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The isomorph theory provides an explanation for the so-called power law density scaling which has
been observed in many molecular and polymeric glass formers, both experimentally and in sim-
ulations. Power law density scaling (relaxation times and transport coefficients being functions of
ργ

S /T , where ρ is density, T is temperature, and γ S is a material specific scaling exponent) is an ap-
proximation to a more general scaling predicted by the isomorph theory. Furthermore, the isomorph
theory provides an explanation for Rosenfeld scaling (relaxation times and transport coefficients
being functions of excess entropy) which has been observed in simulations of both molecular and
polymeric systems. Doing molecular dynamics simulations of flexible Lennard-Jones chains (LJC)
with rigid bonds, we here provide the first detailed test of the isomorph theory applied to flexible
chain molecules. We confirm the existence of isomorphs, which are curves in the phase diagram
along which the dynamics is invariant in the appropriate reduced units. This holds not only for the
relaxation times but also for the full time dependence of the dynamics, including chain specific dy-
namics such as the end-to-end vector autocorrelation function and the relaxation of the Rouse modes.
As predicted by the isomorph theory, jumps between different state points on the same isomorph hap-
pen instantaneously without any slow relaxation. Since the LJC is a simple coarse-grained model for
alkanes and polymers, our results provide a possible explanation for why power-law density scaling
is observed experimentally in alkanes and many polymeric systems. The theory provides an indepen-
dent method of determining the scaling exponent, which is usually treated as an empirical scaling
parameter. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4888564]

I. INTRODUCTION

When a liquid or polymer melt is (super)cooled towards
the glass transition, its viscosity and relaxation time increase
with many orders of magnitude over a relatively small temper-
ature range. More generally, the dynamics of a viscous liquid
depends on two variables, density ρ and temperature T (or
pressure and temperature). Understanding what exactly con-
trols the viscous slowing down upon cooling and/or compres-
sion remains one of the main challenges related to the glass
transition.1–3

An indication that a single, underlying quantity deter-
mines the viscous slowing down of supercooled liquids was
published in 1998 by Tölle et al.4, 5 They showed that the dy-
namics of ortho-terphenyl, measured at different densities and
temperatures, collapses on a single curve when plotted against
a function of density over temperature h(ρ)/T. More specifi-
cally, these neutron scattering data were found to collapse for
h(ρ) = ρ4. Later, a similar scaling was found to work for other
organic glass formers, including polymers, showing that the
relaxation time is a function of h(ρ)/T.6–8 There was some de-
bate over the functional form of h(ρ) and whether it could be
uniquely determined given the limited density changes exper-
imentally available.9–14 In a famous review Roland et al.15

demonstrated that scaling with h(ρ) = ργ
S with a material
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specific scaling exponent γ S works well for a large group of
organic glass formers, including polymers. We refer to this
scaling as power-law density scaling. To date, many more
molecular liquids have been shown to obey power-law den-
sity scaling to a good approximation, including polymers, but
also ionic liquids16–22 and liquid crystals.23–28

The recently developed isomorph theory29 explains and
generalizes power-law density scaling. The isomorph the-
ory predicts that liquids which obey the theory have curves
(isomorphs) in their phase diagrams along which struc-
ture and dynamics are invariant in the appropriate units.
The isomorphs are identified by h(ρ)/T being constant on
an isomorph, where h(ρ) is a material specific function.
Consequently relaxation times and transport coefficients are
predicted30 to be functions of h(ρ)/T. For sufficiently small
density changes h(ρ) may be approximated by a power law:
h(ρ)∝ργ , which is equivalent to power law density scaling.
In typical experiments, it is possible to change density around
5%, but recently it has been shown in experiments that h(ρ)
is not well approximated by a power law for larger density
changes of up to 20%.30 Moreover, the theory provides an
independent method of determining the scaling exponent γ S
for a small density range. Other predictions of the theory are
that certain thermodynamical quantities including the excess
entropy and isochoric specific heat are invariant on the iso-
morph. Since both excess entropy and the relaxation times are
predicted to be constant on an isomorph, the isomorph the-
ory provides an explanation for Rosenfeld’s excess entropy
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scaling,29, 31, 32 according to which a liquid’s relaxation times
and transport coefficients are functions of excess entropy only.

The isomorph theory has so far only been tested in detail
for atomic systems,29, 33 and for some small rigid molecules.34

However, many organic glass formers are large molecules or
have bulky side groups, because this makes it harder for the
liquid to crystallize. These larger molecules, and polymers in
particular, inherently have intramolecular degrees of freedom
that influence the liquid structure and dynamics. Here, we aim
to bridge the gap between the simple models already shown
to obey the isomorph theory, and larger flexible glass formers
shown experimentally to obey power law density scaling.

Since both alkanes19, 35, 36 and polymers15, 37 have been
shown to obey power-law density scaling, we simulated a gen-
eral viscous model liquid of linear, flexible Lennard-Jones
chains (LJC). The model has been used extensively for vis-
cous polymer melts close to the glass transition.38–42 We show
that the LJC liquid has isomorphs in its phase diagram, and we
study the effect of the intramolecular degrees of freedom on
the applicability of the isomorph theory.

In Sec. II we give a short overview over the relevant as-
pects of the isomorph theory. We explain the LJC model in
Sec. III and present the details of our simulation method. We
start our discussion of the results by showing how the iso-
morphs were obtained for the LJC model (Sec. IV A). We
then verify that the dynamics (Sec. IV B) and some aspects
of the structure (Sec. IV C) are invariant on the isomorph. As
predicted by the isomorph theory, we show in Sec. IV D that
isomorph scaling can be used to collapse the dynamics along
different isochores onto a single master curve.

II. ISOMORPH THEORY

An isomorph is a curve in the phase diagram that con-
sists of state points that are isomorphic to each other. If one
takes two state points with (T1, ρ1) and (T2, ρ2), then pairs
of microconfigurations exist with the same coordinates when
scaled with density

ρ
1/3
1 R1 = ρ

1/3
2 R2. (1)

Here R = {r1, . . . , rN } denotes the coordinates of all parti-
cles. Two state points are now defined to be isomorphic if
these pairs of microconfigurations have proportional configu-
rational Boltzmann weights,29

exp

(
−U (R1)

kBT1

)
= C12 exp

(
−U (R2)

kBT2

)
, (2)

with C12 being a proportionality constant that is the same for
all physically relevant pairs of microconfigurations, depend-
ing only on the two state points. Thus, if two state points are
isomorphic, they have the same probability distributions of
their reduced-unit configurations. From this definition it can
be shown that various dynamical and structural properties are
invariant on an isomorph, as well as the excess entropy.29 It
should be noted that our model system is expected to only
obey the isomorph definition approximately, since the rigid
bonds in the molecule do not scale with density. Therefore,
the equilibrium configurations at different densities in general
are not the same.

The development of the isomorph theory was preceded
by the discovery that some liquids have strong correlations
in the equilibrium fluctuations of the configurational parts of
their energy and pressure. The correlations can be quantified
by the standard correlation coefficient43, 44

R = 〈�W�U 〉√
〈(�W )2〉〈(�U )2〉

, (3)

where U is the potential energy, W is the virial, � denotes
deviation from thermal average, and brackets 〈 . . . 〉 denote
average in the canonical ensemble. For liquids where the pair
potential is an inverse power law (IPL), υ(r)∝r−n, the correla-
tion is perfect (R = 1), but a large group of liquids have a cor-
relation coefficient close to one, indicating strong correlation.
Liquids with a correlation coefficient larger than 0.9 were re-
ferred to as “strongly correlating,” but since this term was of-
ten confused with strongly correlated quantum systems, we
now refer to this class of liquids as “Roskilde-simple” liquids.

The standard linear regression slope γ of the fluctuations
is given by

γ = 〈�W�U 〉
〈(�U )2〉 . (4)

It can be shown using the standard fluctuation formulae that
this slope is equal to the logarithmic density derivative of the
temperature on a curve of constant excess entropy Sex ≡ S
− Sideal, where Sideal is the entropy of an ideal gas at the same
temperature and density:29

γ = 〈�W�U 〉
〈(�U )2〉 =

(
∂ ln T

∂ ln ρ

)
S

ex

. (5)

This slope γ is equal to the density scaling exponent γ s men-
tioned in the Introduction, as long the change of density is
small enough.

One can use the “slope” γ calculated from the fluctu-
ations to trace out a curve of constant excess entropy in
the phase diagram. First, one calculates γ at a certain state
point (1) with temperature T1 and density ρ1 using Eq. (4).
If one then increases density by a sufficiently small amount
to density ρ2, it is possible to calculate the temperature T2
= T1(ρ2/ρ1)γ (Eq. (5)) that has the same excess entropy at
this new density. This can be done many times in an iterative
fashion to obtain a set of state points that have the same ex-
cess entropy. Since γ may change with density, it is necessary
to increase density by a sufficiently small amount, e.g., 2%,
which can be checked by comparing the effect of a different
density increment.

Here we use this method to trace out curves in the phase
diagram with invariant excess entropy and check if the pre-
dicted isomorphic invariance of other properties is fulfilled. It
should be noted that the invariance is only predicted to hold
when quantities are considered in the appropriate reduced
units, e.g., using ρ−1/3 as the unit of length, and kBT as the
unit of energy.29, 45 We denote reduced units with a tilde.

The isomorph theory predicts “isomorph scaling,” i.e.,
that the dynamics is a function of h(ρ)/T, where h(ρ) de-
pends on the system.30, 46 For atomic systems interacting
via a pair potential that is the sum of IPL potentials υ(r)
= ∑

nυnr−n, h(ρ) is given by h(ρ) = ∑
nCnρ

n/3, where the
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constants Cn are the fractional contributions of each term to
the heat capacity.30, 46 This includes, for example, the cel-
ebrated Lennard-Jones potential.46, 47 For molecular liquids,
h(ρ) is not known analytically.

III. MODEL AND SIMULATION METHOD

We performed molecular dynamics simulations of flex-
ible LJCs consisting of 10 rigidly bonded segments. Seg-
ments in different molecules and non-bonded segments within
a molecule interact via the standard LJ potential, cutting
and shifting the potential at 2.5σ . We simulated 200 chains
in a cubic bounding box with periodic boundary conditions
in the NVT ensemble using a Nosé-Hoover thermostat. For
the time step we used �t = 0.0025, and the time constant
of the thermostat was 0.2. The simulations were performed
with our RUMD48 software utilizing state of the art GPU
computing.

The model has been derived from a model by Kremer
and Grest,49 who did not include the attractive part of the LJ
potential. Later, the attractive part has usually been included.
Short LJ chains of around ten segments have been used ex-
tensively to simulate glassy polymer melts,50–53 even though
real polymers easily consist of thousands of monomers. The
reason for this is threefold. First, the LJC is a coarse-grained
model, meaning that a single Lennard-Jones particle may cor-
respond to several monomers. Second, increasing the chain
length in general increases the total system size, which in turn
increases the simulation time. Most importantly, it is often the
equilibrium (viscous) liquid that is of interest. Both increasing
the chain length and approaching the glass transition increase
the equilibration time, meaning that there is always a trade-off
between chain length and viscosity.54, 55

Often, the neighboring segments in the chain are bonded
by a FENE potential, although harmonic springs40–42 and
rigid bonds36, 56, 57 have also been used. Here, the bond length
lb = σ = 1 was kept constant using the Time Symmetri-
cal Central Difference algorithm.58, 59 Like other constraint
algorithms, these bonds contribute to the virial:60 Wtotal

= WLJ + Wconstraint , but not to the energy.
With our purpose in mind, the model is of special inter-

est since it has already been shown to obey power-law density
scaling, using γ as an empirical scaling parameter.36 More-
over, the LJC liquid has been shown to obey Rosenfeld’s ex-
cess entropy scaling.36, 56, 57, 61

IV. RESULTS AND DISCUSSION

A. Generating isomorphs

To generate an isomorph, a NVT simulation was per-
formed at a state point (ρ0, T0), and the scaling exponent γ

was calculated using Eq. (4). We then changed density with
0.02 and used Eq. (5) to find the temperature at the new state
point for which the excess entropy Sex is same. Applying this
procedure iteratively we obtain a curve with constant Sex. If
the model conforms to the isomorph theory, this curve will
be an isomorph, i.e., have invariant dynamics and structure in
reduced units. Five prospective isomorphs were generated us-
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FIG. 1. (a) The correlation coefficient R, calculated from the instantaneous
values of the virial W and the potential energy U using Eq. (3). Each data set
corresponds to an isomorph, obtained as described in the text (see Fig. 9 for
corresponding temperatures). The correlation coefficient is high, albeit lower
than for the single component Lennard-Jones liquid.44, 62 (b) The isomorphic
scaling exponent γ as defined by Eq. (4). The values found are significantly
higher than for the single component Lennard-Jones liquids44, 62 and show a
clear density dependence. The logarithmic derivatives of γ on the isochore
and isotherm confirm that γ is much more dependent on the density than on
temperature: ( ∂ ln γ

∂ ln T
)
ρ=1 ≈ 0.05 and ( ∂ ln γ

∂ ln ρ
)
T =0.7 ≈ 0.89, as predicted by the

isomorph theory.

ing this procedure with ρ0 = 1.0 and T0 = {0.5, 0.6, 0.65, 0.7,
0.8}.

In Fig. 1(a), the correlation coefficient R is plotted as a
function of density for the five isomorphs. For the densities
we simulated, the correlation coefficient varies between 0.81
and 0.87, which is lower than the (somewhat arbitrary) 0.9
limit for simple liquids. However, we show with this paper,
that the LJC model has clear isomorphs in its phase diagram.

In Fig. 1(b), we plot the values of γ calculated from
Eq. (4). The isomorph theory predicts γ to depend on den-
sity but not temperature.29, 47 This is seen to be fulfilled to
a good approximation; γ changes much more by increasing
density by 25% than by increasing temperature by 60%. The
density dependence of γ means that we can only use Eq. (5)
for small density changes, which indicates that simple power-
law density scaling is an approximation that only works for
small density changes.

The γ values found for the LJC model (6.1–7.9) are
higher than for a single component LJ liquid (5.3–6.7).44, 62

This increase in γ is due to the fixed constraints, which can
be seen as a very steep repulsion between bonded segments.
On the other hand, the high γ values are in contrast to the
values found from power-law density scaling, which in exper-
iments are generally lower for polymers than for small molec-
ular liquids.37 Tsolou et al.63 found γ = 2.8 from power-law
density scaling of simulation data of a united atom model
of cis-1,4-polybutadiene. A possible explanation for this low
value of γ has been given by Xu64 who showed using the gen-
eralized entropy theory that polymer rigidity significantly de-
creases the density scaling exponent γ . Xu64 quantified poly-
mer rigidity by the bending energy of the angle between two
bonds.
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FIG. 2. The segmental and center of mass incoherent intermediate scatter-
ing function F

S
(q, t̃), as well as the normalized orientational autocorrelation

function of the end-to-end vector 〈R(t)R(0)〉. q = 7.09 ρ1/3 (the position of
the first peak of the segmental structure factor). (a) The data for 7 isomor-
phic state points collapse on a single master curve when plotted in reduced
units, and this is the case for all three relaxation functions. (b) For isothermal
state points, the curves do not collapse but are spread over a larger dynamical
range.

B. Dynamics on an isomorph

In the following, we test a number of isomorph predic-
tions focusing on the (ρ0, T0) = (1.0, 0.7) isomorph, before
returning to the question of the overall scaling properties of
the model. The isomorph theory predicts dynamics and struc-
ture to be invariant on an isomorph. This invariance applies
to data in reduced units, which means that distance and time
are scaled using r̃ = ρ1/3r and t̃ = ρ1/3(kBT /m)1/2t , where
m is the mass of a segment. The dynamics are of particu-
lar interest here, because the dependence on state point be-
comes strong upon cooling and/or compression. In Fig. 2(a),
different dynamical quantities are plotted. The self part of
the segmental and the center of mass intermediate scattering
function FS(q, t), as well as the normalized orientational au-
tocorrelation of the end-to-end vector 〈R(0)R(t)〉 are plotted
as a function of reduced time. The values of q were kept con-

0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25
ρ

10
-1

10
0

10
1

10
2

10
3

τ 
 (

re
du

ce
d 

un
it

s)

isomorph, segmental F
S

isomorph, center of mass F
S

isomorph, 〈R(0)R(t)〉
isotherm T = 1.00, segmental F

S

isotherm T = 1.00, CoM F
S

isotherm T = 1.00, 〈R(0)R(t)〉

q~ = 1

q~ = 1.8

q~ = 3.5

q~  = 7.09

q~ = 1.8

q~ = 3.5

q~ = 11
q~ = 7.09

q~ = 20

q~ = 14

q~ = 20

FIG. 3. Relaxation times calculated from the orientational autocorrelation of
the end-to-end vector and the intermediate scattering function, as function of
density. The value of the q̃ vector has been varied to obtain different measures
of the relaxation time. Each value was kept constant in reduced units for the
different densities All relaxation time measures are invariant for isomorphic
state points (filled symbols). An isotherm is included for comparison (open
red symbols).

stant in reduced units: q = q̃ρ1/3(q̃ = 7.09). All these mea-
sures of the dynamics collapse well for the isomorphic state
points compared to an isothermal density change. Increasing
the density by 11% while keeping temperature constant sig-
nificantly changes the dynamics, whereas increasing the den-
sity by 25% while following the isomorph keeps the dynamics
invariant. The data in Fig. 2(a) are in agreement with power
law density scaling of segmental and chain relaxation times
of simulated polybutadiene.63 Our data extend these results
by showing that the shape of the entire relaxation curves is
invariant.

We define a relaxation time for the dynamical quantities
as the time where the correlation function reaches 0.2. These
relaxation times are plotted in Fig. 3, this time also varying
q̃. The different relaxation times characterizing the dynam-
ics cover more than 4 decades in time, but each of them is
to a good approximation invariant on the isomorph. In con-
trast, the relaxation times on the isotherm shown (open red
symbols) show a clear dependence on density.

The dynamics of flexible chains are often expressed
in terms of correlation functions of Rouse modes,
〈Xp(t)Xq(0)〉.65, 66 The zeroth mode X0 describes the
position of the center of mass of the chain, while the higher
modes with p = 1, 2, . . . , N−1 describe the local motion of a
subchain of N/p segments. In Fig. 4 some of the Rouse mode
autocorrelation functions are plotted for the isomorphic state
points. For the lower modes, there is an excellent collapse of
the correlation functions, whereas the invariance decreases
somewhat for the higher modes. The variance of the highest
modes is somewhat surprising considering that the segmental
intermediate scattering function shows such a good collapse.
It should however be noted that the amplitude of the Rouse
modes is predicted to scale as 〈X2

p〉 ∝ 1/(N sin2(p/N )),
so the contribution of the higher modes is very small.67

Moreover, the p > 0 Rouse modes represent the conformation
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FIG. 4. Autocorrelation functions of some Rouse modes. (a) For the same
isomorphic state points as in Fig. 2(a). The collapse of the Rouse modes is
good, especially for the lower modes. (b) Data for the same isothermal state
points as in Fig. 2(b). There is no collapse of the dynamics for isothermal
state points.

of the (sub)chain, and the less than perfect collapse of the
highest modes thus indicates that the deviation from isomorph
theory is specific to the local intramolecular dynamics. It is
well known that reducing the local intramolecular degrees
of freedom by including bond and torsional potentials leads
to dynamics that are less Rouse-like.68 The local degrees of
freedom affect mostly the higher modes, giving the standard
Rouse behavior for the lower modes representing longer
subchains.69

Fig. 5 shows the isomorphic invariance of the mean
square displacement of both the segments and the center of
mass in all regimes, including the subdiffusive regime which
is specific for polymers and other flexible molecules.

Not only equilibrium dynamics, but also out of equilib-
rium dynamics is predicted to be invariant on an isomorph.
We test this by changing density and temperature instanta-
neously during a simulation. The center of mass positions of
the molecules are scaled together with the box, but the in-
tramolecular distances were kept constant. In Fig. 6 the relax-
ation of the potential energy is plotted after different instan-
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FIG. 5. The mean square displacements of the segments and the center of
mass of the chains. (a) Again, there is a good collapse for the mean square
displacement on the isomorph, for both the segments and the center of mass.
(b) This is not the case for the isotherm.

taneous jumps. Although the energy is not the same at two
isomorphic state points, no relaxation is visible in the energy
when jumping between the two state points (black line). This
is predicted by the isomorph theory: two state points on the
same isomorph are equivalent with regard to aging.29 Like-
wise, when jumping from two state points on the same iso-
morph to a third state point that is not on that isomorph, the
relaxation curve is the same for the two jumps. When the den-
sity is changed, the system is immediately in equilibrium at
the isomorphic state point with the new density. Any relax-
ation after the density jump then takes place on the isochore.70

C. Structure on an isomorph

Also the structure is predicted to be invariant on an
isomorph.29 However, not all structural quantities are nec-
essarily equally invariant when molecular liquids are con-
sidered. Since the length of the rigid bonds is constant in
normal units and does not change with density, the bond
length in reduced units will not be constant on the iso-
morph in reduced units. For that reason we plot the inter- and
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FIG. 6. Potential energy relaxation after instantaneous jumps from three dif-
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jumps in the phase diagram, plotted in the U,W -plane. Black line: a jump
between isomorphic state points. The energy shows no relaxation since the
system is immediately in equilibrium. Red and green lines: two jumps from
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intramolecular contribution to the segmental radial distribu-
tion function g(r) separately in Fig. 7. The intermolecular
structure is quite constant on the isomorph, while the in-
tramolecular structure is clearly not. The center of mass g(r̃)
was also found to be invariant on the isomorph when plotted
in reduced units (data not shown), but it is also invariant on
the isochore and isotherm within the liquid (fluid) phase.

To investigate the difference in inter- and intramolecu-
lar structure further, we plot the mean square radius of gy-
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due to the constant bond length. (a) The intermolecular (segmental) radial
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0.70). The intermolecular g(r) is to a good degree invariant for isomorph state
points, especially when compared to a (small) density change on an isotherm.
(b) The intramolecular g(r) is clearly not invariant on an isomorph.
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of these quantities is similar on the isomorph and isotherms (dashed lines).
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they show an (intuitive) decrease with density. (c) and (d) The same data
for the isomorphic state points, now plotted as a function of temperature and
compared with an isochore. These intramolecular quantities are actually more
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ration 〈R2
g〉 and the mean square end-to-end vector 〈R2 〉 in

Fig. 8. These intramolecular quantities are clearly not invari-
ant on the isomorph, changing as much with density as on
the isotherm. On an isochore these quantities are even more
constant than on the isomorph. The lack of temperature de-
pendence of these quantities was already noted for a similar
bead-spring model.71

D. Scaling of the dynamics

Finally, we return to the question of the overall scaling of
the dynamics of the model. As mentioned in the Introduction,
the isomorph theory predicts that each relaxation time char-
acterizing the dynamics is a function of h(ρ)/T where h(ρ)
is system dependent function. For atomic systems with pair
potentials being sums of power laws, we have an analytical
expression for h(ρ).30, 46 Due to the presence of the bonds, we
unfortunately do not have an analytical expression for h(ρ)
in the model studied here. Fig. 9 shows the five studied iso-
morphs in the ρ, T plane (filled symbols). The open symbols
show the same data, except that the temperatures are divided
by T0 (the temperature at ρ = 1). The scaled data is predicted
to collapse on a single curve, h(ρ), which is indeed seen to be
the case. We have found that the h(ρ) from the single com-
ponent Lennard-Jones liquid30, 46 does not describe the shape
of Lennard-Jones chain isomorphs correctly due to the rigid
bonds (fit not shown). Instead, we have fitted the shape of
the isomorphs with a function of the form h(ρ) = 2ρα − ρβ

where α and β are fitting parameters. The choice of the func-
tional form is rather arbitrary; it was found to fit the data
well with only two fitting parameters, but there is no a priori
reason why h(ρ) should be a sum of two power laws and
we do not ascribe any meaning to this functional form.
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Nonetheless, the shape of the isomorphs is well described by

h(ρ) = 2ρ5.06 − ρ2.61, (6)

shown as the dashed pink line in Fig. 9.
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value gives a good collapse of all the data. (c) Isomorph scaling approach,
using the function h(ρ) = 2ρ5.06 − ρ2.61 (see Fig. 9) to scale the relaxation
times, giving a much better collapse.

Fig. 10 compares for three isochores the power-law den-
sity scaling and the scaling predicted by the isomorph the-
ory. Figs. 10(a) and 10(b) show that the two smallest den-
sities collapse using power-law density scaling with γ = 7.7,
whereas the two highest densities collapse using γ = 6.7. No-
tice that the values of γ found by this empirical scaling are
consistent with the values found from the W,U fluctuations
in the respective density intervals (see Fig. 1). The power-law
density scaling is an approximation that works well for (rel-
atively) small density changes, and the scaling exponent γ

can be determined independently from the W,U -fluctuations.
The more general form of scaling is the one predicted by the
isomorph theory, which is tested in Fig. 10(c), using the h(ρ)
determined empirically in Fig. 9. The collapse is seen to be
excellent. Notice that the isomorph scaling also captures the
different shapes of the segmental and chain dynamics, which
is also well known for power-law density scaling in a small
density range.72–74

V. CONCLUSION

To summarize, we have shown that the predictions of
the isomorph theory apply to a flexible chain-like model
system, despite the fact that the system is not entirely
“Roskilde-simple” because the correlation coefficient of the
instantaneous U,W fluctuations is less than 0.9. However, the
collapse of the dynamics at different time and length scales is
unmistakable, and works for the segmental dynamics as well
as the chain dynamics. We see a slight deviation from invari-
ance for the highest Rouse modes, but we attribute this to a
specific intramolecular effect related to the (local) conforma-
tion of the chain. The rigid bonds in the model cannot scale
with density and the structure can therefore not be constant
on the isomorphs. We have shown that this is only the case
for intramolecular structure, while the intermolecular struc-
ture stays invariant on the isomorph.

Our results indicate that the isomorph theory may be ex-
tended to include flexible molecules. In particular, this ex-
plains the experimentally observed power-law density scaling
for alkanes and many polymers – and predicts that it should
break down at larger density variations where the more gen-
eral isomorph scaling is needed.
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