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ABSTRACT
In this paper, the classical hydrodynamic theory is compared to molecular dynamics simulation data
using two different dynamical modes, namely, the transverse and longitudinal modes. The comparison
is based on the dynamics of the equilibrium fluctuations for four different systems, the Lennard-Jones
system, model liquids for butane, toluene, and water. Using an error estimator limit of 1%, it is found
that for the transverse dynamics the classical hydrodynamic theory holds down to 5–14 nm
depending on the fluidic system. For the longitudinal dynamics, this characteristic length scale is
approximately doubled. From the dispersion relations, it is furthermore concluded that classical
hydrodynamics qualitatively accounts for the dominating processes at even lower length scales.
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1. Introduction

Hydrodynamics describes the dynamics of fluids through
macroscopic quantities like mass density, streaming velocity
and energy [1, 2]. The fundamental assumption in hydrodyn-
amics is that the quantities vary sufficiently smoothly in both
time and space such that they can be treated mathematically
as field variables; this is known as the continuum hypothesis
[3]. The continuum hypothesis is not strictly true. Consider,
for example, the mass density, rV , in some fixed fluid volume
V. In the no-flow situation hydrodynamics predicts that the
mass density is a constant with respect to time, however,
from a microscopic point of view rV must fluctuate as mol-
ecules enter and exit V due to thermal motion. These fluctu-
ations are not experienced on larger scales and usually not
included in the hydrodynamic description as the intrinsic mol-
ecular nature of fluids is not considered or indeed not even
defined. Hydrodynamics is therefore traditionally associated
with physics on the macroscopic length scale [3].

The hydrodynamic theory has been extended to model the
thermal fluctuations, for example, through the stochastic for-
cing method [2, 4, 5]. Here a zero-mean stochastic term is
added to the system fluxes, and the hydrodynamic equations
describing the fluid quantities become stochastic differential
equations analogous to the Langevin equation. Upon aver-
aging over an ensemble of independent initial conditions we
recover the standard equations, but where the field variables
are now ensemble averaged quantities. This stochastic forcing
is founded in Onsager’s famous regression hypothesis [6] and
since the dynamics then includes the microscopic thermal
fluctuation the theory may be considered as a microscopic the-
ory. However, this does not address the fundamental question
whether hydrodynamics is an appropriate description on the
microscopic scale, that is, if the fundamental physics relevant
on the macroscopic length scale is also present, and perhaps
even dominant, in the microscopic regime.

It is important to recall that hydrodynamics is based on a
set of balance equations and a set of constitutive relations
that relate the system fluxes with the system forces [7]. The
constitutive relations are models and hydrodynamics is there-
fore never exact, not even on large scales, but by definition an
approximation to the real world. The statement that hydro-
dynamics “fails” on the microscopic scale is therefore strictly
not meaningful, at least not without specifying what defines
failure. How well the theory approximate the true hydrodyn-
amics also depends to the specific system we consider and
the exact dynamical phenomenon we study.

Furthermore, we must be clear on what exactly constitutes
(or defines) a hydrodynamic theory. Here classical hydrodyn-
amic theory provides the dynamics for mass, linear momen-
tum, and energy densities and the constitutive relations are
all based on linear models with constant scalar coefficients.
This implies that we only model homogeneous and isotropic
systems with symmetric stress in the limit of zero system
forces. This leads to the well-known mass continuity,
Navier-Stokes, and heat transport equations. The classical
hydrodynamic theory has naturally been undergoing many
extensions (besides the stochastic forcing method) to include
different phenomena. For example, by including the coupling
between the fluid linear and angular momenta [7–10], allow-
ing for velocity slip boundary conditions [11–13], and non-
local (generalized) transport coefficients [14, 15]. These
phenomena are omnipresent, that is, extended hydrodynamics
does not introduce any fundamental new physics, but the
phenomena are usually safely ignored on the macroscopic
length scales, however, not on the nanoscale. Modern theories
have been applied with success to the extreme small scale, e.g.
the generalized collective mode theory [16–18] and mode
coupling theory, see for example Ref. [19].

For the reasons listed above a simple meaningful answer to
the research question “Where is the hydrodynamic limit?” can-
not be given unless we specify (i) what exactly we mean by
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hydrodynamics, (ii) the system we study, (iii) what specific
dynamical phenomenon we refer to, and (iv) some quantitative
threshold value measuring the deviation between data and
theory.

Naturally, this fundamental research question has been dis-
cussed thoroughly in the past, see e.g. Refs. [20–22], and due to
its applicability classical hydrodynamics has been used as an
underlying model to understand scattering experiments [23],
small scale liquid state dynamics [19, 24], and nano-confined
flow systems [25–27]. This paper seeks to contribute to the dis-
cussion and compare, directly, the classical hydrodynamic the-
ory with molecular dynamics simulation data for four different
model fluidic systems, namely, the standard Lennard-Jones
system, butane in a high pressure liquid state, and toluene
and water at ambient conditions. We will explore well-
known hydrodynamic correlation functions in the non-
confined equilibrium situation in order to avoid complicated
effects related to molecular packing near surfaces, non-linear
strain rate dependencies, alignment phenomena, etc., all
effects that make a comparison with the theoretical predictions
highly non-trivial. The exploration is based on a multi-scale
study, thus, the characteristic length scale where phenomena
not featured in the classical theory can be identified. The devi-
ation between the data and the theory is measured via a mean
square difference using an error threshold value of 1 %.

In the next section, the classical hydrodynamic correlation
functions will be derived. Even if these are well-known [19,
28], the derivation ensures a clear definition of what exactly
is here meant by classical hydrodynamics. The derivation
also allows for some very important points to be highlighted.
After this section, the fluid systems will be presented as well
as the molecular dynamics simulation details. The final two
sections will be devoted to results, discussion and conclusion.

2. The hydrodynamic correlation functions

In the classical treatment, the equilibrium dynamics is fully
described by two correlation functions, namely, the transverse
momentum current autocorrelation function and the longi-
tudinal density autocorrelation function [24]. To first order
in the fluctuations the momentum current autocorrelation
function can be approximated with the velocity autocorrela-
tion function, C⊥

uu [29], thus, the dynamics is given through
the functions

C⊥
uu(k, t) =

1
V
〈d̃ux(k, t)d̃ux(k, 0)〉 (1a)

Crr(k, t) = 1
V
〈d̃r(k, t)d̃r(− k, 0)〉 (1b)

where d̃ux and d̃r are the Fourier modes of the fluctuating part
of the streaming velocity x-component and mass density, k is
the wavevector perpendicular to the x-direction, 〈· · ·〉 indicates
the average over an ensemble of independent initial
conditions, and V is the system volume. The first
undertaking is to derive the classical hydrodynamic
expressions for C⊥

uu and Crr.
We here follow Alley and Alder [28] and study the thermal

kinetic energy density, r1, rather than the total energy. Since

we only explore relaxations in equilibrium we can ignore
advection and viscous heating terms, and the three balance
equations for mass, momentum, and energy densities read

∂r

∂t
= −∇(ru) (2a)

∂ru
∂t

= −∇ · P (2b)

∂r1

∂t
= TbV

r

∂r

∂t
− ∇ · J1 (2c)

where u is the streaming velocity, P is the pressure (or momen-
tum flux) tensor, bV is the thermal pressure coefficient, and J1

the thermal kinetic energy flux tensor.
The hydrodynamic quantities ρ, j = ru, and r1 are

expressed in terms of the ensemble average denoted with a
subscript av and the fluctuating part with pre-fix δ. To first
order in the fluctuations, we have

r = rav + dr, j = ravdu, and

r1 = (r1)av + d(r1).
(3)

Notice that the derivatives of the average parts are all zero.
Substitution into Equations (2a)–(2c) results in the balance
equations for the fluctuations

∂dr

∂t
= −rav∇(du) (4a)

rav
∂du
∂t

= −∇ · P (4b)

∂d(r1)
∂t

= TbV

rav

∂dr

∂t
− ∇ · J1 (4c)

For homogeneous and isotropic fluids the linear constitutive
relations (models) for the fluxes read [5, 28, 30]

P = peqI− hv(∇ · u)I− 2h0 ∇u
os +dP (5a)

J1 = − l

ravcV
∇d(r1)+ dJ1 (5b)

where peq is the equilibrium normal pressure, hv and h0 are the
bulk and shear viscosities, respectively, λ is the heat conduc-
tivity, cV the specific heat capacity at constant volume, and I

is the unit tensor. The trace-less and symmetric tensor, ∇uos ,
is the strain-rate tensor. The last terms dP and dJ1 represent
the stochastic forcing terms. For our purpose, it suffices to
assume that these stochastic terms each have average of zero
and are uncorrelated with the hydrodynamic quantities ρ, u
and r1.

Substitution of Equations (5a) and (5b) into Equations (4b)
and (4c) gives the dynamical equations for the fluctuations to
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first order

∂dr

∂t
= −rav∇ · du (6a)

rav
∂du
∂t

= −∇d peq + (hv + h0/3)∇(∇ · du)+ h0∇2du

− ∇ · dP (6b)

∂d(r1)
∂t

= TbV

rav

∂dr

∂t
+ l

cVrav
∇2d(r1)− ∇ · dJ1 (6c)

From Equations (1a) and (1b), it is seen that we look for the
wavevector dependent dynamics. Then Fourier transforming
Equations (6a)–(6c) we obtain

∂d̃r

∂t
= −iravk · d̃u (7a)

rav
∂d̃u
∂t

= −ikd̃peq − (hv + h0/3)k(k · d̃u)− h0k
2d̃u

− ik · d̃P (7b)

∂d̃(r1)
∂t

= TbV

rav

∂d̃r

∂t
− l

ravcV
k2d̃(r1)− ik · d̃J1 (7c)

2.1. Transverse relaxations

We can make a convenient choice for the wavevector, for
example, k = (0, ky, 0). We then obtain two equivalent and
very simple dynamical equations for the x and z velocity vector
Fourier modes. For example, for the x component, we have

rav
∂d̃ux
∂t

= −h0k
2
y d̃ux − ikyd̃Pyx. (8)

The dynamical equation for the transverse velocity autocorre-
lation function, Equation (1a), can now be formed; multiplying
Equation (8) by d̃ux(− ky, 0) and ensemble averaging we get

rav
∂C⊥

uu

∂t
= −h0k

2
yC

⊥
uu, (9)

yielding an exponential relaxation

C⊥
uu(ky, t) =

kBT
rav

e−v0t , (10)

in which v0 is the characteristic frequency having the dis-
persion relation v0 = h0k

2
y/rav. Thus, the transverse velocity

autocorrelation function features a single process, in this
case, it is diffusion of linear momentum. It does not include
the presence of visco-elastic shear waves at small times and
length scales [31–33].

From the frequency v0, we can define a characteristic decay
time for a given wavevector as

t(ky) = 2prav/(h0k
2
y). (11)

Bocquet and Charlaix [34] argued that if τ is larger than the
internal fluid stress relaxation time, ts, then the hydrodynamic

model is satisfactory, that is, if

t . ts implying ky , kBC =
�������
2prav
h0ts

√
. (12)

Hansen et al. [29] suggested that ts can be found from the
decay of the stress autocorrelation function. For example, ts
is in order of 10 psec. for water at ambient conditions and
we get kBC ≈ 0.09 Å−1, corresponding to a characteristic wave-
length of around 7 nm.

2.2. Longitudinal relaxations

We now return to the expression for the density autocorrela-
tion function Crr. In Equation (7b), the pressure is eliminated
using the fundamental assumption of local thermodynamical
equilibrium, that is,

d̃ peq =
1

ravbT
d̃r+ bV

ravcV
d̃re, (13)

where bT is the isothermal compressibility. For our choice of
wavevector, Equations (7a)–(7c) then read

∂d̃r

∂t
= −iravkyd̃uy (14a)

∂d̃uy
∂t

= − iky
r2avbT

d̃r− nlk
2
y d̃uy −

ikybV

cVr2av
d̃re− iky

rav
d̃Pyy (14b)

∂d̃re

∂t
= −iTbVkd̃uy − kk2y d̃r1− ikyd̃J

e
y (14c)

Here k = l/cVrav and nl = (hv + 4h0/3)/rav is the longitudi-
nal kinematic viscosity. We see that the y velocity component
couples to the density and energy fluctuations. From
Equations (14a)–(14c), we can form nine correlation func-
tions, e.g. the density–density, Crr, density-velocity, Cru, and
density–energy Cre, correlation functions can be defined by
multiplying Equation (14a) with dr(− ky, 0), duy(− ky, 0),
and dr1(− ky, 0), respectively, and ensemble averaging. The
dynamics of the nine correlation functions can be written in
a compact matrix notation

∂

∂t

Crr Cru Cre

Cur Cuu Cue

Cer Ceu Cee

⎛⎝ ⎞⎠ = −
0 iravky 0
iky

r2avbT
nlk2y

ikybV

cVr2av

0 ibVky kk2y

⎛⎜⎝
⎞⎟⎠

·
Crr Cru Cre

Cur Cuu Cue

Cer Ceu Cee

⎛⎝ ⎞⎠, (15)

where · represents the standard matrix product. The coefficient
matrix is referred to as the hydrodynamic matrix. It can be
shown that the hydrodynamic matrix always has one real
valued eigenvalue and two complex conjugated eigenvalues

v1 = DTk
2
y +O(k4y) (16a)

v2,3 = +icsky + Gk2y +O(k3y) (16b)

MOLECULAR SIMULATION 1393



where

c2s =
g

ravbT
, DT = l

ravcp
and

G = 1
2

g− 1
g

k+ nl

( ) (17)

are the adiabatic speed of sound, thermal diffusivity, and
sound attenuation coefficient, respectively, and g = cp/cV , cp
being the specific heat capacity at constant pressure. Notice,
that in the standard treatment [19], one truncates the eigen-
values, Equations (16a), after second order, thus, it is assumed
apriori that the hydrodynamic description fails for larger
wavevectors. Following the standard treatment, the solution
for the density–density correlation function then reads to
second order in wavevector

CN
rr(ky, t) =

Crr(ky, t)

Crr(ky, 0)

= 1
g

(g− 1) e−DTk2y t + e−Gk2y t cos (cskyt)
[ ]

. (18)

Thus, according to the classical hydrodynamic predictions
the density autocorrelation function features a diffusive ther-
mal damping process governed by DT , this is the Rayleigh
process, and a wave propagation process with speed cs and
damping coefficient Γ, this is referred to as the Brillouin pro-
cess. All other longitudinal correlation functions are gov-
erned by the same two processes, and we need only to
consider Crr.

3. Molecular dynamics simulations

The hydrodynamic correlation functions C⊥
uu and Crr are eval-

uated for four different model fluidic systems: (i) the standard
Lennard-Jones (LJ) system, (ii) butane, (iii) toluene and (iv)
water. For the Lennard-Jones system, two different state points
are explored, whereas for systems (ii)–(iv) a single liquid state-
point is used. The choice of fluid systems then covers fluids
composed of point mass particles, linear, ring structured and
polar molecules.

The molecular dynamics simulations are carried out using
the author’s software package [35] and the GPU-based soft-
ware package Roskilde University MD (RUMD) [36]. Both
packages use the same underlying force field; see details in
the software documentation. Force field parameters are
based on the MM2 and TrAPPE force field parameters [37,
38] and also the work by Weiner et al. [39]; parameter values
are specified below. All the simulations are carried out in the
standard NVT statistical ensemble using the Nosé-Hoover
thermostat [40, 41] or a simple relaxation thermostat [42,
43]; the results presented here are independent of this choice.
Periodic boundary conditions are used and the equations of
motion are solved numerically by a leap-frog algorithm [42].
All systems are equilibrated and simulated using ten statisti-
cally independent initial conditions except for the largest
water system where a single run was performed using RUMD.

The LJ system is simulated at two state points:
(T, r) = (1.121, 0.85) and (T, r) = (3.0, 0.85), the former

representing a liquid and the latter a super-critical fluid. For
the LJ system we represent all quantities in usual dimension-
less molecular dynamics units, see Ref. [42]. The LJ system is
the most commonly used model for a fluid composed of struc-
ture-less point mass particles (atoms or molecules), for
example, argon or methane. The number of particles simulated
is 16,361 corresponding to a maximum wavelength of 26.8; if
the LJ particle represents methane this corresponds to approxi-
mately 10 nm.

The butane molecule is a fully flexible version of the uni-
ted atomic unit (UAU) Ryckaert–Belleman model [44]. Each
hydrocarbon group is represented by an LJ particle with LJ
parameters s = 3.9 Å, m=14.5 g mol−1, and e/kB = 72.1 K.
Again, the reader is referred to Ref. [42] for the LJ par-
ameter details. The rigid covalent bonds and bond angles
in the Ryckaert–Bellemans model are replaced by flexible
interactions. The bonds all have same zero-force length of
lb = 1.58 Å and a spring constant ks = 317 kcal mol−1 Å−2.
The zero force angle is 1.9 radians with a force constant
ku = 124 kcal mol−1 rad−2; the non-symmetric cosine
squared angle potential is applied. The original
torsion potential and parameters from Ryckaert–Belleman
are adopted [44]. The state point
(T, r) = (298.15K, 592.6 kgm−3) chosen is near the boiling
point and is well studied making comparisons with literature
possible; the model viscosity is 0.18+ 0.02 mPa s, which is
in very good agreement with previous simulation data,
see Daivis and Evans [45]. Two thousand molecules are
simulated giving a maximum accessible wavelength of 6.9
nm.

For toluene a flexible UAU model is also adopted using
same LJ parameters for all particles s = 3.675 Å,
m=13.143 g mol−1, and e/kB = 60 K. In the phenyl group
the zero-force covalent bond lengths are set to lb = 1.4 Å
with a spring constant of ks = 431 kcal mol−1 Å−2. Zero
force angles are 2.09 radians using a force constant
ku = 139 kcal mol−1 rad−2 in the cosine squared potential.
For the Ryckaert–Bellemans torsion potential, one term is
non-zero using force constant of kf = 15 kcal mol−1 rad−2;
this ensures a sufficiently flat ring structure as well as keep-
ing the methyl group in-plane with the ring. The methyl-
phenyl bond length is lb = 1.5 Å having the same spring
force constant ks = 431 kcal mol−1 Å−2. At state point
(T, r) = (300K, 879 kgm−3), the model features ambient
pressure and a viscosity of 0.4+ 0.1mPa s. This is in agree-
ment with the all atom model by Fioroni and Vogt [46].
Four thousand molecules are simulated corresponding to a
maximum wavelength of 8.8 nm.

Finally, the water model is given by the flexible SPC/Fw
model [47, 48]. The Coulomb interactions where calculated
using the shifted force method, see Refs. [49, 50]. Two different
system sizes where simulated, one with 2000 molecules and
one with 33× 103 molecules. The larger system was simulated
with only one production run using RUMDmaking it possible
to probe the largest wavelength of approximately 10 nm. The
system state point is (T, r) = (298.15K, 995 kgm−3) giving
an ambient pressure. See Wu et al. [47] for more details on
how this model predicts the thermodynamical and hydrodyna-
mical coefficients.
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4. Results

4.1. Transverse dynamics

First, we focus on the transverse dynamics and to this end we
will need the viscous properties at zero wavevector. The zero
wavector Irving-Kirkwood pressure tensor is [51, 52]

P(t) = 1
V

∑
i

mivivi +
∑
i

∑
j.i

rijFij

[ ]
, (19)

where rij = ri − rj and Fij is the force acting on molecule i due
to j. Note that as the pressure tensor is defined in terms of mol-
ecular quantities it is not symmetric for systems (ii)–(iv), but
has an anti-symmetric part as rij and Fij are not in general par-
allel vectors. The time-dependent viscosity is found from the
standard Green-Kubo integral [42]

h(t) = V
kBT

∫t
0
〈Pxy

os
(t′)Pxy

os
(0)〉 dt′, (20)

where Pxy
os

is the symmetric part of the shear pressure tensor xy
component. The zero-frequency shear viscosity is then found
from the limit h0 = limt�1 h(t). In practice η is calculated
using all shear pressure tensor components to improve the
statistics. Table 1 lists h0 for all model systems studied.

The fluid internal stress relaxation time ts is defined as in
Ref. [29], that is, it is the minimum time where h(t) = h0,
or equivalently, ts is determined by the fully decayed stress
correlation function. Naturally, due to the statistical uncertain-
ties this criterion is somewhat ambiguous. As an example, η is
plotted in Figure 1 for butane and the estimated relaxation
time indicated. Table 1 lists the decay times for all systems.

An alternative choice for the stress relaxation time is the
Maxwell time tM = h0/G1, where G1 is the modulus of rigid-
ity. Using Maxwell’s visco-elastic model we obtain the general
relation tM , ts, hence, the Maxwell time is lower than the
time it takes the stress to fully decay. Also, using tM in turn
implies that the Bocquet–Charlaix wavevector kBC will be rela-
tively large compared to using ts; we will address this point
below.

Having the viscosities and the decay times the characteristic
wavelength obeying the Bocquet–Charlaix criterion can be
estimated, see Table 1. Thus, for butane, toluene and water,
we obtain characteristic length scales of 3.2, 5.5 and 6.9 nm,
respectively. If one applies the LJ length scale parameter for
methane s = 3.7 Å we get approximately 2 and 2.2 nm for
the super-critical and liquid state points, respectively.

To evaluate the correlation functions the following micro-
scopic definitions for density and streaming velocity are used
[19, 29]

r̃(k, t) =
∑
i

mi e
−ik·ri (21a)

ũ(k, t) = 1
rav

∑
i

mivi e
−ik·ri (21b)

where mi, ri, and vi are the mass, centre-of-mass, and centre-
of-mass velocity. From this C⊥

uu and Crr can be calculated
directly from their definitions, Equations (1a) and (1b).

A direct comparison between the theory and simulation
data for C⊥

uu can be achieved using h0 from Table 1 in Equation
(10). That is, no fitting is performed. Figure 2 shows the trans-
verse velocity autocorrelation function for the four systems
(using the LJ liquid state point (T, r) = (1.121, 0.85)). The
filled circles connected with lines are data points and the punc-
tured lines represent the hydrodynamic predictions. For the LJ
liquid the relaxation is very well described by the classical
hydrodynamic theory when ky = 0.23; even for ky = 0.47 the
agreement is good. Notice that these two wavevectors fulfils
ky , kBC. For toluene kBC = 0.11A

◦ −1; the lowest wavevector
studied for this system is 0.07 A

◦ −1, thus, ky & kBC. Clearly,
the agreement is less satisfactory compared to wavevectors sig-
nificantly lower than kBC.

To quantify the discussion, we define the error estimator,
err, by

err(ky) =
�
CMD(ky, t)− Cpred(ky, t)
[ ]2

dt�
C2
pred(ky, t) dt

, (22)

where CMD is the correlation function obtained from simu-
lations and Cpred the prediction from the theory. To avoid
including the spurious fluctuations in data at long times
(resulting in larger values for the error estimator) a Hann win-
dow is applied. For the LJ system err ≈ 5 % for ky ≈ kBC, and
err ≈ 0.5% for ky = 0.47. For butane we observe the same ten-
dency: at ky ≈ kBC, the error estimator is around 5 % and for
kBC/2 ≈ ky = 0.09A

◦ −1 we get err ≈ 1%; this threshold value
is used in this work to indicate a good agreement between
data and theory. This result indicates that ts estimated above
from the stress autocorrelation function will not account for
the full stress relaxation. This may be due to persistent, but
small magnitude system stresses not visible within errors in
data. As stated above, we generally have that tM , ts, that is,
using tM will lead to increasing values for kBC resulting in an
even larger error, hence, the Maxwell time is not the appropri-
ate relaxation time.

As the wavevector increases the transverse velocity autocor-
relation function features anti-correlations. As mentioned
above, these anti-correlations are finger-prints of visco-elastic
behaviour and calls for an alternative constitutive model than
Newton’s law of viscosity, e.g. the Maxwell model [30]. The
focus of this paper is the classical theory and we will not
seek to discuss other models here.

It is informative to explore the corresponding mechanical
spectrum, Ĉ⊥

uu(ky, v). To obtain the theoretical expression we
simply Fourier–Laplace transform Equation (10), giving the
imaginary part of the spectrum

Im Ĉ⊥
uu(ky, v)

[ ]
= kBT

rav

v

v2
0 + v2

. (23)

Thus, the spectrum is predicted to show a maximum at the
peak frequency vpeak = v0 = h0k

2
y/rav. The peak frequency

shifts proportional with k2y , and this defines the dispersion
relation for the transverse hydrodynamic as mentioned
above. Figure 3 plots the peak frequency as a function of wave-
vector for the four systems. The predictions is also plotted
(punctured lines) using h0 from Table 1.
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At low wavevectors the theory correctly predicts the dis-
persion relation for the peak frequency. However, over the
entire wavevector interval the data shows a non-linear depen-
dency with respect to the wavevector squared and varies in a
continuous concave fashion. Even for the LJ system at small
wavevectors (the inset in Figure 3(a)), the concave behaviour
appears to be present, however, this cannot be resolved within
statistical uncertainty. In terms of the hydrodynamic frame
work, the concave behaviour indicates that the viscosity
decreases as function of ky. This is in agreement with the
results from generalised hydrodynamics wherein the non-
local viscosity kernel decreases as function of ky [14].

It is interesting to note, again within statistical uncertainty,
that the wavevector squared dependency is fulfilled for rela-
tively large wavevectors compared to the discussion above.
For example, for butane, the peak frequency is predicted to
be vpeak = 1.8 THz at ky = 0.27A

◦ −1, which is in agreement
with data. However, here the time-dependent correlation func-
tion featured visco-elastic effects and one can based on this
argue that the theory fails. Here the dispersion plot is inter-
preted such that the momentum diffusion is the dominating
process behind the relaxation phenomenon as correctly pre-
dicted by the theory; even though at these small length scales
other processes also come in to play.

4.2. Longitudinal dynamics

The protocol used in the comparison of the longitudinal
dynamics is different from the transverse dynamics as not all
thermodynamic and transport coefficients are calculated
from independent methods enabling a direct comparison.
Therefore, the theoretical prediction of the density

autocorrelation function, Equation (18), is fitted to simulation
data using g, DT , G and cs as fitting parameters; results of this
fitting can be found in Table 1 for the systems’ lowest wavevec-
tor. Notice that the LJ system is studied at a super-critical state
point in order to confirm, at least some of, the fitted parameter
values with values available in the literature.

Figure 4 shows the density autocorrelation function for the
two lowest wavevectors. Symbols connected with lines rep-
resent data and punctured lines are best fits of Equation (18)
to data. From this we see that both the Rayleigh and Brillouin
processes predicted by the classical theory are indeed also pre-
sent on the nano-scale. The error estimator for the lowest
wavevectors are also given in Figure 4.

For the LJ system Mairhofer and Sadus [53] found g ≈ 1.6
and cs = 8.7 from their statistical mechanical definitions.
These values are in agreement with the fitted values and this
strongly indicates that the classical hydrodynamic regime is
reached (within error) for ky = 0.23. However, already at
ky = 0.47 the fitted values for γ and cs are significantly differ-
ent from Mairhofer and Sadus’ values. From the results above
for the transverse dynamics this indicates that the classical
hydrodynamic limit is dependent on the specific dynamics
we study. In particular, it means that the theory is less satisfac-
tory for the longitudinal dynamics compared to the transverse
dynamics at a given wavevector. Immediately, this leads to the
question if this larger length scale pertain to the Rayleigh pro-
cess or the Brillouin process.

First, we investigate the Rayleigh process from the so-called
half-width dispersion relation. To do so, it is noted that the
mechanical spectrum for the density autocorrelation function
is directly related to the dynamic structure factor, S,

S(ky,v)=DS
g

(g−1)DTk2y
D2

Tk
4
y+v2

+ (c2s k
2
y+G2k4y+v2)Gk2y

(c2s k
2
y+G2k4y−v2)2+4v2G2k4y

[ ]
,

(24)

where DS is the pre-factor. The first term on the right-hand
side is the Rayleigh process and the second term the Brillouin
process. Equation (24) can be derived directly from the Four-
ier–Laplace transformation of Equation (18). As an example,
Figure 5 shows the normalised dynamical structure factor for
toluene at wavevectors ky = 0.07 Å−1 and ky = 0.43 Å−1.
The Rayleigh half-width peak is also illustrated here.

Classical hydrodynamics predicts that

DvRa = DTk
2
y , (25)

and Figure 6 shows this dispersion relation. Symbols rep-
resent fit of Equation (18) to raw simulation data (filled

Table 1. Parameters and transport properties for the different model fluids. The shear viscosity, h0, and the stress relaxation time, ts, are calculated from the stress
relaxation function, Equation (20). The ratio of heat capacities γ, thermal diffusivity, DT , attenuation coefficient, Γ, and speed of sound, cs , are fitted values from smallest
wavevectors studied. For water a single large system size production run was performed and the statistical uncertainty therefore not listed.

System h0 [mPa s] ts [psec] 2p/kBC [nm] γ cs [m s−1] DT [10−7 m2 s−1] Γ [10−7 m2 s−1]

LJa 2.15+ 0.3 0.4 2.5 1.62+ 0.03 8.98+ 0.07 3.5+ 0.2 2.9+ 0.2
LJb 2.72+ 0.07 2 6 – – – –
Butane 0.18+ 0.02 6 3.2 1.70+ 0.06 1273+ 12 2.1+ 0.1 3.27+ 0.08
Toluene 0.4+ 0.1 10 5.5 2.3+ 0.2 1440+ 28 2.4+ 0.4 3.7+ 0.5
Water 0.75+ 0.01 10 6.9 3.4 1209 8 6
aReduced MD units. Super-critical state point (T , r)=(3.0, 0.85). bReduced MD units. Liquid state point (T , r)=(1.121, 0.85).

Figure 1. Running integral for the stress relaxation, Equation (20), for the model
butane system. All 10 independent simulation runs are shown as grey lines and
the sample mean as black line. Horizontal punctured line indicates the viscosity
and the vertical punctured line the corresponding estimated stress relaxation
time ts .
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Figure 2. Transverse velocity autocorrelation function for different wavevectors. The wavevector shown for each system is the minimum wavevector studied; the other
wavevectors are given by integer multiple of that: 2ky (squares), 3ky (diamonds), 4ky (up-triangles), and 5ky (down-triangles). The error estimator, err, pertains to the
lowest wavevector and is defined in Equation (22). (a) LJ liquid at state-point (r, T) = (0.85, 1.121). (b) Butane. (c) Toluene. (d) Water. The punctured lines are hydro-
dynamic predictions using the zero-wavevector zero-frequency shear viscosity. Note, for LJ the predictions for the two lowest wavevectors are shown.

Figure 3. Peak frequency as a function of wavevector for the transverse dynamics. The filled circles represents simulation data and the punctured lines prediction from
theory. Note, no fitting is performed.
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circles) or fit of Equation (24) to transformed data (open
squares). In these fits the coefficient are allowed to be wave-
vector dependent, especially we have DT = DT(ky), and data
point are then calculated using Equation (25). The punctu-
red lines are predictions from Equation (25) using DT

found for the smallest wavevector, thus assuming this is
sufficiently close to the limit value as ky � 0; this will be
commented below. It can be seen that the fit of Equation
(24) to transformed data result in relatively large

uncertainties, and we therefore will not apply this method
from hereon.

The predictions begin to deviate from data at lower wave-
vectors compared to the transverse case. For butane the pre-
dicted transverse dispersion relation agreed with data up to
ky = 0.27 Å−1 within statistical uncertainty, see Figure 3. In
Figure 6, a deviation is observed above 0.18 Å−1. This confirms
the observation based on the fitted values of γ and cs for the LJ
super-critical fluid.

Recall, the prediction is based on the fitted value of DT at
lowest wavevector and the prediction will therefore always
intersect origo and the first data point. For toluene and
water the second data point deviates from the prediction
and we can therefore only state that the hydrodynamic pre-
diction fails for ky . 0.14 Å−1 and ky . 0.12 Å−1 for toluene
and water, respectively. The actual lower limit is not
accessible.

It is worth noting that the well-known de Gennes narrow-
ing phenomenon [19] is seen for both the LJ and butane sys-
tems. For toluene the peak is not resolved within error, and
for water not seen at all, at least not in the wavevector range
studied here.

We then explore the Brillouin process, again via a dis-
persion relation. For larger wavevectors the Brillouin process
becomes fast meaning that the superimposed oscillations are
not clearly featured in the correlation function and thus is
dominated by the monotonically decaying Rayleigh process.

Figure 4. Density autocorrelation function for the two smallest wavevectors, see also Figure 2. (a) LJ super-critical fluid at state-point (T , r) = (3.0, 0.85), (b) butane, (c)
toluene, and (d) water. Symbols connected with lines are data points and the punctured lines are best fit of Equation (18) to data. The error estimator are for the lowest
wavevectors.

Figure 5. Dynamical structure factor for the model toluene liquid at two different
wavevectors. The frequency is normalised with respect to the maximum spec-
trum frequency that includes the Brillouin process.
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Fitting Equation (18) with four parameters to such featureless
data leads to a smaller error estimate, but clearly also an over-
parametization and parameter sloppiness. One may attempt to
extract the Brillouin process through the mechanical spectrum,
Figure 5. For low wavevectors both processes are again clearly
observed, however, as ky increases the Brillouin peak may shift
to higher frequencies and separate from the Rayleigh process,
but the magnitude becomes small and the peak cannot be
extracted within data noise levels. Only for the LJ and butane
systems can the Brillouin process be extracted for larger
wavevectors.

The dispersion relation studied for the Brillouin process is
the peak frequency

vpeak = csky, (26)

see Figure 5. Again, allowing the coefficients to be wavevector
dependent and then using Equation (26) we arrive at the dis-
persion plot shown in Figure 7 for the LJ and butane systems.
This is compared with the dispersion relation (punctured line)
using the fitted value for cs at lowest wavevector. The Brillouin
dispersion relations, Figure 7, do not feature the so-called

Figure 6. Dispersion relation for the Rayleigh process. (a) LJ super-critical fluid at state point (T , r) = (3.0, 0.85), (b) butane, (c) toluene and (d) water. Symbols are data
points and the punctured lines are given by Equation (25) using the lowest wavevector value of DT . Open squares are best of Equation (24) to Fourier-Laplace trans-
formed data and filled circles best fit of Equation (18) to raw data.

Figure 7. Dispersion relation for the Brillouin process. (a) LJ fluid at state-point (T , r) = (3.0, 0.85). (b) Butane. Symbols are data points and the punctured lines are
given by Equation (26) using the fitted lowest wavevector value of cs .
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positive or negative dispersion relation [17, 19], at least not
within statistical uncertainty; likely due to the specific state
point chosen.

This dispersion plot shows the same wavevector threshold
value as for the Rayleigh process, hence, the lowered threshold
value does not pertain one specific longitudinal process. This
is, perhaps, to be expected since both these processes are gov-
erned by the same system properties like heat conductivity and
heat capacities.

5. Conclusion

First, the classical hydrodynamic prediction for the transverse
velocity autocorrelation function was compared with data
from molecular dynamics simulation. Here only one zero
wavevector and zero frequency transport coefficient (the
shear viscosity) is needed to make a direct comparison, that
is, without any fitting. The agreement was quantified through
a sum of squared deviations estimator denoted err, Equation
(22). For the LJ and butane systems err is approximately 1 %
for wavelength twice that of the Bocquet–Charlaix wavevector
using the stress relaxation time ts. Accepting this one per cent
error in the predictions and allowing for extrapolation the clas-
sical hydrodynamics is valid for ky , 0.09 Å−1, 0.057 Å−1, and
0.045 Å−1 for the butane, toluene, and water, respectively. This
corresponds to characteristic length scales from 7 to 14 nm. If
one applies the LJ parameters for methane the minimum
acceptable wavelength is around 5 nm in the liquid state.

For one per cent error the classical theory still do not quali-
tatively account for the temporal correlation seen in the data.
For all systems a clear non-exponential decay is observed,
however, from the error estimator these effects appear small
compared the underlying momentum diffusion-driven expo-
nential decay. This observation was confirmed by the trans-
verse dispersion relation.

Secondly, a comparison between theory and data was also car-
ried out for the longitudinal dynamics, specifically, through the
density autocorrelation function. Due to the very many coeffi-
cients entering this part of the dynamics, the comparison was
based on a fit of the prediction to data and the dispersion
relations pertaining to the Rayleigh and Brillouin processes.
Overall the agreement was found to be poor compared to the
transverse dynamics at the same wavevector. Furthermore, the
theory fails at the same threshold wavevector for both processes,
hence, the poor agreement is not due to only one of the two
mechanisms. Allowing a one per cent error the theory is valid
at wavevectors below 0.23 for the LJ system corresponding to
wavelength of 10.1 nm for methane, that is, approximately
twice the threshold value of the transverse dynamics. It is here
conjectured that this result is general, and that the classical hydro-
dynamic prediction for the longitudinal dynamics and under the
one per cent threshold limit is valid for wavevectors ky , 0.045
Å−1, 0.024 Å−1, and 0.023 Å−1 for the butane, toluene, and water,
respectively. Importantly, the error estimator and threshold
acceptance value is, of course, not uniquely defined.
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