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In the companion paper [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J.
C. Dyre, “NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface,” J.
Chem. Phys. (in press)] an algorithm was developed for tracing out a geodesic curve on the constant-
potential-energy hypersurface. Here, simulations of NVU dynamics are compared to results for four
other dynamics, both deterministic and stochastic. First, NVU dynamics is compared to the standard
energy-conserving Newtonian NVE dynamics by simulations of the Kob-Andersen binary Lennard-
Jones liquid, its WCA version (i.e., with cut-off’s at the pair potential minima), and the Lennard-Jones
Gaussian liquid. We find identical results for all quantities probed: radial distribution functions, in-
coherent intermediate scattering functions, and mean-square displacement as function of time. Argu-
ments are presented for the equivalence of NVU and NVE dynamics in the thermodynamic limit; in
particular, to leading order in 1/N these two dynamics give identical time-autocorrelation functions.
In the final part of the paper, NVU dynamics is compared to Monte Carlo dynamics, to a diffusive
dynamics of small-step random walks on the constant-potential-energy hypersurface, and to Nosé-
Hoover NV T dynamics. If time is scaled for the two stochastic dynamics to make single-particle
diffusion constants identical to that of NVE dynamics, the simulations show that all five dynam-
ics are equivalent at low temperatures except at short times. © 2011 American Institute of Physics.
[doi:10.1063/1.3623586]

I. INTRODUCTION

In the companion paper (Paper I1), we developed a sta-
ble numerical algorithm for tracing out a geodesic curve on
the constant-potential-energy hypersurface � of a system of
N classical particles. If U (r1, . . . , rN ) is the potential energy
as a function of the particle coordinates, for a given value
U0 of the potential energy � is the (3N − 1)-dimensional
Riemannian differentiable manifold defined by (where R
≡ (r1, . . . , rN ) is the position in the 3N -dimensional config-
uration space)

� = {R ∈ R3N | U (R) = U0} . (1)

Geodesic motion on � is termed NVU dynamics in analogy
with standard Newtonian NVE dynamics, which conserves
the total energy E. Motivations for studying NVU dynam-
ics were given in Paper I. The present paper compares NVU
dynamics to four other dynamics, two deterministic and two
stochastic, concluding that NVU dynamics is a fully valid
molecular dynamics.

The path of shortest distance between two points on a
Riemannian manifold is a so-called geodesic curve. By defi-
nition a geodesic is a curve of stationary length, i.e., one for
which small curve variations keeping the two end points RA

and RB fixed, to lowest order do not change the curve length,

δ

∫ RB

RA

dl = 0 . (2)

a)Electronic mail: dyre@ruc.dk.

By discretizing this condition and carrying out the variation,
keeping the potential energy fixed by introducing Lagrangian
multipliers, the following “basic NVU algorithm” was de-
rived in Paper I (F is the 3N -dimensional force vector and
i is the time-step index):

Ri+1 = 2Ri − Ri−1 − 2
Fi · (Ri − Ri−1)

F2
i

Fi . (3)

This algorithm works well, but for very long simulations nu-
merical errors accumulate and U drifts to higher values (“en-
tropic drift,” see Paper I). This problem is also encountered
for the total energy in NVE algorithms,2 and it is not more se-
vere for NVU than for NVE dynamics. A fully stable NVU
algorithm was developed in Paper I, which may be summa-
rized as follows. If one switches to the leap-frog representa-
tion and defines the position changes by �i+1/2 = Ri+1 − Ri ,
the stable NVU algorithm is: �i+1/2 = l0 Ai+1/2/|Ai+1/2|
where l0 is the step length and Ai+1/2 = �i−1/2 + (−2Fi ·
�i−1/2 + Ui−1 − U0)Fi/F2

i . Just as for standard NVE dy-
namics a final stabilization introduced is to adjust the position
changes slightly, e.g., every 100th step, in order to eliminate
numerical drift of the center of mass coordinate. In the sim-
ulations reported below, we used the fully stable NVU algo-
rithm. However, since the stabilization is merely a technical-
ity, the basic NVU algorithm Eq. (3) is used for theoretical
considerations.

Constant-potential-energy algorithms were previously
considered in papers dating back to 1986 by Cotterill and
Madsen et al.3 and in 2002 by Scala et al.4 In the same spirit,
but in a slightly different context, Stratt and co-workers in
2007 and 2010 considered geodesic motion in the space of
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points with potential energy less than or equal to U0.5 In the
thermodynamic limit these points are almost all of potential
energy very close to U0. We refer to Paper I for further dis-
cussion of how NVU dynamics relates to these earlier works.

NVU dynamics invites to an alternative view of
molecular motion. Instead of focusing on the standard
potential-energy landscape in 3N + 1 dimensions,6 NVU
dynamics adopts the configuration-space microcanonical
viewpoint and focuses on the (3N − 1)-dimensional Rie-
mannian hypersurface �. The classical potential-energy
landscape picture draws attention to the stationary points of
the potential-energy function, in particular its minima, the
so-called inherent states.6 In contrast, all points on � have
the same probability in NVU dynamics and there are no
energy barriers – all barriers are of entropic nature defining
unlikely parts of � that must be passed.3–5 Despite the
absence of energy barriers in the ordinary sense of this term,
NVU dynamics is fully able to describe locally activated
events (hopping processes between local potential-energy
minima). The NVU “heat bath” is provided by the multitude
of configurational degrees of freedom.3–5

The present paper compares NVU dynamics to other
molecular dynamics, including stochastic ones. We first com-
pare to NVE dynamics, which is also deterministic, and con-
clude that for large systems the two dynamics are basically
equivalent. We proceed to compare to other kinds of dynam-
ics, inspired by previous works: The first investigation pro-
viding long-time simulations that compared different dynam-
ics (Newtonian versus Langevin) was presented by Gleim
et al.7 They studied the Kob-Andersen binary Lennard-Jones
(KABLJ) mixture8 at different temperatures and found that
below a certain temperature (T < 0.8), the temperature de-
pendence of the diffusion constant and of the structural re-
laxation time was identical for the two dynamics. This type
of investigation was extended by Szamel et al.9 to Brownian
dynamics, i.e., stochastic dynamics without the momentum
degrees of freedom. They found power-law fitting exponents
for the temperature dependence of the diffusion constant and
relaxation time very close to those of NVE dynamics. Subse-
quently, Berthier et al.10 investigated Monte Carlo dynamics
for which agreement with Newtonian dynamics was also es-
tablished, both for a strong and a fragile model glass former
(an SiO2 model and the KABLJ model). This, however, did
not apply for higher-order time-correlation functions, a fact
contributed to the presence of different conservation laws.10

We compare below NVU dynamics to the following four
other dynamics: Newtonian dynamics (NVE ), Nosé-Hoover
NVT dynamics,11 Monte Carlo dynamics (MC),12 and a dif-
fusive small-step random-walk dynamics on the constant-
potential-energy hypersurface (RW ). Section II compares
NVU dynamics with the “true” (NVE ) time evolution de-
fined by Newton’s second law. This is done by simulations
of the KABLJ liquid, as well as of the Weeks-Chandler-
Andersen (WCA) approximation13 to the KABLJ liquid
(KABWCA) and the Lennard-Jones Gaussian liquid. Section
III gives arguments for the equivalence of NVU and NVE
dynamics in the thermodynamic limit. Section IV compares
NVU dynamics with NVT, MC, and RW dynamics. Section
V gives a brief summary and outlook.

II. SIMULATIONS COMPARING NVU DYNAMICS TO
NVE DYNAMICS

In NVU dynamics a geodesic is traced out in configura-
tion space. Physically, this curve may be traversed with any
velocity; comparing however to NVE dynamics suggests an
obvious time measure for NVU dynamics, as we shall see
now. Limiting ourselves for simplicity to systems of particles
with identical masses m, the Verlet algorithm for NVE dy-
namics with time step �tNV E is2, 14

Ri+1 = 2 Ri − Ri−1 + (�tNV E)2

m
Fi . (4)

Comparing to Eq. (3) suggests the following identification of
a NVU time step �ti,NV U

(�ti,NV U )2

m
= −2

Fi · (Ri − Ri−1)

F2
i

. (5)

This quantity is identical to l0λi of Paper I. Our simula-
tions show that the average of the right-hand side is always
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FIG. 1. (a) Probability density of (�ti,NV U )2 given by Eq. (5) for the Kob-
Andersen binary Lennard-Jones (KABLJ) liquid at ρ = 1.2 and T = 0.44;
(b) Probability density for (�ti,NV U )2 − 〈(�ti,NV U )2〉 for 256, 1024, and
8192 particles of the single-component LJ liquid (T = 0.70, ρ = 0.85),
showing a narrowing as the particle number increases.
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positive for small l0. We have no proof of this, but presum-
ably it applies rigorously in the thermodynamic limit.

Data are given below in terms of the natural units
for the Lennard-Jones pair potential; for the KABLJ and
KABWCA system length and energy are given in units of
the large-particle parameters σAA and εAA, respectively. The
system sizes are N = 1024, 1000, and 1024 for KABLJ,
KABWCA, and Lennard-Jones Gaussian, respectively.

The probability distribution of (�ti,NV U )2 is given in
Fig. 1(a) for an N = 1024 KABLJ liquid at ρ = 1.2 and
T = 0.44.15 The simulations behind this, as well as all
below figures, were initiated by choosing the two initial
configurations from a well-equilibrated NVE simulation.
The target potential energy U0 in the NVU simulation was
chosen as U0 = 〈U 〉NV E at the relevant state points. The
probability distribution of Fig. 1 is a Gaussian, which is
consistent with the fact that (�ti,NV U )2 is a sum of many
terms that are uncorrelated for large spatial separations.

In view of the above, for comparing NVU and NVE gen-
erated sequences we define the NVU time step length �tNV U
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FIG. 2. Radial distribution functions for the KABLJ system at ρ = 1.2. The
black lines give results from NVE simulations, colored circles from NVU
simulation where green, red, and blue denote, respectively, AB, AA, and BB
pairs for: (a) T = 2.0 and (b) T = 0.405.
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FIG. 3. (a) Mean-square displacement and (b) incoherent intermedi-
ate scattering function at the wave vector of the first peak of the AA
structure factor. Both simulations were performed at ρ = 1.2 for T

= 2.0, 0.80, 0.60, 0.50, 0.44, 0.42, and 0.405 (left to right) for the
KABLJ liquid (1024 particles). NVE dynamics is given by the filled black
circles connected by straight lines, NVU dynamics by the red crosses.

as the average of Eq. (5), i.e.,

(�tNV U )2

m
≡ −2

〈
Fi · (Ri − Ri−1)

F2
i

〉
. (6)

First, we compare static averages of NVU and NVE
simulations. Figure 2 shows the three radial distribution func-
tions for the KABLJ liquid at two different state points.
Clearly, the two algorithms give identical results. Next, Fig. 3
shows NVU and NVE results for the mean-square displace-
ment and the incoherent intermediate scattering function of
the KABLJ liquid at density ρ = 1.2 over a range of tem-
peratures. The mean-square displacement and the incoherent
scattering function are both identical for NVU and NVE dy-
namics.

Corresponding figures are shown in Fig. 4 for the Weeks-
Chandler-Andersen (WCA) approximation, which cuts off in-
teractions beyond the energy minima, i.e., keep only the re-
pulsive part of the potential. The WCA version of the system
has a similar structure, but a much faster dynamics in the su-
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FIG. 4. (a) Mean-square displacement and (b) incoherent intermediate scat-
tering function at the same wave vector as in Fig. 3. Both simulations were
performed at ρ = 1.2 for T = 2.0, 0.80, 0.60, 0.50, 0.44, and 0.40 (left to
right) for the WCA approximation to the KABLJ liquid. NVE dynamics is
given by the filled black circles connected by straight lines, NVU dynamics
by the red crosses.

percooled regime.16, 17 Again, NVU and NVE dynamics give
identical results.

We also studied the so-called Lennard-Jones Gaussian
system defined by a pair potential that adds a Gaussian to
a LJ potential,18 a liquid that is not strongly correlating.16

Figure 5 shows that for this model the incoherent interme-
diate scattering function is also the same for NVU and NVE
dynamics. In summary, for all systems simulated, we found
NV U = NV E. This applies even for N = 65 particles of the
KABLJ liquid (T = 0.8, ρ = 1.2).

III. ARGUMENTS FOR THE EQUIVALENCE OF NVU
AND NVE DYNAMICS AS N → ∞

The above results raise the question: Are NVU
and NVE dynamics mathematically equivalent in some
well-defined sense? The two algorithms are not identical,
of course; that would require no variation in the quan-
tity �ti,NV U (Fig. 1). On the other hand, the �ti,NV U
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FIG. 5. The incoherent intermediate scattering function at ρ = 0.8 and
T = 1.4 for the Lennard-Jones Gaussian system.18 The black circles
represent a NVE simulation, the red symbols represent a NVU simulation.

distribution narrows as the particle number increases
[Fig. 1 (b)]. From this NVU and NVE dynamics are
expected to become equivalent for N → ∞ in the following
sense: For any configurational quantity A with zero average,
to leading order in 1/N there is identity of dynamic quantities
such as the time-autocorrelation function 〈A(0)A(t)〉 or the
mean-square change 〈�2A(t)〉 (i.e., the relative deviations
go to zero as N → ∞). Consider the time-autocorrelation
function of an extensive quantity A with zero average. In
this case, the time-autocorrelation function scales in both
ensembles as N , and the proposed equivalence of the dy-
namics means that |〈A(0)A(t)〉NV U − 〈A(0)A(t)〉NV E| ∝ N0

as N → ∞. Intuitively, what happens is that since in NVE
dynamics the relative potential-energy fluctuations go to zero
as N → ∞, it becomes a better and better approximation to
regard the potential energy as conserved.5

There exists in analytical mechanics a variational princi-
ple that does not involve time. This is the Maupertuis prin-
ciple from 1746,20, 21 a variational principle that is originally
due to Jacobi and for this reason is sometimes referred to as
“Jacobi’s form of the least action principle.”19, 21 This states
that a classical-mechanical system of fixed energy E follows
a curve in configuration space obeying (with fixed end points)

δ

∫ RB

RA

√
2m(E − U ) dl = 0 . (7)

One may argue that the relative variations of the integrand go
to zero as N → ∞. Thus, the integrand in this limit becomes
effectively constant and can be taken outside the variation, im-
plying Eq. (2) for motion which in the same limit effectively
takes place on the constant-potential-energy hypersurface.5

If l is the path length parametrizing the path, Eq. (7)
implies19, 20 d2R/dl2 = [F − (F · t)t]/2(E − U (R)) where
t = dR/dl is the unit vector tangential to the path. The term
F − (F · t)t is the (vector) component of the force normal to
the path. In the thermodynamic limit the path as mentioned
approaches more and more the constant-potential-energy
hypersurface �, i.e., F · t = 0. In this limit, one has also
dl ∝ dt because the relative kinetic energy fluctuations go to
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FIG. 6. (a) The dynamical fluctuations quantified by χ4(t) for the A parti-
cles at ρ = 1.2 for a KABLJ liquid with 1024 particles. The black circles
give results for an NVE simulation, the red, green, and blue symbols repre-
sent NVU simulations at, respectively, T = 0.44, 0.42, 0.405. (b) The dy-
namical fluctuations quantified by χ4(t) for the A particles at ρ = 1.2 for the
KABLJ system with 2048 particles. The black circles give results for a NVE
simulation, the violet, red, and green symbols represent NVU simulations
of, respectively, T = 0.50, 0.44, and 0.42. Increasing the number of parti-
cles does not appear to decrease the deviation between the two dynamics.

zero. In this way, in the thermodynamic limit the Maupertuis
principle is equivalent to both the geodesic equation Eq. (2)
and to Newton’s second law R̈ = F/m.

The equivalence of NVU and NVE dynamics in the
thermodynamic limit relates to static averages as well as to
time-autocorrelation functions of extensive quantities with
zero average. Just as one must be careful when comparing
fluctuations between different ensembles, fluctuations relat-
ing to the dynamics need not be the same for NVU and NVE
dynamics. As an example, Fig. 6 shows the quantity χ4(t)
defined by χ4(t) = NA [ 〈F 2

sA(k, t)〉 − 〈FsA(k, t)〉2 ] for the
KABLJ system at three temperatures and two values of N .
χ4 quantifies the incoherent intermediate scattering function
fluctuations.22 For χ4(t), NVU and NVE dynamics do not
appear to give identical results. A related observation was
made by Berthier et al., who showed that χ4(t) is not the
same in NVE and NV T dynamics.10

IV. COMPARING NVU DYNAMICS TO NVT, MONTE
CARLO, AND DIFFUSIVE DYNAMICS ON �

This section compares simulations using NVU dynamics
to results for three other dynamics, two of which are standard.
We focus on the viscous regime. One dynamics is the Nosé-
Hoover NVT dynamics, a deterministic sampling of the NV T

canonical ensemble that may be derived from a “virtual”
Hamiltonian.11, 23 The second standard dynamics considered
is the Metropolis Monte Carlo (MC) algorithm, which
generates a stochastic sequence of states giving the correct
NV T canonical ensemble distribution. The third dynamics
employed below is also stochastic; it simulates diffusion
on the constant-potential-energy hypersurface � by a small
step-length random walk (RW) on �. This was discussed by
Scala et al.,4 who proposed the following equation of motion:

dRi

dt
= �ηi − �ηi · Fi

F2
i

Fi , (8)

where �ηi is a 3N -dimensional random vector (see be-
low). Equation (8) implies Fi · Ṙi = 0, which ensures the
potential-energy conservation required for staying on �.

The RW algorithm was discretized and implemented as a
“predictor-corrector” algorithm in the following way. A vec-
tor �ηi was chosen from a cube with length L = 0.01σ . This
is small enough to ensure that the dynamics generates the cor-
rect NVE radial distribution function and at the same time has
no effect on the average dynamical quantities. Positions were
updated via

Ri+1 = Ri + �t�ηi − �t�ηi · Fi

F2
i

Fi . (9)

Finally, Ri+1 was corrected by applying two iterations of
Ri+1 ≡ Ri+1 − Ui+1−U0

F2
i+1

Fi+1 in order to eliminate long-time

entropic drift of the potential energy.
MC and RW dynamics involve no generic measures

of time. We compared their results to NVU dynamics by
proceeding as follows. At any given state point the time-
scaling factor was determined from the long-time behavior
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FIG. 7. The incoherent intermediate scattering function for all
five investigated dynamics for the KABLJ liquid at ρ = 1.2 and
T = 2.0, 0.80, 0.60, 0.50, and 0.44. The black curve is the NVE simu-
lation, red crosses: NVU , green squares: NV T , magenta diamonds: MC,
blue triangles: RW .
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of the mean-square displacement by requiring that the single-
particle displacement obeys 〈�x2(t)〉 = 2Dt for t → ∞ with
the NVE diffusion constant D. By construction, this ensures
agreement with the long-time mean-square displacement of
NVE dynamics.

In Fig. 7, we show the incoherent intermediate scattering
function of the KABLJ liquid for all investigated dynamics at
several state points. A corresponding figure for the KABWCA
system is shown in Fig. 8.

NVU and NV T dynamics agree quantitatively for all
investigated state points. This is not surprising given the
results of Secs. II and III and the well-known fact that NVE
and NV T dynamics give the same time-autocorrelation
functions to leading order in 1/N .24 The incoherent inter-
mediate scattering functions of MC and RW agree at all
investigated temperatures. This is consistent with the recent
results of Berthier et al.,10 who compared Langevin to MC
dynamics. For lower temperatures (T < 0.80) quantitative
agreement is found among all five dynamics investigated in
the α-relaxation regime.

V. SUMMARY AND OUTLOOK

NVU dynamics traces out geodesic curves on the
(3N − 1)-dimensional potential-energy hypersurface �. We
have compared NVU dynamics with four other dynamics.
Simulations supplemented by non-rigorous analytical argu-
ments showed that NVU and NVE dynamics are equivalent
in the thermodynamic limit, i.e., typical autocorrelation func-
tions become identical to leading order in 1/N . Furthermore,
NVU dynamics was compared to two stochastic dynamics,
standard Monte Carlo dynamics and a small-step random
walk on the constant-potential-energy hypersurface � rep-
resenting diffusion on �. Agreement was established for all
dynamics, including also NV T dynamics, in the α-relaxation
regime where inertial effects are unimportant. We conclude
that NVU dynamics is a fully valid molecular dynamics.

It is interesting to note that NVU dynamics, like any
geodesic motion on a Riemannian manifold, can be formu-
lated as a Hamiltonian dynamics based on the curved-space
purely kinetic energy Hamiltonian H = 1/2

∑
a.b gab(x)papb

where x is the manifold coordinate, gab is the correspond-
ing metric tensor, and pa are the generalized momenta.25 In-
deed, long ago Hertz argued that one should focus exclusively
on the kinetic energy and describe classical mechanics as a
geodesic motion on a high-dimensional Riemannian manifold
(along the “geradeste Bahn” of this manifold, the straightest
curve).26 Hertz’ idea was to eliminate the force and poten-
tial energy concepts entirely from mechanics and replace par-
ticle interactions by constraints among the coordinates; the
relevant manifold is defined by these constraints. This is not
what we have done here. There is nevertheless the fundamen-
tal similarity between the Hertz and the NVU approaches that
both are built on the conceptual simplification of “replacing
Newton’s second law by Newton’s first law.” Moreover, as
shown in the Appendix, the effect of masses enters into the
metric of the Riemannian manifold in precisely the same way
as we need for NVU dynamics when this is generalized to
deal with systems of varying masses. Thus, NVU dynamics
realizes Hertz’s ideas to a large extent.

From a technical point of view NVU dynamics offers
few advantages because it is not faster than NVE or NV T

dynamics. However, by referring directly to the properties of
a Riemannian differentiable manifold, NVU dynamics leads
to an alternative way of thinking about the classical mechanics
of many-particle systems. Future work should focus on relat-
ing the mathematical properties of � to the physical proper-
ties of the system in question. It is our hope that in this way
new insights into liquid dynamics may be arrived at by adopt-
ing the NVU viewpoint.
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APPENDIX: GENERALIZATION OF THE NVU
ALGORITHM TO DEAL WITH SYSTEMS OF
DIFFERENT PARTICLE MASSES

Papers I and II deal with systems of particles with iden-
tical mass m. The basic NVU algorithm Eq. (3), however,
is well defined and works perfectly well for any classical
mechanical system. The algorithm traces out a geodesic on
� that is independent of the particles’ masses, a geometri-
cal path entirely determined from the function U (r1, . . . , rN ).
Equation (5), which ensures NV U = NV E in the thermody-
namic limit, only works if all particles have mass m. On the
other hand, the question arises if a generalization of Eq. (3)
is possible ensuring that NV U = NV E as N → ∞ also for
systems of particles with different masses.

If the kth particle mass is mk , we seek to modify the basic
NVU algorithm such that it, for the kth particle as N → ∞,
converges to (where r(k) is the coordinate of the kth particle,
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F(k) is the force on it, and the subscript j is the time step
index)

r(k)
j+1 = 2 r(k)

j − r(k)
j−1 + (�t)2

mk

F(k)
j . (A1)

If the average mass is denoted by 〈m〉, we define reduced
masses by

m̃k ≡ mk

〈m〉 . (A2)

A geodesic is defined by giving the shortest distance between
any two of its close-by points. In Paper I and in Eq. (2) of the
present paper the distance measure is given by the standard
Euclidian distance dl2 = ∑

k dr(k) · dr(k). A change of metric
leads to different geodesics. Consider the following metric:

dl2 =
∑

k

m̃k dr(k) · dr(k). (A3)

This is precisely the metric discussed by Hertz in his me-
chanics long ago.26 In the “Hertzian” metric the discretized
path length used in deriving the NVU algorithm is (Paper I)∑

j

√∑
k m̃k(r(k)

j − r(k)
j−1)2 (j is the time step index). Thus,

the variational condition becomes

δ

⎛
⎝∑

j

√∑
k

m̃k

(
r(k)
j − r(k)

j−1

)2
−

∑
j

λjU (Rj )

⎞
⎠ = 0 .

(A4)
From this it follows via the ansatz of constant step length that

r(k)
j+1 = 2r(k)

j − r(k)
j−1 − 2[Fj · (Rj − Rj−1)]F(k)

j

m̃kF2
j

. (A5)

This translates into Eq. (A1) for a suitably chosen �t ;
likewise, the relative fluctuations of the term 2[Fj · (Rj

− Rj−1)]/F2
j go to zero in the thermodynamic limit

(N → ∞) such that NV U = NV E in this limit.
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