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ABSTRACT
This paper generalizes isomorph theory to systems that are not in thermal equilibrium. The systems are assumed to be R-simple, i.e., to have
a potential energy that as a function of all particle coordinates R obeys the hidden-scale-invariance condition U(Ra) < U(Rb) ⇒ U(λRa)
< U(λRb). “Systemic isomorphs” are introduced as lines of constant excess entropy in the phase diagram defined by density and systemic
temperature, which is the temperature of the equilibrium state point with the average potential energy equal to U(R). The dynamics is
invariant along a systemic isomorph if there is a constant ratio between the systemic and the bath temperature. In thermal equilibrium,
the systemic temperature is equal to the bath temperature and the original isomorph formalism is recovered. The new approach rationalizes
within a consistent framework previously published observations of isomorph invariance in simulations involving nonlinear steady-state
shear flows, zero-temperature plastic flows, and glass-state isomorphs. This paper relates briefly to granular media, physical aging, and active
matter. Finally, we discuss the possibility that the energy unit defining the reduced quantities should be based on the systemic rather than the
bath temperature.
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I. INTRODUCTION

Isomorph theory explores the consequences of hidden scale
invariance, which is the symmetry expressed by Eq. (1),1 where
U(R) is the potential energy as a function of all N particle coor-
dinates R ≡ (r1, . . ., rN ) and Ra and Rb are two same-density
configurations,

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb). (1)

This logical implication states that the ordering of configura-
tions at one density according to their potential energy is main-
tained if the configurations are scaled uniformly to a different
density; for molecules, the uniform scaling refers to the center
of masses, keeping the spatial orientations and molecular sizes
unchanged.

Hidden scale invariance applies rigorously only for systems
with an Euler-homogeneous potential-energy function (plus a con-
stant). For realistic models, Eq. (1) is fulfilled at best for most
configurations and when the scaling parameter λ is not far from
unity. Nevertheless, Eq. (1) and its consequences apply to a good
approximation for the liquid and solid phases of many models.

The thermodynamic phase diagram of a system with hidden scale
invariance, an “R-simple system,” is one-dimensional with regard
to structure and dynamics. This is because there are lines in the
phase diagram, the so-called isomorphs,2 along which structure and
dynamics in reduced units are invariant to a good approximation.
Physically, isomorph invariance means that if one imagined filming
the molecules, the same movie would be recorded at two different
state points of a given isomorph, except for a uniform scaling of
space and time.3

Equation (1) is referred to as “hidden” scale invariance because
it is rarely obvious by inspection of the potential-energy function.
For systems such as the Lennard-Jones (LJ) system, an explanation
of Eq. (1) is available in terms of an effective inverse-power-law
pair potential plus a constant plus a linear term,4 but for instance
for molecular systems, we still do not know how to predict when
Eq. (1) applies to a good approximation. Fortunately, this is easily
tested in simulations,1,5 and one of the consequences of Eq. (1)—
that of strong virial potential-energy correlations in the constant-
volulme thermal-equilibrium fluctuations1—is also straightforward
to check.6–8

The unit system defining the reduced variables is based
on the system’s volume V and temperature T. If the (number)
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density is ρ ≡ N/V, the length, energy, and time units are,
respectively,2

l0 = ρ−1/3, e0 = kBT, t0 = ρ−1/3
√
⟨m⟩
kBT

. (2)

Here, ⟨m⟩ is the average particle mass. Equation (2) refers to New-
tonian dynamics; Brownian dynamics has the same length and
energy units, but a different time unit.2 All quantities can be made
dimensionless by reference to the above units. The term “reduced”
refers to the resulting dimensionless quantity. Reduced quantities
are denoted by a tilde, for instance,

R̃ ≡ ρ1/3R. (3)

Although not widely used, the state-point-dependent unit sys-
tem defined by Eq. (2) is far from new. It was used already by
Andrade in his papers on viscosity from the 1930s9,10 because this
is the natural unit system when a liquid is approximated by a hard-
sphere system.11 Reduced units also arise in the proof that sys-
tems with an Euler-homogeneous potential-energy function have
invariant physics along the lines in the thermodynamic phase dia-
gram given by ρn/3/T = Const. where the scaling exponent n is
defined by U(λR) = λ−nU(R).12–14 Finally, reduced units are crucial
in Rosenfeld’s seminal paper from 1977 introducing excess-entropy
scaling.3,15 Reduced units are sometimes referred to as “macro-
scopic” because they are defined in terms of thermodynamic quan-
tities,16 not in terms of microscopic quantities like the standard
state-point-independent molecular-dynamics (MD) units.17,18

The existence of isomorphs has mainly been validated in
computer simulations, although some predictions of the isomorph
theory have also been confirmed in experiments.19–22 Computer
simulated systems for which isomorph-theory predictions apply
include, e.g., LJ-type liquids,2,4,23,24 the gas, liquid, and solid
phases of the low-temperature exponential repulsive (EXP) pair-
potential system,25,26 simple molecular models,8,27,28 polydisperse
systems,29 crystals,30 nano-confined liquids,31 polymer-like flexi-
ble molecules,32 metals,33,34 and plasmas.35,36 Experimental find-
ings that can be rationalized within the isomorph-theory frame-
work (which incidentally also accounts for exceptions2,3,37) include
density-scaling2,38–41 and isochronal superposition.19,22,42–44 Further
regularities that may be explained by the isomorph theory include
instantaneous equilibration for a jump on an isochrone,2,8 the
quasiuniversality of simple liquids,11,45 how physical quantities
vary along the melting line,46,47 excess-entropy scaling,3,48 and the
Stokes–Einstein relation.49

The above examples all refer to equilibrium conditions, and
indeed, thermal equilibrium is a prerequisite of the current iso-
morph theory.1,2,11 A few papers have also demonstrated iso-
morph invariance under non-equilibrium conditions, however,
such as steady-state shear flows of liquids and glasses.50–52 This
shows the need for generalizing isomorph theory to systems that
are not in thermal equilibrium, which is further emphasized
by the fact demonstrated below that the explanations given so
far for isomorph invariance in non-equilibrium systems are not
consistent.

This paper shows that Eq. (1) allows for a more general iso-
morph theory. Although this paper is self-contained, it will be easier

to read for persons familiar with isomorph theory on the level of the
reviews given in Refs. 3, 11, 37, and 53.

II. BACKGROUND: THE EQUILIBRIUM THEORY
This section summarizes the existing isomorph theory.1,2 For

a system in thermal equilibrium at density ρ and temperature
T, the excess entropy Sex is defined as the entropy minus that
of an ideal gas at the same density and temperature. Since an
ideal gas is maximally disordered, one always has Sex ≤ 0. Any
state point of the thermodynamic phase diagram is fully charac-
terized by two thermodynamic variables, for instance, ρ and T,
ρ and Sex, T and Sex, ρ and the average potential energy U, U
and Sex, etc. We define the microscopic excess-entropy function
Sex(R) by1

Sex(R) ≡ Sex(ρ, U(R)). (4)

This is short-hand notation for the following: if Sex(ρ, U) is the excess
entropy of the equilibrium state point (ρ, U), Sex(R) is defined as
Sex(ρ, U) evaluated by substituting U = U(R). It follows that, except
for an additive constant, the microscopic excess entropy Sex(R) is
the logarithm of the number of configurations with the same den-
sity and potential energy as R. Note that Sex(R) is also defined if R
is not a typical equilibrium configuration of some state point. The
only requirement is that the configuration is spatially homogeneous
and, for instance, has no big holes because otherwise a proper den-
sity cannot be identified. We shall henceforth only consider such
configurations. Inverting Eq. (4) leads to

U(R) = U(ρ, Sex(R)), (5)

where U(ρ, Sex) is the thermodynamic average potential energy of
the state point (ρ, Sex).

All said so far is general. Reference 1 showed that the hidden-
scale-invariance condition [Eq. (1)] implies that the function Sex(R)
is scale invariant, i.e., Sex(λR) = Sex(R). In this case, Sex(R) depends
merely on the configuration’s reduced coordinate vector R̃,

Sex(R) = Sex(R̃), (6)

and Eq. (5) becomes

U(R) = U(ρ, Sex(R̃)). (7)

This summarizes the 2014 version of isomorph theory,1 the original
version of which appeared in 2009.2

All identities of the current isomorph theory may be derived
from Eq. (7),1 which is also the basis for the non-equilibrium gen-
eralization developed in Sec. III. For instance, Eq. (7) implies strong
correlations between the constant-volume equilibrium fluctuations
of the virial W and the potential energy, ΔW ≅ γΔU,4,6,7 with the
so-called density-scaling exponent γ given2 by

γ ≡ (∂ ln T
∂ ln ρ

)
Sex

= ⟨ΔUΔW⟩
⟨(ΔU)2⟩ . (8)
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The second equality sign is a general statistical–mechanical iden-
tity that allows for calculating γ from constant-volume equi-
librium fluctuations. If Eq. (7) were rigorously obeyed for
all configurations, there would be perfect correlations, i.e.,
ΔW = γΔU, but as mentioned isomorph theory is usually only
approximate.

By means of the thermodynamic identity T = (∂U/∂Sex)ρ, a
first-order Taylor expansion of Eq. (7) at the state point (ρ, Sex)
leads1 to

U(R) ≅ U(ρ, Sex) + T(ρ, Sex)(Sex(R̃) − Sex). (9)

Consider now two equilibrium state points (ρ1, T1) and (ρ2, T2)
with the average potential energies U1 and U2 and the same excess
entropy Sex. Suppose R1 and R2 are equilibrium configurations of
the state points with the same reduced coordinates, i.e., obeying
ρ1/3

1 R1 = ρ1/3
2 R2 ≡ R̃. Equation (9) then implies by elimination

of the common factor Sex(R̃) − Sex that with T1 ≡ T(ρ1, Sex) and
T2 ≡ T(ρ2, Sex), one has

U(R1) −U1

kBT1
≅ U(R2) −U2

kBT2
. (10)

This means that (where C12 is a constant)

e−U(R1)/kBT1 ≅ C12 e−U(R2)/kBT2 . (11)

Equation (11) is the 2009 definition of an isomorph in the equilib-
rium phase diagram,2 stating that along an isomorph, the canonical
probabilities of configurations that scale uniformly into one another
are identical (C12 disappears when the probabilities are normalized).
It was assumed that the system in question is “strongly correlating”
(=R-simple) in the sense that the equilibrium constant-density virial
potential-energy fluctuations have a Pearson correlation coefficient
larger than 0.9. At the time, isomorphs were not defined to be config-
urational adiabats (Sex = Const.), but shown to be so from Eq. (11).
In contrast, the 2014 version of the theory defines isomorphs as the
configurational adiabats of an R-simple system.1

Equation (7) implies invariant dynamics along isomorphs
because the reduced force depends only on given configuration’s
reduced coordinates. To demonstrate this, we define the collective
force vector F as the vector of all particle forces F ≡ (F1, . . ., FN ).
It is straightforward to show that Newton’s second law in reduced
coordinates is F̃ = d2R̃/dt̃2, assuming here, for simplicity, identi-
cal particle masses (absorbed into the reduced time). If the reduced
force F̃ depends only on a given configuration’s reduced coordi-
nates, the equation of motion has no reference to the density and is
therefore the same for configurations that scale uniformly into one
another, i.e., along an isomorph. This implies isomorph-invariant
dynamics.

To show that F̃ = F̃(R̃) for an equilibrium R-simple system,
note that according to Eq. (2), the reduced force is given by F̃ = ρ−1/3

F/kBT (a force times a length is an energy). Since F=−∇U(R), we get
F̃ = −ρ−1/3∇U(R)/kBT, which via ρ−1/3∇ = ∇̃ and Eq. (7) implies
that

F̃ = −∇̃U(ρ, Sex(R̃))/kBT

= −(∂U(ρ, Sex(R̃))
∂Sex

)
ρ
∇̃Sex(R̃)/kBT. (12)

The notation (∂U(ρ, Sex(R̃))/∂Sex)ρ means the standard thermo-

dynamic derivative (∂U(ρ, Sex)/∂Sex)ρ into which Sex = Sex(R̃) is
substituted. Recalling that T = (∂U/∂Sex)ρ, in terms of the reduced
excess entropy S̃ex ≡ Sex/kB Eq. (12) becomes

F̃ = −∇̃S̃ex(R̃). (13)

This demonstrates that F̃ for equilibrium configurations is a function
only of the configurations’ reduced coordinates, ensuring invariant
dynamics along the isomorphs. If the reduced dynamics is isomorph
invariant, by time averaging one finds as a consequence invariance
of the reduced-unit structure. Thus both structure and dynamics are
invariant along a systemic isomorph whenever the reduced force is
a function of the reduced coordinates.

III. GENERALIZING ISOMORPH THEORY TO SYSTEMS
THAT ARE NOT IN THERMAL EQUILIBRIUM

In this section, we introduce systemic isomorphs as lines of
constant excess entropy in the phase diagram defined by density
and systemic temperature. Any configuration of an R-simple system
identifies a systemic isomorph, whether or not the configuration is
typical for an equilibrium state point.

A. The systemic temperature T s

In the expression for F̃ in Eq. (12), the derivative of the ther-
modynamic equilibrium function U(ρ, Sex) with respect to Sex eval-
uated at Sex = Sex(R̃) appears. In thermal equilibrium this deriva-
tive is T, but in more general contexts, a separate name is needed
for it. For any configuration R, the systemic temperature Ts(R) is
defined54 by

Ts(R) ≡ (
∂U(ρ, Sex(R))

∂Sex
)
ρ
. (14)

Just as the definition of Sex(R) in Eq. (4) does not assume hidden
scale invariance, the same is the case for Eq. (14). We emphasize
that it is always the equilibrium function U(ρ, Sex) that appears in
Eq. (14). Thermal equilibrium is characterized by

Ts(R) ≅ T, (15)

in which the symbol ≅ indicates the existence of small fluctuations
that vanish in the thermodynamic limit.

Although Eq. (14) may appear abstract, calculating Ts(R) in a
simulation is straightforward. One makes use of the fact that Ts(R)
is the equilibrium temperature Teq of the thermodynamic state point
with the density of R and with excess entropy equal to Sex(R). By the
definition of Sex(R), this means that Ts(R) is the equilibrium temper-
ature of the state point with density ρ and average potential energy
U(R). Restricting henceforth to R-simple systems and using Eq. (6),
we summarize these identities as follows:
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Ts(R) = Teq(ρ, Sex(R̃)) = Teq(ρ, U(R)). (16)

The last equality sign makes it possible to find Ts(R) from sim-
ulations by mapping out numerically the thermodynamic equilib-
rium function U(ρ, T) and inverting it to obtain Teq(ρ, U). Figure 1
illustrates the situation.

Note, incidentally, that when a configuration is scaled uni-
formly, Ts(λR) is controlled by the equilibrium temperature’s den-
sity dependence at fixed excess entropy,

Ts(λR) = Teq(λ−3ρ, Sex(R̃)). (17)

B. Systemic isomorphs
Any configuration R is associated with a density ρ and a sys-

temic temperature Ts(R). Consequently, it may be mapped onto the
two-dimensional “systemic” phase diagram defined by ρ and Ts. This
is in contrast to the standard thermodynamic (ρ, T) phase diagram
onto which only equilibrium configurations may be mapped.

Equation (16) implies that each state point in the systemic
phase diagram has a well-defined excess entropy, which is the excess
entropy of the equilibrium state point with density ρ and temper-
ature equal to Ts. Standard isomorphs are the curves of constant
excess entropy in the equilibrium thermodynamic phase diagram.1,2

We define a systemic isomorph as a curve of constant excess entropy
in the systemic phase diagram. Since Sex at the systemic state point
(ρ, Ts) is equal to the equilibrium excess entropy of the state point
with density ρ and temperature equal to Ts [Eq. (16)], drawing
the systemic isomorphs in the systemic phase diagram results in
the very same set of curves as drawing the standard isomorphs in
the thermodynamic phase diagram. The difference is that, as men-
tioned, any configuration is associated with a systemic isomorph,
whereas the standard isomorphs involve only equilibrated configu-
rations. The relation between the two phase diagrams is illustrated in
Fig. 2.

C. T s/T controls the reduced-unit dynamics
This section establishes the condition for invariant dynam-

ics along a systemic isomorph. The setting is that of an ensemble
M = {R} of generally non-equilibrium configurations R of an R-
simple system with the same density and excess entropy. More pre-
cisely, it is assumed that the relative fluctuations of Sex(R) go to
zero in the thermodynamic limit. This is the case if the mean-square
potential-energy fluctuation is proportional to the system size, which
applies for all systems without long-range interactions. Since Sex(R)
depends only on the reduced coordinates of R [Eq. (6)], scaling the
configurations of M uniformly to a different density moves M along
a systemic isomorph. The question is whether the dynamics is invari-
ant if the temperature T is adjusted appropriately in the process; the
answer is yes as we shall see.

We regard both the density ρ and the heat-bath temperature
T as externally controlled variables. The two standard realizations
of this are Brownian (Langevin) dynamics and Nose–Hoover NVT
dynamics, each of which is considered below where the case of a
Gaussian isokinetic thermostat is also discussed.

Consider first Brownian dynamics, which was dealt with in
detail in Ref. 54 that introduced the concept of a systemic temper-
ature in connection with physical aging. The Langevin equation of
motion is55,56

Ṙ = −μ∇U(R) + η(t). (18)
Here, μ is a constant and the noise vector η(t) consists of Gaussian
random variables ηi(t), obeying

⟨ηi(t)ηj(t′)⟩ = 2μ kBT δijδ(t − t′). (19)

The corresponding Smoluchowski equation for the probability dis-
tribution P(R, t) is

∂P(R, t)
∂t

= μ∇ ⋅ (∇U(R)P(R, t) + kBT∇P(R, t)), (20)

which, in reduced coordinates, becomes54

FIG. 1. The systemic temperature Ts(R) is defined for any configuration R of any system, i.e., also for systems that are not R-simple. This figure summarizes the general
situation. (a) illustrates that the systemic temperature for a given configuration is defined from its density ρ and excess entropy Sex(R) [for an R-simple system, the excess
entropy depends only on the configuration’s reduced coordinates and Sex(R) may be replaced by Sex(R̃)]. The systemic temperature is the temperature of the equilibrium
state point with density ρ and excess entropy Sex(R). In equilibrium at temperature T, the systemic temperature obeys Ts(R) ≅ T with fluctuations that go to zero in the
thermodynamic limit. (b) shows how to identify Ts(R), in practice, from the density and the potential energy: Ts(R) is the temperature of the equilibrium state point with density
ρ and average potential energy equal to U(R).
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FIG. 2. Relation between the systemic phase diagram defined by ρ and Ts

and the standard thermodynamic phase diagram defined by ρ and T. In
thermal equilibrium, Ts = T and the two phase diagrams are identical. In
this case, the systemic isomorphs reduce to equilibrium isomorphs.1,2 Out-of-
equilibrium situations are characterized by Ts ≠ T ; here, both phase diagrams are
needed.

∂P(R̃, t̃)
∂ t̃

= ∇̃ ⋅ (Ts(R)
T
∇̃S̃ex(R̃)P(R̃, t̃) + ∇̃P(R̃, t̃)). (21)

Here, one may replace Ts(R) by a constant Ts because the systemic
temperature fluctuations as mentioned go to zero in the thermody-
namic limit. Equation (21) has no reference to the density except via
a possible density dependence of Ts. This means that systems scaled
to a different density will follow the same reduced-time evolution
if Ts/T is the same. The condition for invariant dynamics along a
systemic isomorph is therefore

Ts

T
= Inv. (22)

We proceed to show that the same invariance condition applies
for Nose–Hoover NVT dynamics. If ri and pi are, respectively,
the position and momentum of particle i and Q is the (exten-
sive) Nose–Hoover thermostat time constant, the NVT equations of
motion18 are

ṙi =
pi

mi
,

ṗi = Fi − ξpi,

ξ̇ = (∑
i

p2
i

2mi
− 3

2
NkBT)/Q.

(23)

These equations are made dimensionless by multiplying by combi-
nations of the units given in Eq. (2),

t0

l0
ṙi =

t0

l0
pi

mi
,

t2
0

⟨m⟩l0
ṗi =

t2
0

⟨m⟩l0
Fi −

t2
0

⟨m⟩l0
ξpi,

t2
0 ξ̇ = t2

0e0(∑
i

p2
i

2e0mi
− 3

2
NkBT/e0)/Q.

(24)

The relevant reduced quantities are

t̃ ≡ t/t0, r̃ ≡ r/l0, p̃i ≡ t0pi/(⟨m⟩l0), F̃i ≡ l0Fi/e0,

ξ̃ ≡ t0ξ, m̃i ≡ mi/⟨m⟩, Q̃ ≡ Q/(e0t2
0).

(25)

If a dot in connection with a reduced variable signals the derivative
with respect to the reduced time t̃, the reduced NVT equations of
motion are

˙̃ri =
p̃i

m̃i
,

˙̃pi = F̃i − ξ̃p̃i,

˙̃ξ = (∑
i

p̃2
i

2m̃i
− 3

2
N)/Q̃.

(26)

These equations are independent of the density if the reduced force
is a function of the reduced coordinates and if Q̃ is constant, i.e.,
Q ∝ ρ−2/3. The latter condition is not considered further because
physically relevant quantities are generally insensitive to the precise
value of Q.

From Eq. (12) and the definition of Ts(R) [Eq. (14)], the
reduced collective force vector F̃ is given by

F̃ = −Ts(R)
T
∇̃S̃ex(R̃). (27)

Since the ensemble of states M has systemic temperature fluctua-
tions that vanish in the thermodynamic limit, Ts(R) may be regarded
as constant and Eq. (27) becomes

F̃ = −Ts

T
∇̃S̃ex(R̃). (28)

Equation (28) implies that the reduced Nose–Hoover NVT dynam-
ics is invariant if temperature and systemic temperature along a sys-
temic isomorph vary with density such that their ratio is constant
[Eq. (22)].

Consider finally the Gaussian isokinetic thermostat, which in
contrast to the Nose–Hoover algorithm keeps the kinetic energy
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strictly constant. The equations of motion57 are

ṙi =
pi

mi
,

ṗi = Fi −
⎛
⎜⎜
⎝

∑j
pj

mj
⋅ Fj

∑j
p2

j

mj

⎞
⎟⎟
⎠
pi.

(29)

The corresponding reduced equations are

˙̃ri =
p̃i

m̃i
,

˙̃pi = F̃i −
⎛
⎜⎜
⎝

∑j
p̃j

m̃j
⋅ F̃j

∑j
p̃2

j

m̃j

⎞
⎟⎟
⎠
p̃i.

(30)

Again, substituting Eq. (28) into the above, we see that these
equations are invariant along a systemic isomorph if Eq. (22)
applies.

In all the cases discussed above, the reduced force is a function
of the reduced coordinates times the systemic temperature divided
by the bath temperature [Eq. (28)]. This is why there is invari-
ance of the reduced dynamics along the systemic isomorphs when
Eq. (22) applies. Note that the invariant ratio Ts/T does not have to
be constant in time. Note also that Eq. (22) includes the thermal-
equilibrium case of isomorph invariance: in equilibrium, the sys-
temic phase diagram reduces to the standard thermodynamic phase
diagram with identical isomorphs and the ratio Ts/T is unity, i.e., the
equilibrium dynamics is isomorph invariant.

We emphasize that a non-equilibrium system is not mapped
to an equilibrium system at temperature Ts in the sense that all
non-equilibrium physical quantities are the same as at the T = Ts
equilibrium state point. By the definition of the systemic tempera-
ture, of course, the potential energy of the non-equilibrium system

FIG. 3. Knowledge of density, temperature, and systemic temperature is generally
not enough to determine the physics. This figure illustrates this by considering two
different non-equilibrium situations of the same system, A and B, at two densi-
ties with identical temperatures and systemic temperatures at both densities. For
instance, this could correspond to a thermal history (A) ending in a state with the
same density, temperature, and potential energy, as that of an imposed flow (B).
All non-equilibrium situations have the same systemic isomorphs, and if Eq. (22)
is satisfied, each non-equilibrium situation has invariant reduced-unit dynamics
along the systemic isomorphs. The dynamics of situations A and B may well differ,
however.

is that of the equilibrium state point with T = Ts, but this prop-
erty does not necessarily carry over to other quantities. In particular,
two different non-equilibrium situations of the same system with
the same density, bath temperature, and systemic temperature may
have different properties and different dynamics due, for instance,
to different boundary conditions. This is illustrated in Fig. 3.

IV. QUESTIONS AND ANSWERS
This section discusses three obvious questions that arise in view

of the formalism developed above.

A. How does the systemic temperature relate to other
non-equilibrium temperatures?

While the heat-bath temperature T refers exclusively to the
momentum degrees of freedom, a number of temperatures have
been defined for non-equilibrium systems,58 which like Ts(R)
depend only on the configurational degrees of freedom R and reduce
to T in thermal equilibrium. This section discusses the relation
between three such temperatures and Ts(R).

By being a function of U(R), Ts(R) is a global rather than
a local temperature, hence the name “systemic.” This is in con-
trast to the configurational temperature defined59 by kBTconf(R)
≡ (∇U(R))2/∇2U(R). Tconf(R) reflects how the potential energy
varies close to R, whereas Ts(R) is determined by the potential
energy U(R) [Eq. (16)]. Clearly, these two temperatures cannot be
identical in general. Interestingly, for R-simple systems, there is a
link between them. It is straightforward to show from Eq. (7) that
Tconf(R) obeys

Ts(R)
Tconf(R)

≅ ∇̃2S̃ex(R̃)
(∇̃S̃ex(R̃))2

, (31)

where ≅ signals deviations that go to zero in the thermodynamic
limit. The right-hand side is isomorph invariant. This means that
adjusting the heat-bath temperature T with density along a sys-
temic isomorph such that T ∝ Tconf will lead to invariant dynamics
[Eq. (22)]. Note that that for equilibrium configurations, Eq. (31)
implies ∇̃2S̃ex(R̃) ≅ (∇̃S̃ex(R̃))2.

A glass is characterized by the so-called effective temperature
Teff that quantifies the violation of the fluctuation–dissipation the-
orem (FDT) at long times.58,60–62 There is no FDT violation above
the glass transition temperature Tg, while below Tg, the effective
temperature reflects the frozen structure and58,61,62

Teff ≃ Tg. (32)

The systemic temperature behaves differently. Above Tg, there is
equilibrium and one has Ts = T = Teff, of course (we here and hence-
forth ignore that a glass usually forms from a supercooled liquid,
which is a state that is not in true thermodynamic equilibrium but in
a metastable equilibrium). Cooling below Tg, however, the systemic
temperature decreases continuously with T also in the glass phase
due to the decreasing potential energy of the vibrational degrees of
freedom (Ts will be larger than T due to the higher potential energy
of the glass than that of the metastable equilibrium liquid). Thus,
only close to Tg does one expect Ts ≃ Teff ≃ Tg.
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The effective temperature has been related to the thermo-
dynamics.58,61,62 A possible link to the systemic temperature is
that

Teff = Ts, (33)

at least in some situations. As argued above, this cannot apply for a
glass because its systemic temperature is generally significantly lower
than Tg, but Eq. (33) can possibly be obeyed in steady-state situa-
tions. In this connection, we note that a two-temperature description
of nonlinear rheology based on Teff and T was proposed already 20
years ago.63

In relation to viscous liquids and the glass transition, the so-
called fictive temperature Tfic is often used for interpreting experi-
ments monitoring physical aging.64 The idea is that the structure of
a glass is equal to that of the equilibrium metastable liquid at the
temperature Tfic. Thus, like the effective temperature [Eq. (32)], the
fictive temperature of a glass is close to the glass transition tem-
perature. Since this is not the case for the systemic temperature,
which does not freeze upon cooling through the glass transition, we
conclude that Tfic ≠ Ts.

My colleague Kristine Niss has recently proposed that Tfic
= Teff.21 Niss has furthermore suggested that any state of a phys-
ically aging system can be mapped onto the equilibrium phase
diagram and that this diagram must have lines of invariant struc-
ture. Although this differs from the above discussed mapping onto
the systemic phase diagram, the two approaches are clearly closely
related in view of the fact that in the present case, curves of invariant
dynamics exist, which are identical in the systemic and “real” phase
diagrams.

B. How to identify the systemic isomorphs
in a computer simulation?

Since a systemic isomorph is the same curve in the (ρ, Ts) phase
diagram as a standard isomorph in the (ρ, T) phase diagram, any
method for generating the latter may be used for identifying the
systemic isomorphs. A straightforward method integrates Eq. (8)
step-by-step by imposing density changes of typically a few per-
cent, at each temperature recalculating the canonical averages in
Eq. (8) from a thermal equilibrium (NVT) simulation. Another gen-
eral method is the “direct isomorph check.”2 Here, one uniformly
scales equilibrium configurations obtained at one density, ρ1, to a
different density, ρ2. According to Eq. (10), the slope of a scatter plot
of the potential energies of scaled vs unscaled configurations, i.e.,
of U(R2) vs U(R1), where ρ1/3

1 R1 = ρ1/3
2 R2, determines the temper-

ature ratio T2/T1 for which (ρ1, T1) and (ρ2, T2) are on the same
isomorph.

In the simplest approximation, the equilibrium isomorphs are
given65,66 by

h(ρ)
T
= Const., (34)

where the function h(ρ) is defined as the quantity of dimension
energy in the approximate scaling equation U(R) = h(ρ)Φ̃(R̃)
+ g(ρ).53,67 For the LJ system, h(ρ) is proportional to (γ0/2 − 1)
(ρ/ρ0)4 − (γ0/2 − 2)(ρ/ρ0)2.66 Here, γ0 is the density-scaling expo-
nent at a reference state point of density ρ0, a quantity that may be
calculated from equilibrium fluctuations by means of Eq. (8). The
corresponding systemic isomorphs are given by

h(ρ)
Ts
= Const. (35)

In many cases, Eq. (34) gives a good representation of the equi-
librium isomorphs, but for certain systems the more general equa-
tion Sex(ρ, T) = Const. must be used. This is the case when the
density-scaling exponent γ of Eq. (8) is not only a function of density
as implied by Eq. (34),65 which, for instance, applies in the gas phase
of the EXP system5 or at high temperatures for the LJ system.23 In
this more general case, the invariance condition [Eq. (22)] can still
be fulfilled by a suitable choice of T2. Suppose one studies an out-
of-equilibrium system at density ρ1 with temperature T1, systemic
temperature Ts,1, and excess entropy Sex. Then, Ts,1 = Teq(ρ1, Sex) by
Eq. (16). Being interested in the physics of the non-equilibrium sys-
tem at density ρ2, we ask whether a temperature T2 exists resulting
in invariant dynamics? The answer is “yes,” because the following
choice of T2 does the job:

T2 = T1
Ts,2

Ts,1
= T1

Teq(ρ2, Sex)
Teq(ρ1, Sex)

. (36)

In order to relate to previous works, we do not refer below to
Eq. (36), however, but to the simpler case Eqs. (34) and (35).

The above methods all involve performing equilibrium simula-
tions. In steady-state situations, it is possible to identify the systemic
isomorphs directly from a non-equilibrium simulation. Consider
two state points on a systemic isomorph with density ρ1 and ρ2.
Non-equilibrium configurations with identical reduced coordinates
are denoted by R1 and R2, and the time-averaged potential ener-
gies at the two densities are denoted by U1 and U2. Equation (10)
was arrived at by Taylor expanding Eq. (7), and the same expansion
may be carried out for a non-equilibrium system. The only differ-
ence is that the temperatures in Eq. (10) are replaced by systemic
temperatures, i.e.,

U(R1) −U1

kBTs,1
≅ U(R2) −U2

kBTs,2
. (37)

It follows that the quantity Ts,2/Ts,1 is the slope of a scatter plot
of U(R2) vs U(R1) from which Ts,2 can be determined if Ts,1 is
known.

C. What is the relation between systemic
and equilibrium isomorphs?

The systemic isomorphs are the same curves in the (ρ, Ts)
phase diagram as the equilibrium isomorphs in the standard (ρ,
T) phase diagram. In view of this, one might be inclined to think
that the process of going out of equilibrium simply corresponds
to moving from an equilibrium isomorph to a different equilib-
rium isomorph. If this were a generally correct way of think-
ing about things, however, any non-equilibrium average should be
equal to the corresponding equilibrium average at the tempera-
ture Ts. While this may apply in some situations, as mentioned,
it cannot be general (Fig. 3). The non-equilibrium dynamics may
drive the system to states that are unlikely at any temperature, for
instance, by breaking a spatial symmetry. This means that systemic
isomorphs cannot be identified with equilibrium isomorphs. We
need both phase diagrams.
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In summary, even though the systemic isomorphs are the
same curves in the (ρ, Ts) phase diagram for all non-equilibrium
situations, the theory does not imply identical physics for non-
equilibrium situations with the same density, temperature, and sys-
temic temperature (Fig. 3). The only prediction is that for each
separate non-equilibrium situation, whenever Eq. (22) applies, the
reduced-unit dynamics is invariant along the systemic isomorph in
question.

V. EXAMPLES
This section applies the systemic-isomorph concept to iso-

morph invariances identified in computer simulations of three dif-
ferent non-equilibrium systems. These were reported in previous
Glass and Time publications without consistent justifications.

A. Steady-state Couette shear flows simulated
by the SLLOD equations of motion50

An externally imposed steady-state shear flow drives a liq-
uid away from equilibrium when the shear rate is large enough
for the viscosity to become shear-rate dependent. Separdar
et al.50 studied nonlinear Couette shear flows of the standard
single-component LJ system and of the Kob–Andersen binary LJ
mixture68 that is easily supercooled and brought into a highly
viscous state. The systems were simulated by the SLLOD equa-
tions of motion,57,69 which utilize a Gaussian isokinetic thermostat.
For both systems, it was found that along standard equilibrium
isomorphs,

1. For a given value of the reduced shear rate, the reduced radial
distribution function is invariant.

2. For a given value of the reduced shear rate, the reduced trans-
verse intermediate incoherent scattering function as a function
of reduced time is invariant.

3. The reduced viscosity as a function of the reduced shear rate is
invariant.

4. The reduced strain-rate-dependent part of the potential energy
is invariant as a function of the reduced shear rate.

5. The reduced strain-rate-dependent part of the pressure is
invariant as a function of the reduced shear rate.

6. The reduced strain-rate-dependent part of the normal stress
differences is invariant as a function of the reduced shear
rate.

In Ref. 50, these findings were rationalized by reference to the
following equation:

U(R) = kBT fI(R̃) + g(Q), (38)

where the state point in question is denoted by Q and fI(R̃) is a
function that may depend on the isomorph in question I. Equa-
tion (38) follows from the 2009 definition of isomorphs [Eq. (11)],
that refers to thermal-equilibrium conditions.2 Despite the fact that
both systems of Ref. 50 were driven away from equilibrium as evi-
denced by the radial distribution functions changing significantly,
Eq. (38) was used without further justification. In order to derive
points 4–6, it was further assumed ad hoc that g(Q) is independent

of the shear rate. In Ref. 50, isomorphs were defined as lines in the
three-dimensional phase diagram defined by density, temperature,
and shear rate. These 3D isomorphs turned out to “project” onto the
equilibrium isomorphs of the (ρ, T) phase diagram. No explanation
was offered of this observation, however, which is now seen to be a
consequence of the definition and properties of systemic isomorphs
(Sec. III B).

The justifications of the above invariances provided in Ref. 50
are not satisfactory because they are based on equilibrium identi-
ties. How to explain the findings properly? For an R-simple system,
the SLLOD equations of motion are isomorph invariant in reduced
units, provided that Ts/T is the same along a given systemic iso-
morph. This is easy to prove by writing the SLLOD equations in
reduced units and substituting Eq. (28) into these. Suppose two state
points (ρ1, T1) and (ρ2, T2) are on the same equilibrium isomorph.
Then, the following applies [compare Eq. (34)]:

h(ρ1)
T1

= h(ρ2)
T2

. (39)

At the corresponding densities, a systemic isomorph obeys
Eq. (35),

h(ρ1)
Ts,1

= h(ρ2)
Ts,2

. (40)

Dividing Eq. (39) by Eq. (40) leads to the required invariance
condition [Eq. (22)],

Ts,1

T1
= Ts,2

T2
. (41)

To be specific, consider a steady-state shear flow at density ρ1 and
temperature T1 with the reduced-coordinate solution of the SLLOD
equations of motion R̃1(t̃). Because of Eq. (41), for the same reduced
shear rate R̃1(t̃) will also solve the reduced SLLOD equations of
motion at density ρ2 and temperature T2. This establishes points 1–3
above without reference to Eq. (38). Note that the condition of a con-
stant Ts/T means that along any systemic isomorph, Eq. (38) can be
rewritten as U(R) = kBTsFI(R̃) + g(Q), which may be derived by
Taylor expanding Eq. (7) to the first order in the excess entropy.
In other words, Eq. (38) is actually correct, although its original
justification was not.

To derive point 4, if U(ρ, Sex) as previously is the equilib-
rium thermodynamic function and ˙̃γ is the reduced shear rate, we
make a first-order Taylor expansion of Eq. (7) in Sex around equi-
librium (Ts = T, ˙̃γ = 0). The steady-state flow average potential
energy U(ρ, T, ˙̃γ) is, by definition of the nonequilibrium excess
entropy Sex(˙̃γ) ≡ Sex(ρ, Ts), equal to U(ρ, Sex(˙̃γ)). We therefore
have [identifying U(ρ, T) with U(ρ, Sex)]

U(ρ, T, ˙̃γ) = U(ρ, Sex(˙̃γ)) = U(ρ, T)+T(Sex(˙̃γ)−Sex) + . . . . (42)

This implies

U(ρ, T, ˙̃γ) −U(ρ, T)
kBT

≅ S̃ex(˙̃γ) − S̃ex. (43)
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The left-hand side is the reduced strain-rate-dependent part of the
potential energy. The right-hand side is isomorph invariant for any
given value of ˙̃γ. This demonstrates point 4. The numerical data in
Fig. 7 of Ref. 50 show a small, but systematically increasing devia-
tion from isomorph invariance with increasing reduced shear rate;
this is consistent with the fact that higher-order terms are ignored in
Eq. (42).

We next turn to point 5, the isomorph invariance of the
reduced pressure difference. The pressure p is related to the
virial W by pV = NkBT + W. Thus, the reduced pressure dif-
ference is given by [p(ρ, T, ˙̃γ) − p(ρ, T)]/(ρkBT) = [W(ρ, T, ˙̃γ)
−W(ρ, T)]/(NkBT) in which p(ρ, T) and W(ρ, T) are the equilib-
rium pressure and virial, respectively. Because the microscopic virial
is defined by W(R) ≡ (∂U(R)/∂ ln ρ)R̃,3 Eq. (7) implies W(R)
= W(ρ, Sex(R̃)), where W(ρ, Sex) ≡ (∂U/∂ ln ρ)Sex is the thermo-
dynamic equilibrium virial. For the averaged quantities, this implies
that W(ρ, T, ˙̃γ) − W(ρ, T) = W(ρ, Sex(ρ, Ts)) − W(ρ, Sex(ρ, T))
=W(ρ, Sex(˙̃γ))−W(ρ, Sex). Taylor expanding this to the first order,
and using the thermodynamic identities W = (∂U/∂ ln ρ)Sex and
T = (∂U/∂Sex)ρ leads to W(ρ, T, ˙̃γ) − W(ρ, T) ≅ (∂T/∂ ln ρ)Sex

(Sex(˙̃γ) − Sex). By the definition of the density-scaling exponent γ in
Eq. (8), this implies

W(ρ, T, ˙̃γ) −W(ρ, T)
kBT

≅ γ(S̃ex(˙̃γ) − S̃ex). (44)

This proves the isomorph invariance of the reduced strain-rate-
dependent part of the pressure for fixed ˙̃γ. Equations (43) and
(44) imply that the reduced pressure difference equals γ times the
reduced potential-energy difference per particle. This is consistent
with the numerical data of Ref. 50.

For point 6, note first that in terms of the stress tensor σμν,
the normal pressure difference is (σxx − σyy)/2, where x is the
flow direction and y is the direction the velocity gradient. The xx
stress tensor is given by the following sum over all particles, σxx

= (1/V)∑ij(xi−xj)Fij
x , where Fij

x = −∂U(R)/∂(xi−xj), and a similar
expression applies for σyy. In this way one relates to F̃(R̃), and it is
now easy to establish the required systemic isomorph invariance of
the reduced normal stress difference for any given ˙̃γ.

B. Flow-event statistics for athermal plastic flows
of glasses51

Reference 51 presented computer simulations of zero-
temperature glasses subject to an imposed shear flow. Samples were
prepared by a rapid quench from the liquid. At any given time, there
is mechanical equilibrium, i.e., the force on each particle is zero. A
steady-state flow situation consists of a continuous increase in the
stress with time as the strain increases, interrupted by discontinu-
ous stress drops deriving from avalanches in the solid. The two main
models considered were the Kob–Andersen binary LJ system and its
repulsive version in which the r−6 terms are positive instead of nega-
tive. The observables were the steady-state probability distributions
of stress drops, potential-energy drops, and strain increases between
two stress drops.

By scaling with the function h(ρ) encountered above in con-
nection with Eq. (34), it was shown in Ref. 51 how the observables
at different densities can be predicted from simulations at a single

reference density. This was justified by dimensional analysis: at zero
temperature, the only quantity of dimension energy is the function
h(ρ) (compare Sec. IV B).67 For each of the two systems studied, h(ρ)
was evaluated by computer simulations of the equilibrium liquid
phase.

How can one understand that the liquid’s h(ρ) controls the
zero-temperature plastic flow physics? To answer this, note that
the preparation of the T = 0 amorphous solid by quenching a liq-
uid at the reference density leads to a sample with Ts > 0. The
precise value of Ts is not important; Ts is significantly below the
glass transition temperature of the quench, Tg , because the vibra-
tional degrees of freedom at Tg still have a sizable potential energy.
Changing the density of the zero-temperature glass by compressing
or expanding the boundaries induces a virtually uniform scaling of
all particle coordinates [this is a consequence of Eq. (1) 54]. Conse-
quently, by Eq. (6), glasses of different densities obtained by scaling
a reference-density glass will belong to the same systemic isomorph.
The function h(ρ) in Eq. (35) should be calculated for the equi-
librium crystalline phase if the glass potential energy is below that
of the crystal at melting at the density in question. The difference
between the liquid and crystal h(ρ) functions at the same density
is only minor, however.47 Thus, the systemic isomorph identifies
the energy scale to be used in predicting the probability distribu-
tions of flow-event characteristics at different densities from obser-
vations at the reference density—the relevant energy scale is h(ρ)
or, equivalently, kBTs(ρ) [compare Eq. (35) and the discussion in
Sec. VII].

C. Sheared glassy systems52

A comprehensive simulation study of sheared finite-temperature
glasses was presented recently.52 This case is in-between the SLLOD-
simulated steady-state Couette flow of liquids (Sec. V A) and
zero-temperature amorphous-solid shear deformations (Sec. V B).
Focusing on the Kob–Andersen binary LJ mixture, Ref. 52 demon-
strated invariance of the following quantities along a low- and a
high-temperature isomorph in the glass:

1. The reduced radial distribution function.
2. The reduced average flow stress and its standard deviation.
3. The reduced stress autocorrelation function as a function of

strain interval.
4. Histograms of the reduced stress changes over a given strain

interval for a given reduced shear rate.
5. The Fisher–Pearson skewness of the reduced stress-change dis-

tributions as a function of strain interval for a given reduced
shear rate.

6. The incoherent intermediate scattering function (transverse
direction) as a function of the reduced time for a given reduced
shear rate.

7. The reduced mean-square displacement (transverse direction)
as a function of the reduced time for a given reduced shear
rate.

These invariants were justified by reference to standard iso-
morph theory. Indeed, the two glass-state isomorphs were generated
by numerically integrating Eq. (8), ignoring the fact that a glass is an
out-of-equilibrium state.
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Given that isomorphs are defined by reference to thermal equi-
librium, not to non-equilibrium states like a glass, the question is
how to justify these findings in a consistent setting. The answer is
that the glass isomorphs studied in Ref. 52 are, in fact, systemic iso-
morphs obeying the invariance condition [Eq. (22)]. To see this,
note that the isomorphs in Ref. 52 obey Eq. (34), while the corre-
sponding systemic isomorphs obey Eq. (35). As in Sec. V A, dividing
these two identities by one another leads to Ts/T = Inv. along the
isomorphs.

VI. SOME FURTHER CONNECTIONS
This section discusses briefly connections to three non-

equilibrium situations different from flows.

A. Granular media
Granular media has been an important area of research for

several years.70–72 In 1989, Edwards and co-workers introduced the
compactivity concept in a daring thermodynamic approach to the
subject.73,74 The idea was that, despite the absence of anything like
a dynamic equilibrium involving transitions between several states,
“when N grains occupy a volume V, they do so in such a way that all
configurations are equally weighted.”71 Volume here plays the role
of energy in conventional statistical mechanics, and for each vol-
ume V, the logarithm of the number of states defines an entropy
function, S = S(V). The compactivity X is then defined in analogy
to temperature by

X ≡ dV
dS

. (45)

Edwards and Oakeshott73 noted that “the volume therefore depends
on the configuration of the particles—unlike the conventional case
where the volume is set externally, and only the energy depends on
the configuration of the particles.” Thus, via its volume, each config-
uration has an entropy. This is analogous to the microscopic excess
entropy defined in Eq. (4). Likewise, the compactivity is analogous
to the systemic temperature. An important difference, though, is
that only jammed configurations were considered by Edwards and
coworkers, whereas we allow for all possible configurations.

Despite some initial skepticism, the Edwards approach to gran-
ular media turned out to be very useful.71 This gives rise to opti-
mism that the non-equilibrium isomorph formalism will also be
useful.

B. Physical aging
A glass is produced by continuously cooling a liquid below its

melting point until it falls out of metastable equilibrium and solid-
ifies.75 As pointed out by Simon almost 100 years ago,76 any glass
approaches very slowly the metastable equilibrium supercooled liq-
uid phase at the actual temperature. This process is referred to as
physical aging.64,77–80 In practice, physical aging of a glass prepared
from the liquid by slow cooling can only be observed by careful
long-time annealing experiments right below the glass transition
temperature.64,79,81

Based on a Brownian dynamics approach, Ref. 54 showed that
physical aging is controlled by Ts/T [Eq. (22)]; the same applies if
Nose–Hoover dynamics is used (Sec. III C). Physical aging differs

from the steady-state situations discussed in Sec. V because in phys-
ical aging, Ts changes continuously with time. In fact, Ts(t)→ T with
t →∞ as the system eventually equilibrates at the “annealing” tem-
perature T. In this case, the time evolution of Ts is itself determined
by the aging process. Isomorph invariance is predicted for anneal-
ing at different densities: if the starting conditions have the same Sex,
i.e., are on the same systemic isomorph, and if the annealing temper-
atures refer to the same equilibrium isomorph, the aging processes
are identical in reduced coordinates.54

C. Active matter
An intriguing area of research is the dynamics of active

matter such as bacteria or colloids propelled by chemical reac-
tions.82–84 Active matter consists of particles that absorb energy
from the environment and convert it into various kinds of per-
sistent motions. This leads to spectacular phenomena such as a
tendency for particles to accumulate at solid walls or the forma-
tion of bound states between purely repulsive objects. In contrast
to the cases considered above, active matter breaks time-reversal
invariance.

A simple model is the “run and tumble model” in which there is
persistent motion of particles over a certain time interval until they
suddenly change to a random new direction.82,83 This feature is cap-
tured qualitatively by adopting a standard Langevin equation with,
however, colored noise instead of the usual white noise of Brow-
nian dynamics.84,85 A systemic temperature may be introduced for
this active-matter model if the potential-energy function has hidden
scale invariance. It would be interesting to investigate isomorphs of
such a non-time-reversal-invariant system and, possibly, to connect
the systemic temperature to the effective temperature Teff of FD-
theorem violations that has also been discussed in connection with
active matter.86

VII. WHAT IS THE CORRECT ENERGY UNIT DEFINING
REDUCED QUANTITIES?

A reduced quantity is arrived at by making the quantity in ques-
tion dimensionless by multiplying by a proper combination of the
units of Eq. (2). The time unit is derived from the length and energy
units, which are more fundamental in the present context.

Both in and out of equilibrium, the length unit is the aver-
age nearest-neighbor distance between the particles. However, when
the system is not in equilibrium, two possible temperatures may be
used for defining the energy unit e0: T or Ts. The heat-bath tem-
perature T refers to the momentum degrees of freedom, while Ts
refers to the configurational degrees of freedom. Since the latter
are central in isomorph theory, an obvious question is whether one
should use as energy unit the systemic temperature instead of the
present kBT, i.e.,

e0 = kBTs. (46)

Doing so would provide a density-dependent energy unit, which can
also be used for a T = 0 glass. This would justify the use of the
function h(ρ) in Ref. 51 as the energy scale of the flow-property prob-
ability distributions for glasses (Sec. V B) because along a systemic
isomorph, one has Ts ∝ h(ρ) according to Eq. (35).
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Reference 52 discussed the possibility of using h(ρ) as energy
unit instead of kBT. It was noted that if this is done, the reduced
quantities along the two isomorphs studied are much closer to each
other than when using kBT as the energy unit. It was moreover
pointed out that while e0 = kBT implies that the time unit reflects
how long time it takes for free thermal-velocity motion to cover
the nearest-neighbor length l0, using instead e0 ∝ h(ρ) corresponds
better to the vibrational time scale of particles in a glass.

In equilibrium, Ts = T and the two possible energy units
coincide. Interestingly, along any systemic isomorph with dynamic
invariance, the condition Ts/T = Inv. implies that the reduced equa-
tions of motion are mathematically equivalent for the two possible
choices of energy unit.

VIII. SUMMARY
Isomorphs may be defined for R-simple systems that are

not in thermal equilibrium. “Systemic” isomorphs are curves of
constant excess entropy just as the original thermal-equilibrium
isomorphs but located in the systemic phase diagram defined
by density and systemic temperature. For equilibrium systems,
the systemic phase diagram reduces to the standard density–
temperature thermodynamic phase diagram, and the systemic
isomorphs reduce to equilibrium isomorphs. The condition for
invariant dynamics along a systemic isomorph is Ts/T = Inv. The
generalized isomorph theory rationalizes a number of previous
findings that were at the time not explained within a consistent
setting.

ACKNOWLEDGMENTS
In the preparing this paper, I have benefited greatly from

discussions with Kristine Niss, Lorenzo Costigliola, Nick Bailey,
Shibu Saw, and Thomas Schrøder. This work was supported by the
VILLUM Foundation’s Matter Grant (No. 16515).

REFERENCES
1T. B. Schrøder and J. C. Dyre, “Simplicity of condensed matter at its core: Generic
definition of a Roskilde-simple system,” J. Chem. Phys. 141, 204502 (2014).
2N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, “Pressure-
energy correlations in liquids. IV. “Isomorphs” in liquid phase diagrams,” J. Chem.
Phys. 131, 234504 (2009).
3J. C. Dyre, “Perspective: Excess-entropy scaling,” J. Chem. Phys. 149, 210901
(2018).
4N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, “Pressure-
energy correlations in liquids. II. Analysis and consequences,” J. Chem. Phys. 129,
184508 (2008).
5A. K. Bacher, T. B. Schrøder, and J. C. Dyre, “The EXP pair-potential system. II.
Fluid phase isomorphs,” J. Chem. Phys. 149, 114502 (2018).
6U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, “Strong pressure-
energy correlations in van der Waals liquids,” Phys. Rev. Lett. 100, 015701
(2008).
7N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, “Pressure-
energy correlations in liquids. I. Results from computer simulations,” J. Chem.
Phys. 129, 184507 (2008).
8T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, “Isomorphs in model molecular
liquids,” J. Phys. Chem. B 116, 1018–1034 (2012).
9E. N. C. Andrade, “The viscosity of liquids,” Nature 125, 582–584 (1930).
10E. N. C. Andrade, “A theory of the viscosity of liquids. Part I,” London,
Edinburgh, Dublin Philos. Mag. J. Sci. 17, 497–511 (1934).

11J. C. Dyre, “Simple liquids’ quasiuniversality and the hard-sphere paradigm,”
J. Phys.: Condens. Matter 28, 323001 (2016).
12O. Klein, “Om det osmotiska trycket hos en elektrolyt,” Medd. K. Vetenskap-
sakad. Nobelinst. 5, 1–9 (1919).
13W. G. Hoover, S. G. Gray, and K. W. Johnson, “Thermodynamic properties of
the fluid and solid phases for inverse power potentials,” J. Chem. Phys. 55, 1128–
1136 (1971).
14Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita, and A. Ueda, “Molecular dynam-
ics studies on the soft-core model,” Prog. Theor. Phys. 52, 1105–1123 (1974).
15Y. Rosenfeld, “Relation between the transport coefficients and the internal
entropy of simple systems,” Phys. Rev. A 15, 2545–2549 (1977).
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