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Abstract
A number of basic scientific questions relating to ion conduction in homogeneously disordered
solids are discussed. The questions deal with how to define the mobile ion density, what can be
learnt from electrode effects, what the ion transport mechanism is, the role of dimensionality
and what the origins of the mixed-alkali effect, the time-temperature superposition, and the
nearly constant loss are. Answers are suggested to some of these questions, but the main
purpose of the paper is to draw attention to the fact that this field of research still presents
several fundamental challenges.
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1. Introduction

Ion conduction in glasses, polymers, nanocomposites, highly
defective crystals and other disordered solids plays an increas-
ingly important role in technology. Considerable progress has
been made recently, for instance with solid-oxide fuel cells,
electrochemical sensors, thin-film solid electrolytes in bat-
teries and supercapacitors, electrochromic windows, oxygen-
separation membranes, functional polymers, etc [1–9]. The
applied perspective is an important catalyst for work in this
field. In this paper, however, the focus is on basic scientific
questions. This is relevant because ion transport in disordered
materials remains poorly understood. There is no simple,
broadly accepted model; it is not even clear whether any gen-

erally applicable, simple model exists. Given the intense cur-
rent interest in the field—with hundreds of papers published
each year—it is striking that there is no general consensus on
several fundamental questions [10]. This is in marked con-
trast to other instances of electrical conduction in condensed
matter where a much better understanding has been achieved,
e.g. for electronic conduction in metals, semiconductors and
superconductors, as well as for ion conduction by defects in
crystals.

This paper summarizes and discusses basic scientific ques-
tions relating to ion conduction in (mainly) homogeneously
disordered solids [11–21]. The main motivation is not to
suggest or provide answers, but to inspire further research
into the fundamentals of ion conduction in disordered solids.
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A question that is not addressed below, which has been a point
of controversy particularly during the last decade, is how to
best represent ac data, via the conductivity or the electric mod-
ulus [22–25]. By now this has been thoroughly discussed in
the literature, and we refer the interested reader to the dis-
cussions in [26–28] that present and summarize the differing
viewpoints.

2. How to define mobile ion density?

Ion motion in disordered solids is fundamentally different from
electronic conduction in crystalline solids. Ions are much
heavier than electrons so their motion is far less governed by
quantum mechanics. Below typical vibrational frequencies
(�100 GHz) ion motion can be described by activated hopping
between (usually) charge-compensating sites. Moving ions
carry charge, of course, and thus produce an electrical response
which can be detected by a variety of experimental techniques.
Unlike crystals, the potential-energy landscape experienced
by an ion in a glass or otherwise disordered solid is irregular
and contains a distribution of depths and barrier heights, as
sketched in figure 1. The varying energies result from differing
binding energies at residence sites and differing saddle point
energies between residence sites, and they are influenced by
interactions between the ions. With increasing time scale, the
ions explore larger parts of space by overcoming higher energy
barriers.

Following standard arguments, suppose ions with charge
q are subjected to an electric field E. The field exerts the force
qE on each ion, resulting in an average drift velocity v in the
field direction. The ion mobility µ is defined by µ = v/E.
If the number of mobile ions per unit volume is nmob, the
current density J is given by J = qnmobv. Thus we obtain
the following expression for the dc conductivity, σdc ≡ J/E:

σdc = qnmobµ . (1)

This equation expresses the simple fact that the conductivity
is proportional to the ion charge, to the number of mobile
ions and to how easily an ion is moved through the solid. As
such, equation (1) is an excellent starting point for discussing
how the conductivity depends on factors like temperature and
chemical composition. Or is it? We shall now argue that
the above conventional splitting of the conductivity into a
product of mobility and mobile ion density involves non-trivial
assumptions.

Except at very high temperatures ion motion in solids
proceeds via jumps between different ion sites. Most of the
time an ion vibrates in a potential-energy minimum defined by
the surrounding matrix. This motion does not contribute to the
conductivity except at frequencies above the gigahertz range;
only ion jumps between different minima matter. The mobility
reflects the long-time average ion displacement after many
jumps. The fact that ions spend most of their time vibrating
in potential-energy minima, however, makes the definition of
mobile ion density less obvious: how to define the number of
mobile ions when all ions are immobile most of the time?

Intuitively, equation (1) still makes sense. Imagine a
situation where some ions are tightly bound (‘trapped’) while

(a)

(b)

(c)

Figure 1. Schematic figures illustrating ion jumps in a disordered
landscape, here in one dimension. The arrows indicate attempted
jumps. Most of these are unsuccessful and the ion ends back in the
minimum it tried to leave: if the barrier is denoted by �E, if T is the
temperature and kB is Boltzmann’s constant, according to rate
theory the probability of a successful jump is exp(−�E/kBT ). This
implies that on short time scales only the smallest barriers are
surmounted. As time passes, higher and higher barriers are
surmounted, and eventually the highest barriers are overcome. In
more than one dimension the highest barrier to be overcome for dc
conduction is determined by percolation theory; there are even
higher barriers, but these are irrelevant because the ions go around
them.

others are quite mobile. In this situation one would obviously
say that the density of mobile ions is lower than the total ion
density. The problem, however, is that the tightly bound ions
sooner or later become mobile and the mobile ions sooner or
later will be trapped: by ergodicity, in the long run all ions
of a given type must contribute equally to the conductivity.
Thus, on long time scales the ‘mobile’ ion density must be
the total ion concentration. This ‘long run’ may be years or
more, and ions trapped for so long are for all practical purposes
immobile. Nevertheless, unless there are infinite barriers in
the solid, which is unphysical, in the very long run all ions are
equivalent.

The question of how many ions contribute to the
conductivity makes good sense, however, if one specifies a
time scale. Thus, for a given time τ it makes perfect sense to
ask: on average, how many ions move beyond pure vibration
within a time window of length τ? If the average concentration
of ions moving over time τ is denoted by nmob(τ ) and n is the
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total ion concentration, ergodicity is expressed by

nmob(τ → ∞) = n. (2)

An obvious question is how to determine nmob(τ )

experimentally. A popular method of determining the ‘mobile
ion density’—without explicit reference to time scale—is by
application of the Almond–West (AW) formalism [29–31]
that takes advantage of the frequency dependence of the
conductivity. We proceed to discuss this approach. First note
that in ion conductors with structural disorder, the short-time
ion dynamics is characterized by back-and-forth motion over
limited ranges, ‘subdiffusive’ dynamics, whereas the long-time
dynamics is characterized by random walks resulting in long-
range ion transport, ‘diffusive’ dynamics (figure 1) [32–36].
The back-and-forth motion leads to dispersive conductivity at
high frequencies, while the long-range transport leads to the
low-frequency plateau marking the dc conductivity (figure 2).
There is experimental evidence that in materials with high ion
concentration, on short time scales only part of the ions are
actively involved in back-and-forth motion [37, 38].

A widely applied description of conductivity spectra in
the low-frequency regime (i.e. below 100 MHz) is a Jonscher
type power law,

σ ′(ν) = σdc

[
1 +

( ν

ν∗
)n ]

, (3)

where we have written the equation in a form such that the
crossover frequency marking the onset of ac conduction, ν∗,
is given by σ ′(ν∗) = 2σdc. Equation (3) is sometimes referred
to as the Almond–West (AW) formula, although Almond
and West did not consider Jonscher’s ‘universal dielectric
response’ of disordered systems, but introduced their formula
to describe defective crystals with an activated number of
charge carriers. Nevertheless, when applying equation (3) to
strongly disordered systems, as, for example, ionic glasses,
many authors in the literature follow the physical interpretation
suggested by Almond and West and identify the crossover
frequency with a ‘hopping rate’. Thus combining this ansatz
with the Nernst–Einstein relation gives

nAW = 6kBT

q2a2

σdc

ν∗ (4)

as an equation to determine the number density of ‘mobile
ions’, nAW (after assuming jump lengths a = 2–3 Å).

However, if one accepts that equation (3) provides a
good fit to spectra in the low-frequency regime—it generally
fails at frequencies above 100 MHz— the estimate of an
effective number density of ‘mobile ions’ based on equation (4)
is questionable. Application of the fluctuation–dissipation
theorem implies the following expression, where t∗ ≡ 1/ν∗

and H and γ are numbers that are roughly of order unity (H
is an in principle time-scale-dependent Haven ratio [39–41]
reflecting ion–ion correlations, and γ ∼ 2 is a numerical
factor reflecting the conductivity spectrum at the onset of ac
conduction, see appendix A):

σdc = nq2

6kBT

〈�r2(t∗)〉
γ H

ν∗. (5)

(a)

(b)

Figure 2. (a) Schematic figure showing the real part of the ac
conductivity as a function of frequency at three different
temperatures. As temperature is lowered, the dc conductivity
decreases rapidly. At the same time the frequency marking the onset
of ac conduction also increases (actually in proportion to the dc
conductivity, compare with the BNN relation discussed below
(equation (13)). (b) The real part of the ac conductivity at three
different temperatures for a lithium-phosphate glass. The circles
mark the frequency for onset of ac conduction.

Combining equations (4) and (5) yields

nAW

n
= 1

γ H

〈�r2(t∗)〉
a2

. (6)

If the mean-square displacement obeys 〈�r2(t∗)〉 	 a2

one has nAW 	 nmob(τ = 1/ν∗), but unfortunately the
quantity 〈�r2(t∗)〉 does not generally have this approximate
value. In simple models where all ions have similar jump
rate, 〈�r2(t∗)〉 is roughly a2 times the fraction of ions that
have jumped within time t∗. It is not possible to model
the universally observed strong frequency dispersion of the
conductivity without assuming a wide spread of jump rates,
however, and in such models such as the random barrier model
(RBM) considered below 〈�r2(t∗)〉 is much larger than a2.
Generally, 〈�r2(t∗)〉/a2 gives an approximate upper limit for
the fraction of ions that have moved in the time window
t∗. Ignoring the less significant factor γH , this implies that
nmob(t

∗) < nAW. To summarize, only in models without
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significantly varying jump rates does nAW give an estimate
of how many ions on average jump over a time interval of
length t∗.

An alternative suggestion for obtaining information about
the ‘number of mobile ions’ is based on analyzing the electrode
polarization regime of conductivity spectra for ion conductors
placed between blocking electrodes [42–45]. However,
theoretical analyses of the spectra are often based on Debye–
Hückel-type approaches [42–45], the applicability of which
is far from obvious at high ion density. Thus while it is a
potentially useful idea, more theoretical work is needed before
observations of electrode effects may lead to safe conclusions
regarding the number of mobile ions (see the next section that
outlines the simplest approximate description); one still needs
to specify the time scale that the number of mobile ions refers
to.

Solid-state NMR methods such as motional narrowing
experiments [46–48] and the analysis of multi-time correlation
functions of the Larmor frequency [49, 50] provide information
about the number of ions moving on the time scale that these
methods monitor (milliseconds to seconds).

The question ‘what is the density of mobile ions?’ is
thus well defined only when it refers to a particular time scale.
According to standard ergodicity arguments, if the time scale
is taken to infinity, all ions contribute equally and the density
of mobile ions is the total ion density n. A natural choice of
time scale is that characterizing the onset of ac conduction,
the t∗ of the above equations. Choosing this time scale leads
to a classification of ion conductors into two classes: those
for which nmob(t

∗) is comparable to the total ion density n:
nmob(t

∗) 	 n (‘strong electrolyte case’ [13]), and those for
which nmob(t

∗) 
 n (‘weak electrolyte case’ [51, 52]). The
latter class includes solids where ion conduction proceeds by
the vacancy mechanism (section 7).

3. What can be learnt from electrode polarization?

As is well known, the ac conductivity σ(ω) is a complex
function. Thus associated with the real part there is also
an imaginary component; the latter determines the real part
of the frequency-dependent permittivity. For the study of
ion conduction in disordered solids the use of blocking or
partially blocking metal electrodes is convenient. In this case,
the high-frequency parts of ac conductivity and permittivity
spectra are governed by ion movements in the bulk of the
solid electrolyte, while the low-frequency part is governed
by so-called ‘electrode polarization’ effects, as shown in
figure 3. Since the ions are blocked by the metal electrode,
there is accumulation or depletion of ions near the electrodes,
leading to the formation of space-charge layers. The voltage
drops rapidly in these layers, which implies a huge electrical
polarization of the material and a near-absence of electric
field in the bulk sample at low frequencies. The build-up of
electrical polarization and the drop of the electric field in the
bulk are reflected in an increase in the ac permittivity and a
decrease in the ac conductivity with decreasing frequency [53].
For completely blocking electrodes σ(0) = 0, of course.
Whenever both ions and electrons conduct, a number of

(a)

(b)

Figure 3. (a) At high frequencies the nearly constant loss (NCL)
regime appears where the conductivity becomes almost proportional
to frequency (data for a lithium-phosphate glass). (b) The electrode
polarization effects on the real part of the conductivity and the real
part of the dielectric constant at high temperature for a
Na–Ca–phosphosilicate glass.

electrochemical techniques exist for evaluating transference
numbers of ions and electrons, including galvanic cells,
polarization and permeation techniques [4, 54–56].

Systematic experimental and theoretical studies of
electrode polarization effects in electrolytes began in the 1950s
with works carried out by Macdonald [57], Friauf [58], Ilschner
[59], Beaumont [60] and others. Their approaches were
based on differential equations for the motion (diffusion and
drift) of charge carriers under the influence of chemical and
electrical potential gradients. These equations were combined
with the Poisson equation and linearized with respect to the
electric field. Thereby, expressions for the ac conductivity
and permittivity at low electric field strengths were derived.
These are mean-field approaches in the sense that a mobile
charge carrier interacts with the average field produced by the
electrode and the other mobile carriers [61].

When charge carrier formation and recombination can be
neglected and the sample thickness L is much larger than the
space-charge layer thickness, the theoretical expressions can
be approximately mapped onto the simple electrical equivalent
circuit shown in figure 4 if the frequency dependence of the
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Figure 4. Simplified electrical equivalent circuit describing the
low-field ac conductivity and permittivity spectra of solid
electrolytes between blocking (Rct = ∞) or partially blocking
electrodes. The right element describes the bulk sample properties,
the left describes the space-charge layer capacitance and charge
transfer resistance (the frequency dispersion of the bulk conductivity
may be taken into account by replacing the resistor RB by a
frequency-dependent impedance).

bulk conductivity is ignored. Ion transport in the bulk is
described by the RBCB element. The space-charge layers
are described by a capacitance CEP, and, in the case of
discharge of the mobile ions at one electrode, a generally
large parallel charge transfer resistance Rct. The RctCEP

element acts in series with the RBCB element. In the cases
CEP � CB and Rct � RB that usually apply, the equivalent
circuit leads to the following expressions for the frequency-
dependent conductance G(ω) (real part of the admittance) and
capacitance C(ω) (imaginary part of the admittance):

G(ω) ≡ σ ′(ω)
A

L
= (1/Rct + RB/R2

ct) + ω2RBC2
EP

(1 + RB/Rct)2 + (ωRBCEP)2
(7)

and

C(ω) ≡ ε0ε
′(ω)

A

L
= CEP

1 + ω2R2
BCBCEP

(1 + RB/Rct)2 + (ωRBCEP)2
(8)

with A denoting the sample area, and CEP/CB = L/(2LD),
where the Debye length LD is defined by

L2
D ≡ ε0εbulkkBT

ñmobe2
. (9)

From these expressions one can calculate the number density
of mobile ions ñmob, which is the density of mobile ions
referring to the time scale for build-up of electrode polarization,
ñmob = nmob(τep) where τep = RBCEP.

In the absence of ion discharge, i.e. when Rct → ∞,
the equivalent circuit reduces to an RC element in series
with a capacitor. The existence of a finite charge transfer
resistance leads to the occurrence of a conductance plateau
at low frequencies with plateau value Gs given by

Gs = 1

RB + Rct
. (10)

In addition, the static capacitance Cs becomes slightly smaller
than CEP:

Cs = CEP

(
Rct

Rct + RB

)2

. (11)

This mean-field approach should apply to materials with
low ñmob, such as ionic defect crystals and diluted electrolyte

solutions. Its applicability to disordered solids with high ion
density is far from obvious. Nevertheless, a large number
of ac spectra of ion-conducting glasses and polymers were
traditionally analyzed and interpreted utilizing the above
equations. Thereby, number densities of mobile ions were
calculated and compared with the total ion content of the
samples. For instance, Schütt and Gerdes concluded that in
alkali silicate and borosilicate glasses only between 1 and
100 ppm of the alkali ions are mobile [62]. Similar results were
obtained by Tomozawa on silica glass with impurity ions [43]
and by Pitarch et al from voltage-dependent measurements on
a sodium aluminosilicate glass [63]. Klein et al carried out
measurements on ionomers containing alkali ions and found
ratios of mobile alkali ions to the total alkali ion content ranging
from about 10 to 500 ppm [44].

For a critical discussion of such experimental results and
their interpretation, it is important to consider limitations of
both experiment and theory. Regarding the experimental
situation, there are in particular two important points: (i) the
roughness of the electrode/solid electrolyte interface is usually
not taken into account. Especially in a frequency range where
the length scale of the potential drop at the electrodes is
comparable to the roughness of the interface, the roughness
must have a considerable influence on the ac conductivity and
permittivity. (ii) The surface-near regions of ion conductors
often exhibit a chemical composition that is significantly
different from the bulk. For instance, in ionic glasses surface
corrosion is initiated by an alkali-proton exchange. Such
deviations from the bulk composition should have a strong
influence on the ac spectra when the potential drop occurs very
close to the surface, i.e. at high capacitance values close to the
static capacitance plateau and in the static capacitance plateau
regime.

From a theoretical point of view, serious limitations of
the applicability of mean-field approaches to disordered solids
derive from: (i) the interactions between the ions are not taken
into account; (ii) surface space charges in disordered solids
may exist even without the application of an external electric
field, due to ion exchange processes at the surface or due to an
interaction of mobile ions with the metal electrode. Thus more
sophisticated theories should take into account the possibility
of an open-circuit potential difference between electrodes and
solid electrolyte.

In summary, considerable efforts in both experiment and
theory are required in order to carry out measurements on
well-defined electrode/electrolyte interfaces and to obtain a
better theoretical understanding of what kind of information
may be derived from electrode polarization effects. It is
clearly worthwhile to pursue this direction of research, and it
would also be worthwhile to look into what can be learnt from
electrode effects in the strong-field case where the electrode
polarization becomes nonlinear.

4. What causes the mixed-alkali effect?

A prominent phenomenon occurring in ion-conducting glasses
is the mixed-alkali effect (for reviews, see [64–67]). This
effect is the increase in the mobility activation energy of
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one type of ion when it is gradually replaced by a second
type of ion. This leads to changes in the tracer diffusion
coefficients DA,B(x) over several orders of magnitude at low
temperatures, and to a minimum in the dc conductivity σ(x) ∼
(1 − x)DA(x) + xDB(x), when the mixing ratio x of two ions
A and B is varied (for recent systematic experimental studies,
see, e.g. [68, 69]).

Much progress has been made over the last two decades
for explaining the mixed-alkali effect [70–89]. Compelling
evidence now exists that its origin is of structural character,
associated with a mismatch effect [70] where sites in the glassy
network favorable for one type of ion are unfavorable for the
other type of ion. This evidence comes from EXAFS [73, 90,
91], NMR [92] and infrared spectroscopy [93–95], x-ray and
neutron scattering experiments in combination with reverse
Monte Carlo modeling [83] and bond-valence sum analyses
[84], molecular orbital calculations [96, 97], molecular
dynamics simulations [74, 98–100] and theoretical works
based on microscopic and semi-microscopic approaches [70,
72, 79, 80, 82]. In hopping systems, the mismatch effect can be
modeled by site energies that are different for different types
of ions, i.e. a low-energy site for one type is a high-energy site
for the other type.

Recently it was possible also to explain the peculiar
behavior of the internal friction in mixed-alkali glasses [101,
102]. When a mixed-alkali glass fiber is twisted at a certain
frequency, two mechanical loss peaks can be identified well
below the glass-transition temperature: the single-alkali peak
that with beginning replacement becomes smaller and moves
to higher temperatures, and the mixed-alkali peak that at the
same time becomes higher and moves to lower temperatures
(for a review of experimental results, see [103]). Based on
general theoretical considerations it was shown that the mixed-
alkali peak can be traced back to mutual exchanges of two
types of ions and the single-alkali peak to exchanges of the
(majority) ion with vacancies. As a consequence, large mixed-
alkali peaks are predicted for ion types with small mismatch
where ion–ion exchange processes are more likely to occur.
This agrees with experimental observations. Moreover, it
was shown that the occurrence of large mixed-alkali peaks at
small mixing ratios can be understood if the fraction of empty
sites is small. This gives independent evidence for the small
fraction of empty sites found in theoretical arguments [104] as
well as in molecular dynamics simulations [99, 100, 105, 106]
(section 7).

Despite this progress over the last decade, there are still
many issues awaiting experimental clarification and theoretical
explanation. A point less often addressed so far in the
microscopic modeling is the behavior of the viscosity as
reflected in a minimum of the glass-transition temperature
upon mixing. This softening of the glass structure at
intermediate mixing ratios may significantly influence ion
transport properties. The mixed-alkali effect becomes weaker
with total ion content [66] in agreement with theoretical
expectations [70]. However, a systematic theoretical study
of this feature has not yet been undertaken. In summary, there
is still no consistent theoretical account of all main signatures
of the mixed-alkali effect.

We finally note that a mixed-alkali effect also occurs
in crystals with structure of β- and β ′′-alumina type, where
the ion motion is confined to two-dimensional conduction
planes [107–109]. A quantitative theory has been developed
for this based on the wealth of structural information
available [110, 111]. The key point is that A and B ions have
different preference to become part of mobile defects, and this
preference is caused by a different interaction of the ions with
the local environment. In this respect the origin of the mixed-
alkali effect in crystals has close similarities to that in glasses.
However, different from the host network in glasses, the host
lattice in the crystalline systems is almost unaffected by the
mixing of the two types of ions.

5. What is the origin of time-temperature
superposition (TTS)?

Different suggestions were made in the past to characterize
the similar ac responses observed for different types of ion
conductors in frequency regimes not exceeding ∼100 MHz.
The simplest description is the power-law frequency
dependence proposed by Jonscher (equation (3)) [112, 113].
The power-law description is not accurate, however, because
the exponent must generally increase somewhat with frequency
in order to fit experiments properly, and also because
the asymptotic low-frequency behavior is inconsistent with
experiments that imply σ ′(ω) − σ(0) ∝ ω for ω → 0
(ω = 2πν) [36, 114]. A more general approach is to
consider the scaling associated with TTS for any particular
ion conductor [115–117]. The scaling ansatz reads

σ(ω, T ) = σdc(T )f
[
ω/ω∗(T )

]
. (12)

Here f (u) is the so-called scaling function and ω∗ the
previously defined angular frequency marking the onset of ac
conduction. Any solid that obeys TTS is, equivalently, referred
to as obeying scaling. As an example, figure 5(b) illustrates
how the spectra of figure 2(b) scale to a common so-called
master curve.

Barton [118], Nakijama [119] and Namikawa [120] long
ago verified that for many ion- (and some electron-) conducting
disordered solids

ω∗ = σdc

p ε0 �ε
, (13)

where p is a constant of order of unity and �ε is the
dielectric strength, i.e. the difference between static and high-
frequency dimensionless dielectric constants. Equation (13)
is known as the BNN relation [121]. By considering the
low-frequency expansion of the conductivity a connection can
be made between the scaling equation (12) and the BNN
relation [122]. The argument assumes analyticity of the scaling
function f (u) for small u, which is in fact necessary in order
to have a well-defined dielectric strength [123]. One has
σ(ω)/σdc = 1 + iKω/ω∗ for ω → 0 with the constant
K being real. Accordingly, one obtains ε(ω) − ε∞ ≡
σ(ω)/(iε0ω) = σdc/(iε0ω) + Kσdc/ε0ω

∗ for ω → 0 which
implies �ε = Kσdc/ε0ω

∗. Thus TTS and analyticity imply
the BNN relation—but do not mathematically guarantee that
p ∼ 1.
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(a)

(b)

Figure 5. Time-temperature superposition (TTS). (a) Sketch of how
the three spectra of figure 2(a) collapse to a single master curve
when suitably scaled. Whenever this is possible, the solid is said to
obey TTS. Most disordered ion conductors, including all
single-ion-conducting glasses, obey TTS. (b) TTS demonstrated for
the lithium-phosphate glass data of figure 2(b).

To the best of our knowledge, TTS applies for all single-
ion-conducting glasses and crystals with structural disorder.
This remarkable fact suggests that disorder is intimately linked
to TTS. In crystals with structural disorder, such as RbAg4I5

and β-alumina, different types of ion sites exist with different
energies [124–126]. In addition, the Coulomb interactions
cause a significant spread in the potential energies of the ions.
In glasses, the disorder of the glass matrix leads to a broad
distribution of ion site energies and barrier heights and thus to
a broad distribution of jump rates [127, 128]. This may explain
why, even in single-modified glasses (i.e. with only one type
of ion) with low number ion density and corresponding weak
interionic Coulomb interactions, violations of TTS have not
been observed [1296, 130].

In contrast, crystals with a low concentration of point
defects routinely show TTS violations. Examples are materials
with intrinsic Frenkel or Schottky defects, such as alkali
and silver halides [131]. In these materials, the interactions

6 In this work the BNN relation was not used to scale the spectra, but the
authors used ω∗ ∝ σdcT /n that corresponds to the BNN crossover frequency
if �ε follows a Curie law, �ε ∝ n/T .

between the defects are weak, and the defects are partly bound
to counter charges. Therefore, on short time scales the defects
carry out localized movements close to the counter charges.
These localized movements are not correlated with the long-
range ion transport, and consequently the conductivity spectra
do not obey TTS.

Violations of TTS are also found in materials with more
than one type of ion. Examples are mixed-alkali glasses [132],
as for instance 2Ca(NO3)2 · 3KNO3 (CKN) melts [133, 134].
Below the glass-transition temperature (Tg = 333 K) CKN
is believed to be a pure K+ ion conductor and it obeys TTS,
but at higher temperatures Ca2+ ions most likely contribute
significantly to the conductivity (above 375K CKN again obeys
TTS [134]). Other examples are some polymer electrolytes
above their glass-transition temperature where the polymer
chains carry out segmental movements. Here different
types of movements with different characteristic length scales
contribute to the conductivity spectra, which generally results
in TTS deviations [135].

The simplest model exhibiting the observed scaling
properties (equations (12) and (13)) is perhaps the random
barrier model (RBM), see, e.g. [36] for a review. In this model
hopping of a single particle on a lattice with identical site
energies is considered, where the energy barriers for jumps
between neighboring sites are randomly drawn from a smooth
probability distribution. The particles must overcome a critical
‘percolation’ energy barrier Ec to exhibit long-range motion
(a review of percolation theory with particular emphasis on
ion diffusion was given by Bunde and Havlin [136]). The
time to overcome the percolation barrier, tc ∝ exp(Ec/kBT ),
determines the characteristic frequency marking the onset of ac
conduction: ω∗ ∼ t−1

c [36]. The percolation energy barrier—
acting as a bottleneck—also determines the dc conductivity
temperature dependence. Thus percolation explains why
a wide distribution of barriers nevertheless results in an
Arrhenius dc conductivity (which is observed for most
disordered ion-conducting solids). Incidentally, the BNN
relation’s rough proportionality, σ(0) ∝ ω∗, also follows from
the fact that percolation determines the conduction properties.

The scaling function of the RBM is universal in the
‘extreme disorder limit’ where the jump rates vary over
several decades; this limit is approached as temperature is
lowered. Universality means that the ac response in scaled
units becomes independent of both temperature and activation
energy probability distribution. This was shown by extensive
computer simulations involving barriers distributed according
to a Gaussian, an exponential, an inverse power law, a Cauchy
distribution, etc [36, 137]. It was recently shown [138] that if
σ̃ ≡ σ(ω)/σdc and ω̃ is a suitably scaled frequency, except
at low frequencies where the conductivity approaches the dc
level (ω < ω∗), the universal RBM ac conductivity is to a good
approximation given by the equation

ln σ̃ =
(

iω̃

σ̃

)2/3

. (14)

This expression implies an approximate power-law frequency
dependence of the ac conductivity with an exponent that slowly
converges to unity at very high frequencies—not simply an
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Figure 6. Approximate ac universality and deviations from it.
(a) shows the RBM prediction for the scaled real part of the ac
conductivity (full curve) compared with data for two typical
ion-conducting glasses, the 24 ◦C data of figure 2(b) and the
sodium-borate data of (b). The fit is good, but not perfect. (b) shows
that ac universality does not include mixed-alkali glasses (blue); the
red curve for a sodium-borate glass represents approximate ac
universality, compare (a).

exponent of 2/3 as one might naively guess. A more accurate
representation of the RBM universal ac conductivity is given
in appendix B.

The RBM scaling function is close to, but rarely identical
to those of experiments [36, 79, 139]. As an example
figure 6(a) shows the RBM universal ac conductivity (full
curve) with the lithium-phosphate data of figure 2(b) at the
lowest temperature (24 ◦C) and the sodium-borate data of
figure 6(b), where both data sets were empirically scaled on the
frequency axis. Figure 6(b) shows data also for a mixed-alkali
glass; these data deviate significantly from the approximate ac
universality represented by the red curve. It appears that, on
the one hand, the RBM captures the essential features of the
ion dynamics for single-ion-conducting disordered solids, and
that, on the other hand, deviations from the RBM universal
ac conductivity provide important information about specific

features of the solid in question [38]. Thus the RBM may
be regarded as the ‘ideal gas’ model for ac conduction in
disordered solids.

In the RBM the dispersive transport properties are gov-
erned by strong disorder, forcing the ions to explore perco-
lation paths for long-range motion [140, 141]. Macroscopic
alternatives to the RBM (but with similar basic physics [36]),
which apply if the sample has microstructure, have also been
studied [142, 143]. In most cases except that of nanocrystalline
materials, however, the disorder is believed to be on the atomic
scale.

Single-particle models such as the RBM or its
generalizations are simple and attractive for understanding the
origin of TTS, but there are a number of challenges to this
approach as well as open questions that one must keep in mind:

(i) For glasses the stoichiometry can be varied to a large
extent. Related to changes in composition there are
changes in activation energies, as for example a lowering
of the activation energy with increasing ion content or
an increase in activation energy when one type of ion is
successively replaced by another type (the mixed-alkali
effect, section 4). These effects are not dealt with in the
RBM unless the model is modified in an ad hoc manner to
allow for significant changes in the barrier distribution and
mismatch effects with respect to different ion types. The
simplest models accounting for these effects are hopping
systems with site exclusion [79, 80], i.e. where there can
be at most one ion at each site. Interestingly, such
‘Fermionic’ hopping systems with site energy disorder
often obey TTS [144, 145]. Moreover, calculations for
the corresponding single-particle systems yield scaling
functions [146] that are close to the RBM universal scaling
function. A conclusive picture of the scaling properties of
this type of models remains to be established, however.

(ii) Recent molecular dynamics simulations [99, 100, 105,
106, 147] and theories for the internal-friction behavior
in mixed-alkali glasses [101] show that often only few of
the potential ion sites are vacant (typically 1–3%). This
is expected on general grounds, since during the cooling
process a glass tends to a state of low free energy, thus with
few defects [104]. It would be interesting to investigate
whether hopping models with a low concentration of
vacant sites generally obey TTS.

(iii) The Coulomb interactions between ions can be estimated
from their mean distance R ∝ n−1/3, where n is the
number density of ions. At room temperature, typical
plasma parameters e2/(4πε∞RkBT ) are in the range
30–80. In view of the confined geometry of the diffusion
(percolation) paths [148] the local interactions may be
even stronger. Hence it is important to clarify whether
hopping models with Coulomb interactions obey TTS
and, if so, how the scaling function is affected by the
interactions (for an overview of Coulomb interactions
effects on dispersive transport properties, see, e.g. [123]).
Early studies of Coulomb interaction effects in hopping
models with percolative disorder [33] showed that
Coulomb interactions give rise to a strong conductivity
dispersion, but TTS was not observed. This might be
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due to the fact that in these early simulations temperature
was not low enough. Another reason could be that, as in
the RBM, a smooth and broad distribution of barrier or
site energies is required for scaling. Indeed, simulations
of many-particle hopping in the RBM with Coulomb
interactions show agreement with the scaling behavior for
low and moderate particle concentrations in the limit of
low temperatures [139]. Overall, however, the problem
is far from being settled; in particular, if one takes into
account that the fraction of empty sites should be small
and that critical tests for other types of structural disorder,
such as site energy disorder, have not yet been performed.
Due to the long-range nature of the Coulomb force, one
could argue that its contribution to the energy landscape
(sites and saddle points) provides an overall mean-field
contribution. This hypothesis should be tested by further
simulations.

(iv) Most studies of the RBM and other hopping models
focused on site and/or barrier energies varying randomly
without spatial correlation (a notable exception is the
counterion model [149, 150]). If there are significant
spatial correlations—thus introducing a further length
scale into the problem—this may well lead to a breakdown
of TTS.

6. What causes the nearly constant loss (NCL)?

At high frequencies and/or low temperatures conductivity
spectra approach a regime with nearly linear frequency
dependence when plotted in the usual double-log plot: σ ′(ω) ∼=
Aωn (n ∼= 1). The proportionality constant A is only
weakly temperature dependent. This is referred to as the
‘NCL’ regime since it corresponds to an almost frequency-
independent dielectric loss (figure 3). This behavior is
ubiquitously observed in a wide variety of solids including
glassy, crystalline and molten ion conductors, independent of
specific chemical and physical structures—for an overview of
experimental results, see, e.g. [151, 152].

There are different possible origins of the NCL. One
possibility is that NCL reflects the still not fully understood
low-energy excitations present in all disordered materials. In
the quantum-mechanical tunneling model these excitations
account for the anomalous low-temperature features of heat
capacity and sound-wave absorption [153]. At higher
temperatures the low-energy excitations give rise to relaxations
of the system over an energy barrier separating two different
energy minima, described by the asymmetric double-well
potential (ADWP) model [154]. On a microscopic level this
could correspond to cooperative ‘jellyfish-type’ movements of
groups of atoms in the material [135, 155, 156]. If correct,
such a dynamic process should be a feature of all disordered
materials, including materials without ions.

A more recent interpretation suggests that localized
hopping movements of ions within fairly small clusters of sites
contribute to the NCL in disordered ion conductors [157, 158].
In this interpretation the NCL is merely the extension to higher
frequencies of the dispersive conductivity. In fact, any hopping
model with sufficient disorder gives rise to such a regime,

since on short time scales hopping models always correspond
to ADWP-type models. In the RBM, for instance, ion jumps
over limited ranges lead to an NCL regime at high frequencies,
a region that extends to lower frequencies as temperature is
lowered. There are two experimental observations favoring the
second interpretation: (i) the magnitude of the NCL increases
with increasing ion concentration [158] (this also applies in
the ADWP model if the defect centers are somehow associated
with the ions); (ii) at large ion concentration and temperatures
above 100 K, the scaling properties of the NCL contribution to
the conductivity spectra are identical to the scaling properties
found at lower frequencies where the dispersive conductivity
passes over to the dc conductivity [157, 159]. On the other
hand, experiments carried out by one of the present authors
suggest that the low-temperature (T < 80 K) NCL in glasses
with few ions is due to ADWP-type relaxation of the glass
network [158]. This indicates that both hopping movements of
the ions and ADWP-type relaxations in the material contribute
to the NCL [160]. Which of these dynamic processes
dominates depends on composition and temperature.

Again, one may wonder whether it is permissible to
neglect interactions, which can be modeled by dipolar forces
as regards the short-time dynamics with only local movements
of the ions close to some counterions. Monte Carlo studies
and analytical calculations have shown that the energetic
disorder coming from spatially randomly distributed dipoles
gives rise to an NCL contribution at very low temperatures
within an effective one-particle description, whereas at higher
temperatures such behavior can occur due to many-particle
effects [149, 150, 161–165].

Finally, it has been suggested that the NCL is caused
by vibrational movements of the ions in strongly anharmonic
potentials or from ion hopping in a slowly varying cage
potential defined by neighboring ions [166–168]. These
views focus on the very high-frequency NCL. Indeed, at
frequencies in the terahertz range the ac conductivity joins into
the vibrational absorption seen in far-infrared spectroscopy
associated with the quasi-vibrational motion of the ions [151].
Unfortunately, the connection between the NCL and the
vibrational modes is poorly investigated: a data gap from the
gigahertz to the terahertz regions exists because measurements
of the dielectric loss are here particularly challenging. More
focused studies in this frequency window are needed to
elucidate the connection between vibrational and librational
(anharmonic) motion, as well as to better characterize the
precise frequency dependence of the NCL conductivity, i.e.
is it exactly linear (n = 1), slightly sub-linear (n < 1, n ∼= 1)
or slightly super-linear (n > 1, n ∼= 1) [169–172]?

7. What is the ion transport mechanism?

We now turn briefly to the most fundamental question relating
to ion conduction in disordered solids: what is the transport
mechanism [1, 11, 12, 14, 17, 19, 173–180]? As mentioned
already, there is evidence that in many cases only few of
the sites available for ions are vacant. Figure 7 illustrates
the vacancy mechanism. Ion conduction in disordered

9



Rep. Prog. Phys. 72 (2009) 046501 J C Dyre et al

Figure 7. Three vacancies jump to the left, each proceeding via a
sequence of ion jumps to the right. First one ion jumps into the
vacancy, then the next ion jumps into the new vacancy, etc.

solids does not proceed via the well-understood vacancy
mechanism of ionic crystals with very few vacancies [181].
In crystals the vacancy concentration is strongly temperature
dependent due to thermally activated defect formation; in
glasses the concentration of empty sites is determined by
the history of glass formation via the cooling rate, and the
number of vacancies is frozen in at the glass transition [104].
Moreover, the vacancy concentration in glasses is believed
to be significantly larger than in crystals. This makes the
conduction mechanism in glasses much more complex, also
because vacancy–vacancy interactions generally cannot be
ignored. If such interactions are nevertheless not important,
one may regard a vacancy as a charge carrier, e.g., in the RBM.
In this case, the results of the RBM pertaining to the scaling
features of conductivity spectra apply unaltered.

Evidence for the significance of many-particle effects
also comes from molecular dynamics simulations and from
measurements of the Haven ratio. Simulations [105, 182–184]
suggest that hopping occurs in a cooperative way, where
one ion jump triggers jumps of other ions or hopping
events occur collectively by involving several ions. A
directional correlation of jumps of different ions is indicated
by the measured Haven ratios that are generally smaller
than unity [40], corresponding to positive cross-correlations
in the current autocorrelation function. If heterogeneities
in the host network confine the ion motion to channel-like
structures, such correlations can be expected to be even more
pronounced [148, 185]. Haven ratios smaller than unity have
also been found in Monte Carlo simulations of models with
Coulomb interactions [35].

There is a need for more systematic investigations of the
role of many-particle effects. To uncover the ion transport
mechanism(s) model predictions should be compared with
other experimental observables than conductivity, such as
NMR, spin–lattice relaxation, mechanical relaxation, tracer
diffusion, quasi-elastic neutron scattering and multiple spin-
echo experiments [186–188]. These methods probe different
correlation functions, so checking model predictions against
them obviously provides more severe tests than just, for
example, comparing predicted ac conductivity spectra with
experiment. Such lines of inquiry, however, have so far
only been undertaken in few instances; for example spin-
lattice relaxation spectra were investigated in [35, 50, 189], and
multiple spin-echo experiments in [190].

The ion conduction mechanism clearly deserves a review
on its own summarizing the latest developments. We have
here mainly announced the problem and left out detailed
considerations of, for example, the role played by dynamic
heterogeneities and possible dynamic channels for conduction
pathways [184, 191]. Hopefully answering the other questions
of the present review will provide valuable input into revealing
the ion conduction mechanism.

8. What is the role of dimensionality?

The subdiffusive ion dynamics on transient time scales found
ubiquitously in disordered materials is sometimes attributed
to a fractal geometry of the conduction paths. A classic
example of subdiffusion is particle dynamics occurring on
a percolation cluster [136, 192]. In this case the cluster is
fractal on length scales below a correlation length ξ , which
diverges when approaching the percolation threshold. At
criticality, dangling ends and loops occur on all length scales
and cause the mean-square displacement to increase as a
power law with an exponent smaller than one. Close to the
percolation threshold, ξ is finite and subdiffusive behavior
is observed only in an intermediate time regime, where the
mean-square displacement is larger than microscopic length
scales and smaller than ξ 2. For times where the mean-
square displacement exceeds ξ 2, the diffusion eventually
becomes normal. This example suggests that the effective
dimensionality of the conduction pathways may play an
important role for the subdiffusive behavior, although for
conduction pathways containing loops the fractal dimension of
the pathway structure and the embedding Euclidian dimension
of the material are generally not sufficient to determine the
power-law exponent in the subdiffusive time regime (see the
discussion in chapter 3 of [136]). Hence the question arises to
what extent, if any, does the dimensionality of the conduction
space influence the subdiffusive motion?

A possible scenario for qualitatively understanding the
origin of the dimensionality dependence is the following.
With decreasing dimensionality, the average distance between
the highest barriers (percolation barriers) on the conduction
pathways becomes larger. Between these percolation barriers,
the ions perform back-and-forth motion. An increasing spatial
extent of this back-and-forth motion leads to a larger dielectric
relaxation strength, implying a more gradual transition from
dc conductivity to dispersive conductivity.

Few studies of this question exist, but there is some
evidence that dimensionality does influence the shape of
the ac conductivity master curves (the scaling functions of
equation (12)). This can be seen in 2D crystals, such as sodium
β−Al2O3, and in 1D crystals, such as hollandite: the transition
from dc conductivity to dispersive conductivity becomes more
gradual with decreasing dimension [193]. This variation in
the shape of the ac conductivity curve as characterized by the
approximate exponent of equation (3), is shown in figure 8.
This sensitivity to dimensionality is also evident in the RBM
for which the shapes of the conductivity spectra are similarly
altered by changing the dimensionality, i.e. in two dimensions
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Figure 8. Dimensionality dependence of the approximate
conductivity exponent of the ac conductivity, n (equation (3)) for
glasses, planar crystals and channel crystals.

the conductivity increases less steeply with frequency than in
three dimensions [194]7.

The conducting pathways of the two above-mentioned
crystals (sodium β−Al2O3 and hollandite) have a well-defined
dimensionality. Is there any other evidence for modifications
of the correlated motion which might be connected to the
dimensionality of the conduction space in an amorphous
solid? While most disordered materials as mentioned show
very similar shapes of the ac conductivity curves, some
researchers [195–197] have observed systematic changes that
appear to arise from changes in the local environment of the
ions. In studies of alkali-germanate glasses and alkali-borate
glasses of varying ion content, for instance, subtle changes in
the shape of the conductivity spectra were seen to correlate with
known anomalies in the glass-transition temperature [37, 38].
The glass-transition temperature passes through a maximum
as a result of how added modifier ions initially polymerize,
but later depolymerize, the oxide network. Consequently, the
average oxygen coordination of the ions’ charge-compensating
sites changes with ion concentration, resulting in modifications
of the local ion environment which could mimic changes to
the dimensionality of the conduction space [198]. In a similar
way, the mixing of two ion species (say Li and Na) modifies
the local environment of the ions [196], and studies of the
ac conductivity of mixed-alkali glasses [195] show a distinct
change compared with that found in either single alkali end-
member composition alone (compare figure 6(b)). Finally,
in studies of metaphosphate glasses (whose oxide structure is
highly polymeric) systematic changes in the correlated motion
occurred in conjunction with variations in the cation size
relative to the free volume [199]. There it was posited that an
effective local dimension of conduction space might rule the

7 In [194] ac conduction in one dimension was also simulated. This was
done by introducing an artificial activation energy cut-off, which is needed
to get sensible results (in two and three dimensions the cut-off is provided
automatically by the percolation phenomenon). In this artificial model the ac
conductivity is more like it is in three dimensions, than in two dimensions.
One dimension is often strange and unphysical, however, so we do not believe
that this observation invalidate the general argument presented.

correlated motion. More studies along these lines are clearly
warranted, but it appears that the effective dimensionality is an
important parameter.

9. Concluding remarks

Science progresses by asking questions. It is our hope that this
paper will stimulate works focusing on basic understanding,
eventually leading to a physical picture and quantitative
model(s) of ion conduction in disordered solids that are as
good as those of ionic and electronic conduction in crystals.
It is a reasonable working hypothesis that ion conduction in
disordered solids can be described in terms of a fairly simple
generally applicable model, but only the future can tell whether
this hope is realized.
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Appendix A. Relation between the long-time
mean-square displacement and the low-frequency
behavior of the ac conductivity

The Kubo formula in dimension d (where s = iω + ε is the
‘Laplace frequency’ and ε > 0 is eventually taken to zero)
reads

σ(ω) = 1

dV kBT

∫ ∞

0
dt〈I(0) · I(t)〉e−st . (A1)

Here V is the sample volume and the total current I(t) is defined
by summing over all N ions:

I(t) = q

N∑
j=1

vj (t). (A2)

Introducing the collective displacement over a time interval of
length t ,

�R(t) =
N∑

j=1

�rj (t) = 1

q

∫ t

0
dt ′I(t ′), (A3)
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we have

q2〈�R2(t)〉 =
∫ t

0
dt1

∫ t

0
dt2 〈I(t1) · I(t2)〉

= 2
∫ t

0
dτ (t − τ)〈I(0) · I(τ )〉,

q2 d〈�R2(t)〉
dt

= 2
∫ t

0
dτ 〈I(0) · I(τ )〉,

q2 d2〈�R2(t)〉
dt2

= 2〈I(0) · I(t)〉.
Accordingly, after a partial integration where the boundary
term disappears because �R2(t) ∼ t2 for t → 0 (reflecting
the short-time so-called ballistic motion), equation (A1) takes
the form

σ(s) = q2

2dV kBT
s

∫ ∞

0
dt

d〈�R2(t)〉
dt

e−st

= Cs

∫ ∞

0
dt ḟ (t)e−st , (A4)

where C = nq2/kBT and f (t) = 〈�R2(t)〉/2dN .
We now make the ansatz

σ(s) ∼ σdc + Asα, s → 0 (A5)

with A real and 0 < α < 1. This is the well-known
Jonscher ansatz [112, 113] analytically continued to complex
frequencies, because for the real part of the frequency-
dependent conductivity equation (A5) implies σ ′(ω) ∼ σdc[1+
(ω/ω∗)α] with

σdc (ω∗)−α = A cos(απ/2). (A6)

The analyticity requirement implies that at very low
frequencies one must eventually have α = 1, but as an effective
description of the regime of onset of ac conduction this ansatz
may still be used. It follows that

σ(s) − σdc

s
=

∫ ∞

0
dt [Cḟ (t) − σdc]e−st ∼ Asα−1, s → 0.

(A7)

Thus via a Tauberian theorem one concludes that

Cḟ (t) − σdc ∼ A

�(1 − α)
t−α, t → ∞. (A8)

Since asymptotic expansions can be integrated term by term
and f (0) = 0, we obtain

Cf (t) ∼ σdc t +
A

�(2 − α)
t1−α, t → ∞ (A9)

or, if Dσ ≡ σdc/C = (kBT/nq2)σdc = limt→∞〈�R2(t)〉/6Nt

is a collective diffusion coefficient,

〈�R2(t)〉
2dN

∼ Dσ

[
t +

(ω∗ t)1−α

ω∗ cos(απ/2)�(2 − α)

]
, t → ∞.

(A10)

If we introduce the time scale t∗ ≡ 1/ν∗ =
2π/ω∗ corresponding to the crossover frequency ω∗ where

σ ′(ω∗) = 2σdc (equation (3)), and if we assume that the
Jonscher ansatz is a good description near the crossover so that
the asymptotic expression applies, equation (A10) implies

σdc = nq2

2dkBT

〈�R2(t∗)〉
γN

ν∗ (A11)

with

γ = 1 +
1

(2π)α cos(απ/2)�(2 − α)
. (A12)

The factor γ is roughly two for α � 0.82, but diverges
for α → 1. If we further replace the collective mean-
square displacement 〈�R2(t∗)〉 by the single-particle mean-
square displacement 〈�r2(t∗)〉, using the definition of the time-
dependent Haven ratio

1

H(t∗)
= 1 +

1

N

∑
j �=k〈�rj (t

∗) · �rk(t
∗)〉

〈�r2(t∗)〉 (A13)

that can be approximated by the Haven ratio H in the dc-limit
(accessible via radioactive tracer experiments [39–41]), i.e.
〈�R2(t∗)〉/N = 〈�r2(t∗)〉/H(t∗) 	 〈�r2(t∗)〉/H , we arrive
at equation (5) of the main text (where d = 3):

σdc = nq2

2dkBT

〈�r2(t∗)〉
γH

ν∗ . (A14)

Appendix B. Accurate representation of the RBM
universal ac conductivity

Equation (14) gives a good overall fit to the universal ac
conductivity of the RBM arising in the extreme disorder
limit, but in the range of frequencies where the conductivity
approaches the dc level (ω < ω∗) there are significant
deviations for both real and imaginary parts of the conductivity.
Thus for the imaginary part σ ′′(ω) equation (14) predicts that
σ̃ ′′ ∝ ω̃2/3 for ω̃ → 0. This contradicts experiment, analyticity
as well as RBM computer simulations [138] that all imply
σ̃ ′′ ∝ ω̃ for ω̃ → 0. An accurate analytical representation
of the RBM universal ac conductivity with the correct low-
frequency behavior is given [138] by the equation

ln σ̃ = iω̃

σ̃

(
1 +

8

3

iω̃

σ̃

)−1/3

. (B1)

In this expression frequency is scaled such that σ̃ = 1 +
iω̃ for ω̃ → 0, i.e. the frequency scaling is different
from that of equation (14). Equation (B1) is easily solved
numerically for both real and imaginary parts as functions
of frequency. Alternatively, numerical solutions to it—as
well as to equation (14)—are available as ASCII files (see
reference [22] of [138]).
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