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Prediction of fluid velocity slip at solid surfaces
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The observed flow enhancement in highly confining geometries is believed to be caused by fluid velocity slip at
the solid wall surface. Here we present a simple and highly accurate method to predict this slip using equilibrium
molecular dynamics. Unlike previous equilibrium molecular dynamics methods, it allows us to directly compute
the intrinsic wall-fluid friction coefficient rather than an empirical friction coefficient that includes all sources
of friction for planar shear flow. The slip length predicted by our method is in excellent agreement with the slip
length obtained from direct nonequilibrium molecular dynamics simulations.
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I. INTRODUCTION

For a complete continuum dynamical description of the
flow of a confined fluid, one needs to specify the boundary
conditions. Traditionally, a no-slip or slip Dirichlet boundary
condition is applied, where the fluid velocity at the wall must
be known a priori. More generally the boundary condition
is formulated in terms of the slip length, Ls , and the shear
rate at the interface, i.e., via a Neumann boundary condition.
There have been numerous studies of the slip phenomenon
[1–11], starting from Navier [12] in 1823 (see Karniadakis
et al. [13] for an overview), but only a few of these studies have
considered the derivation of correlation function expressions
for the slip length. The first solutions to this problem were
presented by Bocquet and Barrat [5], who presented two
methods for computing the slip length from equilibrium
correlation functions. Their first method uses a fit to the
correlation function of the transverse momentum density to
obtain the two slip lengths at the upper and lower walls and the
width of the channel as fitting parameters. The fluid viscosity,
which is also required, is obtained from separate simulations
performed on a homogeneous fluid at the same temperature
and density as the bulk fluid phase in the center of the channel.
This method gave excellent results, but it is rather complicated
to implement and does not seem to have been widely adopted.
In addition, this method assumes macroscopic hydrodynamic
behavior across the whole system, including a constant value
of the viscosity, which, for very narrow channels, may not
be justified. The second method presented in Bocquet and
Barrat’s paper relates the wall friction coefficient to the integral
of the autocorrelation function of the wall-fluid force. The
final expression is similar to a Green-Kubo relation, but
Bocquet and Barrat remarked that it did not produce results in
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quantitative agreement with the method based on the transverse
momentum density autocorrelation function.

The force autocorrelation function method was recently
discussed by Petravic and Harrowell [9,10], who found that
the friction coefficient computed in the force autocorrelation
function method is actually the total fluid friction for shear
flow in the confined fluid, including the slip friction at both
interfaces as well as the viscous friction in the fluid. This is
clearly seen by the following argument. Consider planar shear
flow between two walls. If slip flow occurs at either or both of
the walls, the total velocity difference between the two planar
walls is �u = �u1 + �uL + �u2, where �u1 and �u2 are
the slip velocities at the two walls and �uL is the velocity
difference across the shearing fluid. In mechanical equilibrium,
the shear stress is constant across the whole system. At
each wall, the stress is given by a constitutive equation of
the form Pyx = −ξ1�u1 and in the shearing fluid we can
apply Newton’s law of viscosity, Pyx = −η�uL/Ly . We can
also introduce an effective friction coefficient μ representing
the combined effect of all sources of friction by defining
Pyx = −μ�u. Substituting these constitutive equations into
the equation for the sum of the velocity differences, we
find 1/μ = 1/ξ1 + 1/ξ2 + Ly/η. This simple equation, which
is analogous to the equation for the effective resistance of
resistors in parallel, was derived by Petravic and Harrowell.
Examining the constitutive equation defining the friction coef-
ficient obtained from the integral of the force autocorrelation
function by Bocquet and Barrat [5] [see their Eq. (4.13)], we
see that their expression actually defines the effective friction
rather than the slip friction coefficient. A similar point was
made by Bhatia and Nicholson [14] in relation to the friction
coefficient calculated from the fluid center-of-mass velocity
autocorrelation function. In certain limiting cases, the slip
friction should make a dominant contribution to the effective
friction, i.e., when the channel width Ly approaches zero or
when the slip friction coefficients approach zero, leading to
plug flow, as is often found for the flow of water next to a
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hydrophobic wall. In such cases, the effective friction should
give a good estimate of the slip friction, but in cases where this
limiting behavior is not observed, it is necessary to remove the
viscous contribution to the total friction in order to compute the
slip friction coefficient and, even then, it is only the combined
effect of the friction at both walls that is obtained. Note that
the effective friction is also system size dependent, since the
viscous friction term contains the channel width, Ly . A more
direct method of computing the slip friction coefficient is
clearly needed.

In this paper we follow Navier’s original work and derive an
expression for the center-of-mass velocity of a thin fluid layer
adjacent to one wall. This expression is only dependent on
the intrinsic wall-fluid friction coefficient, which can be found
via equilibrium (nondriven) molecular dynamics simulations.
Using the expression for the center-of-mass velocity of the
fluid layer and the value of the friction coefficient, the
slip length can be predicted. We compare the predictions
with direct nonequilibrium molecular dynamics (NEMD)
simulation data showing excellent agreement. Our method,
therefore, provides a convenient way to predict the slip at a
fluid-solid interface without needing to extract the slip friction
from an effective friction coefficient.

The paper is organized as follows: In the next section we
briefly discuss the Navier slip boundary condition and present
our treatment that leads to a slip length based on an intrinsic
friction coefficient. In Sec. III we summarize the simulation
details and describe how to calculate the friction coefficient
from equilibrium molecular dynamics (EMD) simulations.
Section IV presents the results, comparing the predicted slip
length with direct NEMD simulations. Section V shows the
applicability of our method to the case where a fluid is
confined between two different walls and undergoes a planar
Hagen-Poiseuille flow. In the last section we summarize the
conclusions.

II. THEORY

A. The Navier boundary condition

Consider a fluid with velocity field u = (u,v,w) flowing
over a surface S. The surface may possess a velocity uw.
Using the fluid velocity as a reference, we define the relative
velocity as δu ≡ (δu,δv,δw) = uw − u. Now, let S be normal
to the y direction and n = (0,1,0). If the Reynolds number is
sufficiently low the flow is laminar (or unidirectional), say, in
the x direction. The Navier boundary condition can then be
written as [15]

δu − σxy

ζN

= 0 on S, (1)

where σxy is the xy stress tensor component. Applying
Newton’s law of viscosity, which relates the shear stress with
the strain rate γ̇ as σxy = η0γ̇ , Eq. (1) yields

η0

ζN

γ̇ = Ls

∂u

∂y

∣∣∣∣
y=yw

= δu, (2)

where η0 is the shear viscosity. In Eq. (2) yw is the y coordinate
of S and Ls is the slip length given by Ls = η0/ζN . Note that
Eq. (2) is simply a Neumann boundary condition. The slip
length can also be interpreted as the value of y where the

tangent line t(y) = ∂u/∂y|y=yw
y − δu is zero, and Ls may

therefore take a negative value depending on the geometry. To
avoid this ambiguity we write the magnitude of the slip length
as

|Ls | = η0/ζN . (3)

The Navier friction coefficient is a material property which
depends on the wall-fluid interactions. Bocquet and Barrat [5]
proposed a Green-Kubo-type integral for ζN . However, it was
later shown [9] that their integral depends on system size; i.e.,
the coefficient was not a material parameter that quantifies
the wall-fluid friction alone. As mentioned in the introduction,
slip has been studied extensively over the years; however, it
still remains to develop a satisfactory method to evaluate the
intrinsic wall-fluid friction.

B. The wall-fluid friction

Analogous to the above discussion, assume that a fluid is
confined between two parallel walls with positions yw = 0
(wall 1) and yw = Ly (wall 2), respectively. This means that
the y direction is the direction of confinement. We consider
a fluid element with constant mass, m, and average volume
V = Lx�Lz, that is, a fluid slab adjacent to wall 1 and of
average width �. See Fig. 1. The fluid may be subjected to
an external constant force per unit mass Fe in the x direction.
The acceleration of the slab in this direction is governed by
Newton’s second law, i.e.,

m
duslab

dt
= F ′

x(t) + F ′′
x (t) + mFe, (4)

where uslab is the center-of-mass velocity of the slab (adjacent
to wall 1) in the x direction, F ′

x is the force due to wall-slab
interactions, and F ′′

x is the force due to fluid-slab interactions.
The microscopic definition of the slab center of mass is given
in Eq. (36). Note that F ′′

x includes a kinetic contribution due to
the momentum of fluid particles entering and leaving the slab.
Furthermore, it should be mentioned that the fluid-fluid forces
between particles inside the slab cancel out due to Newton’s
third law and do not contribute to the slab acceleration.

The wall-slab force term, F ′
x , can be viewed as a frictional

shear force that depends on the relative velocity between the

Wall 1 Wall 2

FluidSlab

Ls

}

y=0 y=Δ y=Ly
y

FIG. 1. Schematic illustration of the system. The arrows inside
the box indicate the velocity field forming the profile. Ls is the slip
length and � is the slab width, typically an order of magnitude smaller
than system width Ly .
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wall and the fluid. For sufficiently small relative velocities,
we may propose the following linear constitutive equation
relating the wall-slab shear force to the velocity difference,
�u′ = uslab − uw:

F ′
x(t) = −

∫ t

0
ζ (t − τ )�u′(τ ) dτ + F ′

r (t), (5)

where ζ is a friction kernel. F ′
r is a random force term with

zero mean that is assumed to be uncorrelated with uslab; that
is,

〈F ′
r (t)〉 = 0 and 〈uslab(0)F ′

r (t)〉 = 0. (6)

For steady flows the time average of Eq. (5) is given by

〈F ′
x〉 = −ζ0〈�u′〉, (7)

where ζ0 is the zero frequency friction coefficient. It is worth
noting that Eq. (5) defines a true slip friction coefficient;
i.e., the kernel ζ only depends on the velocity difference
between the wall and an adjacent fluid layer and therefore
overcomes the system size dependencies of other methods.

In order to account for the fluid-slab shear force, F ′′
x , one

can apply Newton’s law of viscosity. Thus, for steady flows
we have

〈F ′′
x 〉 = Aη0〈γ̇ 〉 = Aη0

∂u

∂y

∣∣∣∣
y=�

, (8)

where A = LxLz is the surface area.
The slab width, �, is a critical parameter. If it is chosen to be

much smaller than the width of the first fluid layer adjacent to
the wall, the center-of-mass velocity of the slab will be a poor
approximation to the velocity at a certain slip plane [16] due
to the extremely small number of molecules inside the slab.
On the other hand, for large values of �, the center-of-mass
velocity of the slab will be an average that includes a substantial
contribution from fluid that is far from the wall. In this case,
the difference between the center-of-mass slab velocity and
the wall velocity is not equal to the slip plane velocity and it
would not be correct to use the center-of-mass slab velocity
in the constitutive equation defining the intrinsic slip friction
coefficient, Eq. (5). Ultimately, the optimal slab width must
be a compromise between a value that is large enough to
completely include the layer of fluid that slips over the surface
and one that is small enough to exclude fluid that experiences
normal shear flow, i.e., a purely viscous flow. This optimal
value is expected to depend on the details of the intermolecular
interactions as well as the thermodynamic state of the system.

C. Derivation of the slip length

In the remainder of the paper we focus on steady flows.
Since the slab has finite width we use integral boundary
conditions (IBCs) which enable us solve the Navier-Stokes
equations in terms of uslab rather than the fluid velocity at
some slip plane. In this way we also obtain an equation for the
strain rate at y = �. From Eq. (4) we can then express uslab

as a function of the friction coefficient ζ0 using Eqs. (7) and
(8). This finally leads to an explicit equation for the slip length
using Eq. (2).

In general, the IBCs read

u (1) = 1

�

∫ �

0
u(y) dy and u(2) = 1

�

∫ Ly

Ly−�

u(y) dy. (9)

Thus, it is the same as the center-of-mass velocity of a slab
under the assumption that the fluid density is constant. For
example, for the lower boundary we have

uc.m. = 1

m

∫
V

ρ u(y) dV = LxLzρ

m

∫ �

0
u(y) dy

= 1

�

∫ �

0
u(y) dy, (10)

where we recall that V = Lx�Lz and ρ = m/V . Thus, if wall
1 is at rest, the average center-of-mass velocity of the slab,
〈uslab〉, can be approximated with u (1).

For a Couette flow with identical walls and where wall 2
has velocity uw the Navier-Stokes equation reduces to a simple
Laplace equation

∂2u

∂y2
= 0 (11)

with IBCs

u(1) = 〈uslab〉 = 1

�

∫ �

0
u(y) dy and

u(2) = uw − 〈uslab〉 = 1

�

∫ Ly

Ly−�

u(y) dy, (12)

which yields the solution

u = uw − 2〈uslab〉
Ly − �

(
y − �

2

)
+ 〈uslab〉. (13)

Notice that in the solution, Eq. (13), there are no boundary
value conditions for y = 0 or y = Ly as in the classical
approach: the profile is now determined by the slab center-
of-mass velocity as given by the IBC. The strain rate at y = �

is then

γ̇ = uw − 2〈uslab〉
Ly − �

. (14)

For a Couette flow, Eq. (4) reads 〈F ′
x〉 + 〈F ′′

x 〉 = 0; that is,
from Eqs. (7), (8), and (14),

−ζ0〈uslab〉 + Aη0
uw − 2〈uslab〉

Ly − �
= 0, (15)

which is rearranged to give an expression for the average slab
center-of-mass velocity at wall 1, namely,

〈uslab〉 = η0uw

ξ0(Ly − �) + 2η0
, (16)

where ξ0 = ζ0/A. The slip length now follows from Eq. (2),
by substituting Eq. (16) into Eq. (13); thus, for wall 1 we have

Ls = −u(0)
∂u

∂y

∣∣∣∣−1

y=0

= �

2
− η0

ξ0
. (17)

Note that Ls < 0 due to our geometry as discussed above. In
the limit of zero slab width, � → 0, we obtain

|Ls | = η0/ξ0 (18)
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in accordance with the Navier slip length, Eq. (3). We note here
that there exists a clear definition of the friction coefficient
ξ0 = ζ0/A [see Eq. (5)]; i.e., it is possible to measure this
quantity directly (see Sec. III).

If an external force per unit mass, Fe, is applied to the
fluid and both walls are at rest, the Navier-Stokes equation is
reduced to the Stokes (or Poisson) equation

∂2u

∂y2
= −ρFe

η0
(19)

subject to the IBCs

u(1) = 〈uslab〉 = 1

�

∫ �

0
u(y) dy and

(20)

u(2) = 〈uslab〉 = 1

�

∫ Ly

Ly−�

u(y) dy.

The solution to this boundary value problem is

u = ρFe

12η0
[6y(Ly − y) + �(2� − 3Ly)] + 〈uslab〉, (21)

which resembles a planar Hagen-Poiseuille flow. For this
steady flow Newton’s second law is 〈F ′

x〉 + 〈F ′′
x 〉 + mFe = 0.

Applying the constitutive equations (7) and (8) we obtain

−ζ0〈uslab〉 + AρFe

2
(Ly − 2�) + mFe = 0, (22)

giving

〈uslab〉 = ρFeLy

2ξ0
(23)

by assuming constant density. Note that since 〈uslab〉 increases
with increasing slab width, it can be seen from Eq. (23) that
ξ0 must be a decreasing function of �, that is, if the density is
constant. The slip length follows as

Ls = �

(
1

2
− �

3Ly

)
− η0

ξ0
, (24)

which means that |Ls | = η0/ξ0 as � → 0 as expected. It is
important to note here that the slip length given in Eq. (24) is
different from Eq. (17) with the term −�2/3Ly ; that is, the
slip length depends on the flow type for nonzero slab width.
In principle, this contradicts the findings of Cieplak et al. [17]
and we comment on this later.

III. MOLECULAR DYNAMICS

A. Calculating the friction coefficient

For uw = 0, Eq. (5) is written as

F ′
x(t) = −

∫ t

0
ζ (t − τ )uslab(τ ) dτ + F ′

r (t). (25)

Multiplying both sides with uslab(0) and taking the ensemble
average it is possible to form the corresponding relation
between the slab velocity-force correlation function CuF ′

x
and

the slab velocity autocorrelation function Cuu,

CuF ′
x
(t) = −

∫ t

0
ζ (t − τ )Cuu(τ ) dτ, (26)

such that

CuF ′
x
(t) = 〈uslab(0)F ′

x(t)〉 and Cuu(t) = 〈uslab(0)uslab(t)〉.
(27)

In Eq. (27) we used the properties of F ′
r as given in Eq. (6).

We can transform Eq. (26) into a more convenient algebraic
form by a Laplace transform yielding

C̃uF ′
x
(s) = −ζ̃ (s) C̃uu(s), (28)

where the Laplace transformation is defined as

L[f (t)] =
∫ ∞

0
f (t) e−st dt = f̃ (s). (29)

We assume that the friction kernel can be written as an n-term
Maxwellian memory function [18]

ζ (t) =
n∑

i=1

Bi e
−λi t , (30)

which means that

ζ̃ (s) =
n∑

i=1

Bi

s + λi

. (31)

Substituting this into Eq. (28), we trivially get

C̃uF ′
x
(s) = −

n∑
i=1

Bi C̃uu(s)

s + λi

. (32)

We here focus on steady flows, as we are primarily interested
in ζ0. From Eq. (30) we have

ζ0 =
∫ ∞

0

n∑
i=1

B e−λi t dt =
n∑

i=1

Bi/λi. (33)

It is important to point out that the friction can be evaluated
directly from Eq. (28), that is, without suggesting a functional
form of the kernel. However, we find that this gives rather
large statistical errors, especially for large s. Using EMD
simulations it is possible to evaluate CuF ′

x
and Cuu and

therefore also the Laplace transforms. From this, one can fit
the right-hand side of Eq. (32) to the C̃uF ′

x
data using Bi and

λi as fitting parameters.

B. Simulation details

The molecular dynamics simulations are carried out using
standard techniques [19,20]. All particles (fluid molecules and
wall atoms) are simple spherical particles that interact via a
truncated and shifted Lennard-Jones-type potential

φtr(rij ) =
{

4ε
[(

σ
rij

)12 − (
σ
rij

)6] − φ(rc) if rij � rc,

0 if rij > rc,
(34)

where rij is the distance between particles i and j , ε and σ are
the interaction strength and the length scale, respectively, and φ

is the untruncated potential. We have calculated ζ0 for different
wall-fluid interaction potentials, which we denote φwf: one is
purely repulsive (relatively hydrophobic) by setting rc = 21/6σ

(the Weeks-Chandler-Andersen (WCA) potential [21]). The
other is the classical Lennard-Jones (LJ) potential with rc =
2.5σ that possesses both a repulsive and attractive part [19] and
is relatively hydrophilic. We have also changed the fluid-fluid
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TABLE I. Listing of the different systems. φwf and φff denote the
wall-fluid interaction and fluid-fluid interaction potentials, respec-
tively. WCA is an abbreviation for the Weeks-Chandler-Andersen
potential and LJ is the Lennard-Jones potential. The values for the
shear viscosities, η0, are interpolated from Rowley and Painter [22]
and Hansen et al. [23]

System φwf φff ρbulk ρwall Temperature η0

1 WCA WCA 0.51 0.80 0.80 0.43
2 LJ WCA 0.44 0.80 0.80 0.31
3 LJ LJ 0.79 0.90 0.73 1.94
4 WCA WCA 0.70 0.80 0.73 1.03

interaction potential, φff , between the WCA and LJ potentials.
One can express any mechanical quantity in units of σ , ε,
and particle mass mi . Thus, the temperature, T , is written
as T ∗ = kBT /ε, number density as ρ∗ = ρσ 3, time as t∗ =
t/(σ

√
mi/ε), and so forth. In the remainder of the paper we use

these dimensionless units and omit the asterisk. Table I lists the
different systems, where we note that all quantities are given
in standard dimensionless molecular dynamics (MD) units.

The wall particles are initially arranged on a face-centered
cubic lattice and kept around their initial (or equilibrium) posi-
tions req via a restoring spring potential: φs = 1

2ks(ri − req)2,
where ks = 150 is the spring constant and ri is the position
of the wall particle. A wall is composed of three wall particle
layers and by applying periodic boundary conditions one single
wall acts as a first and second wall. The wall temperature is kept
around a certain temperature by using a Nosé-Hoover scheme
[24,25] which thermostats the fluid to that temperature as
well. The equations of motion for all particles were integrated
forward in time using a leap-frog integration scheme [26] with
time step �t = 0.001. Unless otherwise stated the system’s
dimensions are Lx = Lz = 10.36 and Ly = 13.47, giving the
area A = 107.27.

During the simulations the wall-slab shearing force is
evaluated directly via

F ′
x(t) =

∑
i∈slab
j∈wall

Fij,x(t), (35)

where Fij,x is the force in the x direction on slab particle
i due to wall particle j at time t . The x component of the
center-of-mass velocity of the slab was calculated via

uslab(t) = 1

m

∑
i∈slab

mivi,x(t), (36)

where vi,x is the velocity of slab particle i and m = ∑
i∈slab mi .

From these quantities it is possible to evaluate the correlation
functions CuF ′

x
and Cuu. The correlation times are dependent

on the slab width, �, and in order to ensure convergence the
correlation functions are sampled over a time span of 200–300
time units. We stress again that since the number of particles
in the slab is constant, which is accomplished by allowing the
slab width to undergo small fluctuations, � is an average value
over time.

C. Verification with direct NEMD simulations

To verify the theory we carried out a series of direct NEMD
simulations. To this end we applied either an external force
field to generate a planar Hagen-Poiseuille flow or added an
additional wall and moved it with a certain speed uw in the x

direction to simulate a Couette flow. The streaming velocity
profiles were obtained using a bin method; see, for example,
Hansen et al. [27]. We stress that the strain rate is maintained
sufficiently low to avoid any significant viscous heating of
the fluid; i.e., the heat conduction at the thermostated walls is
able to keep the temperature of the fluid constant. Furthermore,
the low strain rate also ensures the existence of a laminar flow
due to the low Reynolds number.

From the direct NEMD simulations we can calculate the
slip length. This involves taking the numerical derivative of the
velocity profile which is associated with very large statistical
uncertainties. To overcome this problem we fitted the velocity
profile to either a first- or second-order polynomial depending
on the flow type and extracted the tangent line at y = 0 (and
thereby the slip length) from this fit.

IV. RESULTS AND DISCUSSION

Figure 2(a) shows an example of the correlation functions
CuF ′

x
and Cuu for � ≈ 1 and for short times. It is observed that

t
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FIG. 2. (Color online) (a) Section of the normalized correlation functions CuF ′
x

(points connected with lines) and Cuu (squares connected
with lines) vs time. The functions are normalized with respect to their maximum absolute value. This example is for system 3 and � ≈ 1.
(b) Corresponding Laplace transformation of CuF ′

x
(points) together with the best fit of Eq. (32) to the data using a one-term Maxwellian

memory function (dashed line). B1 = 353 and λ1 = 4.80.
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Δ

ξ 0

543210

0.7

0.5

0.3

0.1

System 1

System 2

System 3

System 4

FIG. 3. ξ0 as a function of slab width � for system 1 (downward
pointing triangles), system 2 (circles), system 3 (upward pointing
triangles), and system 4 (squares). Error bars show the standard error.

the slab velocity and slab force are anticorrelated which is due
to the fact that the shear force acts in the opposite direction to
the slab velocity. In order to suppress high-frequency noise at
the end of each correlation data set we applied a Hann window
[28] before the Laplace transformation which was carried out
using a simple trapezoidal integration scheme. Figure 2(b)
depicts the corresponding Laplace transform of the slab force-
velocity correlation function (points) together with the best fit
of Eq. (32) using n = 1. We also tried to fit the simulation
data with other functional forms; however, the Maxwellian
memory function fitted the data best. It is seen that a one-
term Maxwellian memory function is sufficient to describe
the relation between CuF ′

x
and Cuu. In fact, this is true for all

the systems studied here. From Eq. (33) we obtain a friction
coefficient: ξ0 = ζ0/A = B1/(Aλ1) ≈ 0.69.

As discussed in Sec. II B, the friction coefficient is
dependent on the slab width, �. Figure 3 shows ξ0 as a
function of slab width for the four different systems studied
here. First, it is observed that the friction is low when the
wall-fluid interaction is purely repulsive, yielding a large slip
as expected. Second, it can be seen that the friction coefficient

varies dramatically for small slab widths as one would expect
since more of the wall-fluid interactions are included as �

increases. From � around 0.75 to 1.25 the friction coefficient
features a maximum before decreasing. For larger slab widths
the dominating wall-fluid interactions are included; however,
in this regime the friction coefficient is no longer an intrinsic
property of the wall-fluid friction, since it includes both
frictional and viscous forces. We do therefore not expect, or
intend, the theory to hold for large �. It is important to stress,
however, that the fact that ξ0 decreases is not an indication
that the theory breaks down per se: in fact, from Eq. (23)
we would expect the friction coefficient to decrease. In order
to study the effect of the slab width further we compared the
predicted slab velocities, Eqs. (16) and (23), with direct NEMD
simulations of a Couette flow and planar Hagen-Poiseuille flow
(see Fig. 4). For the Couette flow, Fig. 4(a), the predicted slab
velocity is in excellent agreement with the simulation data
for 0.75 < � < 2.25 as expected from the discussion above.
This is also found for the Hagen-Poiseuille flow. We can only
expect the theory to be valid for sufficiently small strain rates,
or for small values of the external force in the case for the
Hagen-Poiseuille flow. This is higlighted in Fig. 4(b) where it is
shown that the theory cannot predict the slab velocity correctly
for large Fe. We note that the maximum strain rate in Fig. 4(a)
is around 0.03, which is smaller than the two largest strain rates
in Fig. 4(b) corresponding to Fe = 0.0075 and Fe = 0.01.

In order to follow Navier’s original idea, one can extrap-
olate the friction coefficient to � = 0. However, no unique
extrapolation gives the correct values of the slab velocity. This
indicates that the frictional shear force is indeed dependent on
the slab width in a highly nontrivial manner. Since we cannot
extrapolate the friction coefficient to zero slab width we cannot
predict the velocity exactly at the wall (i.e., for y = 0). Thus,
the calculated slip corresponds to the apparent slip [15]. From
these findings we conjecture that there exists an interfacial
region where the theory is valid. This region stretches from
the wall and one or two particle diameters into the fluid for
van der Waals–type interactions.

As mentioned in the introduction, alternative methods
are based on coefficients that are system size dependent
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FIG. 4. (Color online) (a) Average slab velocity as a function of Ly for different slab widths in the case of a Couette flow. Symbols are
from direct NEMD simulations and lines represent the predictions from Eq. (16). (b) Average slab velocity as a function of Fe for different slab
widths in the case of a Hagen-Poiseuille flow. Symbols are from direct NEMD simulations and lines represent the predictions from Eq. (23).
Both (a) and (b) show results for system 1 (see Table I).
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19151173
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FIG. 5. (Color online) ξ0 as a function of channel width for system
1 where � ≈ 1.2.

[9,14]. Since the theory presented in this paper is based on
the dynamics of a single fluid slab rather than the entire
system, we argued that ζ is system size independent. To
check this, we calculated ξ0 for � ≈ 1.2 for different channel
widths: the result is summarized in Fig. 5. It is seen that
for sufficiently wide channel widths (Ly � 7) the friction
coefficient is indeed constant. Very small channel widths
(Ly � 7) are characterized by spatial correlation effects that
influence the fluid transport properties [20,27,29,30]; thus, the
constitutive relation, Eq. (5), fails and the kernel should include
a convolution in space as well.

In Fig. 6 we plotted the slip lengths obtained from direct
NEMD simulations of Hagen-Poiseuille and Couette flows
versus the predicted slip length for all four systems and
for sufficiently low strain rates. It is clearly seen that the
predictions given by Eqs. (17) and (24) are in excellent
agreement with the NEMD simulation data. Recall that our

Ls (Predicted)

L
s

(N
E

M
D

)

43210

4

3

2

1

0

System 1

System 3

System 4

System 2

FIG. 6. (Color online) Slip length obtained from direct NEMD
simulations vs predicted slip lengths for planar Hagen-Poiseuille
flows with Ly = 7.7 (circle, square, and triangles) and Couette flow
with Ly = 21.8 (cross). � ≈ 1.5σ . Results for all four systems are
shown. Error bars show the standard error and the straight line
indicates perfect agreement.

predictions of the slip lengths indicate that it is dependent on
the flow type. This contradicts the finding by Cieplak et al. [17],
which is based on direct NEMD simulations. For system 1 we
evaluated the slip length for both a Couette and a Hagen-
Poiseuille flow where Ly is 21.8 and 7.7, respectively. For the
Hagen-Poiseuille flow, this is around the lowest channel width
that we can apply before the classical hydrodynamical theory
breaks down [20] and where ξ0 is system size independent (see
Fig. 5): it is therefore the maximum effect we can obtain from
the additional −�2/(3Ly) term in Eq. (24). It is seen that since
Ly is typically orders of magnitude larger than the interfacial
region, �, the effect from the term cannot be measured using
direct NEMD within statistical error. We can further quantify
the effect via the relative difference in the slip length between
a Couette and a Hagen-Poiseuille flow, which is given by

�Lrel
s = 2�2ξ0

3Ly(�ξ0 − 2η0)
, Ly > 0. (37)

In Fig. 6, system 1, this corresponds to a 1.8% difference which
cannot be measured in NEMD simulations.

V. APPLICATION: PLANAR HAGEN-POISEUILLE FLOW
WITH DIFFERENT BOUNDARY CONDITIONS

The method presented here provides a very convenient and
accurate way to predict the slip for any flow and for any
system without having to recalculate the friction coefficient.
To illustrate this important point consider a WCA fluid
undergoing a planar Hagen-Poiseuille flow with the same
geometry as above. Let the fluid interact with wall 1 via the
purely repulsive WCA potential and with wall 2 via the LJ

y

u
x
(y

)

141062

0.5

0.4

0.3

0.2

0.1

0

FIG. 7. (Color online) Comparison between the predicted ve-
locity profile (lines) and direct NEMD data (solid squares) for a
WCA fluid where left wall-fluid interactions are governed by a WCA
(hydrophobic) potential and right are governed by the LJ potential
(hydrophilic). Error bars on the NEMD data show the standard error:
in the interior of the channel the errors are smaller than the size of
the symbols. The two dashed (or dotted) lines represent the profiles
obtained using the maximum and minimum shear viscosity that are
within standard error, i.e., η0 = 0.418 and η0 = 0.390 (ρ ≈ 0.49).
The solid line is the profile for the mean value η0 = 0.404.
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potential. The slip lengths at wall 1 and wall 2 are denoted L′
s

and L′′
s , respectively. The boundary value problem then reads

∂2u

∂y2
= −ρFe

η0
(38)

with

L′
s

∂u

∂y

∣∣∣∣
y=0

= −u(0) and L′′
s

∂u

∂y

∣∣∣∣
y=Ly

= −u(Ly). (39)

This can readily be solved, yielding

u(y) = −ρFe

2η0
[y2 + A(L′

s − y)], (40)

where

A = Ly(Ly − 2L′′
s )

L′
s + Ly − L′′

s

. (41)

Now applying the slip lengths obtained above for system
1 and system 2 we can predict the velocity profile. Figure 7
depicts the streaming velocity profile given by Eq. (40). Direct
NEMD data (squares) of the same system are also plotted in
the figure, showing excellent agreement.

VI. CONCLUSION

We have here presented an accurate and versatile method
to predict the fluid slip at solid surfaces. The method is based
on an intrinsic wall-fluid friction coefficient which can be
found from equilibrium MD simulations. Once the friction

coefficient is determined, the slip length follows from Eqs. (17)
and (24). This leads to an easy and accurate prediction of the
fluid velocity profile. Unlike previous methods, the friction
calculated by our method is an intrinsic property of the wall-
fluid interactions for a specified wall and it therefore excludes
all other sources of friction in the channel. This yields a slip
length that can be applied directly in the continuum description
of confined fluids.

We stress that using previously suggested methods [5,9–11]
one would have to recalculate the system-specific friction
coefficient, which makes using these methods cumbersome.
In contrast our method allows one to compute the friction
coefficient from a single EMD simulation for the particular
wall-fluid system. Once this is determined the slip length
is easily predicted for any flow. The significance of this is
that it obviates the need to perform time intensive NEMD
simulations to determine the flow profiles of systems in which
slip is important. Instead, one can use Eqs. (17) and (24) (or
equivalent for other flow types) and accurately predict the slip
and flow profiles in a fraction of the time required to perform
NEMD computations.
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