varies in position as
well as height.

A more concrete way to analyze charge ordering is to deter-
mine the partial coordination numbers, i.e., the numbers of near-
neighbors of each type that a given particle has. The data for these
are presented and discussed in the supplementary material (Figs. 11
and 12 of the supplementary material) and consistent with the other
structural analyses, in that the total coordination number is rather
invariant on adiabats, while the concentration of like particles in
the neighbor shell increases toward presumably 50%, as the particle
identity becomes less relevant.

V. DISCUSSION
A. Density dependence of the density scaling
exponent

The value of the density scaling exponent γ and how it depends
on density are interesting not least because it can be directly com-
pared with experiment. Indeed, the values we observe here are
in the range (2–3.5) considered typical for ionic liquids. For R-
simple systems consisting of spherical particles interacting with
pairwise forces, γ can be straightforwardly related to derivatives of
the potential,42 but in other systems the connection to the potential
is not so straightforward. For the present system, it turns out that
the value and density dependence of γ can be essentially explained
by a single approximation, namely, that fluctuations of the Coulomb
contribution to the energy are uncorrelated with those of the IPL
contribution. Some data justifying this assumption are given in the
supplementary material (Fig. 19 of the supplementary material).
Specifically, if we write a fluctuation of potential energy as a sum
of two terms,

ΔU = ΔUIPL + ΔUC, (12)

then the corresponding fluctuation in the virial is

ΔW = ΔWIPL + ΔWC = 3ΔUIPL + (1/3)ΔUC, (13)

where we used the fact that each term separately is an IPL and there-
fore exhibits perfect W,U correlations with a coefficient given by
one third of the IPL exponent. Putting this into the expression for γ,
Eq. (2) gives

γ = 3⟨(ΔUIPL)2⟩ + 3 1
3 ⟨ΔUIPLΔUC⟩ + 1

3 ⟨(ΔUC)2⟩⟨(ΔUIPL)2⟩ + 2⟨ΔUIPLΔUC⟩ + ⟨(ΔUC)2⟩ . (14)

Making the assumption ⟨ΔUIPLΔUC⟩ = 0, i.e., uncorrelated con-
tributions from the IPL and Coulomb terms, leads to a simpler
expression,
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γ = 3 + X/3
1 + X , (15)

whereX ≡ ⟨(ΔUC)2⟩/⟨(ΔUIPL)2⟩ is the ratio of variance of Coulomb
energy fluctuations to that of IPL energy fluctuations. In the limit of
high density, this ratio is expected to vanish, giving γ→ 3; at lower
densities, γ is less than 3. Indeed, γ rises monotonically from 1/3
at high values of X to 3 as X vanishes. Thus, the weak correlation
between fluctuations of the energy from the Coulomb term and that
from the n = 9 IPL explains both the reduction in γ and its increase
with increasing density.

B. Curves of invariant dynamics: Isodynes
This model is interesting because simply by varying the density,

it covers the range from asymptotically perfect isomorphs at high
density down to strongly ionic behavior with no isomorphs at low
density. One would expect a priori to see the approximate invari-
ance of both structural and dynamical properties in the high density,
weak-Coulomb regime, but no particular invariance at low densities
(strong-Coulomb regime). This is indeed how it appears when we
consider the structure. However, intriguingly, the dynamical quan-
tities we have investigated and the viscosity appear to be nearly
invariant on configurational adiabats throughout this density range
when expressed in reduced units. In particular, the reduced diffusiv-
ity and viscosity show little to no variation along the three adiabats,
while the time scale extracted from the self-intermediate scatter-
ing function rises slightly, showing a 10% increase in reduced units,
e.g., for adiabat 3 over the density range of 1.2–2.0 [Fig. 5(b)]. It is
worth pointing out that while the reduced-unit viscosity is invari-
ant, the real viscosity changes by a substantial factor: From Table I,
the real viscosity must be proportional to ρ2/3T1/2, giving a factor
of over 6 increase for the real viscosity along adiabat 1. This invari-
ance of a transport coefficient is consistent with Rosenfeld’s excess
entropy scaling,43 but it must be noted that the invariance of also
the time-dependent correlation functions is a stronger result than
excess entropy scaling alone implies.44 This discovery for the ionic
liquids is a strong effect, which suggests a fundamental perhaps fairly
basic origin, although we are not yet in a position to clarify what that
origin is. Investigation of different N-body structural contributions
to the excess entropy could be fruitful, however. Formally, Sex can
be written as a sum S2 + S3 + S4 + ⋅ ⋅ ⋅, where the two-body term S2
can be determined from the RDF; Dzugutov argued that it is the
most important contribution.45 A natural line of further research
would therefore be to investigate its invariance in this system and
others where the variation of structure coexists with dynamical
invariance.

It is considered a paradigm in materials science that a material’s
structure determines its properties. Therefore, it is striking to find an
example where it does not—for this model, the structure can vary
substantially along an adiabat, but the dynamical properties vary
hardly at all. This would place the current model system in a wider
class of materials than the so-called Roskilde systems (those with
good isomorphs). Similar results have been seen in Gnan et al.46
where a colloidal model was studied; they found lines of invariant
dynamics (termed isodynamics lines) in the ϕ − T phase diagram,
but structural and thermodynamic properties were not invariant
along these lines. In that work, the isodynamic lines were identified

empirically, as contours of reduced diffusivity, and it was not inves-
tigated whether they correspond to configurational adiabats. Never-
theless, their results suggest that the model colloidal system of that
work also belongs in the same class of materials as our model. As a
third example, recent unpublished simulations of a similar model to
the present one47 but using exponents 8 and 4 rather than 9 and 1
show very similar behavior48 to the present model. To denote adi-
abats having the property of approximate dynamical invariance, we
could use “isodynamics lines,” following the work of Gnan et al., but
we wish to propose the more compact term isodynes.

C. Comparison to experiment
The model studied in this work is far from a realistic model of

an ionic liquid. Nevertheless, we find a number of striking similari-
ties in the phenomenology of the model and the measured data. First
of all, the model has lines in the phase diagram along which all the
studied dynamical and transport properties are invariant. This cor-
responds to finding density scaling with the same exponent γ for all
the dynamical properties as is seen in experiment.21,23 In the simu-
lations, the value for γ changes with density, which is related to the
much larger density range explored.49 The value found for γ in the
model lies in the range of 2–2.8. These values are also typical for
experimental ionic liquids where γ is in the range of 2–3.5.18–21,23 As
explained above, the maximum value of γ in the model is 3, which
stems from the choice of an n = 9 inverse power law, while it is the
Coulomb interactions that make γ decrease below this value. Thus,
the Coulomb interactions explain why the density scaling exponents
of ionic liquids are typically smaller than the density scaling expo-
nents of van der Waals bonded liquids. However, the numerical
agreement between γ of the model and the experimental data should
not be overemphasized as it stems from the choice of the power n = 9
in the model.

In addition to density scaling being obeyed by a range of
dynamical properties, the structural behavior of the model shows
some similarity with the x-ray scattering data in Ref. 23. The rel-
atively large experimental charge peak must reflect a much larger
degree of charge ordering that we see in our model (and not, for
example, an effect of the mean scattering length being much smaller
than its difference between species, which could be possible for
neutron scattering). Nevertheless, the changes seen are reasonably
consistent with what we observe—the main structure factor peak
(the NN partial structure factor) is invariant along lines of con-
stant dynamics for moderate density changes. In the model, the
charge peak (the CC partial structure factor) is also quite invari-
ant for a moderate change in density, while it decreases in intensity
and moves to lower values of q̃ with increasing temperature in the
experimental results. For larger density changes, this behavior is also
seen for the prepeak of the model, while the main peak increases
in amplitude [see Fig. 8(a)]. In other words, the structural behav-
ior of the model and the experimental results is not exactly the
same, but the tendencies are very similar, and the surprising con-
clusion that the charge ordering does not affect the dynamics holds
in both cases. Indeed, the results from the model suggest the follow-
ing interpretation of the experimental results: The nearly invariant
main peak indicates near-isomorphic behavior when charge order-
ing is ignored, and this corresponds to invariant dynamics. At the
same time, what charge ordering there is decreases as the density
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increases along the curve of invariant dynamics. One can conclude
that the charge ordering plays no role in the dynamics. Consider-
ing the model, since our main peaks increase slightly with increasing
density along adiabats, a slightly higher-temperature curve could be
found along which the main peak height is constant. Along such a
curve, the charge peak would decrease evenmore noticeably, and the
structure would match the experimental data even more. However,
presumably, the dynamics would be slightly less invariant, partic-
ularly the diffusivity, which is the most invariant quantity we have
investigated.

D. Comparison with corresponding states approaches
A brief comparison between the present isomorph-based

approach and traditional corresponding states approaches12–14 is
appropriate. What the approaches have in common is scaling of
the quantities of interest to a dimensionless form for comparison
with a reference system or state point. However, in corresponding
states, this scaling involves microscopic energy and length parame-
ters associated with the pair potential, while in isomorph theory, it
is the density and temperature that are used. Another important dif-
ference is that corresponding states approaches identify the critical
point (or, sometimes, the triple point) as a key state point by which
other state points can be scaled (density and temperature), while in
isomorph theory, the excess entropy is the key quantity controlling
structure and dynamics (but not the pressure, i.e., the equation of
state). Sex also plays a natural role in comparing different systems
(the quasiuniversality principle50).

VI. CONCLUSION

In our investigation of the model originally proposed by
Hansen and McDonald, we have studied higher densities than they
did in order to probe the moderate-to-weak Coulomb regime as
opposed to the strong-Coulomb regime at low density. We have
found evidence of what we call isodynes or isodynamics lines. These
are curves of constant excess entropy along which dynamical quan-
tities are remarkably invariant along a wide range of densities, while
structural features change noticeably over the same range. On the
other hand, restricting to smaller density ranges near the high den-
sity (weak-Coulomb) end gives a reasonable degree of isomorph
invariance also in the structure, with the main changes visible being
the steady reduction of the already small charge ordering. These
results are qualitatively in agreement with experimental studies of
a room temperature ionic liquid.23 Possible future work with this
model could involve continuing the investigations to lower density,
as low as the density studied by Hansen and McDonald,29 well into
the strong-Coulomb regime, in order to see whether the invariance
of dynamical quantities persists also there. An initial effort in this
direction is presented in the supplementary material where adiabat
1 has been extended down to a density of 0.3 (Figs. 17 and 18 of
the supplementary material). The dynamical invariances continue,
while the structure continues to undergo a significant change (data
not shown). Below density around 0.5, shallow minima or max-
ima appear in the dynamical quantities, but these are very small
changes. In addition, realistic models of ILs should be studied to
determine whether isodynes can also be identified more generally
in these systems.

SUPPLEMENTARY MATERIAL

The supplementary material contains some explanatory text on
charge/density scaling and the Bhatia–Thornton structure factors, as
well as additional figures and accompanying text as mentioned in the
main text.
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