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The existence of a shadow Hamiltonian H̃ for discrete classical dynamics, obtained by an asymp-
totic expansion for a discrete symplectic algorithm, is employed to determine the limit of stability
for molecular dynamics (MD) simulations with respect to the time-increment h of the discrete dy-
namics. The investigation is based on the stability of the shadow energy, obtained by including the
first term in the asymptotic expansion, and on the exact solution of discrete dynamics for a single
harmonic mode. The exact solution of discrete dynamics for a harmonic potential with frequency
ω gives a criterion for the limit of stability h ≤ 2/ω. Simulations of the Lennard-Jones system and
the viscous Kob-Andersen system show that one can use the limit of stability of the shadow en-
ergy or the stability criterion for a harmonic mode on the spectrum of instantaneous frequencies to
determine the limit of stability of MD. The method is also used to investigate higher-order central
difference algorithms, which are symplectic and also have shadow Hamiltonians, and for which one
can also determine the exact criteria for the limit of stability of a single harmonic mode. A fourth-
order central difference algorithm gives an improved stability with a factor of

√
3, but the over-

head of computer time is a factor of at least two. The conclusion is that the second-order “Verlet”-
algorithm, most commonly used in MD, is superior. It gives the exact dynamics within the limit
of the asymptotic expansion and this limit can be estimated either from the conserved shadow en-
ergy or from the instantaneous spectrum of harmonic modes. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4768891]

I. INTRODUCTION

In molecular dynamics (MD) simulations of classical
dynamics1 one uses algorithms which propagate the dynam-
ics with a (constant) small time-increment h. This article
deals with the problem of how large this time-increment can
be chosen.

Mathematical investigations have established2–5 that if
a discrete algorithm is symplectic, then there exists a
shadow Hamiltonian H̃ (q, p)6 for sufficient small h such that
the discrete points q(nh), for a particle, generated by the sym-
plectic algorithm, lie on the analytic trajectory for the parti-
cle obtained by H̃ (q(t), p(t)). Not all algorithms for solving
Newton’s classical mechanical differential equation are sym-
plectic. But the most commonly used algorithm in MD, the
“Verlet” algorithm,7 is not only symplectic, it is also time-
reversible and this quality ensures the existence of H̃ with an
exact conserved energy, but for the unknown shadow Hamil-
tonian. In Ref. 8 we include the first term in the asymptotic ex-
pansion in the energy estimate of H (q, p) and, for traditional
values of h used in MD, there is only a marginal difference
between the energy estimate of H̃ (q, p) and the energy of the
Hamiltonian H (q, p) for the analytic dynamics. The article
deals with determining the limit of energy conservation with
respect to the time-increment. Inclusion of the first term in the
energy estimate of H̃ reduces the energy fluctuations with a
factor of hundred for a traditional choice of h8 and makes it
possible to determine the limit of energy conservation in MD
accurately.

The Verlet algorithm is the central difference expres-
sion for the acceleration and it is the first expression in an
infinite series in even powers of the time-increment.9 All
the higher-order algorithms in this expansion are in princi-
ple time-reversible and symplectic. Thus, all these algorithms
have shadow Hamiltonians which rapidly converge to the
Hamiltonian for the analytic solution. All the higher-order
central difference algorithms depend, however, on positions
as well as momenta at the discrete time where the positions
are updated and this fact complicates their implementation.9

So, although one can choose a larger h for these algorithms,
there is a computational “overhead.” In addition to the deter-
mination of the maximum time-increment for energy conser-
vation this article also deals with the stability and effective-
ness of these higher-order algorithms.

The discrete dynamics of a single normal mode can be
derived exactly6, 10–12 and the shadow Hamiltonian can be ob-
tained by an expansion in even powers of the frequency of
the analytic dynamics ω for h ≤ 2/ω.6 The expansion was
used in Ref. 6 to determine the energy difference to first or-
der between H̃ (q, p) and H (q, p) for a complex system. The
first-order term, derived in Ref. 6, is the harmonic approxi-
mation of the first term in the asymptotic expansion,2–5 which
ensures the existence of H̃ (q, p) for sufficient small values of
h and a conserved energy of the discrete dynamics for sym-
plectic algorithms. Here it is shown that the stability of MD
with the central difference algorithms can be estimated ei-
ther from the conserved energies or from the instantaneous
spectrum of normal frequencies in the complex systems. The
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investigation makes use of the instantaneous normal-mode
analysis (INM)13 to determine the limit of stability of the al-
gorithms by using the exact criterion for the stability of a dis-
crete harmonic mode. Normal mode analysis has been very
successful in investigations of viscous systems,14–17 which is
extremely time demanding to simulate and for which it is very
important to optimize the MD simulations.

The article is organized as follows. Section II presents
a new and simpler way to obtain the INM spectrum and the
first energy term in the asymptotic expansion, and in Sec. III
we use the INM spectrum and the exact relations obtained
in Appendix B to determine the limit of stability for two
representative systems, a Lennard-Jones system (LJ) and the
Kob-Andersen system18 for a viscous fluid. A summary and
a discussion of the results are given in Sec. IV. The deriva-
tion of the fourth-order algorithm in the central difference
expansion9 is given in Appendix A and the exact stability lim-
its for a harmonic mode6 is derived in Appendix B.

II. THE ASYMPTOTIC EXPANSION
OF THE SHADOW HAMILTONIAN

The stability of discrete dynamics for a harmonic mode
given in Appendix B is used in the investigation of the stabil-
ity of the discrete symplectic dynamics for complex systems.
The Hessian J(rN

n ) (the matrix of the second derivative of the
potential energy U (rN

n ) of the N interacting particles at the
nth discrete move) enters into the harmonic approximation of
the first energy term in the asymptotic expansion6, 19 and the
squares of the normal-mode frequencies, which are used in
the INM,13 are the eigenvalues of J(rN

n ).
The harmonic approximation of the first term in the

asymptotic expansion gives (Eq. (20) in Ref. 6)
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(masses included in the time unit), where ωi is the frequency
and Ai is the amplitude of the harmonic approximation of the
ith particle’s motion at time t = nh at the nth discrete step.
The “velocity” of particle no. i at time t in Eq. (1) is tradi-
tionally obtained from the positions at t + h and t − h as vi

≡ (ri(t + h) − ri(t − h))/2h.
The square of the harmonic mode frequencies can con-

sistently with the velocities be determined from the discrete
values of forces and positions at t + h and t − h by

ω2
i (t) = − (fi(t + h) − fi(t − h)) · ei

|ri(t + h) − ri(t − h)| , (2)

where ei is the unit vector ei(t) = (ri(t + h) − ri(t − h))/
|ri(t + h) − ri(t − h)| along the ith particle’s (discrete) tra-
jectory at ri(t). Correspondingly, the amplitude for the ith
mass point is obtained as
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By inserting Eqs. (2) and (3) in Eq. (1) (and using
(1 − h2ω2

i /4)−1 = 1 + h2ω2
i /4 + O(ω4)), Eq. (1) transforms

to

En � U
(
rN
n

)+ 1

2

(
vN

n

)2 + h2

12

(
vN

n

)T
J
(
rN
n

)(
vN

n

)− h2

24
fNn

(
rN
n

)2
,

(4)

(with vN
n ≡ v1(t), . . . , vN (t), fNn ≡ f1(t), . . . , fN (t), and rN

n

≡ r1(t), . . . , rN (t)) for the nth determination of the shadow
energy En.8, 19 The first two terms in Eq. (4) are the traditional
expression for the discrete value
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2

(
vN

n

)2
(5)

of the total energy in the system. Edisc, n fluctuates with n but
it is conserved in mean with a relatively small standard devia-
tion (SD)(h2). Inclusion of the first (harmonic approximated)
term in the asymptotic expansion in the energy reduces, how-
ever, the SD by a factor of hundred for a traditional choice of
the time-increment.8

Figure 1 shows the record of the discrete obtained ener-
gies in a LJ system for a traditional choice of time-increment
h = 0.005. Inclusion of the first term in the asymptotic ex-
pansion reduces the variation in energy by a factor of hundred
and makes it possible to determine when the energy is con-
served. The imaginary eigenvalues, corresponding to convex
(saddle-point) transitions were ignored in Ref. 6. But, by us-
ing Eq. (2) these modes are included in the first term in the
asymptotic expansion (Eq. (1)) and the standard deviation of
En is reduced significantly and leads to a SD similar to the
SD obtained from J(rN

n ) in Eq. (4). Since the determination
of the frequency spectrum by using Eq. (2) is much simpler
than the determination of the eigenvalues of the Hessian and
lead to almost the same value of the shadow energy (Figure 1)
and conservation of energy per time step (Figure 2), it is used
here in the INM analysis.
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FIG. 1. Discrete determined energies of a LJ system with the Verlet algo-
rithm at T, ρ = 1.0, 0.80 and for h = 0.005. Green: Traditional energy es-
timate obtained by Eq. (5); red: “Shadow” energy obtained by Eq. (4); blue
“Shadow” energy obtained by Eqs. (1)–(3).
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FIG. 2. The mean energy amplitudes 〈|En − En−1|〉 as a function of the time-
increment h in a log − log plot. Red points are for the fourth-order algorithm
(Eq. (A4)) (Appendix A) and green points are for the shadow energy of the
Verlet algorithm (Eq. (4)). Blue points are for the Verlet algorithm with the
traditional energy estimate (Eq. (5)). The straight lines through the red and
blue points have the slopes of five and three, respectively.

III. STABILITY OF DISCRETE DYNAMICS FOR
COMPLEX SYSTEMS

The stability of discrete time-reversible dynamics is in-
vestigated for two systems: A system of particles interacting
with the Lennard-Jones pair potential

uLJ(r) = 4ε[(σ/r)12 − (σ/r)6] , (r < rc) (6)

and a “Kob-Andersen binary mixture” (KABLJ). The KABLJ
liquid is a mixture of 80% large (A) and 20% small (B) LJ
particles (σ BB = 0.8σ AA) with a very strong AB attraction.18

The A particles dominate the overall dynamics and the B par-
ticles are to a large extent slaves of the structure set by the A
particles. Cut-offs of the interactions are given in units refer-
ring to σ AA,20 computational MD details are given in Ref. 21.
The system is very resistant against crystallization due to the
strong exothermic mixture.22 For this reason it is the standard
system for simulations of highly viscous systems. Simulations
of viscous systems are very time demanding and efficient MD
is important.

The stability of the discrete dynamics for the LJ system
is investigated at a typical condensed liquid state point with
T = 1.00 at the density ρ = N/V = 0.80, with a cut-off rc

= 2.5. This system was the very first to be simulated7 with a
time-increment h = 0.005. The energy of the system is con-
served for h = 0.01, but MD collapses sooner or later for
h = 0.02. When the fourth-order algorithm, Eq. (A4), is used
the system remains stable for h � 0.02, but collapses for larger
time-increments.

The discrete symplectic dynamics must be stable within
the radius of convergence of the asymptotic expansion. But
without knowledge of the higher-order coefficients in the
asymptotic expansion we can only estimate the convergence
limit. The dependence of the energy on the time-increment
for the second-order Verlet algorithm, its first-order corrected
shadow energy, and the fourth-order algorithm give, however,
some indication of the limit of the expansion. Figure 2 shows
the mean change in the energy per time step 〈|En − En−1|〉 as
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FIG. 3. The shadow energy per particle (Verlet algorithm) over 10 000 time
steps for a LJ fluid at T, ρ = 1.00, 0.80, with shifted forces (SF) cutoff at rc

= 2.5 and for different time-increments h. Red: h = 0.005; green: h = 0.01;
and blue: h = 0.015.

a function of h. The mean energy changes per step follow the
predicted dependence (straight lines) and demonstrate that the
first order correction to the shadow energy of the Verlet dy-
namics and the energy of the fourth-order algorithm Eq. (A4)
(Appendix A) only improve the energy variation per time step
for h < 0.05.

Although the behavior of the energy variation per time
step indicates that the discrete dynamics might be sta-
ble for a significantly larger time-increment h ≈ 0.05, the
shadow energy of the Verlet dynamics is not conserved for h
> 0.01. Figure 3 shows the (short time) energy evolution.
The small growth of the energy appears instantaneously for h
= 0.015 and is caused by ill-integrated modes (see below and
Appendix B) and not by the truncated and shifted force field.
(A truncated and shifted potential or a truncated and shifted
force field only results in a very small drift in the energy
which shows up for very long simulations8, 24). The small
drift was removed by a Nosé-Hoover thermostat, which main-
tains the time-reversibility and is “mean-symplectic.”23 This
stabilized the MD without any change in energy, pressure,
and the distribution of the particles. But the MD with the
Verlet algorithm breaks down sooner or later for h = 0.02 even
by employing a thermostat. For the fourth-order algorithm
(Appendix A) the energy is conserved for h ≤ 0.02 in ac-
cordance with the theory, which predicts an improvement
in stability with respect to h with a factor of

√
3. These

limits of stability are significantly less than the estimate
h < 0.05, obtained from the energy conservation per time step
(Figure 2). The reason for this behavior is that the spectrum
of normal modes at the nth time step contains modes that can-
not be integrated with h > 0.01 for the Verlet algorithm and
correspondingly h > 0.02 for the fourth-order algorithm.

The distributions of harmonic frequencies for the LJ sys-
tem at T, ρ = 1.00, 0.80 are shown in Figure 4. The first term
in the asymptotic expansion depends only on the potential
energy, explored by generated discrete positions. Thus, the
instant distribution of the modes could depend on the time-
increment, but the distribution is, however, not sensitive to
h. The distribution of eigenvalues ω2

i is sorted in negative
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FIG. 4. Distribution P(ω) of normal modes with frequencies ω in a LJ-fluid
at T = 1.00 and ρ = 0.80. Red lines show the distribution for a small time-
increment h = 0.0025 and with green points the distributions for a time-
increment h = 0.015 both obtained for the Verlet algorithm. The blue curve is
the distribution obtained by the fourth-order algorithm (Eq. (A4)) (Appendix
A) and for a time-increment h = 0.020. The inset shows the “instantaneous
distribution” log P(ω) for h = 0.0025 (red) obtained from the first 10 000
steps together with the distributions for h = 0.015 (green) and h = 0.02 (blue),
also shown in the main figure.

(imaginary “saddle-point transitions”) and positive values,
and the distribution of ωi in Figure 4 shows both distribu-
tions. The distributions are obtained from one million time
steps at T, ρ = 1.00, 0.80 and with a cut-off rc = 2.5. The fig-
ure shows the distributions for h = 0.0025 (red) and h = 0.015
(green) for the Verlet algorithm and h = 0.02 (blue) for the
fourth-order algorithm (Eq. (A4)) (Appendix A). (The two
distributions for h = 0.015 and h = 0.02 are obtained by re-
moving a small energy drift by a thermostat.23) The inset with
a logarithmic ordinate shows the distribution of the modes for
the first 10 000 steps with h = 0.0025 (red) together with the
two mean distributions for h = 0.015 and h = 0.02 from the
main figure. The main figure demonstrates that the distribu-
tions are not sensitive to h, even outside the stability region of
the shadow energy. But the inset reveals that the instantaneous
spectrum contains a few modes that cannot be integrated by
the discrete dynamics. The instantaneous distribution in the
inset (red) is obtained for h = 0.0025 and for 10 000 time
steps, and it shows that there are modes within the intervals
[−200, −100] and [100, 200]. They appear with a very small
probability, but there are a few of the 2000 × 10 000 eigenval-
ues for the N = 2000 particles within the 10 000 time steps.
According to the stability criterion (Eq. (B8)) (Appendix B),
these modes require a maximum time-increment of h = 0.01
for the Verlet algorithm and this explains the instability of the
energy, shown in Figure 3. The energy drift for h = 0.015 can
be removed by a thermostat and the few unstable modes do
not result in that the MD breaks down, nor in a shift in the
distribution of normal modes. The few ill-integrated modes
have no effect on the equilibrium behavior. In fact, the radial
distribution function for h = 0.015 is equal to the distribution
function for h = 0.0025, so the thermostat ensures that the
thermodynamics is not affected by the mistreatment of these
few unstable modes.

The general observation from simulations of the two sys-
tems (LJ and KABLJ) is that the distributions of frequencies
are not sensitive to h as long as the shadow energy is con-
served. At the LJ-state point T, ρ = 1.00, 0.80 frequencies
above 50 are rare, but there are many frequencies ω ≈ 100 (in-
set in Figure 4). For a time-increment h = 0.02 the maximum
frequency which can be integrated is 100 and the Verlet algo-
rithm breaks down sooner or later, whereas the fourth-order
algorithm remains stable in accordance with the stability cri-
terion derived in Appendix B.

The KABLJ system is the MD standard system for sim-
ulation of a supercooled fluid system since it it very resis-
tant against crystallization.22 It was first simulated by Kob
and Andersen18 in the supercooled regime T ≈ 0.45. The sys-
tem was integrated (Verlet) with a time-increment h = 0.0025
and for shifted potentials24 at a pair distance rc = 2.5.20 The
energy of the KABLJ system at this state point remains, how-
ever, stable for h ≈ 0.01 and for larger time-increments one
can remove the small energy drift by a thermostat.

Figure 5 shows the distribution of normal modes obtained
by the Verlet dynamics at T, ρ = 0.45, 1.2 and for different
values of h. The distributions show some interesting features.
First we notice that the imaginary modes are more impor-
tant for the small solute B particles and second that the high
frequency spectrum goes exponentially to zero with |ωmax|
≈ 100; but there appear a few frequencies outside this inter-
val and these high frequency modes are more dominant for the
small B particles (magenta lines in the inset). They appear for
small time-increments as well as for the maximum increment
h = 0.015, shown in the inset. For h = 0.015 these modes
are ill-integrated according to the stability criterion (Eq. (B8))
(Appendix B). The energy is not conserved, but they are rare
and have a marginal influence on the behavior of the viscous
fluid.

The usefulness of MD is that one can determine the
time behavior of a complex system, e.g., its transport co-
efficients. The viscosity η of the KABLJ fluid is inversely
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FIG. 5. Distribution P(ω) of normal modes with frequencies ω in a KABLJ-
fluid at T = 0.45 and ρ = 1.20. The two distributions red and green are for
the A-particles; blue and magenta for the B-particles. The red and blue lines
are the distributions for a small time-increment h = 0.0025; the green and
magenta lines that for h = 0.015. The distributions in the inset show log P (ω)
for h = 0.015; green for A particles; and magenta for B particles.
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   T=0.45;     h=0.0025: DA=2.2(2) 10-5,   DB=7.8(6) 10-5

   T=0.45;     h=0.020 :  DA=1.57(5) 10-5, DB=5.7(2) 10-5

   T=0.4545;  h=0.020 : DA=2.16(8) 10-5, DB=7.4(2) 10-5

FIG. 6. The mean square displacement of particles in a KABLJ system at
ρ = 1.20 in a log − log plot. Red and green lines and red points are for A
particles, blue and magenta lines and blue points are for B particles. Red
line is for h = 0.0025 (standard value); green line is for h = 0.02, both at T
= 0.45; red points are for h = 0.02 at T = 0.4545. Blue line is for h = 0.0025;
magenta line is for h = 0.02, both at T = 0.45; blue points are for h = 0.02 at
T = 0.4545. The values of the self-diffusion constants are given in the figure.

proportional to the self diffusion constant D and changes dra-
matically near the “mode-coupling” transition temperature Tc

= 0.435.18 The self diffusion constant D can be obtained as
the slope of the mean square displacement (msd) of the parti-
cles, which is a linear function of time in the diffusive regime.
The mean-square displacement for a particle in a viscous fluid
separates into two regimes: the short-time ballistic regime in
which the particle vibrates within its first coordination shell
and the long-time diffusive regime that reflects the occasional
escape from the shell and where the msd is a linear function of
time. A crucial requirement for using a larger time-increment
is that one obtains not only the same temperature, energy, and
pressure, but also the same dynamical behavior.

It requires very long simulations to determine the msd
accurately and thereby determine the self diffusion constant
and the viscosity of viscous systems. The msd of the parti-
cles at ρ = 1.20 and T ≈ 0.45 are shown in Fig. 6. The data
shown in the figure is the mean of ten independent simula-
tions, each of 1.6 × 107 steps, with different time-increments
h. The values of the self-diffusion constants DA and DB are
given in the figure together with the uncertainties of the last
ciphers (in parentheses). The simulations reveal that not only
the thermodynamics but also the mean square displacement
can be obtained for a significantly larger time-increment. The
radial distribution functions as well as the msd and DA and
DB are independent of h within the (energy) stability regime h
≤ 0.01. For h = 0.015 a small energy drift can be removed
by a thermostat and all mean data are still unaffected, even
within the very long simulations; but for h = 0.02 there are
small changes in the msd (green and magenta lines) and DA

and DB, and the fluid is more viscous. The MD for h = 0.025
breaks down sooner or later.

The higher viscosity of the system with h = 0.02 at T
= 0.45 is, however, not a defect caused by too big a value
of h, but a consequence of a shift in the shadow energy. The
exact solution of the discrete dynamics of a harmonic mode

(DDHO) in Appendix B shows that the shadow Hamiltonian
and the shadow energy is (only) a function of h. The simula-
tions with h = 0.02 (green and magenta lines in Figure 6) are
performed with a thermostat at T = 0.45, which results in a
slightly smaller shadow energy than obtained for h = 0.0025.
The shadow energy of the system with h = 0.02 was also
obtained for (slightly) higher temperatures from which the
shadow energy at T = 0.4545 was estimated to be equal to the
corresponding shadow energy with h = 0.0025 at T = 0.45.
The red and blue points in Figure 6 are the msd for h = 0.02
and T = 0.4545 and agree with the corresponding msd (red
and blue lines) for h = 0.0025 at T = 0.45 and show that the
msd at a given density are governed not by the temperature,
but by the shadow energy. For equal shadow energy there are
no detectable differences in the equilibrium data as well as the
msd, and the investigation indicates that one can gain a factor
of eight in computer time by increasing the time-increment
from h = 0.0025 to h = 0.020 without any detectable loss in
accuracy.

IV. SUMMARY AND DISCUSSION

The conclusion of the investigation of the two systems
(LJ and KABLJ) at various state points is that the equilib-
rium behavior as well as the mean square displacements for a
given density only is a function of the shadow energy within
the stability limit of the energy. The stability of the discrete
dynamics can be determined from the limit of stability of the
shadow energy or estimated from the INM spectrum of the
normal frequencies.

The INM spectrum of frequencies depends only on the
energy U (rN ) explored by the particles during the simulation
and this spectrum is almost independent of h (Figures 4 and
5). This behavior is very useful when one shall chose an ef-
ficient time-increment for a new system: The distribution and
the maximum frequency ωmax can be obtained from a short
simulation with a small time-increment and used to deter-
mine the maximum time-increment h ≤ 2/ωmax

6, 11 by which
the system can be simulated. Alternatively one can determine
the stability of the discrete dynamics from the sensitive mea-
sure of the stability of the shadow energy, Eq. (1) or Eq. (4).

The standard-second order (Verlet) algorithm used in MD
is reversible and symplectic. There exist many higher order
algorithms, e.g., Runge-Kutta and occasionally they are also
used in MD of complex systems. Most of these algorithms
are not symplectic; but there exist, e.g., symplectic Runge-
Kutta algorithms.25, 26 The symplecticity ensures a conserved
shadow energy for sufficient small time-increments and the
higher-order algorithms give not only a more precise estimate
of the energy, but they are also more stable. Investigation of
the fourth-order central difference algorithm shows, however,
that one only gains a factor of

√
3 in the range of stability

and since the computational overhead in this case is at least a
factor of two, it is from a computational point of view simpler
and faster to use the second order Verlet algorithm. The same
must be true also for the fifth-order symplectic Kunge-Kutta
algorithm since it requires additional force calculations and
almost all computer time is spent on calculating the forces
within the many-body system. One might, however, avoid this
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overhead of computer time of the forces by using a higher-
order force-gradient algorithm.27

The limit of stability of the MD simulation can be ex-
tended with a factor of 2 behind the limit of stability of the
energy by using a thermostat which removes the (energy) er-
rors caused by the few ill-integrated modes. In the case of the
KABLJ system the time-increment can be increased in total
by a factor of eight from the traditional (conservative) choice
h = 0.002518 to h = 0.020 without any significant impact on
the equilibrium behavior and the mean square displacements
(Figure 6), but the system collapses sooner or later for a larger
time-increment. The energy conservation per time step (Fig-
ure 2) and the distribution of normal modes reveal, however,
that the discrete dynamics might be obtained even for signif-
icantly larger time-increments than used here, if one can ex-
clude the unstable modes with ω > 2/h. They appear rarely
and they have only a negligible influence on the mean distri-
bution of the particles and the mean square displacements, but
they destroy the simulations sooner or later.
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APPENDIX A: HIGHER-ORDER CENTRAL
DIFFERENCE ALGORITHMS

Higher order central difference algorithms can be ob-
tained by a Taylor expansion. The algorithm in Ref. 9 was
obtained by a forward and backward Taylor expansion at time
t. For a time-increment h and for particle i,

ri(t + h) = ri(t) + hr′
i(t) + 1

2
h2r′′

i (t) + 1

6
h3r′′′

i (t)

+ 1

24
h4r′′′′

i (t) + . . . , (A1)

and

ri(t − h) = ri(t) − hr′
i(t) + 1

2
h2r′′

i (t) − 1

6
h3r′′′

i (t)

+ 1

24
h4r′′′′

i (t) − . . . . (A2)

We consider a system of N particles with equal mass m. For
pair interaction u(rij) with particle no. j the force is

fi(t) = −
∑
j 
=i

∇u(rij ). (A3)

By adding Eqs. (A1) and (A2) one obtains the extended
fourth-order central difference algorithm9 for Newtonian dy-
namics (r′′

i (t) = fi(t) and masses included in the time unit)

ri(t + h) = 2ri(t) − ri(t − h) + h2fi(t) + 1

12
h4f ′′

i (t)+O(h6),

(A4)
where the algorithm to second order is the Verlet algorithm.
It is computationally convenient to reformulate the algorithm

in the “leap-frog” version, which corresponds to Hamilton’s
formulation of Newtonian dynamics

ri(t + h) = ri(t) + hv(t + h/2), (A5)

vi(t + h/2) = vi(t − h/2) + hfi(t) + 1

12
h3f ′′

i (t), (A6)

with vi(t − h/2) ≡ (ri(t) − ri(t − h))/h.
The extension (Eq. (A4)) of the Verlet-algorithm is the

next term in an infinite central-difference expansion in even
powers of h. It is symplectic due to the symmetry and has
a shadow Hamiltonian. The algorithm and all the higher or-
der central difference algorithms deviate, however, from the
simple second-order by that they depend on the momenta or
velocities at time t. This can be seen by determining f ′′

i (t). By
differentiating Eq. (A3) with respect to time one obtains the
algorithm derived in Ref. 9

f ′
i(t) =

N∑
j 
=i

A(rij (t))r′
ij (t) + B(rij (t))[rij (t) · r′

ij (t)]rij (t),

(A7)

f ′′
i (t) =

N∑
j 
=i

{B(rij (t))[rij (t) · fij (t) + r′
ij (t)2]

+C(rij (t))[rij (t) · r′
ij (t)]2}rij (t)

+ 2B(rij (t))[rij (t) · r′
ij (t)]r′

ij (t) + A(rij (t))fij (t),

(A8)

where

A(rij ) = − 1

rij

du(rij )

drij

, (A9)

B(rij ) = 1

rij

dA(rij )

drij

, (A10)

C(rij ) = 1

rij

dB(rij )

drij

. (A11)

The second time-derivative of the force f ′′
i (t) depends on

r′
i(t). Upon subtracting Eq. (A2) from Eq. (A1) (and using

Eq. (A4)) one obtains an expression for r′
i(t)

r′
i(t) = ri(t + h) − ri(t − h)

2h
− 1

6
h2f ′

i(t) + O(h4), (A12)

= ri(t) − ri(t − h)

h
+ 1

2
hfi(t) − 1

6
h2f ′

i(t)

+ 1

24
h3f ′′

i (t) + O(h4). (A13)

The fourth-order algorithm (Eq. (A4)) requires not only the
forces, but also its first two time-derivatives at time t in or-
der to obtain the new positions. In Ref. 9 it was obtained
by determining the forces at time t from which one then can
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construct an estimate of r′
pr,i(t). Then f ′′

i (t) was determined
by Eq. (A8) as a sum over pair-contributions and using the
approximated expression r′

pr,i(t). Since most computer time
is spent on determining the pair-contributions, the computer
time is increased by a factor of two by including the four-
order term. But also the time symmetry and the symplectic-
ity are destroyed, with the consequences that the energy in
principle is no longer conserved, and that there does not ex-
ist a shadow Hamiltonian. The energy is, however, in practice
conserved with high accuracy for a traditional choice of h (see
Sec. III).

To first order r′
i(t) is

r′
pr,i(t) = vi(t − h/2) + 1

2
hfi(t), (A14)

and to second order it can be obtained by approximating f ′
i(t)

in Eq. (A13) by f ′
i(t) � (fi(t) − fi(t − h))h + 1

2hf ′′
i (t − h),

r′
i(t) � vi(t − h/2)+ 1

2
hfi(t)− 1

6
h2f ′

i(t)

� vi(t − h/2)+ 1

6
h(2fi(t)+ fi(t −h))− 1

12
h3f ′′

i (t − h)).

(A15)

Equation (A15) without the last term was used in Ref. 9. If
one also includes the last term in Eq. (A15) one gets a third-
order estimate of r′(t)

r′
pr,i(t) � vi(t − h/2) + 1

6
h(2fi(t) + fi(t − h))

− 1

24
h3f ′′

i (t − h)), (A16)

which is used in Sec. III to determine the stability of the
algorithm.

APPENDIX B: DISCRETE DYNAMICS
FOR A HARMONIC MODE

The discrete dynamics of a harmonic mode with the po-
tential energy 1

2ω2
0x

2 can be solved exactly.6, 10 The solution
in Ref. 6 was obtained directly from the discrete points and
without any use of an expansion of an analytic H(q, p) by
noticing that if the Verlet algorithm

x(t + h) = 2x(t) − x(t − h) − ω2
0h

2x(t) = αx(t) − x(t − h),
(B1)

with α = 2 − ω2
0h

2 for the DDHO is started from the two
points x(0) = 0 and x(h) = A0sin (ω0h), the generated dis-
crete points lie on a harmonic curve with the frequency ω and
amplitude A given by

ω = cos−1

(
1 − (ω0h)2

2

) /
h,

(B2)

A = A0 sin(ω0h)

sin(ωh)
,

i.e., the harmonic shadow Hamiltonian H̃ (ω) for which the
discrete generated positions lie on its analytic trajectory
1
2ω2x2 is H̃ (ω) with the energy Ẽ = (Aω)2/2.

In Ref. 6, a conserved energy E* of the discrete dynamics
was obtained directly without the use of the analytic shadow
Hamiltonian. It was expressed by scaling the discrete veloci-
ties, but it can also be expressed as

E∗ = 1

2

(
xn+1 − xn−1

2h

)2

+ 1

2
ω2

0x
2
n

(
1 − ω2

0h
2/4

)
. (B3)

Although there does not exist a well defined expression for
the kinetic energy for the traditional discrete MD dynamics,
the first term in the central difference expansion (Eq. (A12)),
which corresponds to the first term in Eq. (B3), is traditionally
used. For a discrete harmonic dynamics, started at x(0), this
expression for the kinetic energy corresponds to a temperature

kT =
(

x1 − x−1

2h

)2

=
(

A0 sin(ω0h)

h

)2

(B4)

proportional to the square of the amplitude as in analytic dy-
namics.

The exact solution for the discrete dynamics with the
higher-order central difference algorithms in Appendix A are
easily obtained, since, e.g., the fourth-order algorithm reduces
to Eq. (B1) with

α = 2 − ω2
0h

2

(
1 − 1

12
ω2

0h

)2

= 2 − ω̃2
0h

2, (B5)

replacing ω2
0 in Eq. (B1) with

ω̃2
0 = ω2

0

(
1 − 1

12
ω2

0h
2

)
. (B6)

According to Eq. (B2) the algorithms are stable for a
time-increment hmax ∣∣∣∣1 − ω̃2

0h
2
max

2

∣∣∣∣ ≤ 1. (B7)

For the Verlet algorithm, this gives6

hmax ≤ 2

ω0
. (B8)

For the fourth-order algorithm (Eq. (A4)),

hmax ≤ 2
√

3

ω0
. (B9)

The solution x(nh) = A sin (ωnh) is close to the analytic
solution x(nh) = A0sin (ω0nh) if one integrates a harmonic
mode with a time-increment h  hmax. But the shadow Hamil-
tonians and the shadow energies Ẽ deviate significantly from
the analytic solution when the time-increment is increased to-
ward hmax.

The solutions of the DDHO for different values of h are
shown in Figure 7. The figure shows the discrete solutions
for a DDHO with A0 = 1, ω0 = 1 and and for three differ-
ent values of h. Figure 7(a) shows the discrete points for h
= 0.1. The shadow energy Ẽ for the Verlet integrator is Ẽ

= 0.5000014 and for the fourth-order algorithm (Eq. (A4))
the shadow energy is Ẽ = 0.4999999995, and the differences
between the three solutions are not visible on Figure 7(a).
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FIG. 7. The discrete points of a DDHO with A0 = ω0 = 1. Red: Verlet;
green: the fourth-order integrator; blue: the analytic solution. A is for h
= 0.1; B is for h = 1; and C is for h = 1.9 ≈ hmax.

Figure 7(b) is for h = 1; the shadow energy for the Verlet
algorithm is Ẽ = 0.518 and for the fourth-order algorithm Ẽ

= 0.49942. Figure 7(c) is for h = 1.9, close to the limit of sta-
bility hmax = 2. The shadow energy for the Verlet algorithm is
Ẽ = 2.214, i.e., more than four times higher than the energy E
= 0.5 for the analytic dynamics, whereas the energy obtained
for the fourth-order algorithm is Ẽ = 0.449.

The shift in Ẽ with h for time-increments near the sta-
bility limit is used in Sec. III to correct the mean square dis-
placements for the observed shift in Ẽ for large h.
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