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This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics
(DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating
hydrodynamics as the framework of the investigation, we focus on the collective transverse and lon-
gitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics
at relatively low temperatures very well when compared to simulation data; however, the theory pre-
dictions are, on the same length scale, less accurate for higher temperatures. The agreement with
hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynam-
ics are independent of the dissipative and random shear force contributions to the stress. For high
temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large
length scales and the relaxation is therefore governed by sound wave propagation and is athermal.
This contrasts the results at lower temperatures and small length scale, where the thermal process
is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying
hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures
for the transverse dynamics. Published by AIP Publishing. https://doi.org/10.1063/1.4986569

I. INTRODUCTION

The dissipative particle dynamics (DPD) method1,2 is
widely used to perform mesoscale computer simulations of,
e.g., polymer solutions,3 spinodal decomposition,4 fluid flows
in micro- and nanopores,5,6 and cell membrane damage,7 just
to name a few examples. A standard DPD simulation involves
a set of point particles interacting by three different forces: A
conservative force, a dissipative force, and a random force
in such a manner that momentum is conserved. The DPD
particle can be thought of as a collection of molecules mov-
ing in a coherent fashion.8 The forces are often tweaked to
mimic specific fluidic systems, e.g., the particles can be con-
nected with spring forces to simulate polymer solutions and
melts; see also the review by Moeendarbary et al.9 Impor-
tantly, the interparticle conservative force is weak and usu-
ally without a strong repulsive core; in fact, the conserva-
tive force is not necessary in order to obtain hydrodynamic
behavior.10,11

In the DPD model by Groot and Warren,12 the conserva-
tive force is linear with respect to the distance between the two
point masses. This model is simple and very appealing; how-
ever, it yields an unrealistic equation of state which is quadratic
in density.12 Also, the dissipative force depends only on the
position and velocity differences of the two interacting parti-
cles and neglects shear forces.13 Nevertheless, the parameter
space for this model is quite large and the physical interpre-
tation of the parameters is not always straightforward. For
example, the particle density can be chosen as a free parameter
for a given system, and from this choice, the conservative force
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parameter can be estimated using the compressibility.12 Inter-
estingly, this so-called adaptive parameter approach leads to a
decreasing viscosity for decreasing temperature,5 which char-
acterizes a gas.14 This gaseous behavior is also manifested by
a Schmidt number of order unity,12 where the Schmidt num-
ber is defined as the ratio between the kinematic viscosity
and the diffusion coefficient. Bocquet and Charlaix15 conjec-
tured that classical hydrodynamics is valid for wavevectors
k fulfilling k < kmax =

√
2πρ/η0τs, where ρ is the den-

sity, η0 is the shear viscosity, and τs is the relaxation time
given by the shear stress relaxation.16 From this criterion, one
can argue that in the low density limit (low Schmidt num-
ber), the classical hydrodynamic theory will break down even
at large length scales as the viscosity and relaxation time
are only functions of temperature in this limit, and one has
kmax ∝

√
ρ → 0 as ρ → 0. Note that Jiang et al.17 found

that DPD polymer model systems perform hydrodynamically
at Schmidt numbers in the order of unity. Also, Peters18 argues
that the Schmidt number is ill defined for coarse grained mod-
els, where the molecular self-diffusion coefficient is not readily
found.

The hydrodynamic properties for the DPD technique have
been thoroughly investigated in the past, see, for example,
Refs. 10 and 11. However, as the DPD model is widely used by
the simulation community5,19–21 at low Schmidt number, we
believe it is important to investigate the properties of the model
by Groot and Warren under conditions where the Schmidt
number varies from unity to higher values typically charac-
terizing liquids like the model Lennard-Jones liquid used in
classical molecular dynamics.

It has been noted by several authors10,22 that the energy is
not conserved in the standard DPD model, and that it cannot be
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applied to study systems characterized by a sustained temper-
ature gradient on the macroscopic time scales. However, the
model does feature fast energy relaxations and, as also con-
cluded by Marsh et al.,10 it can indeed be applied to investigate
these relaxations. We wish to include this here as it will pro-
vide a valuable insight into the underlying mechanisms of the
DPD method in general.

We base our investigation on Onsager’s regression
hypothesis, which states that the regression of microscopically
induced fluctuations in equilibrium follows the macroscopic
laws of small non-equilibrium disturbances,23 i.e., thermally
induced perturbations relax according to hydrodynamics. Typ-
ically, these (fast) relaxations do not refer to hydrodynamic
quantities like density and momentum directly, but instead to
the decay of the associated correlation functions,24 as pre-
dicted by the hydrodynamic theory. We derive these correlation
functions from basic fluctuating hydrodynamics theory as this
may not be known to the reader; also, we present it in a
slightly different form (albeit equivalent) from that of stan-
dard texts.25–27 To make the study manageable, we focus on
a limited part of the parameter space of the standard DPD
model.

II. THE HYDRODYNAMIC RELAXATION FUNCTIONS

In general, one can write the balance equation for any
hydrodynamic quantity per unit mass φ = φ (r, t) at position r
and time t as28

∂ρφ

∂t
= σφ − ∇Jφ − ∇ · (ρφu) , (1)

where u is the streaming velocity, σφ is the production term,
and Jφ is the flux of φ. In the caseσφ = 0, the quantity is locally
conserved. The hydrodynamic quantities we study here are the
mass density, ρ= ρ(r, t), the streaming velocity, u = u(r, t), and
the excess kinetic energy per unit mass, e = e(r, t); the latter
quantity is defined as the difference between the local and aver-
age kinetic energies per unit mass, me(r, t) = Ekin(r, t)− 3

2 kBT ,
where m is the particle mass. Based on the microscopic hydro-
dynamic operator formalism,16 one can derive the following
balance equations in the form of Eq. (1) in the absence of any
external driving forces:

∂ρ

∂t
= −∇ · Jm − ∇ · (ρu), (2a)

∂ρu
∂t
= −∇ · P − ∇ · (ρuu), (2b)

∂ρe
∂t
= σe − ∇ · Je − ∇ · (ρeu), (2c)

where Jm is the mass flux tensor due to density gradients, P
is the pressure tensor, and Je is the excess kinetic energy flux
tensor. Importantly, the excess kinetic energy per unit mass,
e(r, t), is not a conserved quantity; hence, a production term
σe appears in Eq. (2c). Furthermore, for the mass balance
equation, Eq. (2a), we have decomposed the mass flux into
two parts: one due to thermal motion, Jm, and one due to the
fluid advective motion, ρu.

The three quantities can be written as the sum of the con-
stant average part and the fluctuating part, i.e., ρ = ρav + δρ,
u = δu = (δux, δuy, δuz), and e = δe since the averages of the

streaming velocity and excess kinetic energy are zero. To first
order in the fluctuations, we have

ρu = (ρav + δρ)δu ≈ ρavδu and ρe ≈ ρavδe . (3)

Using the framework of fluctuating hydrodynamics,29 we
now introduce the linear constitutive relations with stochastic
forcing

Jm = −D∇ρ + δJm, (4a)

P =
(
peq − ηv(∇ · u)

)
I − 2η0

os
(∇u) + δP, (4b)

Je = −
λ

cV
∇e + δJe, (4c)

where D is the mass flux diffusivity coefficient, p is the normal
pressure, ηv and η0 are the bulk and shear viscosities, λ is
the heat conductivity, cV is the specific heat per unit mass at

constant volume, and
os

(∇u) is the trace-less symmetric part of
the strain rate tensor.

Equations (4b) and (4c) are just the constitutive relation
for a Newtonian fluid and Fourier’s law of conduction14 with
added stochastic forcing. However, as we cannot in general
ignore the cross-correlations effects on small time and length
scale, it is noted that D is not the self-diffusion coefficient.30

Since the mass density and excess kinetic energy are scalars,
that is of the same parity, both fluxes in Eqs. (4a) and (4c) can
depend on the gradients of ρ and e according to Courier’s
principle.28 Here we follow Alley and Alder25 and model
the cross coupling through the production term σe and the
pressure peq.

In equilibrium, the stochastic forcing term has a zero aver-
age29 and is uncorrelated with the hydrodynamic quantities,
e.g., 〈δJm(r, t)δu(r′, t ′)〉 = 0. Substituting Eqs. (3) and (4) into
Eq. (2), we arrive at the stochastic dynamics. To first order in
the fluctuations, this is

∂

∂t
δρ = D∇2δρ − ρav∇ · δu − ∇ · δJm, (5a)

ρav
∂

∂t
δu = −∇δpeq + (ηv + η0/3)∇(∇ · δu)

+ η0∇
2δu − ∇ · δP, (5b)

ρav
∂

∂t
δe = σe +

λ

cV
∇2δe − ∇ · δJe (5c)

since the advective terms are of second order. More advanced
stochastic descriptions have been developed in order to, for
example, include elastic properties of the fluid.31,32 For local
thermodynamic equilibrium, the pressure fluctuations can be
written as26

δp =

(
∂p
∂ρ

)
T
δρ +

(
∂p
∂T

)
ρ

δT =
1

ρav χT
δρ +

βV

cV
δe , (6)

where χT = −1/V (∂V/∂p)T is the isothermal compressibil-
ity, βV = (∂p/∂T )ρ is the thermal pressure coefficient, and
δe = cV δT. The DPD method both adds and removes energy in
a stochastic uncorrelated manner to and from the system. In this
classical treatment, we assume the characteristic time scales
associated with these stochastic processes are fast compared
to the time scales associated with changes in hydrodynamical
variables and are not modeled explicitly but are included in the



034503-3 Hansen, Greenfield, and Dyre J. Chem. Phys. 148, 034503 (2018)

dependency of the transport properties and thermodynamical
coefficients. Thus, the production term is given by Alley and
Alder25

σe =
T βV

ρav

∂δρ

∂t
=

T βV

ρav

(
D∇2δρ − ρav∇ · δu − ∇ · δJm

)
.

(7)
Defining the Fourier transform as

f̃ (k, t) =
∫ ∫ ∫ ∞

−∞

f (r, t) e−ik ·r dr (8)

and then substituting Eqs. (6) and (7) into Eq. (5) give, in
Fourier space,

∂

∂t
δ̃ ρ = −Dk2 δ̃ ρ − iρavk · δ̃u − ik · δ̃J

m
, (9a)

ρav
∂

∂t
δ̃u = −

ik
ρav χT

δ̃ ρ − (ηv + η0/3)k(k · δ̃u)

− η0k2 δ̃u −
iβV k

cV
δ̃e − ik · δ̃P, (9b)

ρav
∂

∂t
δ̃e = −

T βV Dk2

ρav
δ̃ ρ − iT βV k · δu

−
λk2

cV
δ̃e − ik ·

(
δ̃J

e
+ δ̃J

m)
. (9c)

If one makes a particularly simple choice for the wavevector,
then the dynamics can be decomposed into transverse (nor-
mal) and longitudinal (parallel) dynamics with respect to this
wavevector. For example, if we select k = (0, k, 0), then from
Eq. (9) the transverse dynamics are given by the streaming
velocity components δ̃ux and δ̃uz via

∂

∂t
δ̃ux = −ν0k2 δ̃ux −

ik
ρav

δ̃Pyx, (10a)

∂

∂t
δ̃uz = −ν0k2 δ̃uz −

ik
ρav

δ̃Pyz, (10b)

where ν0 = η0/ρav is the kinematic viscosity. We will use
both the dynamic viscosity, η0, and kinematic viscosity,
ν0, whenever one is more convenient than the other. As
expected, Eqs. (10a) and (10b) are identical with respect to the
dynamics and the transverse dynamics are independent of the
energy and density fluctuations. The longitudinal dynamics are
given by

∂

∂t
δ̃ ρ = −Dk2 δ̃ ρ − iρavk δ̃uy − ik δ̃J

m
y , (11a)

∂

∂t
δ̃uy = −

ik

ρ2
av χT

δ̃ ρ − νlk
2 δ̃uy −

ik βV

cV ρav
δ̃e −

ik
ρav

δ̃Pyy,

(11b)

∂

∂t
δ̃e = −

T βV Dk2

ρ2
av

δ̃ ρ −
iT βV k
ρav

δ̃uy − κk2 δ̃e

−
ik
ρav

(
δ̃J

e
y + δ̃J

m
y

)
, (11c)

where νl = (ηv + 4η0/3)/ρav is the longitudinal kinematic
viscosity and κ = λ/(cV ρav).

As mentioned above, one usually does not study the
fluctuating quantities directly but rather the associated cor-
relation functions. To this end, we define the equilibrium
time-correlation function between quantities A and B as

CAB(k, t) =
1
V
〈A(k, t)B(−k, 0)〉 , (12)

where V is the system volume. Thus, multiplying Eq. (10a)
with δ̃ux(−k, 0) and taking the ensemble average over initial
conditions lead to

∂C⊥uu

∂t
= −ν0k2C⊥uu (13)

for the transverse relaxation. Here C⊥uu = 〈δ̃ux(k, t)δ̃ux(−k, 0)〉/
V is the transverse velocity autocorrelation function, and we
have used that the stochastic forcing term is uncorrelated with
the fluctuating quantities. The solution to Eq. (13) is

C⊥uu(k, t) =
kBT
ρav

e−ν0k2t , (14)

where the initial value C⊥uu(k, 0) = kBT/ρav is found from
equipartition.14

From Eq. (11), one can form nine coupled correlation
functions for the longitudinal dynamics. For example, dynamic
equations for Cρρ, Cρu, and Cρe are formed by multiplying
Eq. (11a) with δ̃ ρ(−k, 0), δ̃u(−k, 0) and δ̃e(−k, 0), respec-
tively, and taking the ensemble average. In matrix notation,
using the definition in Eq. (12) yields the following coupled
linear differential equation system:

d
dt



Cρρ Cρu Cρe

Cuρ Cuu Cue

Ceρ Ceu Cee



= −



Dk2 iρavk 0

ik
ρ2

avχT
νlk2 ikβV

cVρav

TβV Dk2

ρ2
av

iTβV k
ρav

κk2





Cρρ Cρu Cρe

Cuρ Cuu Cue

Ceρ Ceu Cee



. (15)

The coefficient matrix is referred to as the hydrodynamic
matrix.26 By performing the matrix multiplication in Eq. (15),
it is seen that the longitudinal dynamics can be divided into
three sets of co-dependent correlation functions, for exam-
ple, Ċρρ = A1(Cρρ, Cuρ), Ċuρ = A2(Cρρ, Cuρ, Ceρ), and
Ċeρ = A3(Cρρ, Cuρ, Ceρ), where A1, A2, and A3 are linear
functions represented by the hydrodynamic matrix. The three
sets are written as triplets

{Cρρ, Cuρ, Ceρ}, {Cuu, Cρu, Ceu}, and {Cee, Cρe, Cue} (16)

and each set of coupled differential equations can be solved
from the hydrodynamic matrix. Up to second order in the
wavevector, the solution for any of the nine correlation
functions has the form

CAB(k, t) = K1e−DT k2t + e−Γk2t [K2 cos(cskt) + iK3 sin(cskt)] ,
(17)

where

DT =
κ

χT ρavc2
s

and Γ =
1
2

[
κ

χT ρavc2
s

+ (D + νl + κ)

]
(18)

are the thermal diffusivity and sound attenuation, respectively,
and cs defined as

c2
s =

β2
V χT T − ρavcV

χT cV ρ
2
av

(19)
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is the adiabatic speed of sound. The three integrating factors
K1, K2, and K3 are found from the initial conditions and are,
in fact, not independent. Now, CAB is either a real or purely
imaginary valued function, which means that if K3 = 0, then
in general K2 , 0 and K1 , 0 while if K3 , 0 then K2 = K1

= 0. In the case where CAB is real, the normalized correlation
function is written in the form

CN
AB(k, t) = KABe−DT k2t + (1 − KAB)e−Γk2t cos(cskt) . (20)

Thus, the longitudinal dynamics are governed by three funda-
mental processes with frequencies DT k2, Γk2, and csk. From
Eq. (18), one sees that DT pertains to the thermal processes
and that the sound attenuation Γ dampens the wave propaga-
tion with speed cs; the magnitude of this damping is governed
by all three diffusive processes, i.e., by D, νl, and κ. Equa-
tions (14) and (20) form the framework for this hydrodynamics
study.

III. SIMULATION METHODOLOGY

The standard DPD model by Groot and Warren is com-
posed of a single type of point particle. The particle position,
ri, and momentum, pi, follow Newton’s equation of motion,

dri

dt
=

pi

m
, (21a)

dpi

dt
= Fi . (21b)

The total force, Fi, is composed of the conservative force,
FC

i , due to the interaction between the particles, a ran-
dom force, FR

i , simulating the coarse graining of many
degrees of freedom, and a dissipative force, FD

i , removing
the viscous heating generated from the random force. Thus
Fi = FC

i + FR
i + FD

i . As is common practice, we use reduced
units such that the characteristic mass and length scales are set
to unity. Also, temperature, T, is in units of kB/ε , where ε is the
characteristic energy scale. In reduced units the conservative
force is

FC
ij = aij(1 − rij)r̂ij , (22)

where aij is a parameter that quantifies the repulsion between
particles i and j, rij is the vector of separation ri � rj,
rij = |rij |, r̂ij = rij/rij. Here we use aij = 25 and the inter-
actions are ignored when rij > 1 = rc. Following Groot and
Warren,12 the random and dissipative forces are

FR
ij =

σw(rij)ζij
√
∆t

r̂ij and FD
ij = −

(σw(rij))2

2mT

[
r̂ij · (vi − vj)

]
r̂ij ,

(23)
where σ is the random force amplitude, ζ ij is a uniformly dis-
tributed random number with zero mean and unit variance,
w(rij) is a weighing function given by w(rij) = 1 � rij, vi is the
velocity of particle i, and ∆t = 0.02 is the time step used in
the integrator. In all simulations, the amplitude σ is set to 3.0
except for one simulation run where the effect of this parame-
ter is discussed. The equations of motion are integrated using
the standard velocity Verlet algorithm by Groot and Warren.12

The system size is 5000 particles at density ρav = 3.0, and
temperatures (in reduced units) in the range 0.1 ≤ T ≤ 1.0 are
simulated.

Español and Serrano33 studied the DPD model
in terms of dimensionless parameters, namely, friction,
Ω=σ2rc/(6vT kBTm) where vT =

√
kBT/m, an overlap param-

eter, s = rcρ
1/3, and system length scale, µ = Lbox/rc. For

relatively large friction and overlap, the particle dynamics are
affected by the surrounding fluid, that is, one would expect
strong collective hydrodynamics. On the other hand, for low
friction and small overlap, the dynamics are characterized
by single particle properties described by what Español and
Serrano call kinetic theory.33 In the simulations carried out
here, we only vary the temperature giving 1.5 ≤ Ω ≤ 14.7,
s ≈ 1.4, and µ ≈ 6.9, and we span both the kinetic (high T ) and
hydrodynamic regime (low T ).

During the simulations, all ten correlation functions are
evaluated from the microscopic definition of the hydrodynamic
variables, which to first order in fluctuations are

ρ̃(k, t) =
∑

i

me−ik ·ri(t), (24a)

δ̃u(k, t) =
1
ρav

∑
i

mvie
−ik ·ri(t), (24b)

δ̃e(k, t) =
1
ρav



∑
i

1
2

mv2
i e−ik ·ri(t) −

3
2

kBT


. (24c)

The viscosity at zero wavevector and frequency is also evalu-
ated. Recently, based on generic projection methods,34,35 Jung
and Schmid36 argued that the correct Green-Kubo integral
is

ηII
0 =

V
3kBT



1
2
∆t

∑
αβ

〈PR
αβ(0)2〉

+
∫ ∞

0

∑
αβ

〈
(PC
αβ(0) − PD

αβ(0))(PC
αβ(t) + PD

αβ(t))
〉

dt


,

(25)

where the double index αβ runs over the xy, xz, and yz
components of the pressure tensor; superscript II on η dis-
tinguishes it from a viscosity defined by Groot and Warren12

and used below. PC
αβ are the three off-diagonal elements of the

Irving-Kirkwood pressure tensor37

VPC(t) =
∑

i

pipi

mi
+

∑
i

∑
j>i

rijFC
ij , (26)

and PD
αβ and PR

αβ are the dissipative and random off-diagonal
components of the tensors

VPD(t) =
∑

i

∑
j>i

rijFD
ij and VPR(t) =

∑
i

∑
j>i

rijFR
ij . (27)

Other authors have evaluated the viscosity based on the Irving-
Kirkwood pressure only

ηI
0 =

V
3kBT

∫ ∞
0

〈
PC
αβ(0)PC

αβ(t)
〉

dt . (28)

We will compare the predictions from the hydrodynamic the-
ory using both definitions, Eqs. (25) and (28). The complex vis-
cosity is calculated from the Irving-Kirkwood pressure tensor,
i.e.,
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FIG. 1. (a) Radial distribution function
for the DPD model at T = 1.00, 0.40, and
0.10. (b) Corresponding mean-square
displacements (symbols). The dashed
lines are 〈∆r(t)2〉 = 6Dst, where the
self-diffusion coefficient Ds (calculated
from the velocity autocorrelation func-
tion) is found in Table I.

η∗(ω) =
V

3kBT

∫ ∞
0

∑
αβ

〈PC
αβ(t)PC

αβ(0)〉 e−iωt dt . (29)

Finally, the self-diffusivity coefficient, Ds, is evaluated from
the Green-Kubo integral of the single particle velocity auto-
correlation function. We find that this leads to lower statistical
uncertainties compared to evaluating Ds using the particle
mean-square displacements.

In a few cases, the dynamics of the DPD model are
compared to a liquid-phase Lennard-Jones system at the state-
point (ρ, T ) = (0.85, 1.121) in units of σ3 and kB/ε . The
Lennard-Jones particles interact through the standard shifted
12-6 potential38 using a cutoff distance at r/σ = 2.5. The sys-
tem size is N = 1000, and the equations of motion are integrated
using the leap-frog method.39 To control the temperature, the
Nose-Hoover thermostat40,41 is used. The dynamic properties
are calculated as explained above.

IV. RESULTS AND DISCUSSION

It is informative to study the fluid structure for the different
state points investigated. Figure 1(a) plots the radial distribu-
tion functions for three state points, namely, T = 1.00, 0.40, and
0.10; recall the density is always ρav = 3.0. The structure can be
compared to the corresponding transport properties in Table I.
First, one sees that the Schmidt number Sc = ν0/Ds is around
1 for T > 0.6 and that the viscosity decreases for decreasing
temperature in the range 0.8 ≤ T ≤ 1.0, which is the well-
known gas-like behavior14 and also reported by Boromand
et al.5 In agreement with this, the radial distribution function
shows very little fluid structure in this temperature region.

At the lowest temperature T = 0.10, there is a clear fluid
structure and the Schmidt number is of order 102. There are no

indications that the system is crystalline for this temperature;
for example, the mean square displacement does not feature
any long time plateau, indicating no caging of the particles,
and a fluidic diffusive behavior is observed after a short time,
see Fig. 1(b). For reference, the Lennard-Jones liquid state
point is characterized by Sc ≈ 50. It is interesting that for
T = 0.40, a clear fluid structure is also absent in agreement
with a Schmidt number of unity and a viscosity of ηI

0 = 0.778
± 0.004 and ηII

0 = 1.00 ± 0.01, close to that of T = 1.0.
To study the mechanical properties further, we evaluate

the shear modulus G∗ = G′ + iG′′ = iωη∗; the loss modulus is
plotted in Fig. 2 for T = 1.00, 0.20 and 0.10. Data are compared
to a single-element Maxwell model

G∗(ω) =
iωG0

iω + τ−1
M

, (30)

where the Maxwell relaxation time, τM , is found from the peak
frequency in the data and using amplitude G0 as fitting parame-
ter. The instantaneous shear modulus (infinite-frequency com-
plex shear modulus), G∞, can then be found from the relation
η0/τM = G∞. Both τM and G∞ are listed in Table I. From
Fig. 2(a), it is seen that for T = 1.00 and ω < 20, the DPD
model is Maxwellian, or equivalently, that the shear relax-
ation follows a simple exponential decay for t > π/10. For
T = 0.10, the single-element Maxwell model breaks down at
around ω = 0.4. As the temperature decreases, τM increases;
thus, the shear relaxation slows down as expected. We also test
for time-temperature superposition (TTS) in Fig. 2(b). Here
the frequency is scaled by a factor aT = η0(T )/η0(T ref) and
the magnitude of G∗ by bT = T ref/T,42 where the reference
temperature is T ref = 1.00. TTS applies for sufficiently low
frequencies but fails around ω ≈ 1/τM . The shift factor aT

TABLE I. Table of the viscosities, ηI
0 and ηII

0 , the self-diffusivity, Ds, the Schmidt number, Sc, the Maxwell
relaxation time, τM , and instantaneous shear modulus, G∞. The two values for the Schmidt number are for
ηI

0/(ρDs) and ηII
0 /(ρDs). The uncertainties associated with the viscosities are the standard deviation of the mean

calculated from five independent simulations. There are no statistical uncertainty on the digits for Ds and Sc. G∞
is calculated from the sample averages of ηI

0 and τM with one significant decimal place.

T 1.00 0.80 0.60 0.40 0.20 0.10

ηI
0 0.715 ± 0.006 0.661 ± 0.008 0.673 ± 0.004 0.778 ± 0.004 1.425 ± 0.008 4.13 ± 0.03
ηII

0 0.859 ± 0.009 0.82 ± 0.01 0.848 ± 0.005 1.00 ± 0.01 1.80 ± 0.02 4.83 ± 0.07
Ds 0.300 0.230 0.159 0.089 0.028 0.006
Sc 1,1 1,1 1,2 3,4 17,21 229,268
τM 0.075 ± 0.003 0.075 ± 0.002 0.082 ± 0.003 0.105 ± 0.004 0.20 ± 0.01 0.33 ± 0.01
G∞ 9.5 8.8 8.2 7.4 7.1 12.5
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FIG. 2. (a) The loss modulus as a function of frequency for T = 1.00, 0.20, and 0.10. Symbols are transformed simulation results using G∗ = iωη∗, where
η∗ is defined in Eq. (29). Lines are fits to the Maxwell model, Eq. (30), for T = 1.00 and 0.20. The arrow indicates that the inverse Maxwell time (G′′ peak
frequency) decreases for decreasing temperature. (b) Test of time-temperature superposition using the magnitude of the shear modulus. Shift factors are defined as
aT = η0(T )/η0(T ref) and bT = T ref/T, where T ref = 1.00.

FIG. 3. (a) The transverse velocity
autocorrelation function, C⊥uu, in the
wavevector interval 0.53 ≤ k ≤ 1.59
for T = 1.00. Symbols connected with
lines are simulation results, and lines
show predictions from Eq. (14) using
ηI

0 = 0.715 (full line) and ηII
0 = 0.859

(dashed line). The statistical uncertainty
on the data is of the size of the symbols.
(b) Same as a, but for T = 0.40.

increases by a factor of ∼6 as temperature decreases by an
order of magnitude.

Next, we turn to the non-zero wavevector regime. We plot
in Figs. 3(a) and 3(b) the transverse velocity autocorrelation
for different wavevectors at temperatures T = 1.00 and 0.40.
It is clearly seen that the hydrodynamical theory, Eq. (14),
predicts the transverse relaxation dynamics very well in the
low vector regime using the Irving-Kirkwood definition of the
pressure tensor. Applying the Jung-Schmid definition gives too
fast a relaxation, which indicates that this particular dynami-
cal mode is not dependent on the random and dissipative shear
forces. More quantitatively, the theory predicts the half-life as
t1/2 = ln(2)/(ν0k2), i.e., for T = 0.4 we have t1/2 = 9.5 using
ηI

0 = 0.78 and t1/2 = 7.4, using ηII
0 = 1.00. This can be com-

pared to the simulation result t1/2 = 9.5. For very short times,
the theory fails to predict the relaxation; this is to be expected
as the viscosity is in general both frequency and wavevec-
tor dependent; hence, for sufficiently short times, the time
dependence of the viscosity is important.

Interestingly, the agreement is less satisfactory for T = 1.0;
here the Irving-Kirkwood definition yields t1/2 = 10.4 versus
the simulation result t1/2 = 11.2. In Fig. 4, we plot the mean
square deviation

Θ(k, T ) =
1

Ns

∑
i

*
,

ρav

kBT
C⊥uu(k, ti) −

C⊥uu,k,ti

C⊥uu,k,0

+
-

2

, (31)

where C⊥uu(k, ti) is the predictions from the theory and C⊥uu,k,ti
simulation data. To avoid this parameter being affected by the
large noise-to-signal ratio at very long times, we only sum
over the N s times with data points C⊥uu(k, t)/C⊥uu(k, 0) ≥ 0.1.

Clearly, the minimum deviation is found within the tempera-
ture region 0.3 ≤ T ≤ 0.7. In this region, the Schmidt number
is of the order of unity; hence, we here reach the same conclu-
sion as Jiang et al.17 For higher temperatures, the agreement
is not as satisfactory; here we approach the kinetic regime as
defined by Español and Serrano,33 that is, low friction and
overlap parameters mentioned above. For low temperatures,
one observes a quite large deviation, especially pronounced
for larger wavevectors. This, we argue, is due to the large char-
acteristic frequency, ω = ν0k2, which is outside the classical
hydrodynamic regime. For T = 0.1, this hydrodynamic regime
is never reached because of the limitations on the wavevector
kmin = 2π/Lbox.

Fourier-Laplace transformation of Eq. (14) leads to

Ĉ⊥uu(k,ω) =
kBT
ρav

∫ ∞
0

e−ν0k2te−iωtdt =
kBT
ρ

1

ν0k2 + iω
, (32)

FIG. 4. Normalized mean square deviation Θ as a function of temperature
and for different wavevectors. Lines serve as a guide to the eye.
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FIG. 5. (a) Dispersion relations for
ωpeak for temperatures T = 1.00 and
T = 0.40. The lines are hydrodynamic
predictions; the viscosity is given by the
slope. (b) Viscosity kernels for T = 1.00,
0.40, and 0.20.

which gives a peak in the imaginary part of the spectrum at
ωpeak = ν0k2. This peak frequency found from the simulations
is plotted in Fig. 5(a) for T = 1.00 and T = 0.40 together with the
hydrodynamic predictions. For low wavevectors, the peak fre-
quency follows the predictions:ωpeak is proportional to k2 and
the relaxation is governed by the diffusion of momentum. The
prediction fails for larger wavevectors; at lower temperature,
the deviation is significant for relatively lower wavevectors
compared to high temperature. Again, we attribute this to the
large characteristic frequency at low temperature and large
wavevector. The frequency and wavevector dependent shear
viscosity can be defined by re-arranging Eq. (32),

η̂(k,ω) =
kBT − iωρĈ⊥uu(k,ω)

k2Ĉ⊥uu(k,ω)
. (33)

This result can also be derived from first principles by includ-
ing the position and time dependence of the transport coef-
ficient in Eqs. (4). In the zero frequency limit, we have the
viscosity kernel η̃(k) = kBT/k2Ĉ⊥uu(k, 0). Figure 5(b) shows
this viscosity kernel at zero frequency for T = 1.00, 0.40, and
T = 0.20. The zero wavevector viscosity is also indicated using
ηI

0 from Table I. It is interesting to see that for k less than
unity, the wavevector-dependent viscosity reaches η0, i.e., the
local Newtonian law of viscosity holds for k < 1.0. This is
observed (in appropriate reduced units) for many different flu-
ids.16 We also note that Ripoll et al.11 studied the kernel for
zero conservative force.

Rather than approaching the deviation between theory
and simulation through wavevector dependent transport coef-
ficients, one can generalize the stochastic forcing and assume

δJm, δP, and δJe to be correlated with hydrodynamic quanti-
ties. In this case, the transverse dynamics are governed by the
equation

∂C⊥uu

∂t
= −ν0k2C⊥uu + ε(k, t), (34)

where

ε(k, t) = −
ik
ρavV

〈δ̃Pyx(k, t)δ̃ux(−k, 0)〉 , 0. (35)

Applying a Fourier-Laplace transform gives the correlation
between forcing and the transverse velocity in terms of
wavevector and frequency as

ε̂(k,ω) = (iω + ν0k2)Ĉ⊥uu(k,ω) − C⊥uu(k, 0) . (36)

Because the theoretical predictions are relatively large for
higher temperatures, the contribution from ε is larger for all
wavevectors compared to the intermediate temperatures.

We now turn to the longitudinal relaxation dynamics and
focus first on the density autocorrelation function, Cρρ. It is
worth noting that this is related to the coherent intermedi-
ate scattering function, F(k, t), by Cρρ(k, t) = ρavF(k, t).
The density autocorrelation function is a real-valued function
and, hence, it relaxes according to Eq. (20); it is plotted in
Fig. 6(a) for T = 1.00 at wavevectors k = 0.53, 2.12, and 5.30.
The dashed line is the best fit of Eq. (20) to data using Kρρ,
DT , Γ, and cs as fitting parameters. The damped oscillations
predicted from hydrodynamics are evident, indicating sound
waves that are dampened by the sound attenuation coefficient,
Γ. The existence of the thermal process is less clear. To study

FIG. 6. (a) The density autocorrelation function for wavevectors k = 0.53, 2.12, and 5.30 at T = 1.00. Symbols are the simulation results and dashed lines
are the best fit of Eq. (20) to data. (b) and (c) Spectra of the density autocorrelation function for k = 0.53 and k = 5.3, respectively, at T = 1.00. Symbols are
Fourier-Laplace transformed data points. The dashed lines are the Rayleigh and Brillouin terms, Eq. (37); in (b), these contributions are multiplied by a factor
10 for clarity. The shaded areas, (c), indicate the Rayleigh and Brillouin integral regions.
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FIG. 7. (a) Dispersion relation for γ = IR/2IB + 1 for different temperatures.
(b) The corresponding dispersion relation for the peak frequency ωpeak; the
hydrodynamic prediction is ωpeak = csky.

this in more detail, we investigate the corresponding spectra.
The Fourier-Laplace transform of Eq. (20) is

ĈN
ρρ(k,ω) =

Kρρ
DT k2 + iω

−
(1 − Kρρ)(iω − Γk2)

(csk)2 + (iω − Γk2)2
. (37)

Again, note the two different contributions to the relaxation.
The real part of ĈN

ρρ is symmetric aboutω = 0 and we therefore
only discuss the behavior for ω ≥ 0. The first term relates to
the thermal process and gives rise to the Rayleigh peak at ω
= 0; this process is only present at low frequencies and the
half-width of the Rayleigh peak is DT k2. The second term has
a peak at frequency ωpeak = csk; the maximum is identified as
the Brillouin peak and has half width 2Γk2. Inspired by Hansen
and McDonald,26 the peaks and their widths are illustrated in
Fig. 6(c). Figures 6(b) and 6(c) show the real part of the spec-
trum of the density autocorrelation function for wavevectors
k = 0.53 and k = 5.30, the highest wavevector studied. Using
the fitted values obtained in Fig. 6(a), we plot the predicted
spectra together with the transformed data. The agreement
is not perfect as the local minimum predicted by the theory
(at ω ≈ 4 for k = 5.3) is not found in the spectrum of the
data. Fitting to Eq. (37) did not improve this. For T = 1.0 and
relatively small wavevectors, Fig. 6(b), the thermal process
is almost completely absent and the relaxation is athermal.
However, for large wavevector, Fig. 6(c), the process is indeed
observed in the spectrum.

The ratio of the two processes is quantified from the
Landau-Placzek ratio,43 that is, the ratio between the Rayleigh

and Brillouin integral regions, or intensities, IR/2IB = γ � 1,
where γ itself is the ratio between the heat capacities at con-
stant pressure and volume, γ = CP/Cv . The integral regions
are also illustrated in Fig. 6(c). In Fig. 7(a), we plot the disper-
sion relation for γ for different temperatures. It is clear that the
thermal process intensity increases as we decrease the temper-
ature and wavelength. For reference, the Lennard-Jones liquid
features 1.6 ≤ γ ≤ 2.6 for 0.46 ≤ k ≤ 5.9, see also Bryk et al.44

In this region, the Lennard-Jones system also shows a clear de
Gennes narrowing;26 we have not observed this narrowing for
the wavevectors and temperatures studied here. From Fig. 6(c),
it is seen that the frequencies of two processes overlap, indicat-
ing that the processes are coupled; this coupling is only present
on relatively small length scales. That is, for typical simulation
setups, these two processes are decoupled and, furthermore,
the thermal process only accounts for a small fraction of the
hydrodynamic relaxation. However, for T = 0.10, the coupling
is relatively large even on longer length scales and may affect
the response considerably.

The dispersion relation for the Brillouin peak frequency,
ωpeak, is plotted in Fig. 7(b); it is seen that the oscillatory
frequencies are roughly the same for the different tempera-
tures at sufficiently small wavevector, which means that the
speed of sound is to a good approximation independent of
temperature on these length scales. For larger wavevectors, the
discrepancy between T = 0.10 and T > 0.10 is pronounced;
the underlying mechanical reason for this is not well known,
but likely due to the different local liquid structure on these
small scales, see, for example, Ref. 45, but also the coupling
of the longitudinal processes can be important. It is worth not-
ing that the maxima seen in Fig. 7(b) are also observed in
the Lennard-Jones liquid. From the simulation data, we can-
not conclude if the DPD model features positive or negative
dispersion.44,45

In Fig. 8(a), we plot the density-density, density-energy,
and energy-energy correlation functions at T = 0.10 for two
different wavevectors. It is seen that these three different
correlation functions have the same characteristics as dis-
cussed above, in agreement with the hydrodynamic predic-
tions. That is, the standard DPD system includes the cross
coupling between the longitudinal quantities hydrodynami-
cally, at least qualitatively. As mentioned above, the speed
of sound cs, sound attenuation Γ, and thermal diffusion coef-
ficient DT entering the hydrodynamic relaxation functions
depend on the DPD parameters. To show this, we plot the

FIG. 8. (a) ĈN
ρρ , ĈN

eρ , and ĈN
ee for wavevectors k = 0.53 and k = 1.59. Notice that σ = 3.0. (b) Corresponding ĈN

ρρ for σ = 6.0. In both (a) and (b), T = 0.10.
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density-density correlation function in Fig. 8(b) for σ = 6.0
and T = 0.10 for different wavevectors. These results can be
compared with Fig. 8(a). Recall that increasing the random
force amplitude and keeping all other parameters fixed corre-
spond to increasing the dimensionless friction coefficient Ω,
that is, increasing the interactions with the surrounding liq-
uid. One can clearly observe that the Rayleigh integral region
significantly increases relative to that of the Brillouin integral
region. Also, the Brillouin peak is shifted to the right as the
density waves propagate with higher speeds as a result of the
increased DPD-particle interactions.

V. SUMMARY AND CONCLUSIONS

In this paper, the equilibrium relaxations of the standard
dissipative particle dynamics model proposed by Groot and
Warren12 were investigated. First, the well-known results that
the structure and dynamics at high temperatures (T ≥ 0.8)
resemble those of a gas were recaptured; this region in phase
space is accordingly denoted as the kinetic regime.33 At lower
temperatures, the viscosity increases with decreasing temper-
ature and the Schmidt number approaches that of the model
Lennard-Jones liquid. The DPD model features a single-
element Maxwellian shear modulus relaxation behavior for
sufficiently small frequencies that depends on the tempera-
ture; the lower the temperature, the smaller the frequencies
are required to observe Maxwellian behavior. Also, the time-
temperature superposition principle is applicable in the low
frequency regime.

For nonzero wavevectors, the hydrodynamic prediction
for the transverse velocity autocorrelation function is tested
using the Jung-Schmid and the Irving-Kirkwood definitions
of the viscosity; the former includes the random and dis-
sipative shear force contributions, whereas the latter only
includes the conservative and kinetic contributions. Using
the Irving-Kirkwood viscosity, the hydrodynamic predictions
are in excellent agreement with simulations results for tem-
peratures 0.4 ≤ T ≤ 0.7 and ky ≤ 2.12. Importantly, using
the Jung-Schmid viscosity overestimates the relaxation, indi-
cating that the transverse relaxation dynamics are indepen-
dent of the dissipative and random shear forces. Also, for
higher temperatures, the agreement is less satisfactory for
a given wavevector, in accordance with the Bocquet-Chaix
criterion.

A qualitative investigation into the longitudinal dynamics
was also carried out. For the high temperature regime (T ≥ 0.8),
the spectrum for the density autocorrelation function at low
wavevectors is characterized by a single sharp Brillouin peak.
This indicates that the longitudinal relaxation is athermal and
dominated by propagating damped density waves. This mech-
anism is very different compared to a simple liquid, in which
the thermal diffusion process dominates at low wavevector. In
the low temperature range, the Rayleigh peak is more promi-
nent: a fingerprint of the thermal diffusion process. Dispersion
relations for the Landau-Placzek ratio show that the thermal
process intensity increases compared to the wave propagation
process as the length scale decreases; this is true for all tem-
peratures and wavevectors studied and also the case for the
Lennard-Jones liquid, even though the Landau-Placzek ratio

is larger here. For the supercritical fluid Lennard-Jones model,
there is a small increase in the speed-of-sound with respect to
temperature;44 however, for the DPD model, this is constant
with respect to temperature for k < 2. Finally, the DPD model
features the cross couplings predicted by the theory, at least
qualitatively.

In conclusion, the thermal fluctuations in the standard
coarse grained DPD model by Groot and Warren12 preserve, at
least qualitatively, the underlying mechanical processes pre-
dicted by the classical hydrodynamic theory. Therefore, the
model can be used to study fluctuating hydrodynamics as
stated by Español and Warren.13 However, we suggest that one
chooses parameter settings where the system is away from the
kinetic (or gaseous) regime.
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22P. Español, “Hydrodynamics from dissipative particle dynamics,” Phys.
Rev. E. 52, 1734 (1995).

23L. Onsager, “Reciprocal relations in irreversible processes. I,” Phys. Rev.
37, 405 (1931).

24L. P. Kadanoff and P. C. Martin, “Hydrodynamic equations and correlation
functions,” Ann. Phys. 24, 419 (1963).

25W. E. Alley and B. J. Alder, “Generalized transport coefficients for hard
spheres,” Phys. Rev. A 27, 3158 (1983).

26J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press,
Amsterdam, 2006).

27J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover Publication, New
York, 1991).

28S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover
Publications, 1984).
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40S. Nosé, “A molecular dynamics method for simulation in the canonical
ensemble,” Mol. Phys. 52, 255–268 (1984).

41W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distribu-
tions,” Phys. Rev. A 31, 1695–1697 (1985).

42J. D. Ferry, Viscoelastic Properties of Polymers (Wiley & Sons, Inc., New
York, 1980).

43H. Z. Cummins and Z. Herman, “Rayleigh and Brillouin scattering in
liquids: The Landau—Placzek ratio,” J. Chem. Phys. 44, 2785 (1966).

44T. Bryk, I. Mryglod, T. Scopigno, G. Ruocco, F. Gorelli, and M. Santoro,
“Collective excitations in supercritical fluids: Analytical and molecular
dynamics study of ‘positive’ and ‘negative’ dispersion,” J. Chem. Phys.
133, 024502 (2010).

45K. Trachenko and V. V. Brazhkin, “Collective modes and thermodynamics
of the liquid state,” Rep. Prog. Phys. 79, 016502 (2016).

https://doi.org/10.1209/epl/i2004-10010-4
https://doi.org/10.1063/1.2018635
https://doi.org/10.1063/1.1883163
https://doi.org/10.1063/1.3134044
https://doi.org/10.1103/physreve.52.1734
https://doi.org/10.1103/physreve.52.1734
https://doi.org/10.1103/physrev.37.405
https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1103/physreva.27.3158
https://doi.org/10.1021/j100118a038
https://doi.org/10.1137/15m1019088
https://doi.org/10.1137/15m1019088
https://doi.org/10.1137/15m1026390
https://doi.org/10.1103/physreve.59.6340
https://doi.org/10.1098/rsta.2001.0935
https://doi.org/10.1209/epl/i2005-10384-7
https://doi.org/10.1063/1.4950760
https://doi.org/10.1063/1.1747782
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1080/00268978400101201
https://doi.org/10.1103/physreva.31.1695
https://doi.org/10.1063/1.1727126
https://doi.org/10.1063/1.3442412
https://doi.org/10.1088/0034-4885/79/1/016502

