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ABSTRACT: Many liquids have curves (isomorphs) in their
phase diagrams along which structure, dynamics, and some
thermodynamic quantities are invariant in reduced units. A
substantial part of their phase diagrams is thus effectively one
dimensional. The shapes of these isomorphs are described by a
material-dependent function of density, h(ρ), which for real
liquids is well approximated by a power law, ργ. However, in
simulations, a power law is not adequate when density changes
are large; typical models, such as Lennard-Jones liquids, show
that γ(ρ) ≡ d ln h(ρ)/d ln ρ is a decreasing function of density.
This article presents results from computer simulations using a
new pair potential that diverges at a nonzero distance and can be
tuned to give a more realistic shape of γ(ρ). Our results indicate that the finite size of molecules is an important factor to take
into account when modeling liquids over a large density range.

■ INTRODUCTION

What controls the dynamics of viscous glass-forming liquids is
still an open question.1−6 Although the dynamics in general
depends on both temperature, T, and density, ρ, the dynamics
of many organic supercooled liquids can be collapsed onto a
single curve when plotted against a combined, material-specific
variable, h(ρ)/T.7−9 It was found in many experiments that the
scaling function, h(ρ), is generally well approximated by a
power law as h(ρ) = ργ, with γ being the material-specific
density-scaling exponent;10,11 we refer to this as power-law
density scaling. Another important development was the
discovery that the dynamics of liquids is a function of the
excess entropy.12,13

The isomorph theory14 explains why both density scaling and
excess-entropy scaling work for some liquids. Liquids that obey
the isomorph theory have curves in their phase diagram, so-
called isomorphs, along which not only the dynamics but also
the structure, excess entropy, and other thermodynamic
quantities are invariant. The development of the isomorph
theory was initiated by the observation that in computer
simulations some liquids have strongly correlated fluctuations
in their energies and pressures. More specifically, if energy E
and pressure p are split into a kinetic part and a configurational
part that only depends on particle positions, R ≡ (r1, ..., rN), as
follows
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strong correlations are found between the thermal equilibrium
fluctuations of potential energy U and virial W in the NVT
ensemble,15 although strong correlations have also been found
at high pressures in the NpT ensemble.16 Indeed, the standard
correlation coefficient
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indicates whether a liquid obeys the isomorph theory: this is
the case whenever R > 0.9 (although this value is of course
somewhat arbitrary). The standard linear regression “slope” of
the fluctuations
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is the density-scaling exponent,14 and the theory thus provides
a convenient way to determine the density-scaling exponent in
computer simulations at a single thermodynamic state point.
Another empirical observation that can be explained by the

theory is that many liquids have been shown to obey isochronal
superposition, meaning that the relaxation spectra of liquids
have identical shapes if the average relaxation time is the
same.17−19 Also, several phenomenological melting rules can be
explained by the isomorph theory.20−22 For instance, the
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Lindemann melting criterion states that crystals melt when the
atomic vibrational displacement reaches a certain value in
reduced units. This follows from the theory, as the melting line
is predicted to be an isomorph to a good approximation,14 and
indeed, many other properties have also been found to be
isomorph invariants along the melting line.23−25

Many model systems studied so far have been shown to obey
the isomorph theory, including atomic liquids with a range of
different pair potentials,26−29 crystals,30 as well as rigid31 and
flexible molecular liquids.32 Experimental evidence for the
isomorph theory has proven hard to get but has been provided
nonetheless.33−35 For a detailed description of the isomorph
theory, focusing on its validation in simulations and experi-
ments, the reader is referred to a recent Feature article.36

The isomorph theory has been tested most thoroughly in
computer simulations, making it possible to investigate very
large ranges of density. Interestingly, most models that have
been simulated show that power-law density scaling does not
work, that is, the scaling function h(ρ), which describes the
shape of the isomorphs, is not a power law.26−32 Instead, the
scaling function h(ρ), which describes the isomorphs via the
equation h(ρ)/T = Const., is a more general function of density
and depends on the pair potential. Only inverse-power-law
(IPL) potentials, with υ(r) ∝ r−n, obey power-law density
scaling exactly (with γ = n/3) and have perfectly correlated
fluctuations in U and W (R = 1). For other model liquids, h(ρ)
is not known analytically, although it can be determined from a
single simulation if the pair potential is a sum of IPLs, as is the
case for the well-known Lennard-Jones (LJ) pair potential.37,38

In that case, each power-law term, n, in the potential leads to a
term in h(ρ), with the relative contribution of that term to the
excess heat capacity, Cv

ex = ∑n Cv,n
ex , as the prefactor38
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The relative contributions of each term in the potential to Cv
ex

can easily be determined from a single simulation.
Thus, there is a discrepancy between the simulations that

show that power-law density scaling does not work for most
model systems and experiments that show that it gives
satisfactory collapse for most nonassociating liquids. It is not
clear what causes this discrepancy. On the one hand, one could
argue that the models used in simulations are too simple to
properly capture the physics of real liquids. However, this does
not explain why IPL potentials, arguably the simplest pair
potentials, do predict the power-law density scaling seen in so
many different liquids. Indeed, there is no a priori reason why
h(ρ) should be a power law; it is used mostly for empirical
reasons.
On the other hand, the discrepancy could be explained by

the fact that it is much easier to obtain a large range of densities
in simulations than it is in experiments. This hypothesis has led
to more experimental investigations into liquid dynamics over
larger ranges of density.38−41 Bøhling et al.38 found that
dibutylphthalate (DBP) and decahydroisoquinoline (DHIQ)
do not conform to power-law density scaling, although the
relaxation time data could still be collapsed when another h(ρ)
was used. However, the validity of this analysis is still under
discussion, as old and possibly outdated equations of state were
used, leading to large extrapolations to determine densities.
More recent studies claim to get a good collapse of the data
with power-law density scaling for both DHIQ40 and DBP.41

Simulation data and the analysis by Bøhling et al. find an
h(ρ) that is not a power law, meaning that the logarithmic slope

γ ρ ρ
ρ
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( )

d ln ( )
d ln (5)

which gives the “local” density-scaling exponent, is not
constant. Computer simulations of various pair poten-
tials26−28 and molecular systems31,32,42 have found γ(ρ) to be
a decreasing function of density. The fact that the LJ potential
has a decreasing γ(ρ) can be understood by considering that at
high densities particles are close to each other and feel only the
repulsive r−12 term. For high densities, γ should thus approach
12/3 = 4. However, at normal densities (around zero pressure),
the attractive r−6 term plays an important role, and because it is
subtracted, it makes the LJ potential steeper than the r−12 IPL.
Therefore, at low pressure, the LJ potential has a higher scaling
exponent than that expected from its r−12 term, and one finds
here that γ ≈ 6.26

Although there is no consensus on whether h(ρ) is always
well described by a power law,38,40,41 none of the experimental
data are in agreement with the fact that γ(ρ) decreases with
density for standard pair potentials, such as the LJ26 and
Buckingham27 potentials. This led us to investigate other pair
potentials for which the density-scaling exponent does not
decrease with increasing density.
As the addition of the attractive term makes γ(ρ) a

decreasing function in the LJ potential, we instead start with
a potential that has an increasing γ(ρ). We note that such a
potential would mean that particles would feel a steeper
repulsion as the interparticle distance decreases. This led us to
suggest a sum of infinitely many power laws

∫
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as a candidate, as the higher exponents would dominate at
shorter r values. For it to be a more realistic model of a
molecular liquid, we also include an attraction as
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with p > q. This potential diverges at r0 = 1, but to easily set the
potential minimum, rm, the divergence diameter, r0, and the
potential depth, ε, we parameterize the potential as
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−− −
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In this study, we choose the exponents p = 12 and q = 6, like
those in the standard LJ (LJ12-6) potential, and we designate it
as the S12-6 potential due to the integral in eq 6. The potential
reduces to the standard LJ potential in the limit r → 0. In the
limit r0 → rm, the potential becomes purely attractive.
The S12-6 potential aims to reproduce the experimental

change in the potential steepness with density, not the
steepness of the interatomic interaction itself. Taking the
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LJ12-6 as the starting point and “adding” a divergence at r0, the
S12-6 potential is steeper than the LJ12-6 potential, and more
so at short distances (see Figure 1). It is known that in many

cases the LJ12-6 potential is too steep,27,43−45 so the same will
be true for the S12-6 potential. However, the steepness of the
S12-6 potential around the minimum can easily be tuned using
exponents p and q.

■ METHODS
The S12-6 pair potential is plotted in Figure 1. To obtain
densities comparable to those of LJ liquids, the position of the
potential minimum was chosen to be the same (ε = 1 and rm =
21/6). This means that we use the LJ parameter σ = 2−1/6rm as
the unit of length. Two values of the divergence diameter were
simulated (r0 = 0.8σ and 0.9σ). The ratio r0/rm can be
considered a measure of the steepness of the repulsion; it is
0.713 and 0.802, respectively, in these cases. The potential was
cut and shifted at 2.5σ.
A cubic box with periodic boundary conditions and 1000

particles was simulated in the NVT ensemble with a Nose-́
Hoover thermostat. The integration time step was 0.001 for
most state points, but it was decreased at high temperatures and
densities to prevent unphysically large particle displacements.
At each state point, an initial configuration was first randomized
by simulating 4 × 106 time steps at 4 times the desired
temperature, followed by an equilibration run and production
run of 1.6 × 107 steps at the desired temperature.
The simulations were performed using the RUMD code.46

This code is optimized for performing molecular dynamics
simulations on a graphics processing unit and designed to make
the implementation of new pair potentials straightforward.47

■ RESULTS AND DISCUSSION
Configuration R is expressed in reduced (dimensionless) units
by scaling with the density as ρ1/3R. Two state points, (ρ1, T1)
and (ρ2, T2), are defined as being isomorphic if configurations
R1 and R2 of those state points, with the same reduced
coordinates

ρ ρ=R R1
1/3

1 2
1/3

2 (9)

also have proportional Boltzmann statistical weights14
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In practice, this proportionality should hold to a good
approximation for most physically relevant configurations of
the two state points with the same constant, C1,2 (which only
depends on the pair of state points). Recently, a more general
definition of the isomorph theory has been discovered,48 but we
use here the “older” definition (eq 10), which arises from the
new one via a first-order Taylor expansion and is more
convenient for generating isomorphic state points in simu-
lations.
The isomorph definition can be used to obtain a set of

isomorphic state points from a simulation at an initial state
point by rewriting eq 10 as

= +U
T
T

U k T CR R( ) ( ) ln( )2
2

1
1 B 2 1,2

(11)

Carrying out a standard equilibrium NVT simulation at some
initial state point 1, one calculates for each configuration first
U(R1) and subsequently U(R2) by scaling to a new density, ρ2,
using eq 9. According to eq 11, the energies of the scaled
configurations should be linearly proportional to the energies of
the initial configurations, with proportionality constant T2/T1.
In this way temperature T2, at which the state point at density
ρ2 is isomorphic to state point 1, is found from the slope in a
U(R1), U(R2) plot.
The intermediate scattering function, FS(q, t), and the radial

distribution function, g(r), along two isomorphs are plotted in
Figure 2 in reduced units, defined as ρ̃ ≡t t k T1/3

B and r ̃ ≡

rρ1/3. For ρ = 0.9 and r0 = 0.9, the effect on the dynamics of
increasing the temperature by a factor of 2 while keeping the
density constant is also shown (dashed green line). The
isochoric temperature change has a significant effect on the
dynamics, whereas there is no significant change in FS along the
isomorph, where temperature changes by a factor of 22. These
data indicate that we have indeed obtained two sets of
isomorphic state points, as both the dynamics and the structure

Figure 1. S12-6 pair potential as described in eq 8, plotted for two
values of r0. The minimum was kept at rm = 21/6 to make the two
potentials comparable to the standard LJ12-6 potential, which is
shown by the dashed line.

Figure 2. Incoherent intermediate scattering function (left) and radial
distribution function (right) in reduced units for the potentials with
hard-core diameters r0 = 0.8 (top) and r0 = 0.9 (bottom). For both
isomorphs, the dynamics and structure are invariant to a high degree.
All intermediate scattering functions have been calculated with the
same reduced wave vector (q ̃ = 7.11). The dashed green line shows the
effect of an isochoric (ρ = 0.9) temperature change for comparison.
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are invariant in reduced units to a good approximation along
the isomorph. There is a small change in the first peak of g(r),
though, which is expected, as at high density the particles are
close and feel a steeper part of the potential. This leads to a
steeper and therefore higher peak in g(r).29

The shapes of the isomorphs in the ρ,T plane are shown in
Figure 3 in linear (a) and double-logarithmic (b) scales. There

is a clear effect of particle diameter r0. For γ to be constant
along the isomorph (h(ρ) ∝ ργ), the isomorph should be a
straight line in the log−log plot. There is barely any deviation
from linear fits (dashed lines) in Figure 3a, indicating that a
power law is a good approximation. From the fits, we find
approximate “constant γ” values of 7.92 and 10.55, respectively,
for r0 = 0.8 and 0.9.
As mentioned, liquids that obey the isomorph theory have

strong correlations in the instantaneous values of potential
energy U and virial W. We investigate these correlations in
Figure 4, plotting correlation coefficient R and “slope” γ from a

linear regression of U,W data (eq 3). The liquids have strong
correlations at all state points; only close to the gas−liquid
coexistence region, at which the pressure becomes negative, is
there a significant decrease in R. This is commonly found in
many liquids when the pressure approaches zero.26

Although the isomorphs are fitted well by a straight line in
Figure 3, the change in γ is considerable when calculated from
the logarithmic slope of ρ, T data (red line). For both particle
sizes, we see an initial decrease in γ with increasing density,
similar to what is seen for liquids consisting of point particles,

like LJ liquids.26 However, unlike such standard systems, γ
increases again at higher densities. For r0 = 0.8 the overall
variation of the density-scaling exponent is small: 7.5 < γ < 8.5,
which is less than that for the LJ potential, considering the large
range of densities. Thus, the potential is more in agreement
with experimental density-scaling data, although this seems to
be caused by the cancellation of a low-density decrease and
high-density increase in γ. The density increase is stronger
when the hard-core radius is closer to the potential minimum;
for r0 = 0.9, γ is clearly not constant, and there is a significant
increase at higher densities.
Our results show the importance of potential shape when

large density changes are involved, especially when molecular
liquids are simulated using coarse-grained models, as in this
case it is common to use LJ potentials that diverge at zero
distance.49−51 We note that so far only one other pair potential
gives an increasing γ(ρ), which is the Girifalco potential.52,53

This potential was developed to model C60 (Buckminsterfuller-
ene), and the size of the C60 molecule led to a functional form
that also diverges at a nonzero interparticle distance.

■ CONCLUSIONS
To conclude, our results for the S12-6 pair potential shed light
on the discrepancy between experiments and simulations
concerning the behavior of the density-scaling exponent,
γ(ρ). We suggest that the decreasing γ(ρ) seen in most
simulations is a result of the potential used (often a LJ-type
potential). On the other hand, the constant value of γ seen in
experiments with molecular liquids seems to be an effect of the
finite size of the molecules involved, which is mimicked by the
new S12-6 pair potential defined in eq 8. Our results indicate
that the size of the molecules should be considered when
choosing a pair potential to model a liquid over a large range of
densities. Moreover, we predict that for large, bulky molecular
liquids, the density-scaling exponent should increase at high
densities, as was found in ref 38.
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