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Abstract. The activation-relaxation technique (ART), a saddle-point search method, is applied to deter-
mine the potential energy landscape around supercooled and glassy configurations of a three-dimensional
binary Lennard-Jones system. We show a strong relation between the distribution of activation energies
around a given glassy configuration and its history, in particular, the cooling rate used to produce the glass
and whether or not the glass was plastically deformed prior to sampling. We also compare the thermally
activated transitions found by ART around a supercooled configuration with the succession of transitions
undergone by the same supercooled liquid during a time trajectory simulated by molecular dynamics. We
find that ART is biased towards more heterogeneous transitions with higher activation energies and more
broken bonds than the MD simulation.

1 Introduction

Understanding the glass transition is a field of intense re-
search (see, for example, [1–6]), which has greatly bene-
fited from the recognition that the dynamics of a cooling
liquid is intimately related to the topography of its po-
tential energy landscape (PEL). Probably, the most use-
ful approach is based on molecular dynamics (MD) sim-
ulations with regular potential energy minimizations to
track the succession of energy basins, or inherent struc-
tures (ISs), visited by the liquid during its time trajectory,
either during cooling towards the glass transition [7–10]
or at constant temperature near and above the mode cou-
pling temperature, TC [11–13]. We know from these stud-
ies that the rapid slowing down and stretched exponential
relaxations of liquids across the glass transition [13,4] are
due to the multifunnel rough structure of the PEL [14]
with a hierarchy of energy barriers connecting basins and
metabasins, in which the liquid gets progressively trapped
during cooling.

Equilibrium MD simulations can only be used above
TC (or slightly below) because below this temperature, in
the glassy regime, the dynamics of the system becomes
thermally activated and very slow, that is at the limit or
beyond the timescale accessible to direct MD simulations.
In this regime, saddle-point search methods, for example
the activation-relaxation technique (ART) [15–17], can be
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used to sample locally the PEL around a glassy configu-
ration and determine distributions of thermally activated
paths leaving the configuration. In refs. [17,18], the effect
of a plastic deformation and of ageing on such distribu-
tion was studied in the case of a two-dimensional binary
Lennard-Jones (LJ) glass.

In the present paper, we extend the application of
ART to three-dimensional glasses, using Wahnström po-
tential [19], a very well-characterized binary LJ potential.
We use ART to sample the PEL in three distinct con-
ditions: glasses at different quench rates (sect. 3), plasti-
cally deformed glasses (sect. 4) and a supercooled liquid
(sect. 5), with a comparison between the thermally acti-
vated transitions identified by ART and the transitions
undergone by the same supercooled liquid during a time
trajectory simulated by MD.

2 Methodology

Interatomic interactions are modeled using Wahnström bi-
nary LJ potential [19], a potential widely used to study
liquids and glasses [11,20–22]. Throughout the paper, we
will use LJ units: εAA, σAA and mA for energy, length
and mass, and t0 = σAA

√
mA/εAA for the time unit.

The system is made of 10000 particles, 4971 A particles
and 5029 B particles (with εBB = 1.0 and σBB = 5/6,
mB = 0.5) and coupling parameters εAB = 1.0, σAB =
11/12 and a cut-off radius at 2.5σAA with a simple energy
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Fig. 1. (Colour on-line) Influence of the cooling rate on glass properties: (a) inherent structure potential energy as a function of
temperature during cooling at various cooling rates noted in the figure (LJ units are used). (b) Shear stress/shear strain curves
during quasistatic simple shear deformation of the glasses obtained in (a).

shift. The number density of the system is 1.296 with
constant volume and periodic boundary conditions. The
mode-coupling temperature, which plays the role of the
glass transition temperature in atomistic simulations, is
0.59εAA for this system [11]. The liquid is cooled using
Andersen thermostat with a frequency of 10−3. Energy
minimizations to inherent structures are performed using
a quenched dynamics algorithm [23]. Simple shear defor-
mation is then applied quasistatically using Lees-Edwards
shifted periodic boundary conditions and strain incre-
ments of 10−4.

The MD trajectory of the supercooled liquid at TC =
0.59 is taken from ref. [11], where the system is made of
500 particles with the same number density as the 10000
particle system.

To sample the first-order activated states around
glassy configurations, we employ the activation-relaxation
technique (ART), an eigenvector-following method in
which the direction of minimum curvature is obtained iter-
atively using the Lanczos algorithm [15–17]. The methods
starts with an activation phase where the initial equilib-
rium configuration is pushed out of its basin of attrac-
tion along a random direction in configuration space with
a fixed step length of 0.025σAA. The localized nature of
thermal excitations is accounted for by choosing the ini-
tial direction as a random displacement of a randomly
chosen atom. After the displacement, 5 relaxation steps
are taken perpendicularly to the direction of motion to
avoid a rapid rise of the system energy. This procedure is
iterated until the curvature (i.e. the minimum eigenvalue
of the Hessian matrix) becomes less than −3.0εAA/σ2

AA. A
relaxation phase towards the saddle point is then started,
by following the same procedure as above but using the
variable step length proposed by Cancès et al. [16] with
a maximum step length of 0.3σAA. The saddle point is
considered reached when the maximum atomic force com-
ponent becomes less than 10−2εAA/σ2

AA. The saddle-point
configuration is then perturbed along the unstable mode,
both towards and away from the initial configuration, in
order to ensure that the saddle point is connected to the
initial configuration and to obtain the complete transi-
tion path, from the initial to the final configuration. The

activation energy is then just the energy difference be-
tween initial and activated configurations. The choice of
the numerical parameters mentioned above (step lengths
in activation and relaxation phases, threshold curvature,
number of atoms involved in initial random direction of
motion) is crucial for the efficiency of the method [17].

To identify the saddle point between the initial and
final configurations during the MD trajectory, we used
the nudged elastic band (NEB) method [24,25]. Within
this method, an initial path is constructed between initial
and final configurations by creating replicas of the system
(20 of them) by linear interpolation between the two con-
figurations. The replicas are linked between near neigh-
bors in configuration space by linear springs of strength
0.1εAA/σ2

AA. The energy of the path is minimized using a
projected algorithm [24] whereby only the component of
the force arising from the potential energy perpendicular
to the path (which drives the system towards a minimum
energy path) and that of the spring force parallel to the
path (which keeps the replicas away from each other) are
kept. We employed an improved tangent [26] and a climb-
ing NEB procedure [27]. After the NEB calculation has
converged, the highest energy configuration and local tan-
gent to the minimum energy path were used in ART to
determine with precision the saddle-point configuration of
the transition.

3 PEL of quenched glasses

To produce glasses with different levels of relaxation, we
cooled down liquids at different cooling rates, ranging from
2 · 10−2 to 2 · 10−5 in LJ units, with regular energy min-
imization to follow the succession of ISs visited by the
system during its time evolution. The resulting IS en-
ergy curves are shown in fig. 1(a). As first reported by
Sastry et al. [10] with a different interatomic potential,
three dynamical regimes can be identified: i) the liquid
regime at high temperatures where the IS potential en-
ergy is independent of cooling rate and temperature, ii) a
regime where the IS potential energy is strongly depen-
dent on both cooling rate and temperature, and iii) the
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Fig. 2. (Colour on-line) Sampling of PEL with ART. (a) Prob-
ability distributions of activation energies in the glassy config-
urations obtained in fig. 1 at different quench rates. (b) Scatter
plot of the energy difference between initial and final configura-
tions as a function of the activation energy for 1000 transitions
determined on the same configurations as in (a). The inset in
(b) lists the correlation coefficient between activation energy
and energy variation for the different data sets. The same color
code applies as in fig. 1. The dashed curve in (a) is an exponen-
tial fit of the high-energy tail of the distribution with a cooling
rate of 2 · 10−5.

glassy regime where the IS potential energy only depends
on cooling rate.

At low temperatures the dynamics of the liquid is well
separated into vibrations around inherent states and ther-
mally activated transitions between inherent states [28].
From MD simulations it was found that the temperature
where this scenario becomes a good description is close to
the estimated TC [11]. In this regime, saddle-point search
methods such as ART become useful because they allow
to determine saddle-point configurations and potentially
thermally activated transitions through which the glass
might escape. Of course, there are too many saddle points
around a configuration to sample them all, but several
thousand saddle-point configurations can be determined
with ART from a given configuration, which is enough
to obtain statistical distributions. Figure 2(a) shows the
probability distributions of activation energies for saddle
points around the glassy configurations obtained at the
end of the cooling procedures shown in fig. 1(a).

The distributions shown in fig. 2(a) have specific fea-
tures, shared also by two-dimensional systems [18,17].
First, activation energies form a continuous spectrum,

which is characteristic of complex energy landscapes, as
also obtained in amorphous silicon [29]. Second, the energy
range of the distributions is large, up to 30εAA, with an
exponential decay at high energies as shown by the dashed
exponential fit in fig. 2(a). The latter decay is consistent
with the prediction of a master equation approach pro-
posed by Dyre in ref. [30]. The latter is primarily based
on the distribution of IS energies but was extended by
first-order expansion to the distribution of activation en-
ergies. Third, the distributions have a maximum, i.e. a
most likely activation energy, which is on the order of
10εAA. Note that this maximum slightly increases when
the quench rate decreases. Finally, the distributions con-
tain low activation energies, almost down to zero. As seen
in fig. 2(a), the density of these low activation energies is
directly correlated to the cooling rate: more slowly cooled
glasses have less low activation energies than more rapidly
cooled glasses.

Figure 2(b) displays the energy difference between ini-
tial and final configurations of 1000 transitions as a func-
tion of the activation energy of the transition. As the
quench rate decreases, the number of transitions with a
negative energy difference, i.e. transitions that decrease
the energy of the glass, decreases. This fact is another sig-
nature of the increasing level of relaxation of more slowly
quenched glasses. In contrast, for equilibrium MD dynam-
ics the distribution of energy changes is symmetric with
exponential tails [31]. Two special cases can be identified
in fig. 2(b). Some transitions have almost the same en-
ergy difference and activation energy, i.e. the final energy
is almost the same as the activation energy. Such transi-
tions occur when the final configuration is very close to
the activated state with a final energy only slightly below
the activation energy. The second limiting case are transi-
tions with zero energy difference, i.e. a final energy almost
identical to the initial energy. Such transitions occur when
two or more atoms replace each other without changing
the overall atomic configuration. Figure 2(b) also shows
that, for each activation energy, there is a broad spectrum
of energy differences. There is therefore no strong corre-
lation between the activation energy of an event and its
associated energy difference, as is confirmed by the corre-
lation coefficients noted in the figure. Simple models that
link the activation energy of an event to its energy differ-
ence between initial and final configurations (for example
by adding a fixed energy height to the average of the en-
ergy in the initial and final states) [32] can therefore not
be applied in glasses.

In the literature, the level of relaxation of glasses
has also been related to the local atomic environment
and short-to-medium range order in the glass [8,33,22].
Namely, in several binary glasses, including CuZr [34], the
smaller species tends to be surrounded by 12 first neigh-
bors that form an icosahedron, in order to achieve efficient
local packing. It was shown that the slower the quench
rate, the larger the fraction of atoms with an icosahe-
dral environment [34]. To check if the present potential
verified this property, we used a Voronoi tessellation [35]
to identify the first-neighbor polyhedra for each atom in
the glassy configurations obtained above. We found that
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Fig. 3. Fraction of atoms surrounded by a shell of first neigh-
bors that forms an icosahedron as a function of the cooling
rate used to obtain the glassy configurations.

indeed, icosahedra are the most frequent polyhedra, as
already reported in ref. [21]. Moreover, we observed em-
pirically in fig. 3 that the fraction of atoms surrounded by
icosahedra increases logarithmically with the inverse cool-
ing rate. For an analysis of the geometry of the equilibrium
dynamics at low temperatures of the model studied here,
see ref. [36].

We have identified 3 markers that allow to compare
the level of relaxation of quenched glasses: the potential
energy of the glass, i.e. a thermodynamic marker, the den-
sity of low activation energies, i.e. a kinetic marker, and
the fraction of icosahedron-surrounded atoms, i.e. a topo-
logical marker. Also, better relaxed glasses are more stable
thermodynamically, because they have a lower potential
energy, and are more stable kinetically, because they are
surrounded by higher activation energies. This property
of the PEL was suggested by MD simulations [2] but the
present results are the first direct demonstration of the
effect.

4 PEL of deformed glasses

The influence of a plastic deformation on the PEL was in-
vestigated by deforming the glasses obtained in the previ-
ous section in simple shear up to 100% and by using ART
on the configurations after deformation to sample locally
their PEL. The shear stress/shear strain curves are shown
in fig. 1(b). The rapidly cooled glass has a very short
elastic regime followed by a steady-state plastic regime,
while the most slowly cooled glass has a much longer elas-
tic regime with an upper-yield point followed by soften-
ing before entering the steady-state regime. Similar effects
have been obtained in other glass formers [37,34]. In the
steady-state regime, the potential energy and stress are
independent of the initial configuration of the glass. Also,
interestingly, the potential energy in the steady state is
close to that of the initial liquid, on the left-hand side of
fig. 1(a).

The distributions of activation energies in the final con-
figurations after 100% deformation are shown in fig. 4(a).
All distributions are now equivalent with a high density

Fig. 4. Influence of a plastic deformation on the PEL of
glasses: (a) distribution of activation energies in the glasses
obtained at different cooling rates in fig. 1, after 100% shear
strain; (b) distribution of inelastic strains in the glass cooled
at 2 × 10−5 before (dashed line) and after (solid line) plastic
deformation.

of low activation energies. The plastic deformation has
thus taken the glasses to high energy/low stability con-
figurations independent of the initial configuration of the
glass, a process called rejuvenation [38], by opposition to
ageing that takes the glass into configurations of lower
energy/larger stability.

The high-energy configurations visited by the glass
during plastic deformation contain a signature of the sym-
metry of the applied deformation, i.e. the configurations
are polarized [39]. Polarization is most readily seen by
computing the distribution of inelastic strains that cor-
respond to each transition, i.e. the difference of shear
stress between initial and final configurations divided by
the shear modulus. The resulting distribution is shown in
fig. 4(b) for the most slowly cooled glass before and after
plastic deformation. Before plastic deformation, the distri-
bution is symmetrical with respect to zero because there
is no bias between positive or negative strains. After de-
formation, the distribution is asymmetrical and contains
more negative than positive events. This asymmetry is
specific to the applied shear deformation (which was in
the positive direction) and explains straightforwardly the
anelastic behavior of glasses. Indeed, glasses are known
to undergo a time- and temperature-dependent recovery
after plastic deformation, called anelasticity [40,39]. This
effect is explained by the fact that, upon annealing after
shear deformation, the glass undergoes more transitions
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with a negative strain than transitions with a positive
strain, because of the asymmetry of the strain distribu-
tion shown in fig. 4(b). The glass therefore develops a
negative deformation, i.e. a deformation in the direction
opposite to the initial direction of deformation. This effect
was checked by activated dynamics on a two-dimensional
glass in ref. [17]. It was also shown that after annealing and
anelastic recovery, the distribution was again symmetrical
around zero strain.

5 PEL of supercooled liquids

MD simulations in the supercooled regime have been
extensively used to obtain “inherent dynamics”, i.e. to
track the succession of basins visited by a supercooled
liquid during its time evolution, at temperatures near
and above TC [11–13,41–43,4]. In the work of Schrøder
et al. [11], the succession of transitions was determined
for the same binary LJ potential as in previous section,
for a system containing 500 particles at a temperature
of T = TC = 0.59. The average potential energy per
atom of this system (after energy minimization to remove
the kinetic part) is about −6.9εAA and the fraction of
icosahedron-surrounded atoms is around 11%. Compared
to figs. 2 and 3, these markers place the supercooled liquid
in the intermediate range of relaxation. Of course, a quan-
titative comparison between the quenched glasses of previ-
ous sections and the present supercooled liquid is difficult
because the present system is much smaller and finite-size
effects may be significant. Quenches of the present system
at the same rates as in sect. 3 after heating the liquid up to
T = 1.2 show that −6.9εAA is the typical energy reached
with a quenched rate of 2 · 10−4, which is consistent with
an intermediate level of relaxation.

By refining the frequency of energy minimizations,
the initial and final configurations of each transition was
determined. Here, the NEB method was used to deter-
mine the saddle-point configuration of each MD transi-
tions. Figure 5(a) shows the corresponding activation en-
ergy probability. ART was also used to determine the
spectrum of activation energies from a given configura-
tion representative of the configurations visited by the
system during the MD simulation. The corresponding ac-
tivation energy probability is shown in fig. 5(b). Activa-
tion energies are shifted to higher energies compared to
fig. 2(a), and the distribution appears more symmetrical
and is well fitted by a Gaussian distribution. We checked
on quenched glasses made of 500 atoms that this differ-
ence is mainly a finite-size effect and that the distribution
shown in fig. 5(b) is similar to that of a glass quenched
with an intermediate quench rate.

The difference between the distributions in figs. 5(a)
and (b) arises from the fact that in the MD simulation, the
occurrence of a given activation energy is weighted by its
Boltzmann factor. More precisely, the MD distribution in
fig. 5(a) should be proportional to the weighted distribu-
tion ρ(E) exp(−E/kBT ), where ρ(E) is the distribution
from ART and T = 0.59. The dashed curve in fig. 5(a)
is the resulting weighted distribution, which agrees well

Fig. 5. Distribution of activation energies: (a) the distribu-
tion is computed from the succession of transitions undergone
during a MD simulation at TC = 0.59; (b) the distribution
is computed from an ART sampling on a configuration of the
same system as in (a). In (a), the dashed distribution is the
ART distribution weighted by Boltzmann factor.

with the MD distribution. We should note, however, that
this distribution involves only the lowest activation barri-
ers of the ART distribution. The larger activation energy
transitions, which are much more abundant, do not ap-
pear in fig. 5(a) due to their negligibly small Boltzmann
factor.

To further compare the transitions found by MD and
by ART, we computed for 1000 transitions found with
each method four well-known measures shown in fig. 6.
The first measure is the mean-square displacement of each
transition, defined as

δ2 =
1
N

√√
√√

N∑

i=1

|rF
i − rI

i |2, (1)

where rI
i and rF

i denote the position of atom i in the ini-
tial and final configurations of the transition, respectively.
The second measure is the fraction of mobile (or “active”)
particles, defined as the fraction of particles that move by
more than 0.2σAA [11]. The third measure is the number
of broken bonds, obtained as the number of first-neighbor
bonds broken during the transitions. The fourth measure
is the participation ratio of each transition, defined as

r =
1
N

(∑N
i=1 |rF

i − rI
i |2

)2

∑N
i=1 |rF

i − rI
i |4

. (2)
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Fig. 6. Scatter plot of geometrical factors characterizing ther-
mally activated events found either by MD or by ART and
shown as a function of their activation energy. From top to
bottom are shown the mean-square displacement, the number
of first-neighbor broken bonds, the fraction of mobile atoms,
the participation ratio. In all cases, 1000 transitions are shown
for both methods.

As shown in fig. 6, the energy ranges visited by MD and
ART are almost disjoined. One reason is the suppression
of high activation energy transitions in the MD simula-
tion because of their negligibly small Boltzmann factor.
Another reason is the apparent inability of ART to find
very low activation barriers, which may depend on the
choice of parameters used in ART (mainly the choices of
step lengths, curvature threshold and number of atoms
involved in the initial direction of motion). From fig. 6,
we also see that in the region of higher activation ener-
gies sampled by ART, the mean-square displacement and
number of broken bonds are larger than in the lower ac-
tivation energy region sampled by MD. By contrast, the
number of mobile particles appears mostly uncorrelated
with the activation energy and similar with both meth-
ods. Finally, the transitions found by ART appear more
localized than those found by MD, as evidenced by the
smaller participation ratio of ART transitions compared
to MD transitions.

We have seen that if we restrict the ART distribution
to its lowest activation energies, there is a good agreement
between MD and ART, although we should note that the
distribution in fig. 6 is mainly controlled by the expo-
nential decay of the Boltzmann factor. ART finds higher
activation energy transitions with larger mean-square dis-
placements and more broken bonds than the transitions
found in MD. One possible explanation is that MD finds
mainly transitions inside a given metabasin while ART is
biased towards transitions between metabasins that are

known to involve larger mean-square displacements and
more broken bonds [44,45]. The above observations are
only preliminary results that should be confirmed by sim-
ulations in larger systems to avoid finite-size effects and
using MD in a larger temperature range, extending below
TC , in order to access the true thermally activated regime.

6 Conclusion

ART is an efficient algorithm to sample the configura-
tion space of complex systems, such as glasses. It can be
used for 3D systems containing a substantial number of
atoms. The calculations performed here show that the
local PEL around glassy and supercooled configurations
contain signatures of the history of the system and its
level of relaxation, which is directly correlated to the den-
sity of low activation energies. Also the polarization of the
configuration, seen in the distribution of inelastic strains,
is an important aspect of glass deformation. Accounting
for polarization in a mean-field description of the glass mi-
crostructure cannot be achieved by a scalar variable, such
as the free volume, but will require a tensorial internal
variable. Finally, the fact that ART mainly finds transi-
tions between metabasins is an interesting feature that
can be used to perform kinetic Monte Carlo simulations.
Indeed, MD simulations have shown that glasses undergo
a Brownian motion between metabasins [41] and therefore
the distributions obtained from ART would be appropri-
ate for a kinetic Monte Carlo sampling in order to simu-
late the evolution of a glass over experimental timescales
retaining atomistic fidelity.

This work was performed during the program Physics of Glass-
es organized at the Kavli Center for Theoretical Physics at the
University of California, Santa Barbara.
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