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In order to describe relaxation the thermodynamic coefficient 1
βS

= ∂V
∂S p

can be generalized into a complex

frequency-dependent cross response function. We explore theoretically the possibility of measuring 1
βS

ωð Þ for a
supercooled liquid near the glass transition. This is done by placing a thermistor in themiddle of the liquidwhich
itself is contained in a spherical piezoelectric shell. The piezoelectric voltage response to a thermal power
generated in the thermistor is found to be proportional to 1

βS
ωð Þ but factors pertaining to heat diffusion

and adiabatic compressibility κS(ω) do also intervene.We estimate ameasurable piezoelectric voltage of 1 mV to
be generated at 1 Hz for a heating power of 0.3 mW. Togetherwith κS(ω) and the longitudinal specific heat cl(ω)
which may also be found in the same setup a complete triple of thermoviscoelastic response functions may be
determined when supplemented with shear modulus data.
ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The recent finding [1] that a class of liquids — the strongly
correlating liquids — may be described by a single “order” parameter
makes it urgent to devise methods that measure thermal and
mechanical relaxation and their interconnection. It would be an
advantage if they can be measured in the same setup on the same
sample. The classical Prigogine–Defay test of a one “order” parameter
description has recently been rigorously reformulated for the equilib-
rium liquid in terms of (four) Dynamic Prigogine–Defay ratios [2]. One
of these, ΛSp=−(T0/cp)″(κS)″ /((1/βS)″)2 is from an experimental
viewpoint the easiest to access. It contains the complex frequency-
dependent specific heat cp(ω), adiabatic compressibility κS(ω) and
adiabatic pressure coefficient βS(ω)≡(δp(ω)/δT(ω))S. We can mea-
sure κS(ω) by the so-called piezoelectric bulkmodulus gauge (PBG) [3].
The PBG is a hollow sphere with a thin wall of a piezoelectric ceramic
material. Pressure/volume changes of a contained liquid are detectable
due to the piezoelectric effect. In the middle of the PBG we have now
added a thermistor by which we can measure the longitudinal heat
capacity cl(ω) via the effusivity [4,5]. In this paper we study
theoretically what can be deduced by combining the two sensors, i.e.
how does the expansion of the liquid upon heating in the centre affect
the piezoelectric shell.

2. Thermomechanical response of a differential volume element

The thermal interaction with matter is described in terms of the
conjugated variables temperature, T and entropy, S. We name the
interaction as an energy bond. It is a scalar bond since the variables are
scalars. The mechanical interaction is described in terms of the strain
and stress tensors but this interaction can be separated in a pure scalar
part by the trace of these tensors and the deviatoric traceless part of
these tensors. The conjugated variables of the scalar mechanical
energy bondmay then be taken as volume, V andminus pressure,−p.
The deviatoric parts of the strain and stress tensors describe shear
deformations and are not coupled to the scalar parts for symmetry
reasons (The Curie–Prigogine principle [6–8]) but the scalar bonds
however are coupled. The response δS and δV to perturbations δT and
−δp defines the constitutive properties of matter:

dV = V0 = −κTdp + αpdT ð1Þ

dS= V0 = −αpdp +
1
T0

cpdT ð2Þ

Since the perturbations excite thermal and acoustical waves the
constitutive equations are defined for a differential volume element,
V0 of a linear dimension, R much smaller than the characteristic
thermal diffusion length and acoustical wave length associated with
the time scale of the perturbations (Figs. 1 and 2).

Eqs. (1) and (2) are valid in equilibrium thermodynamics. When it
comes to describing the relaxation of supercooled liquids they are
replaced with corresponding equations of linear irreversible thermo-
dynamics

dV tð Þ= V0 = −∫t
−∞κT t−t′ð Þdp t′ð Þ + ∫t

−∞αp t−t′ð ÞdT t′ð Þ ð3Þ
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Fig. 1. The two scalar energetic interactions with a differential volume element.
Differential means that the wavelengths of the thermal and mechanical perturbations
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dS tð Þ= V0 = −∫t
−∞αp t−t′ð Þdp t′ð Þ + ∫t

−∞
1
T0

cp t−t′ð ÞdT t′ð Þ ð4Þ

The thermodynamic coefficients are now replaced by response
functions. These relaxing response functions may be consider in the
frequency domain instead by defining e.g. the complex frequency-
dependent compressibility as:

κT ωð Þ = iω∫∞
0 κT tð Þe−iωtdt: ð5Þ

Now dV,dS,dp and dT should be interpreted as the complex
amplitudes of harmonically varying perturbations and the constitutive
equations of linear irreversible thermodynamics (3) and (4) becomes

dV = V0 = −κT ωð Þdp + αp ωð ÞdT ð6Þ

dS= V0 = −αp ωð Þdp +
1
T0

cp ωð ÞdT ð7Þ

They can now be treated exactly like the equilibrium Eqs. (1) and
(2). The response functions like κT(ω) and cp(ω)/T0 pertaining to the
conjugated variables of a single energy bond are auto response
functions. αp(ω) on the other hand is a cross response function
connecting a variable from the thermal bond to a variable from the
mechanical bond. The three functions give a complete description of
the thermomechanical response. For relaxing system they are not
completely independent since the knowledge of the cross response
function and one of the auto response functions for all frequencies
makes it possible to calculate the other auto response function [9,10].
Moreover if the liquid relaxation is described by a single order
parameter the relaxational part of the triple of relaxation functions are
proportional and the dynamic Prigogine–Defay ratio [2]

ΛTp =
c″pκ″T

T0 α″p
� �2 ð8Þ

is equal to 1.

are much longer than the dimensions of the volume element.
Fig. 2. Another response situation. Here entropy and pressure are the input variables
and marked on the energy bond nearest to the system. In Fig. (1) temperature and
pressure were the input variables.
There are three other different possibilities of pairs of independent
controlling variables than (dT,−dp), namely (dS,dV), (dS,−dp), (dT,dV)
leading to other triples of response functions and other variants of the
dynamic Prigogine–Defay ratio. It is thus convenient to introduce the
four auto response functions (connecting conjugated variables of the
same bond),

cV =
T
V

∂S
∂T

� �
V

; cp =
T
V

∂S
∂T

� �
p

κT = − 1
V

∂V
∂p

� �
T

; κS = − 1
V

∂V
∂p

� �
S

and the four cross response functions (connecting variables of
different bonds),

αp =
1
V

∂V
∂T

� �
p
= − 1

V
∂S
∂p

� �
T
;

1
αS

= −V
∂T
∂V

� �
S
= V

∂p
∂S

� �
V
;

βV =
∂p
∂T

� �
V
=

∂S
∂V

� �
T
;

1
βS

=
∂T
∂p

� �
S
=

∂V
∂S

� �
p

Strictly speaking – defining these 8 functions as partial derivatives –
they are at first just constant real thermodynamic coefficients but they
may be generalized into complex functions just like κT(ω), αp(ω) and
cp(ω) and they are thought of in this sense in the following. An extensive
table of relations between these functions is given in the appendix of
reference [4]. Here we just notice that βS is related to αp and cp by

1
T0βS

=
αp

cp
: ð9Þ

All of the response functions can be related to fluctuations of the
thermodynamic variables [11]. For example 1/βS is proportional to
correlations between temperature and volume fluctuations. It was
recently found [1] that a class of liquids — the strongly correlating
liquids — may be described by a single “order” parameter and it was
explicitly shown [12] by computer NVT simulations of the Kob–
Andersen binary Lennard–Jones system that

ΛTV ωð Þ = −
c″V

1
κT

� �
″

T0 β″Vð Þ2 ð10Þ

was 1 within 20%.
As we shall see it will probably be the triple T0/cp(ω),κS(ω),1/βS

that is experimentally easiest accessible and it will be the Sp-variant of
the Prigogine–Defay ratio

ΛSp = −
T0
cp

� �
″
κ″S

1
βS

� �
″

� �2 ð11Þ

that shall test the one-parameter'ness of real liquids.

3. Thermomechanical response of a finite spherical volume element

When considering a real experiment with perturbations varying at a
frequency f=ω/(2π) it is not always possible to be in a situation of
homogeneous fields. The wavelength of sound λsound and the heat
diffusion length, |lD| may be comparable to or smaller than the sample
size R. If we consider frequencies below 1 kHz then roughly λsoundN1m

image of Fig.�2
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and for Rb1cm we can neglect mechanical waves i.e. neglect inertia in
the continuum description [4]. However the heat diffusion length,
j lD j = j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D = iωð Þp j of a supercooled liquid with a typical heat diffusion
constant of D=0.1mm2/s varies from 4μm to 4mm when frequency
varies from 1 kHz to 1 mHz and thus heat diffusion cannot be neglected
for a sample size of 1 cm. By the coupling between the temperature field
and the strain field that αp induces, the strain and stress fields also
become inhomogeneous. This implies that even in spherical geometry
the two pressures, the radial δpr=−σrr and the mean (hydrostatic)
δp=−1/3(σrr+σθθ+σφφ) are not equal if shear modulus is compa-
rable to bulk modulus. When interacting mechanically with a sphere
through its surface we don't have access to δp but only to δpr. For this
reason shear modulus enters – via the boundary conditions – the
description of the thermomechanical response of a finite sphere
although it wasn't present in the thermomechanical response of a
differential volume element, Eqs. (6) and (7). Consider generally a finite
amount of liquid lying in between radii r1 and r2 depicted in Fig. 3. In the
inertia-free limit the general problem of the relation between the
variables, radial pressure, δpr, temperature change, δT, volume displace-
ment, δV and entropy displacement, δS at the two radii has been solved
[4] in the frequency domain in terms of a transfer matrix:

δpr
δT
δV
δS

0
BB@

1
CCA

r2

= T r2; r1ð Þ
δpr
δT
δV
δS

0
BB@

1
CCA

r1

ð12Þ

In general T is a complicated object. An interesting result was
found when two conditions hold: 1) frequencies are high enough to
be in the “thermally thick limit” with respect to r2, i.e. |lD|≪r2 and
2) r1≪r2: When studying in this case the combined response to
thermal stimuli at radius r1 and mechanical stimuli at radius r2 one
can neglect the mechanical boundary condition at r1 and the thermal
boundary condition at radius r2 ending up with a reduced transfer
matrix given as

δT
δS

� �
r1

= iωZthT0V2κSβS iωZthT0βS
V2κSβS βS

� �
δpr
δV

� �
r2

; ð13Þ

where V2 = 4π
3
r32 and Zth is the thermal impedance,

Zth ωð Þ = 1

4πλr1 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iωr21cl ωð Þ= λ

q� � ; ð14Þ

λ is the heat conductivity. The specific heat, cl entering the thermal
impedance is the so-called longitudinal specific heat. cl is the amount
of heat absorbed per Kelvin upon a temperature increment if the
associated expansion is forced to be longitudinal. This is in contrast to
the isobaric specific heat for which the expansion is isotropic. The
Fig. 3. Depiction of the four thermal and mechanical interactions at the boundaries at r1
and r2 in spherical geometry.
longitudinal specific heat can be related to the isochoric specific heat,
cV by [4]

cl =

1
κS

+ 4
3
G

1
κT

+ 4
3
G
cV ; ð15Þ

where G is shear modulus. Using the identities [4]

cp
cV

=
κT
κS

and κT−κS =
cp

T0β
2
S

ð16Þ

together with (15) the deviation between the longitudinal specific
heat and isobaric specific heat may be expressed by

1
cp

=
1
cl
− 1

T0β
2
S

4
3
G

1 + 4
3
GκS

: ð17Þ

This expression has the advantage of giving cp(ω) in terms of the
quantities cl(ω),κS(ω),βS(ω) and G(ω) that are possible to access
experimentally by our new device supplemented with the Piezoelec-
tric Shear modulus Gauge [13].

Eq. (13) is equivalent to equation (138) of reference [4]. The
determinant of (13) is zero although a transfer matrix relating proper
conjugated variables should have determinant 1. The reason is thatwe
are studying a limiting case where |iωZthT0V2κSβS

2|≫1. Thus the
inverse relation is

δpr
δV

� �
r2

= βS −iωZthT0βS
−V2κSβS iωZthT0V2κSβS

� �
δT
δS

� �
r1

; ð18Þ

This is equivalent to equation (139) of reference [4], but there was
a typo: the common T0 factor in the matrix of that formula should be
deleted. The simplified transfer matrix can be represented by the
equivalent diagram of Fig. 4. The equivalent diagram is in a sense a
more correct description since it leads to a transfer matrix deviating
from Eq. (13) by a negligible term that however endows it with a
determinant of 1.

4. The combined experiment

The adiabatic compressibility κS(ω) can be measured using the
piezoelectric bulk modulus gauge (PBG) [3]. The PBG is a hollow
sphere of radius 1 cm with a thin wall of a piezoelectric ceramic
material. The thickness t is 0.5 mm. The sphere may be filled by a
liquid at elevated temperature, where it is fluent. The PBG transforms
the mechanical compliance of the liquid into an electric compliance
(the capacitance), that can be simply measured by an LCR-meter or by
other means. In order to make combined thermomechanical experi-
ments we have placed a thermistor in the middle of the PBG (see
Fig. 5). By the thermistor itself we can measure the longitudinal heat
capacity cl(ω) via the effusivity [5]. Combining the two devices makes
it, in principle, possible to get the cross response function 1/βS. That is,
nearly all ingredients of ΛSp can be found for the same sample in the
same device. However if cl(ω) differs significantly from cp(ω) [4] as
Fig. 4. Equivalent diagram of the liquid.
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Fig. 5. The combined measurement of cl,κS,βS.

Table 1
Properties and lumped parameters of the piezoelectric bulk modulus gauge modeled in
Fig. 6.

r2 9.5×10−3 m
t 0.5×10−3 m
�33 26×10−9 F/m
s11 + s12

2
6×10−12 m2/N

d13 26×10−9 C/N
kp

d13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�33 s11 + s12ð Þ= 2p 0.64

Cm
s11 + s12

2
4πr42
t

1.5×10−15 m3/Pa

Tpz
2d13

s11 + s12ð Þ
1
r2

4×103 C/m3

Ce �33 1−k2p
� �

4πr32
t

40×10−9 F
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may be judged by Eq. (17) a supplementarymeasurement of the shear
modulus is needed. We may produce an oscillating heat current with
amplitude Pth by Joule heating in the thermistor and measure the
piezoelectric voltage Upz generated in the PBG as the liquid attempts
to expand. This voltage contain information on 1/βS=

∂V
∂S

� �
p
but it is

also dependent of the thermal interaction of the thermistor with the
liquid and the mechanical interaction of the liquid with the PBG. In
order to filter these factors out wemay look at the equivalent diagram,
Fig. 6 of the whole system. For simplicity we model the thermistor as
an ideal heat generator in parallel with its heat capacitance C0 of
approximately 5.5×10−5 J/K. (For a more detailed model of the
thermal structure of the thermistor, see reference [5]). In the
equivalence diagram in Fig. 6 the PBG consist of a mechanical
compliance, Cm, a transducer ratio, Tpz and an electric (clamped)
capacitance Ce. They can be expressed [3] in terms of the dielectric
constant, �33, the elastic compliance, (s11+ s12)/2 and the piezoelec-
tric constant, d13 of the piezoelectric material pz29 together with the
radius, r2 and shell thickness, t (see Table 1).

By the equivalence diagram one finds that the generated
piezoelectric voltage amplitude Upz measured by a voltmeter of high
impedance (Ipz=0) in response to a heat current amplitude Pth
generated in the thermistor becomes

Upz

Pth

� �
Ipz =0

=
Tpz
Ceiω

1

1 + C0iωZth ωð Þð Þ 1 + 1 + T2
pz
Cm

Ce

� �
V2κS ωð Þ

Cm

� �
1

T0βS ωð Þ

ð19Þ

We see that in principle βS may be found by this third cross
experiment with a thermistor in the PBG. However the signal is also
influenced in its frequency dependence by the thermal impedance of
the liquid and the adiabatic compressibility but both of these can be
found by the experiments of the thermistor alone respectively the
Fig. 6. Equivalent diagram of the liquid in contact with
PBG alone. The frequency dependence in the thermal impedance has a
characteristic diffusion time constant that is almost independent of
the change of cl at the glass transition whereas the factor containing
the compressibility of course will change the position of its
characteristic time scale as temperature is changed. It is interesting
to estimate this signal. At 1 Hz C0Zth is of the order of 1 and so is the
factor containing the compressibility. From the values in the Table 1
we find Tpz

Ce
= 1011Vm−3. Typical values of the expansion coefficient

and the specific heat of a liquid are αp=5×10−4K−1 and cp=2×
106JK−1m−3 and thus 1

T0βS
= αp

cp
= 2:5 × 10−10m3J−1. From this we

find Tpz
Ce

1
T0βS

= 25V/J. Using a power amplitude Pth of 0.3 mW in order
to keep temperature change in the centre below 1 K we thus expect a
signal of the order of 1 mV at 1 Hz which is readily detectable.
5. Conclusion

Of the four dynamic Prigogine–Defay ratios one special namely,
ΛSp=−(T0/cp)″(κS)″ /((1/βS)″)2 seems from an experimental view-
point to be the most directly accessible. By combining the devices of
the two techniques 1) measurement of the adiabatic compressibility
κS(ω) with the Piezoelectric Bulk modulus Gauge and 2) measure-
ment of the longitudinal specific heat cl(ω) by thermal effusion in
spherical geometry a third cross response function, 1/βS(ω) may be
measured. That is, nearly all ingredients of ΛSp could be found for the
same sample in the same device. However cl(ω) may differ from cp(ω)
[4], in which case a supplementary measurement of the shear
modulus is needed.
References

[1] U.R. Pedersen, T. Christensen, T. Schrøder, J.C. Dyre, Feasibility of a single-
parameter description of equilibrium viscous liquid dynamics, Phys. Rev. E 77
(2008) 011201.

[2] N.L. Ellegaard, T. Christensen, P.V. Christiansen, N.B. Olsen, U.R. Pedersen, T.B.
Schrøder, J.C. Dyre, Single-order-parameter description of glass-forming liquids: a
one-frequency test, J. Chem. Phys. 126 (2007) 074502.
the thermistor and the piezoelectric shell (PBG).

image of Fig.�5
image of Fig.�6


350 T. Christensen et al. / Journal of Non-Crystalline Solids 357 (2011) 346–350
[3] T. Christensen, N.B. Olsen, Determination of the frequency-dependent bulk
modulus of glycerol using a piezoelectric spherical-shell, Phys. Rev. B 49 (1994)
15396.

[4] T. Christensen, J.C. Dyre, Solution of the spherically symmetric linear thermo-
viscoelatic problem in the inertia-free limit, Phys. Rev. E 78 (2008) 021501.

[5] B. Jakobsen, N.B. Olsen, T. Christensen, Frequency dependent specific heat from
thermal effusion in spherical geometry, Phys. Rev. E 81 (2010) 061505.

[6] P. Curie, Oeuvres, Societe Francaise de Physique, Paris, 1908.
[7] I. Prigogine, Etude Thermodynamique des Phenomenes Irreversibles, Desoer,

Liege, 1947.
[8] S.R.D. Groot, P. Mazur, Non-equilibrium Thermodynamics, North-Holland

Publishing Co., Amsterdam, 1962.
[9] N.P. Bailey, T. Christensen, B. Jakobsen, K. Niss, N.B. Olsen, U.R. Pedersen, T.B.

Schrøder, J.C. Dyre, Glass-forming liquids: one or more “order” parameters?
J. Phys. Condens. Matter 20 (2008) 244113.
[10] J. Meixner, H.G. Reik, in: S. Flügge (Ed.), Principen der Thermodynamik und
Statistik, Handbuch der Physik, vol. 3, Springer, Berlin, 1959.

[11] T.B. Schrøder, N.P. Bailey, U.R. Pedersen, N. Gnan, J.C. Dyre, Pressure–energy
correlations in liquids. III. Statistical mechanics and thermodynamics of liquids
with hidden scale invariance. J. Chem. Phys. 131 (2009) 234503.

[12] N.P. Bailey, U.R. Pedersen, N. Gnan, T.B. Schrøder, J.C. Dyre, Pressure–energy
correlations in liquids. II. Analysis and consequences. J. Chem. Phys. 129 (2008)
184508.

[13] T. Christensen, N.B. Olsen, A rheometer for the measurement of a high-shear
modulus covering more than 7 decades of frequency below 50 kHz, Rev. Sci.
Instrum. 66 (1995) 5019–5031.


	A combined measurement of thermal and mechanical relaxation
	Introduction
	Thermomechanical response of a differential volume element
	Thermomechanical response of a finite spherical volume element
	The combined experiment
	Conclusion
	References




