














and are therefore omitted in all figures. For the zero wave-
vector component the main source of error at temperatures
approaching the glass transition is associated with the fitting
procedure.

The kernels in Fig. 9 are normalized with respect to the
zero wave-vector values which are given in Table I. For

higher temperatures, our results for the zero wave-vector vis-
cosity are in agreement with those reported previously by
Daivis et al.31 and Kröger et al.,32 but are slightly lower
compared to Wallace et al.8 especially for temperatures close
to Tg. Some of the previously reported results are taken as
limiting values of the shear rate dependent viscosities at zero
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strain rate. Nevertheless, they agree within the statistical un-
certainty. The kernels of FJC-LJ and FENE-LJ chains are
almost identical and therefore only FENE-LJ results are con-
sidered further in this paper. The similarity of these two
models has also been confirmed by Hunt and Todd39,48 for
shear viscosities, extensional viscosities, and the diffusion
tensor.

We have previously found that two relatively simple
functional forms could be used to fit the wave-vector depen-
dent viscosity for a polymer melt,18 namely, a Gaussian func-
tion and a Lorentzian-type function. As pointed out in our
previous work,18 the inclusion of additional terms in the
Gaussian sum yields a better fit and makes the Gaussian
function a suitable analytical approximation of the reciprocal
space viscosity kernel. However, a Gaussian function with
higher number of terms may result in unnatural behavior of
the kernel with unphysical distortions in the real space ker-
nels. By contrast, the Lorentzian-type function, expressed as

�̃L�ky� =
�0

1 + ��ky��
, �,� � R+, �22�

shows a much smoother shape of the real space kernels and
therefore is preferred in this paper. The results of the fitting
are shown in Fig. 10 and Table II. In order to test the fitting
procedure, the magnitude of the residuals was estimated us-
ing the residual standard deviation defined as sr

=�
n=1
ns r2 / �ns−np�, where ns is the number of data points, np

is the number of fitting parameters, and r is the residual.49

After an iterative curve fitting procedure, the accurate esti-
mation of �0 was kept fixed allowing all other parameters in
Eq. �22� to vary. In Fig. 11 we have plotted the fitting pa-

rameters as a function of temperature for different chain
lengths.

It is interesting to see whether �0 obeys a Vogel–
Fulcher–Tamman �VFT�-law,5

�VFT�T� = ����exp�c/�T − T0�� , �23�

where ���� is the shear viscosity at infinite temperature, c is
a constant, and T0 is the temperature where the shear viscos-
ity is expected to diverge. Fitting our data for all three chain
lengths to Eq. �23�, we obtained ����=4.5�0.1, c
=0.306�0.005, and T0=0.393�0.001 for a 10-site chain;
����=18.2�4.8, c=0.16�0.04, T0=0.395�0.007 for a 20-
site chain, and ����=46.8�13.5, c=0.14�0.05, T0

=0.40�0.01 for a 50-site chain. It should be mentioned that
Varnik et al.5 reported ����=13.23�0.13, c=0.615�0.036,
and T0=0.19�0.005 for a similar ten-site chain model, how-
ever, they introduced an additional potential barrier acting on
the monomers in a layered confined system. We can see that
T0�0.39 is close to the estimated glass transition tempera-
ture from the calculations of self-diffusion. As shown in Fig.
11�a�, the quality of the fit is very good for the ten-site mol-
ecule. However, as we have already mentioned, our data are
not reliable below T=0.45. Here correlation functions decay
very slowly in time and the fitting procedure must be ex-
tended over much larger delay times.

Table I clearly suggests that the Rouse model of the
viscosity breaks down as we lower the temperature and it is
therefore of interest to quantify the product D�0 as a func-
tion of temperature and chain length. In order to quantify the
Rouse failure and the break down of the Stokes–Einstein
relation, we plot the product D�0 as a function of T and Ns in
Fig. 12. In contrast to the self-diffusion coefficient presented
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FIG. 7. Stress ACFs as a function of temperature for a 10-site FENE-LJ polymer melt at ky =0: �a� atomic stress ACFs; �b� molecular stress ACFs; �c� integral
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in Sec. IV A for which the Ns scaling of the center of mass D
is very simple and Rouse-like irrespective of temperature
�Fig. 1�, the Rouse-type scaling of the viscosity for FENE-LJ
polymer melts is only seen at high temperatures with a de-
viation at T=0.8 �Table I�. For the FJC-WCA systems the
viscosity is Rouse-like down to around T=0.4. Below this
temperature D�0 follows a power law for both FENE-LJ and
FJC-WCA systems. More evidence for the slowing down of
the dynamics can be seen in the temperature dependence of
D�0 shown in Figs. 12�c� and 12�d�. There are two reasons
that can explain the observed behavior. One is related to the
extrapolation of the stress ACF integrals. Recall that �0 was
taken as a limiting value based on stretched-exponential and
power law fits, Eqs. �20� and �21�, given in Figs. 8�d�–8�f�,
which become very sensitive to the interval used in the fit-
ting in the absence of data at high time values as we lower
the temperature below T=0.6. Hence the product D�0 may
not be accurate enough in the low-T regime. When much
longer simulations are employed, we expect a better agree-
ment with the Rouse model prediction down to T=0.5. The

second reason relates to the crossing over between the two
distinct regimes. This occurs at a temperature 0.45T
0.5 for FENE-LJ systems, Fig. 12�c�, and T0.1 for FJC-
WCA systems, Fig. 12�d�, which is found to correspond well
to the thermal decoupling associated with dynamic heteroge-
neity �as seen later in Sec. IV D�.50

It is also of interest to extract an empirical mode cou-
pling critical temperature for our simulation data. In general,
for the �-relaxation time scale the mode coupling theory
�MCT� predicts a power law,

D � �T − Tc��. �24�

It should be mentioned that it is in principle possible to fit
the self-diffusion data with the VFT expression similar to Eq.
�23�. In order to quantify the mode coupling critical tempera-
ture, we present the fits to the power law in Figs. 13�a� and
13�b� for the FJC-LJ and FENE-LJ systems, respectively. We
found the power law exponent to be approximately �=1.5
which is slightly lower compared to the values of 1.95 �NVT
ensemble� and 2.3 �NPT ensemble� obtained by Bennemann
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FIG. 8. Atomic stress ACFs and their running integrals at different temperatures for a 10-, 20-, and 50-site FENE-LJ polymer melt at ky =0: �a� 10-site stress
ACFs; �b� 20-site stress ACFs; �c� 50-site stress ACFs; �d� 10-site integral stress ACFs; �e� 20-site integral stress ACFs; �f� 50-site integral stress ACFs. The
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and �f� the stretched-exponential fits the data slightly better compared to the power law, but due to the extremely large relaxation time, we suggest the former
underestimates the limiting value. The value of the exponent characterizing the power law was found to be approximately �=0.64 for Ns=10.
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et al. for a similar system. However, the mode coupling criti-
cal temperature is almost identical for Ns=10 despite the fact
that our Tc=0.39 is slightly higher compared to the results of
Bennemann et al., i.e., Tc=0.32 in the NVT ensemble. A
significantly lower mode coupling critical temperature is
again in accord with what an extended mode coupling analy-
sis would predict taking into account that MCT fails for
deeply supercooled dynamics when activated barrier hopping
dominates.

D. Viscosity kernels in real space

Since the viscosity kernel in reciprocal space is symmet-
ric about the origin, it can be inverse transformed using the
Fourier cosine transform, Fc

−1� . . . �. The Fourier transform

preserves the even properties of the function which means
that the viscosity kernel in physical space is also an even
function. Since the integral is computed over an interval
symmetric about the origin �i.e., −� to +��, the transform
can be expressed as

Fc
−1��̃�ky�� = ��y� =� 2

�
�

0

�

�̃�ky�cos�kyy�dky . �25�

While the inverse Fourier cosine transform of the Gaussian
function exists51 and can be obtained analytically,18 the inte-
gral in Eq. �25� can only be evaluated numerically for the
Lorentzian-type function, e.g., by a Simpson method.13,14

The real space kernels of a ten-site FENE-LJ chain are
presented in Fig. 14. We can see that the width of the kernel
is roughly 4–6 atomic diameters at T=1.0. As mentioned
previously, the width of the reciprocal space kernel of both
FJC-WCA and FENE-LJ polymer melts decreases with de-
creasing temperature. This means that the width of the real
space kernel will increase with decreasing temperature. By
cooling the melts down to T=0.5, the width of the kernel
increases to at least 10 atomic diameters and then increases
dramatically in the glass transition region. As stated previ-
ously, the normalized real space kernels for the FJC-WCA
system are very close to each other upon decreasing the tem-
peratures, and, since we are not confident that such a system
will actually exhibit a glass transition within the temperature
range considered here, we do not display them in this paper.

We have shown that the form of the fitting function used
for the wave-vector dependent viscosity has a strong effect
on the real space kernel’s shape.18 As the temperature de-
creases, the choice of fitting function has a greater effect on
the shape compared to the form of potential and conse-
quently on the width of the kernel. For instance, kernels
obtained from a two-term equal-weighted Gaussian func-
tional form are slightly distorted in physical space and yield
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TABLE I. Zero wave-vector, zero frequency viscosity obtained via Eq. �11�
for different temperatures and chain lengths.

Ns 10 20 50

Number of sites T �0

FENE-LJ 1.0 8.1 15.3 42.8
0.8 9.3 30.2 105
0.6 20 50 150
0.5 80 110 200

0.45 �103

0.4 �104

FJC-WCA 1.0 8.09 15.2 41.2
0.8 9.3 17.0 44.5
0.6 10 18 47
0.4 12 21 52
0.2 17 29 61
0.1 25 38 72

0.05 41 56 93
0.02 67 81 117
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FIG. 10. The normalized reciprocal space kernel data of a 10-site FENE-LJ
polymer melt and the fits to a Lorentzian-type functional form Eq. �22�.
Inset: The dependence of ��ky� as a function of temperature on a log-log
scale.

TABLE II. Parameter values of the Lorentzian-type fit, Eq. �22�, for a 10-
site FENE-LJ chain at different temperatures.

T 1.0 0.8 0.6 0.5 0.45 0.4

�0 8.1 9.3 20 80 103 104

� 0.327 0.497 0.811 2.182 19.5 55.5
� 2.057 1.940 1.854 1.777 1.639 1.200
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smaller widths. This problem could be easily solved by in-
cluding more terms in the Gaussian form. However, this in-
troduces undesired additional fitting parameters with insig-
nificant improvement in the overall shape at temperatures
above T=0.5.

For the FENE-LJ chain, the trends with chain length and
the dependence of the results upon the choice of functional
form for the real space are similar to those at state point �
=0.84, T=1.0 presented in Ref. 18. The shape of the kernels
varies slightly with the number of sites per chain for the
range of chain lengths considered here. Although the Gauss-
ian and Lorentzian-type functional forms predict different
shapes of the real space kernel, in general, and the ��y=0�
value, in particular, the local effective viscosities, �0

=�−�
� ��y�dy, shown in Table III were in good agreement

with the simulated values given in Table I for the above
mentioned state point and for all molecular weights. How-
ever, we stress that care must be taken when the Lorentzian-
type function is inverse Fourier transformed over a very nar-
row function as it is very sensitive to the interval, number of
points, and truncation used in integration.

Additional insight into the relationship between the vis-
cosity kernel and the structure of the fluid can be gained by
considering a scaling factor that accounts for the structural
properties. Structural properties that we have investigated in-
clude the radial distribution functions �RDFs�,

g�r� = �
i=1
N 
 j�1

N ���r − rij��
4�r2N�

� . �26�

For an atomic description rij is the distance vector between
atoms i and j, N is the total number of atoms, and � is the
atomic number density. For a molecular fluid rij is the dis-
tance vector between the centers of mass of molecules i and
j, N is the total number of molecules, and � is the molecular
density.

We define a spatial correlation length �g, which is used
to normalize the distance in real space in order to compare
the viscosity kernels for different structures. We define the
structural scaling factor by14
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FIG. 11. Temperature dependence of the fitting parameters as a function of chain length for a FENE-LJ polymer melt in the atomic formalism: �a� temperature
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�g =
�0

�r�g�r� − 1�2dr

�0
��g�r� − 1�2dr

, �27�

which is a measure of the range over which the correlation
function decays to 1 and therefore could be regarded as a
correlation length of the radial distribution function.

Our radial distribution functions presented in Fig. 15 are
in good agreement with those published previously for a
similar polymer system.45,46 Berthier and Tarjus,52 by con-

trast, do not see significant changes of the radial distribution
function with cooling. However, Berthier and Tarjus have
looked at an atomic LJ mixture and therefore we cannot
make direct comparisons. Nevertheless, we do believe that
the structure of the polymer systems we have investigated
does not change significantly with T. The radial distribution
functions shown in Fig. 15 only indicates the onset of a
supercooled state �the LJ peaks become more evident� with-
out signs of crystallization �no intermediary peaks�. The
RDFs for Ns=50 in Fig. 15 show sharp peaks due to bonds
�l=1.0�� and LJ shells. The second LJ coordination shell is
visible in a peak at r�2�. �g increases as we lower the
temperature, from 0.582 at T=1.0 to 0.836 at T=0.4 for a
ten-site molecule and only slightly increases as we enlarge
the polymers from 10 to 50 sites per molecule. The static
scaling factor based on the pair distribution function slightly
decreases with temperature simply because of the peaks in
g�r� which attenuate as we raise the temperature. It is not a
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complete “structural” representation and must be therefore
treated as an attempt to introduce structural scaling. In addi-
tion, we found in our previous work18 that the intermolecular
contribution in g�r� leads to a completely different picture of
the static scaling factor. Consequently, a deeper analysis of
the structural scaling for different complex fluids is needed.

The real space kernels shown in Figs. 14 are normalized
with respect to �g and replotted in Fig. 17�a�. We can see that
despite the fact that the structural scaling procedure has
slightly reduced the difference between the real space kernels
in the high temperature region 0.6�T�1.0 and preserved
their features, it does not completely remove this difference.
This suggests that the width of the kernel does not only
depend on the site-site correlations. The static scaling factor
based on the pair distribution function, which is generally
related to liquid structure, must be extended to include cor-
relations such as alignment and orientation correlations. Fur-
thermore, as the temperature approaches the glass transition
region T0.5, the structural scaling must be further gener-
alized in order to suggest a universal kernel function.

Such an approach could be based on the idea of dynamic
heterogeneity which states that the dynamics of a glass
former is governed by dynamic spatial correlations in con-
trast to the assumption of homogeneity of mode coupling
theories.53 Therefore, a dynamic scaling factor must be em-
ployed. Such a scaling factor can be extracted for instance
from Eq. �22� by nondimensionalizing ky by a length we will
call �,

� = �1/�. �28�

The temperature dependence of � for different chain lengths
is given in Fig. 16�b�. We can see an exponential increase in
the length scales as we approach the glass transition region.
This confirms the existence of a dynamic heterogeneity in
the system which implies that the increase in time scales as
the glass transition is approached is associated with growing
length scales of dynamically, not statically, correlated re-
gions of space.54 Surprisingly, the temperature dependence of
the dynamic scaling factor � looks very similar to the tem-
perature dependence of the coherence length �.50 The coher-
ence length � was associated with the ordering of the liquid’s
dynamics by measuring spatial correlations between indi-

TABLE III. Zero shear rate viscosities �0 evaluated numerically from a Lorentzian-type function, Eq. �22�.

T 1.0 0.8 0.6 0.5 0.45 0.4 0.2 0.02

FENE-LJ
Ns=10 8.1 9.2 28 70 700 0.8	104

¯ ¯

Ns=20 15.5 31.0 55 119 900 1.0	104
¯ ¯

Ns=50 42.8 105 150 223 1.2	103 1.3	104
¯ ¯

FJC-WCA
Ns=10 8.1 9.2 12 ¯ ¯ 11 18 69
Ns=20 15.9 17.2 22 ¯ ¯ 21 30 84
Ns=50 42.4 45.8 50 ¯ ¯ 53 63 131
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A complete set of scaling factors are plotted in Fig. 16.
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vidual particle relaxations53 and calculated from the
wavevector dependence of a correlator based on the standard
self-intermediate scattering function.50,55

A further confirmation of the collective or cooperative
dynamics can be seen in Fig. 17�b�. The real space viscosity
kernels fall essentially onto one curve for the entire range of
temperatures. From Fig. 17, we can draw the conclusion that
the behavior of the relaxation time changes from the high
temperature to low temperature behavior close to the onset of
a critical point responsible for the existence of the glass state.
Thus, the viscosity of a supercooled liquid increases rapidly
as temperature is lowered because the dynamics becomes
increasingly spatially correlated �or nonlocal�. The frequency
dependence of the viscosity also undergoes a strong change
as a liquid is supercooled and eventually solidified.56 The
broadening of the real space viscosity kernel is accompanied
by the emergence of a very slowly decaying tail in the stress
ACF, which eventually becomes a constant offset.

V. CONCLUSION

This work has been devoted to the analysis of the non-
local viscosity kernel of polymeric fluids, when cooled to-
ward their glass transition temperature using equilibrium mo-
lecular dynamics simulation. This study confirms the
previous results for the self-diffusion coefficient and glass
transition temperature and points out the importance of in-
cluding the attractive part in the potential52 in order to
achieve a glassy state in which to study the shape of the
kernels.

The values obtained for the self-diffusion coefficients
and the glass transition temperatures are in good agreement
with those available in the literature. For the FJC-WCA sys-

tem, we observe no glasslike enhancement except at ex-
tremely low temperatures of less than 0.01. This value is not
evident from the stress ACF.

The evaluation of the zero wave-vector viscosity in-
volves calculations of the shear stress ACFs in the atomic
hydrodynamic representation, as well as their extrapolation
in the low temperature regions. The correlation functions and
consequently zero wave-vector viscosity follow the expected
behavior when decreasing the temperature and the overall
shape of the kernel at low temperatures is primarily affected
by the attractive part of the potential. The data near and
below the glass transition behave like a delta function in
reciprocal space. Otherwise, it is well represented by a
Lorentzian-type or two-term Gaussian function.

In the spatial domain and close to the glass transition
temperature, the width of the kernel increases significantly
from 4–6 atomic diameters at T=1 to at least 10 atomic
diameters at T=0.5 followed by a dramatic increase closer to
Tg. It is found that a dynamic scaling factor obtained from
the reciprocal space viscosity kernels reduces the real space
kernels to a unique form unlike the static scaling factors
based on pair distribution functions. This is a further evi-
dence that the slow dynamics in supercooled liquids is gov-
erned by a dynamic critical point at which time and length
scales diverge.57

In conclusion, the response of polymer melts to a veloc-
ity gradient near Tg turns out to be highly nonlocal. In sys-
tems where the strain rate varies significantly over these dis-
tances, the generalized viscosity must be used in order to
correctly compute the velocity profile of polymer melts via
use of generalized hydrodynamics. This implies that the clas-
sical Navier–Stokes hydrodynamics will fail for such
systems.58

In view of the long runs required to obtain reliable data
for the transport coefficients via equilibrium time correlation
functions, the MD simulations should be extended to cover a
much greater time range.59–61 We repeat that our conclusions
are based on solid, but necessarily limited numerical evi-
dence. Thus, we leave open the possibility that the zero-
wavevector zero-frequency viscosities change when a
broader range of time scales is covered. However, we believe
that the width of the real space kernels will not be signifi-
cantly affected. In future work, it would also be interesting to
study polymer melts in the entangled regime.27,62–64
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