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Abstract. It has recently been shown that plane-plate heat effusion methods devised for wide-frequency specific-heat 
spectroscopy do not give the isobaric specific heat but rather the so-called longitudinal specific heat. Here it is shown that 
heat effusion in a spherical symmetric geometry also involves the longitudinal specific heat 
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INTRODUCTION 

The frequency-dependent specific heat is one of the most 
fundamental thermoviscoelastic response functions char
acterizing relaxation of liquid structure in highly viscous 
liquids. The measurement of this quantity as an alterna
tive to enthalpy relaxation studies was conceived more 
than two decades ago [1, 2]. 

When the specific heat is frequency dependent one 
faces experimentally the problem of separating out the 
trivial frequency dependence from the slow propagation 
of heat. This can be solved in two ways. One can go 
to the thermally thin limit [2, 3] where the sample is 
small compared to the thermal diffusion length ID- ID is 
inversely proportional to the square root of the frequency 
and typically 0.1mm even at IHz. So this condition can 
be difficuh to fiilfiU over a wide frequency range unless 
the sample is very small [3]. 

The other - effusion - approach is to choose the sam
ple size much larger than the thermal wavelength. This 
is the thermally thick limit and it is easier to realize over 
a wide frequency range [4]. Both methods have to take 
due account of the stresses coming from the material sup
porting the sample associated with different thermal ex
pansion coefficients. The effusion method suffers addi
tionally from thermal stresses produced within the liquid 
itself It is only the latter problem we consider in this pa
per. 

In the effusion methods one typically produces a har
monically varying heat current RelP^e'®'} at a surface 
in contact with the liquid. The corresponding tempera
ture response Rejrffle'®'} on the very same surface is 
measured. Since the response is linear in the stimulus it is 
convenient to introduce the complex thermal impedance 

P., 
(1) 

The thermal impedance of a sample of volume V and 
volume specific heat c is 

1 
icocV 

(2) 

in the thermally thin limit. 
If on the other hand planar thermal waves effuses from 

a plate of area A into a liquid the thermal impedance is 

Z = 
1 

AvicocX 
(3) 

in the thermally thick limit [1]. Here A is the thermal 
conductivity. 

It has allways tacitly been assumed that measurements 
done at ambient pressure are isobaric and that the c of 
formula (3) is Cp. However it was formerly stated [5] and 
recently shown [6] that the ordinary heat diffusion with a 
complex diffusion constant does not describe the experi
mental situation adequately. For unidirectional heat effu
sion it was shown that the effective specific heat mea
sured is the so-called longitudinal specific heat c;(co) 
which is between the isochoric, CF(CO) and isobaric, 
Cp{a)) specific heats. Denoting the adiabatic and isother
mal bulk moduH by Ks{a)) and Kjid)) respectively and 
the shear modulus by G{(o) one can write the adiabatic 
and isothermal longitudinal moduli as Ms{(i)) = Ks{a)) + 
4/3G(co) and Mr(co) =i:r(co) + 4/3G(co). Now Q(CO) 
is related to CF(CO) as [6] 

whereas Cp{a)) is related to CF(CO) as 

KT[(0) 

(4) 

(5) 
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In an easily flowing hquid G(co) is neghgible since 1/co 
is large compared to the Maxwell relaxation time, TM, 
and there is no difference between c; and Cp. However in 
a highly viscous liquid near the dynamic glass transition 
the shear modulus becomes comparable to the bulk mod-
uh and the diffence between c;(co) and Cp{(o) becomes 
significant. 

We show below that the same is true for heat effusion 
in a spherical symmetric geometry. Here one also obtains 
Ci{(o). Furthermore in spherical geometry one can also 
get the heat conductivity X and thus get Q (co) absolutely. 
The planar unidirectional method in fact gives only the 
effusivity, ^Xci{(o); that is C;(co) is determined only to 
within a proportionality constant. 

THERMAL AND MECHANICAL 
COUPLING 

The General Equations 

One cannot treat the diffusion of heat independently 
of the associated creation of strains or stresses. Let the 
temperature field, T{r,t) be described in terms of the 
smaU deviation 5T{r,t) = T{r,t) — TQ from a reference 
temperature TQ and denote the displacement field by 
u = u(r, t). Dealing with relaxation is most conveniently 
done in the frequency domain. Thus time dependence of 
the fields is given by the factor e^', s = i(o. Considering 
only cases where inertia can be neglected the equations 
that couple temperature and displacement are [6] 

It is usually assumed that thermal experiments on liq
uids with a completely or partially free surface will be at 
isobaric conditions. However this is only true if the shear 
modulus G can be neglected compared to bulkmodulus 
Kf. This condition fails near the glass transition and the 
full coupled problem of equations (6) and (7) has to be 
considered. 

Radial Heat Effusion from a Spherical 
Surface into an Infinite Media 

We would like to show here that the inherent problem 
of measuring Cp is not only confined to one-dimensional 
heat flow in the geometry considered in [6] where the 
associated displacement field is forced to be longitudinal. 

The longitudinal specific heat also emerges in the ther
mal impedance against effusion out from a sphere. In the 
spherically symmetric case V x u vanishes. If we denote 
differentiation with respect to r by a prime (6) and (7) 
becomes 

MT{r-^{rhyy-liv5T' = 0 (11) 

Cys5T + Tolirsr-^{rhy-Xr-^{r^5T'y = 0. (12) 

Define now the longitudinal specific heat, 

ci = cr + To-̂ } 
MT 

(13) 

the heat diffusion constant. 

MT'^{'^ • u) - jSrVSr - GV X (V X u) 

cvs5T + fivT(isV -VL-XV^ST - 0. 
(6) 

(7) 

Here the isochoric pressure coefficient /3F(CO) is defined 
in the constitutive equation for the trace of the stress 
tensor o 

-Xx{a)=KTV •\x-fiv5T. (8) 

The Isobaric Case 

If the trace of the stress tensor is constant in time 
then the term ^VTQSV • u in equation (7) becomes 
TQ^^/KTST. Since TQ^^/KT = Cp-Cr equation (7) now 
becomes the ordinary heat diffusion equation 

s5T DpV^ST, (9) 

decoupled from the displacement field and with a diffu
sion constant involving the isobaric specific heat 

D„ 
X 

(10) 

D = 
Cl 

and the wave vector 

k = 

(14) 

(15) 

We thermally perturb the system by a harmonically vary
ing heat current density j^e^' with s = i(0 at the surface of 
radius r\. If we impose the boundary conditions of van
ishing fields at infinity and a hard core, u{r\) = {) then 
the coupled solution is 

5T{r) 
{kr\ 

u{r) = 
MTCIS ' r 

sci (1 +kri)kr 

l+kri )jq-

The total thermal impedance thus becomes 

^ _ gr ( r i ) ^ 1 l__ 
Anr\^jq AnXr\\+kr\ 

(16) 

(17) 

(18) 
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or 
Z = 

4;rAri 1 + J i(oci{(o) / Xr 
(19) 

It should be noted that in solving the same problem on 
the basis of the ordinary heat diffusion equation (9) one 
arrives at (19) but with Cp instead of Q. It is thus seen 
that in doing specific heat spectroscopy by effusion in 
a spherical geometry one obtains again the longitudinal 
specific heat and not the isobaric specific heat. 

One can also consider the case of a soft core, Orr {f\) = 
0. Although the displacement field is altered compared 
to the case of a hard core, the expression for the thermal 
impedance is stiU found to be given by (19). 

The DC-limit gives the heat conductivity. 

1 
AnXri 

for (o—fQ (20) 

The high-frequency limit is in concordance with the one-
dimensional result. 

1 

Anr\^/imci{m)X 
for (o^foo (21) 

since short thermal waves cannot "see" the curvature of 
the sphere. It is seen that effusion in spherical geome
try in fact gives information on two properties, the heat 
conductivity and the heat capacity, whereas the unidi
rectional effusion only gives the effusivity. This is be
cause a characteristic length scale, the radius of the heat-
producing spherical surface, is involved. Effusivity in 
spherical geometry thus makes it possible to derive the 
heat capacity absolutely. However the practical usable 
frequency range will be more limited for a given sen
sitivity since the contribution from c; in (19) will van
ish at low frequencies. At high frequency the possibility 
of modelling the contribution to the thermal impedance 
from the heat-producing device itself will also put a limit. 

In real plane-plate effusion experiments the finite 
width of the plate gives rise to boundary effects when the 
heat diffusion length becomes comparable to the plate 
width. The deviation from the simple formula (3) is de
pendent on the ratio between these to quantities. Since a 
length now appears in the problem this deviation again 
gives the possibility of determining X separately. This 
has been addressed perturbatively [7] on the basis of the 
ordinary heat diffusion equation (9), but not with the 
more exact coupled thermomechanical equations (6) and 
(7). Thus in fact it seems that of the two simple idealized 
models - the planar and the spherical - of heat effusion 
including the thermomechanical coupling the spherical 
may be the one that mostly resembles its practical reali
sation. 

CONCLUSION 

These examples - the unidirectional and the spherical 
geometry - seem to show that it is inherently difficult 
to get the isobaric specific heat directly from effusivity 
measurements. However another well-defined quantity, 
the longitudinal specific heat can be found. 

REFERENCES 

1. N. O. Birge and S. R. Nagel, Phys. Rev. Lett. 54, 2674-2677 
(1985). 

2. T. CMstensen, J. Physique Colloq. 46, C8-635-C8-637 
(1985). 

3. H. Huth, A. A. Minakov, A. Serghei, F. Kremer and C. 
Schick, Eur. Phys. J. Special Topics 141, 153-160 (2007). 

4. N. O. Birge, Phys. Rev. B 34, 1631-1642 (1986). 
5. T. Christensen andN. B. Olsen, Prog. Theor. Phys. Suppl. 

126,273-276(1997). 
6. T. Christensen, N. B. Olsen and J. C. Dyre, Phys. Rev. E 

75, 041502-1-041502-11 (2007). 
7. N. O. Birge, P. K. Dixon andN. Menon Thermochim. Acta 

304, 51-65 (1997). 

141 




