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This paper investigates the relation between the density-scaling exponent γ and the virial
potential-energy correlation coefficient R at several thermodynamic state points in three dimen-
sions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the
standard n = 6 LJ system in two, three, and four dimensions. The state points studied include
many low-density states at which the virial potential-energy correlations are not strong. For these
state points we find the roughly linear relation γ ∼= 3nR/d in d dimensions. This result is discussed
in light of the approximate “extended inverse power law” description of generalized LJ potentials
[N. P. Bailey et al., J. Chem. Phys. 129, 184508 (2008)]. In the plot of γ versus R there is in all
cases a transition around R ≈ 0.9, above which γ starts to decrease as R approaches unity. This
is consistent with the fact that γ → 2n/d for R → 1, a limit that is approached at high densities
and/or temperatures at which the repulsive r−2n term dominates the physics.
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I. INTRODUCTION

In the past decade a class of systems has been identified that is well described by the isomorph theory [1–8],
sometimes referred to as R (Roskilde) simple systems [9–18]. This class is believed to include most van der Waals
bonded and metallic liquids and solids, as well as most weakly dipolar or ionic systems. The class, on the other hand,
does not include systems with strong directional bonds like hydrogen or covalently bonded systems [8].

To determine whether the isomorph theory holds for a given system one calculates the strength of the virial
potential-energy correlations in NV T simulations, i.e., in the canonical ensemble [1, 2]. Isomorphs are curves of
invariant structure and dynamics in the thermodynamic phase diagram, see Sec. II A. A system has isomorphs if and
only if it has strong virial potential-energy correlations [4]. Virial potential-energy correlations are quantified by the
state-point dependent Pearson correlation coefficient R defined as

R (ρ, T ) =
〈∆W∆U〉√

〈(∆W )
2〉〈(∆U)

2〉
. (1)

In Eq. (1) ρ is the (number) density (ρ = N/V with N particles in volume V ), T is the temperature, W and U
are the virial and potential energy, the brackets denote NV T averages, and ∆ is the instantaneous deviation from
equilibrium.

The isomorph theory is exact only for systems with a potential that is a constant plus an Euler-homogeneous
function, in which case the correlation coefficient R in Eq. (1) is unity for all ρ and T [4]. An example is the inverse-
power-law (IPL) pair-potential systems. For non-Euler-homogeneous potentials, which includes all realistic systems,
the quantity R is less than unity. In that case the applicability of the isomorph theory is restricted to a certain region
of the phase diagram, usually the condensed-phase region encompassing the solid and “ordinary” liquid phase.

A system is defined to be R simple whenever R > 0.9 [1], because this ensures that isomorphs exist to a good
approximation [4]. The R = 0.9 threshold is somewhat arbitrary, however. The present paper investigates what
happens when R falls below the threshold. From the isomorph theory there is little help, because it generally breaks
down when correlations are no longer strong, i.e., when the correlation coefficient goes significantly below 0.9 [2, 4, 7].
In 2014, however, an interesting paper appeared by Prasad and Chakravarty [13] establishing that Rosenfeld’s excess
entropy scaling as well as density-scaling [19], which may both be derived from the isomorph theory [4], need not
break down even if the virial potential-energy correlations are weak. Reference 13 studied the transition to simple
liquid behavior in computer simulations of modified water models. We have taken inspiration from this work to
systematically study the region of phase space where virial potential-energy correlations are not strong, but here for a
class of models that – in contrast to water models – do have sizable regions of strong correlations in the thermodynamic
phase diagram. This is done by studying Lennard-Jones type systems at lower densities than have previously been in
focus.

This paper presents a study of the LJ(2n, n) class of potentials defined as single-component systems with LJ-type
radially symmetric pair potentials with a repulsive term proportional to r−2n and an attractive term proportional to
r−n (r is the interparticle distance). Results are presented for the cases n = 4, 9, 12, 18 in three dimensions, as well
as for the standard LJ potential (n = 6) in two, three, and four spatial dimensions (Sec. III). Before doing this the
isomorph theory is briefly reviewed (Sec. II A). Section IV summarizes the paper’s findings.

II. THEORETICAL/COMPUTATIONAL

A. Aspects of the isomorph theory

R simple systems – previously termed “strongly correlating” which, however, led to confusion with strongly cor-
related quantum systems – were in 2009 defined by reference to strong virial potential-energy correlations [1]. This
section presents the alternative definition of the same class of systems from 2014 [14] that refers to their “hidden scale
invariance” [7]. The original formulation of the isomorph theory [4] is recovered via a first-order Taylor expansion
[14].

Consider an N -particle system in d spatial dimensions. The system is defined to be R simple if for any two
configurations corresponding to the same density that obey U(Ra) < U(Rb), this ordering is preserved after a uniform
scaling of the two configurations [14] (R is the dN dimensional vector describing a configuration of N particles in d
spatial dimensions). Formally, this condition is written [14]
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U (Ra) < U (Rb)⇒ U (λRa) < U (λRb) . (2)

In computer simulations periodic boundary conditions are applied, and it is understood that the box size scales with
R. Equation (2) need not be obeyed for all configurations; as long as it applies for most of the physically relevant
configurations, the predictions of isomorph theory are obeyed to a good approximation.

In Eq. (2) the scaling factor λ can be any positive real number, and the equation holds for scaling ”both ways”.
Because of this an R simple system obeys [14]

U (Ra) = U (Rb)⇒ U (λRa) = U (λRb) . (3)

Thus if two configurations have the same potential energy, their scaled potential energies are also identical.
R simple systems are characterized by strong correlations between virial and potential-energy fluctuations in the

NV T ensemble. This can be derived from Eq. (3) in the following way. For two configurations, R1 and R2, at the
same density with the same potential energy, Eq. (3) states that U(λR1) = U(λR2). Taking the derivative of this
identity with respect to λ one obtains

R1 · ∇U(λR1) = R2 · ∇U(λR2) . (4)

Using the definition of virial W (R) ≡ R · ∇U(R)/d [20], one gets for λ = 1

W (R1) = W (R2) . (5)

Thus U(R) determines W (R), implying perfect correlation. This applies for systems that satisfy Eq. (2) or, equiva-
lently Eq. (3), for all configurations; it holds for realistic R simple systems to a good approximation. As a consequence,
for such systems the correlation coefficient R of Eq. (1) is close to unity, but not exactly unity. As mentioned, the
threshold defining R simple systems has usually been taken to be R = 0.9 [1].

Two configurations of density ρ1 and ρ2, which scale uniformly into one another, i.e., R2 = λR1 for some λ, are
related through the following equality (where d is the dimension):

ρ
1/d
1 R1 = ρ

1/d
2 R2 ≡ R̃ . (6)

The last equality defines the “reduced” (dimensionless) configuration vector R̃. Henceforth reduced quantities are
marked by a tilde. The reduced version of a physical quantity is obtained by using the “macroscopic” unit system in
which the length unit is ρ−1/d, the energy unit is kBT , and the time unit is ρ−1/d/

√
mkBT (m is the particle mass)

[21].
The entropy of any physical system can be written as an ideal-gas term plus an excess term Sex. The ideal-gas

term is the entropy of an ideal gas at the density and temperature in question, the excess term is the contribution to
entropy from the interactions between the particles. We define the microscopic excess entropy function, Sex(R), to
be the thermodynamic excess entropy [14, 22] of the potential-energy surface the configuration belongs to, i.e.,

Sex(R) ≡ Sex (ρ, U (R)) . (7)

The function on the right-hand side, Sex (ρ, U), is the thermodynamic excess entropy of the state point with density
ρ and average potential energy U(R). In other words, the microscopic excess entropy of a configuration R is defined
as the excess entropy of a thermodynamic equilibrium system of same density with average energy precisely equal to
U(R).

Inverting Eq. (7) we get

U (R) = U (ρ, Sex (R)) (8)

in which the function on the right-hand side, U (ρ, Sex), is the thermodynamic average potential energy of the state
point with density ρ and excess entropy Sex.
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Equations (7) and (8) apply for any system [22], but they are particularly significant for R simple systems for which
they imply that the configurational adiabats are curves of invariant structure and dynamics. To prove this, we first
note that, as shown in Ref. 14, Eq. (2) implies that the excess-entropy function is invariant under uniform scaling,

i.e., it only depends on the reduced coordinate vector R̃:

Sex(R) = Sex(R̃) . (9)

The relation for the potential-energy function Eq. (8) consequently becomes

U (R) = U(ρ, Sex(R̃)) . (10)

Isomorphs are defined as the configurational adiabats, i.e., curves along which the excess entropy is constant, in the
region of phase diagram where the system is R simple [4]. To demonstrate invariance of structure and dynamics
along the isomorphs we show that Newton’s second law in reduced units is invariant along an isomorph. In complete
generality, this law is in reduced units (note that the particle mass is absorbed into the reduced time)

d2R̃

dt̃2
=
ρ−1/d

kBT
F (R) ≡ F̃ (R) . (11)

For R simple systems Eq. (10) implies

F = −∇U = −
(
∂U

∂Sex

)
ρ

∇Sex(R̃) . (12)

Using ∇ = ρ1/d∇̃ and (∂U/∂Sex)ρ = T , the above expression becomes

F = −ρ1/dT ∇̃Sex(R̃) (13)

or

F̃ = −∇̃Sex(R̃)

kB
. (14)

This expression reveals that for R simple systems the reduced force F̃ is a function of the reduced coordinate vector,
implying that Eq. (11) is invariant along an isomorph. Thus structure and dynamics in reduced units are isomorph
invariant [14].

B. The density-scaling exponent

When strong correlations between virial and potential energy are present, a constant of proportionality between
the instantaneous fluctuations of these two quantities’ deviation from their equilibrium values, γ, can be introduced
via

∆W (t) ' γ∆U (t) . (15)

The correlation coefficient associated with this linear regression is that given in Eq. (1). The exact definition of γ is
the following [4]:

γ =
〈∆W∆U〉
〈(∆U)

2〉
. (16)

By applying a standard fluctuation relation and the volume-temperature Maxwell relation one can show [4] that
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γ =

(
∂ lnT

∂ ln ρ

)
Sex

. (17)

The number γ is termed the density-scaling exponent [4, 19]. It determines the configurational adiabats, which
are isomorphs in the R simple region of the phase diagram. If variations of γ may be ignored, these curves are via
Eq. (17) given by ργ/T = Const. In the general case, Eq. (17) can be used to trace out isomorphs step-by-step by
repeatedly changing density by typically an amount of order 1%, calculating the temperature change via Eq. (17),
recalculating γ from Eq. (16) at the new state point, etc.

In early publications [1, 2] we identified the constant of proportionality γ of Eq. (15) by the following symmetric
fluctuation expression, which was later renamed γ2 to distinguish it from γ [4]:

γ2 =

√
〈(∆W )2〉
〈(∆U)

2〉
. (18)

Whenever the correlation coefficient R is close to unity, one has γ ∼= γ2 since the following applies

γ = γ2R . (19)

Now that the main ingredients of the isomorph theory have been introduced, we proceed to present the simulation
results.

III. RESULTS AND DISCUSSION

A. Generalized Lennard-Jones pair potentials in three dimensions

If r is the interparticle distance, the generalized LJ pair potential is defined as follows

vLJm,n (r) =
ε

m− n

[
n
(σ
r

)m
−m

(σ
r

)n]
. (20)

Here m and n are positive integers, and in order to ensure thermodynamic stability it is assumed that m > n.
The constants σ and ε define the potential’s length and energy scales, respectively, and the normalization used in
Eq. (20) ensures that the minimum pair potential energy is −ε and that this value is obtained at r = σ. Note that
the normalization is different from that usually employed for the standard 12-6 LJ pair potential parametrized as
4ε
[
(r/σ)−12 − (r/σ)−6

]
.

The aim of our study is to investigate whether any relation between the correlation coefficient and the density-
scaling exponent can be determined. This involves simulating several state points for which the virial potential-energy
correlations are not strong. With this goal in mind, a particular case of the generalized LJ potential was simulated,
the case where m = 2n:

vLJ2n,n (r) = ε

[(σ
r

)2n
− 2

(σ
r

)n]
. (21)

The following four instances of this pair potential, henceforth denoted by LJ(2n,n), were simulated in three dimensions:
n = 4, n = 9, n = 12 and n = 18 (the n = 6 case corresponding to the standard LJ potential is considered later).
Figure 1 shows that these four pair potentials are quite different as functions of the pairwise distance r.

The simulations were performed in the NV T ensemble, i.e., for a constant number of particles (N = 864) at
constant temperature T and constant volume V . The time step was 0.001 (in LJ units) and the simulations were
performed with periodic boundary conditions and a standard shifted potential cut-off at 2.5σ. Using an FCC crystal
as starting configuration, each system was equilibrated for 2 · 106 time steps before the collection of data began.
After equilibration, the simulation ran for 50 · 106 time steps during which data were collected. For each of the four
systems, six densities were considered, ρ = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50 (in LJ units); the temperature was varied
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FIG. 1. The simulated four generalized Lennard-Jones (LJ) pair potentials of Eq. (21) plotted as a function of the pairwise
distance r (distance and energy are given in LJ units): n = 4 (black), n = 9 (red), n = 12 (green), and n = 18 (blue). The
potentials are quite different.

within the range 0.25 < T < 5.00. At each state point the correlation coefficient and the density-scaling exponent
were calculated from Eq. (1) and Eq. (16), respectively.

What to expect for the behavior of R when density is lowered? To answer this question we refer to the isomorph
theory, which works well for the LJ and related pair potentials in the ordinary liquid phase. According to isomorph
theory, if a reference state point (ρ0, T0) and another state point (ρ, T ) are on the same isomorph, the ratio between
T and T0 defines what may be termed the isomorph shape function h (ρ, Sex) via T/T0 = h (ρ, Sex) [23]. Thus each
isomorph is mapped out in the phase diagram by

h (ρ, Sex)

T
= Const. (22)

The original isomorph theory predicted the function h (ρ, Sex) to be independent of Sex, whereas the more correct
theory from 2014 predicts that h may vary slightly from isomorph to isomorph [14]. In both cases, however, the
analytical form of the density dependence is the same. For the LJ(2n, n) pair potential it can be shown that the shape
function takes the following form in d dimensions [14, 23–25]

h (ρ, Sex) =

(
d

n
γ0 − 1

)(
ρ

ρ0

)2n/d

−
(
d

n
γ0 − 2

)(
ρ

ρ0

)n/d
. (23)

Here (ρ0, T0) is the isomorph reference state point, at which γ0 is the density-scaling exponent – the Sex (isomorph)
dependence of the function h is contained in γ0. Combining Eqs. (22) and (23) one can map out an isomorph from
information obtained by computer simulations at the reference state point, i.e., with no need to use Eq. (17) in a
tedious step-by-step process.

Note that Eq. (22) and the definition of the density-scaling exponent Eq. (17) implies [26]

γ =
d lnh

d ln ρ
. (24)

Thus when the density-scaling exponent is known at a single reference state point, the theory via Eq. (23) and Eq. (24)
predicts how γ varies with density along the isomorph in question.

In Eq. (23) there are two terms, one positive and one negative. At high densities the positive term dominates.
Upon lowering the density, h(ρ, Sex) changes sign when the negative term dominates. This implies negative isomorph
temperatures, compare Eq. (22), implying that the isomorph theory must break down. Since the theory works well
when there are strong virial potential-energy correlations, one concludes that the correlation coefficient must decrease
upon lowering density along a configurational adiabat, i.e., for generalized LJ systems in any dimension the isomorph
theory predicts its own breakdown at sufficiently low densities.
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FIG. 2. State points simulated for the pair potentials LJ(8,4), LJ(18,9), LJ(24,12), LJ(36,18) defined by Eq. (21). At each
state point the virial potential-energy correlation coefficient (Eq. (1)) and the density-scaling exponent (Eq. (16)) was evaluated.
Most state points are at supercritical temperatures (at which the liquid and gas phases merge) and marked by an F – F means
fluid, L means liquid, C means crystalline, L+G means a state point of coexisting liquid and gas phases, etc. The phases were
identified by visual inspection.

To summarize, moving along a given isomorph it is possible to define a lower density limit beyond which the
isomorph theory does not hold. The condition that the shape function is non-negative sets the following limit for the
isomorph theory to work:

ρ >

(
dγ0 − 2n

dγ0 − n

)d/n
ρ0 . (25)

We have seen that R decreases as density is lowered along a configurational adiabat (isomorph). Moreover, according
to Eq. (16) the scaling exponent must approach zero if R → 0. Since R = 0 implies γ = 0, one expects that γ also
decreases upon lowering the density. If density is increased, on the other hand, the positive term of Eq. (23) dominates
and the density-scaling exponent eventually approaches 2n/d due to dominance of the repulsive r−2n term [23–25].
At the same time R tends to unity. After considering these two limits, we turn to the simulation results.

Figure 2 shows the state points studied, marking in each case whether it is a solid or liquid state point, etc. Most
state points are supercritical in which case we marked them by an F indicating “fluid”. Figure 3 plots γ versus
R along the isochores and isotherms for the four generalized LJ(2n, n) potentials. Our findings are consistent with
the theoretically predicted result that as R → 1, γ approaches the high-density limiting values 8/3, 6, 8, and 12,
respectively, although we never come close to these values, applying whenever the attractive term of the potential
may be ignored. The density-scaling exponent changes behavior and starts to decrease with increasing R in the region
where R is around 0.9 which, as mentioned earlier, is the threshold usually used to define R simple systems. In the
opposite limit R→ 0 we find as expected γ → 0.

Our data show that the change of behavior in γ versus R takes place at the boundary to the region in which the
system is R simple. A more extensive study is needed to determine whether this holds also for other R simple systems.
If confirmed, the relation between the change in the behavior of the density-scaling exponent and the value of the
correlation coefficient could be useful in practice, because R is not accessible in experiment while γ is [27]. A change
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FIG. 3. The density-scaling exponent, γ, versus the correlation coefficient, R, for generalized LJ potentials: (a) LJ(8,4); (b)
LJ(18,9); (c) LJ(24,12); (d) LJ(36,18). Full squares mark crystalline states, full circles are liquid, fluid, or gas states – open
squares are coexisting crystal-gas states; open circles are coexisting liquid-gas states. The simulated state points are given in
Fig. 2. The inset in each figure focuses on the crossover region. Along each isochore the temperature was varied in the range
0.25 < T < 5.00. In (b), (c), and (d) it is possible to distinguish two different behaviors of the variation of γ with R, which
reflects liquid contra crystal phases (the latter being the steepest). The state points with negative or close to zero correlation
coefficient are all in the gas-liquid coexistence region.

in the density or temperature dependence of γ might therefore be used for identifying in which regions of the phase
diagram a liquid is expected to obey isomorph theory predictions like isochronal superposition, excess entropy scaling,
etc [7].

Figure 4 summarizes the data of Fig. 3. There is a roughly linear behavior between γ and R, but it does not extend
above R ≈ 0.9 where γ as mentioned starts to decrease towards the value 2n/3 predicted at high density (where the
r−2n repulsive term dominates and the virial potential-energy correlations become virtually perfect). For R > 0.9
the system is R simple and the density variation of γ is well described by Eqs. (23) and (24). For this reason we
henceforth focus on the region in which R < 0.9.

Figure 4(b) plots the data differently and establishes for most of the R < 0.9 data the following approximate
proportionality:

γ/n ' R . (26)

How to understand this? In Ref. 2 it was shown that an LJ-type pair potential may be approximated by the “extended
inverse power law (eIPL)” pair potential with an effective state-point-dependent exponent p that is not simply the
exponent of the repulsive term of the LJ-type potential:

v(r) ∼= Ar−p +B + Cr . (27)

This approximation usually works very well within the entire first coordination shell [2]. At typical condensed-matter
low and moderate pressure state points the term B + Cr contributes little to the forces on a given particle, because
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FIG. 4. (a) All data of Fig. 3 in a common plot in which squares are crystalline states, circles are liquid, fluid, or gas states.
(b) The same data with γ/n plotted versus R. The black dashed line connects the points (0, 0) with (1, 1), demonstrating the
universal, roughly linear dependence Eq. (26). Significant deviations from this are seen mainly for R > 0.9 and for R < 0. The
former case refers to the R simple region of the phase diagram, the latter to states of coexisting liquid and gas phases (compare
Fig. 2).

the sum of these terms over all nearest neighbors tends to be almost constant. This reflects the fact that if the particle
is moved slightly, some nearest-neighbor distances increase and some decrease, but their sum stays almost constant
[2]. This implies that the total force contribution from the B +Cr term is small and the physics is dominated by the
r−p IPL term.

For an IPL pair potential ∝ r−p the density-scaling exponent is given in d dimensions by [2]

γ =
p

d
. (28)

As mentioned, the effective exponent p of Eq. (27) varies with state point. In large parts of the phase diagram of the
generalized LJ pair potential the effective exponent p is considerably larger than m [2]. This is because even within
the repulsive part of the pair potential, i.e., at distances below the potential minimum, there is a sizable contribution
from the attractive r−k term making the repulsions significantly steeper than expected from the r−m repulsive term
alone. At densities and temperatures dominated by the pair potential minimum, i.e., at typical low or moderate
pressure condensed-matter state points, it may be shown from a curvature argument referring to the potential-energy
minimum that the effective exponent of the generalized LJ pair potential Eq. (20) is given [2] by

p = m+ n . (29)

At sufficiently high density and/or temperature the repulsive r−m term dominates the physics, however, and here one
finds that p→ m. These conditions arise as R→ 1.

For the standard LJ pair potential at typical state points the density-scaling exponent is between 5 and 6, corre-
sponding via Eq. (28) to p between 15 and 18 [1, 2]. Based on the above we expect that the LJ(2n,n) pair potential
in a large part of its phase diagram is equivalent to an eIPL pair potential with p ' 2n+ n = 3n. Via Eq. (28), this
corresponds in three dimensions to

γ ' n . (30)

In summary, R→ 1 at state points of large density and/or temperature where the r−2n term dominates the physics.
This behavior is hinted at in Fig. 4(b) above R ' 0.9 where γ/n starts to decrease and systematically deviates from
the red dashed line. The limit γ ' 2n/3 was not reached in our simulations, however, which shows that only at
very high density or temperature the attractive term of the generalized LJ pair potential may be ignored. A linear
extrapolation of most of the data to R = 1 gives the limit value suggested by the eIPL approximation in conjunction
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with Eq. (29). We take this as an indication that the eIPL approximation works well at the state points simulated,
whether or not these are characterized by strong virial potential-energy correlations.

Having identified the limits γ → 0 for R→ 0 and γ → n for R→ 1 (as long as R < 0.9, i.e., for most data), the next
question one may ask is: why do the data follow the approximate linear relation Eq. (26)? A possible explanation
refers again to the eIPL approximation. The virial is calculated in d dimensions from the pair potential as a sum over
terms of the form rv′(r)/d [1]. For the eIPL pair potential Eq. (27) this gives Apr−p/d plus an approximate constant
(compare the above argument). Thus for fluctuations away from the equilibrium value, if the linear term of Eq. (27)
is uncorrelated to the IPL term, the eIPL approximation suggests that one may have effectively

∆W ' (p/d)∆U (31)

with p ∼= 3n for d = 3. This must be, admittedly, a very rough approximation when the W U correlations are not
strong, but if one does make it, Eq. (1) and Eq. (16) imply

γ/R '
√
〈(∆W )2〉/

√
〈(∆U)2〉 ' p/d ' n . (32)

This is Eq. (26) that summarizes our findings for most state points in three dimensions. A simple way of expressing
this is that the exponent γ2 of Eq. (18) is roughly constant throughout the phase diagram, compare Eq. (19).

B. The Lennard-Jones pair potential in two, three, and four dimensions

We proceed to report results for the standard LJ system in two, three, and four dimensions. Details on how the
simulations were performed can be found in Refs. 25 and 28. Figure 5(a) shows the density-scaling exponent versus
the correlation coefficient along three configurational adiabats in the liquid phase and two in the crystalline phase for
the two-dimensional LJ system; (b) shows a similar plot along two configurational adiabats in the liquid phase of the
three-dimensional LJ system.
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0
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T
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0
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T
0
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T
0
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(a) 2d
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R
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FIG. 5. The density-scaling exponent, γ, versus the correlation coefficient, R, along configurational adiabats in two and
three dimensions with insets giving the reference state points. (a) Results for three configurational adiabats in the liquid phase
and two in the crystalline phase generated using Eq. (17) for the 2d LJ system. The density-scaling exponent increases with
increasing R for values of R below the 0.9 threshold and then starts to decrease. For the crystalline phase R is always larger
than 0.9 and γ decreases with increasing R (towards 12/2 = 6). (b) Two configurational adiabats for the liquid phase of the
3d LJ system, constructed as in the 2d case. The decrease in γ starts a bit after the 0.9 threshold.

Figure 6 shows the density-scaling exponent versus the correlation coefficient along the configurational adiabats
defined by the critical points for the LJ system in two, three, and four dimensions. Data for the critical points are
taken from Refs. 29–31. For the configurational adiabats in the liquid phase the relation between R crossing the
threshold value 0.9 and the start of the decreasing behavior of γ is observed. For the crystalline phase, the correlation
coefficient is above 0.9 for all the state points studied and no crossover is observed.
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FIG. 6. The density-scaling exponent, γ, versus the correlation coefficient, R, along configurational adiabats with reference
state points (inset) equal to the critical points of the LJ system in two, three, and four dimensions. In all cases, γ exhibits a
maximum in the region where the correlation coefficient crosses the threshold value R = 0.9. Note that the maximum value of
γ decreases with increasing dimension.

In d dimensions the eIPL-justified relation Eq. (32) implies via p = 2n+ n = 3n that

γ d ∼= 3nR . (33)

This is tested in Fig. 7(a) for the LJ simulations in 2− 4 dimensions. We see that Eq. (33) overall works well.
Figure 7(b) tests all data of the paper versus Eq. (33). The data in the region where the system is not R simple

conforms roughly to Eq. (33), unless R < 0 which are state points of liquid-gas coexistence.
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(a)
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FIG. 7. Normalized density-scaling exponent versus the potential-energy correlation coefficient with squares marking crystalline
states and spheres marking liquid, fluid, or gas states. (a) The data for the LJ system in two, three, and four dimensions. (b)
All data of the paper, demonstrating the approximate linear relationship Eq. (33) below R ≈ 0.9 (dashed line). Above this
value there is a different behavior as discussed in the text.

IV. CONCLUSIONS

For the state points where the system is not R simple (R < 0.9) the generalized Lennard-Jones systems have a
roughly linear relation between the density-scaling exponent and the virial potential-energy correlation coefficient of
Eq. (33) (unless R < 0 corresponding to liquid-gas coexistence state points). This finding has been rationalized in
terms of the extended inverse-power-law approximation. Above R ∼= 0.9 the approximate linear relation γ ∝ R breaks
down, however, and when R approaches unity the density-scaling exponent starts to decrease in its variation with
R. γ is expected to eventually obey γ → 2n/d as R → 1 when the repulsive r−2n term dominates completely. This
happens only at very large densities and/or temperatures, however.
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Our numerical data show that the threshold value R ∼= 0.9 has a hitherto not recognized significance. While it was
previously known that this threshold characterizes the state points for which the isomorph theory works well [4, 7], it
is a new finding that roughly the same threshold marks a crossover from the γ ∝ R behavior found for R < 0.9 to one
of decreasing γ with increasing R. It would be interesting to find out how general the finding of a threshold at R ∼= 0.9
is. If it is general, this opens for the possibility that determining the experimental variation of the density-scaling
exponent throughout the phase diagram may be used for determining where the system in question is R simple and
where it is not.
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