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It is suggested that the �−1/2 high-frequency decay of the � loss in highly viscous liquids, which appears to
be generic, is a manifestation of a negative long-time tail as typically encountered in stochastic dynamics. The
proposed mechanism requires that the coherent diffusion constant is much larger than estimated from the �
relaxation time. This is justified by reference to the solidity of viscous liquids in an argument which, by
utilizing the irrelevance of momentum conservation at high viscosity and introducing a center of mass diffusion
constant, implies that at high viscosity the coherent diffusion constant is much larger than the incoherent
diffusion constant.
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I. INTRODUCTION

Viscous liquids and the glass transition have attracted
considerable interest for many years �1–6�. The solidity of
viscous liquids refers to their solidness, i.e., that a viscous
liquid is similar to a disordered solid because molecular mo-
tion is mostly vibrational. This was the view, e.g., of Gold-
stein who in his now-classic 1969 paper expressed the belief
that “when all is said and done, the existence of potential
energy barriers large compared to thermal energy are intrin-
sic to the occurrence of the glassy state, and dominate flow,
at least at low temperatures” �7�. This implies that solid-state
elasticity arguments are relevant and useful for understand-
ing viscous liquid dynamics �7�. Actually, the view that vis-
cous liquids are like solids by being mostly in elastic equi-
librium is obvious already from Kauzmann’s 1948 review,
which referred to the barrier transitions �flow events� as
“jumps of molecular units of flow between different posi-
tions of equilibrium in the liquid’s quasicrystalline lattice”
�1�. In the same spirit, Mooney in 1957 wrote that “a liquid
not only could be but perhaps should be treated as an elastic
continuum with a stress relaxation mechanism” �8�.

Based on the solidity property a theory for the non-
Arrhenius temperature dependence of the viscosity was pro-
posed some time ago, according to which the activation en-
ergy is proportional to the instantaneous shear modulus �the
shoving model� �9�. This was justified by arguing that during
a barrier transition the surrounding liquid behaves like a
solid subject to an elastic deformation, and that most of the
barrier energy is shear elastic energy located in the surround-
ings. In two subsequent papers �I and II, �10�� we further
discussed the solidity of viscous liquids and introduced a
“solidity length,” l, giving the length scale below which a
viscous liquid is virtually indistinguishable from a disordered
solid—albeit one that flows.

By proceeding inductively from experiment the present
paper argues that solidity may explain the generic features of
the primary relaxation process in viscous liquids, the so-
called � process. � relaxation is the slowest and the domi-
nant relaxation process. The � process is responsible for the
glass transition, the kinetic falling out of equilibrium taking
place when the cooling rate d ln T /dt exceeds the � relax-

ation rate �1–6�. � relaxation is observable in dielectric re-
laxation experiments and in measurements of the frequency-
dependent shear and bulk moduli �2,11� and, e.g., of the
frequency-dependent specific heat �12,13�. The loss peaks
obtained by measuring these linear response properties are of
similar shape, but usually not identical. The loss peak fre-
quencies are also similar, but not identical, and their tem-
perature dependencies are usually quite similar. In the fol-
lowing we shall not dwell on the dissimilarities. The focus is
on the shear modulus, adopting the point of view that this is
the primary response function while, e.g., the dielectric loss
is determined by the coupling of molecular rotation to shear
flow �14–18�.

The characteristic features of � response functions ����,
as reported in the literature, are �1� the loss peak frequency
�m is non-Arrhenius with an activation energy which in-
creases as temperature decreases; �2� on the low-frequency
side of the loss peak the loss is virtually Debye like ������
���; �3� on the high-frequency side there are significant de-
viations from Debye behavior; here the loss decays follow-
ing an approximate power law: �������−n�n�1�. In many
cases a wing is observed a few decades above the loss peak
frequency where n changes to a lower value.

The majority of experiments report values of n between
0.3 and 0.7 �19�. The exponent n is often temperature depen-
dent, implying a violation of time-temperature superposition.
At the 1997 3rd International Discussion Meeting on Relax-
ations in Complex Systems it was suggested by Olsen that �
processes may play a role at much lower frequencies than
generally expected, and that these could explain
the wing �20�. This was subsequently confirmed
by Lunkenheimer and co-workers who, upon long-time an-
nealing of propylene carbonate and glycerol, found that the
wing indeed develops into a separate relaxation process �21�.
While the matter is still actively discussed, in the opinion of
the Roskilde glass group the following picture emerges �22�:
Once the effects of � processes are minimized by going to
sufficiently low temperatures �still in the equilibrium liquid
phase�, the generic features of � relaxation come to light.
Generic � relaxation obeys time-temperature superposition,
and for the high-frequency asymptotic behavior the generic
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� process is characterized by the universal exponent n
=1/2:

�gen� ��� � ��, � � �m,

�−1/2, � � �m.
� �1�

Finally, generic � relaxation does not have universal loss
peak width. This conclusion was reached from dielectric re-
laxation measurements on several molecular liquids �22�, but
it appears to apply also for the shear modulus G��� �23,24�,
although shear mechanical measurements are considerably
less accurate than dielectric measurements.

II. THE BEL MODEL AND ITS FORMAL
GENERALIZATION

Curiously enough, the conjecture that n=1/2 is a “fixed
point,” which equilibrium viscous liquids approach at suffi-
ciently low temperatures, represents a step backwards in
time. Around 1970 it was noted that n is often close to 1/2,
and there was a considerable interest in explaining this theo-
retically. Some models, which over time have been suggested
to explain Eq. �1� or its equivalents, are: In 1948, Zener, in
his theory of “relaxation by thermal diffusion” for ultrasonic
loss, predicted that the internal friction at high frequencies
varies as �−1/2 �25�. Glarum �in 1960�, Doremus �1970�,
Phillips et al. �1972�, Bordewijk �1975�, Kimmich and Voigt
�1978�, Wyllie �1979�, and Condat �1989� all arrived at the
�−1/2-tail from essentially one-dimensional diffusion models
�26–32�. This is also basically the mathematical mechanism
in the model of Isakovich and Chaban, who in 1966 pre-
dicted a limiting high-frequency sound absorption per wave-
length in highly viscous liquids varying as �−1/2 by regarding
the liquid as a micro-inhomogeneous medium �33� �see also
Ref. �34��. In 1967 Barlow, Erginsav, and Lamb, in what is
now referred to as the BEL model, took an electrical engi-
neer’s approach and regarded the shear mechanical imped-
ance of a viscous liquid as a parallel combination of a New-
tonian liquid and a Hookean solid implying an �−1/2-tail for
the high-frequency shear modulus �2,35,36�. Montrose and
Litovitz in 1970 derived the �−1/2-tail in a model invoking
diffusion and relaxation of some unspecified order �37�. Ma-
jumdar, working in the time domain, arrived at the short time
equivalent of the high-frequency tail in 1971 from the as-
sumption that diffusive modes exist with amplitude �k−2

�38�. Cunat, in 1988, from a purely thermodynamic treat-
ment, arrived at a distribution of relaxation times 	 on the
logarithmic scale proportional to �	 for 	→0, which leads to
the �−1/2 high-frequency tail �39�. Sjögren in 1990 showed
that Eq. �1� arises in mode-coupling theory under certain
conditions �40�. Cichocki and Felderhof �41� in 1994 derived
the �−1/2 high-frequency tail in a diffusion model with a
radial potential barrier, which is mathematically similar to
the Isakovich-Chaban model. Most of these models involve
some species obeying the diffusion equation, which is as-
sumed to apply also at times shorter than the � relaxation
time �42�. This nontrivial assumption is central also for the
“long-time tail” mechanism discussed below.

The BEL model focuses on the shear compliance J���
=1/G���. In dimensionless units the BEL model has a defi-

nite prediction for J���, implying universal loss peak width.
Because this prediction did not fit all experiments, the BEL
expression was soon formally generalized by the same au-
thors �43� to

J��� = a + b�i��−1/2 + c�i��−1. �2�

The original BEL model corresponds to b2=4ac. Clearly, Eq.
�2� implies Eq. �1� for the shear modulus loss G����. In
dimensionless units, Eq. �2�, which we shall refer to as the
“generalized BEL expression,” has one free parameter and
thus nonuniversal loss peak width.

III. THE GENERALIZED BEL EXPRESSION
AS A CONSEQUENCE OF A LONG-TIME TAIL

Equation �2� gives a good representation of generic � re-
laxation. We proceed to use the fluctuation-dissipation �FD�
theorem to translate Eq. �2� into a statement concerning a
velocity autocorrelation function. According to the FD theo-
rem, if Q is the x-direction displacement of the top of the
liquid �area L2 in the x-y plane, height h in the z direction�,
the shear compliance is given by

J��� =
i�

2 kBT

L2

h
�

0




	�Q2�t�
e−i�tdt . �3�

Here 	�Q2�t�
 is the equilibrium mean-square displacement
of Q in time t, i.e., the zero shear stress thermal average of
the square of �Q�t��Q�t�−Q�0�.

Via Eq. �3� the generalized BEL expression Eq. �2� trans-
lates into

	�Q2�t�
 = A + B t1/2 + C t . �4�

In terms of the Q mean-square displacement the velocity
autocorrelation function is given by

	Q̇�0�Q̇�t�
 =
1

2

d2

dt2 	�Q2�t�
 . �5�

The generalized BEL expression is thus mathematically
equivalent to

	Q̇�0�Q̇�t�
 � − t−3/2. �6�

Equation �6�, which is a simple way to summarize basic
characteristics of generic � relaxation, immediately brings to
mind the long-time tails discovered in 1967 by Alder and
Wainwright in early molecular dynamics simulations of liq-
uids �44�. These authors showed that the velocity autocorre-
lation function for a single molecule does not decay expo-
nentially to zero at long times as previously expected, but as
a power law with exponent −3/2:

	ẋ�0�ẋ�t�
 � + t−3/2 �t → 
� . �7�

The explanation is the following. According to statistical me-
chanics, at any given time molecular velocities are uncorre-
lated. Consider a particular molecule at time t=0. It has a
certain momentum while the surrounding molecules on av-
erage have zero momentum. As time passes the momentum
of the molecule in question diffuses to the surrounding mol-
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ecules �because the Navier-Stokes equation is basically a
transverse momentum diffusion equation�. At time t the mo-
mentum has diffused a distance �t1/2 away, thus spread
among �t3/2 molecules. If the initial momentum of the mol-
ecule in question is shared roughly equally among these, on
average every molecule has momentum �t−3/2. This includes
the particular molecule in focus, thus explaining Eq. �7�. A
nice classical review of long-time tails is that of Pomeau and
Resibois from 1975 �45�, while Kirkpatrick and co-workers
recently gave an excellent review from a more general point
of view �46�.

Central to the above argument are momentum conserva-
tion and the diffusion equation. If Eq. �6� were to reflect a
long-time tail, two questions come to mind: �1� What is the
role of momentum conservation in viscous liquids? �2� How
does one explain a negative long-time tail �47�?

The first question arises because viscous liquids close to
the calorimetric glass transition have viscosities roughly 1014

times larger than that of liquids like ambient water. Since the
kinematic viscosity is the transverse momentum diffusion
constant, these liquids have extremely large momentum dif-
fusion constants. Consider a flow event taking the system
from one minimum to another. If momentum conservation
were relevant, a flow event could not result in movement of
the center of mass. In reality the liquid is confined by con-
tainer walls; these provide the external forces possibly
needed to move the center of mass slightly to ensure that the
molecules at the walls do not move. Thus just as momentum
conservation plays no role for the description of point defect
motion in crystals, momentum conservation is irrelevant for
the description of viscous liquid dynamics under laboratory
conditions �48�.

Turning to the second question, it is shown in the next
section that velocity autocorrelation functions are negative in
any stochastic dynamics, i.e., dynamics described by a mas-
ter equation.

What is the required conserved variable? Angular mo-
mentum conservation is irrelevant for the same reason that
momentum conservation is. Energy conservation could be
relevant because heat conduction is rather slow, but this pro-
cess is almost temperature independent and thus seemingly
unable to give � relaxation times, which depend dramatically
on temperature. The obvious possibility left is particle num-
ber conservation.

Long-time tails arise from particle number conservation
because density fluctuations at long times decay following
the diffusion equation, leading to �where �� is the deviation
from average density�

	���r,0����r�,t�
 � t−3/2exp−
�r − r��2

4Dt
� . �8�

From Eq. �8� it follows that a generic variable F with zero
average, which is a �nonlinear� function of density, decays
following

	F�0�F�t�
 � + t−3/2�t → 
� . �9�

The Appendix gives a simple example of how Eq. �8� implies
Eq. �9�.

IV. NEGATIVE LONG-TIME TAILS IN STOCHASTIC
DYNAMICS

Viscous liquids are believed to be well described as sto-
chastic dynamics �49,50�. This could take the form of Lange-
vin dynamics or, in the ultimate course-grained version, hop-
ping between energy minima �“inherent dynamics” �50��. We
proceed to show that the velocity autocorrelation function in
any stochastic dynamics can be written as the negative of a
state autocorrelation function. If Pi is the probability of state

i, the master equation is Ṗi=� jijPj. If the Green’s
function—the probability to go from state i to k in time t—is
denoted by Gi→k�t�, and Peq,i is the equilibrium probability of
state i, Eq. �5� implies

	Q̇�0�Q̇�t�
 =
1

2�
i,j

�Qi − Qj�2Peq,i
d2

dt2Gi→j�t� . �10�

Using the fact that the Green’s function solves the master

equation �Ġi→j =�k jkGi→k�, detailed balance �Peq,iGi→j�t�
= Peq,jGj→i�t��, and probability conservation ��iij =0�, the
right-hand side of Eq. �10� is reduced as follows:

1

2 �
i,j,k

�Qi − Qj�2Peq,i jkĠi→k�t�

=
1

2 �
i,j,k

�Qi − Qj�2 jkPeq,kĠk→i�t�

=
1

2 �
i,j,k,l

�Qi
2 + Qj

2 − 2QiQj� jkPeq,kilGk→l�t�

= − �
i,j,k,l

�Qiil��Qj jk�Peq,kGk→l�t� . �11�

Thus in terms of the variable Bk�� jQj jk we have �51�

	Q̇�0�Q̇�t�
 = − 	B�0�B�t�
 . �12�

Since autocorrelation functions of any state function are al-
ways positive in stochastic dynamics, this proves that the
velocity autocorrelation function is always negative. More-
over, as argued above, generic autocorrelation functions de-
cay as t−3/2 for t→
. We thus get the required Eq. �6�.

V. CONDITION FOR LONG-TIME TAILS TO OPERATE
AT RELATIVELY SHORT TIMES

The negative t−3/2-decay applies as t→
. The obvious
question is how a long-time tail could play any role at times
shorter than the � relaxation time. The only possibility, it
seems, is that density fluctuations, even at these relatively
short times decay following the diffusion equation. Thus
even for a few decades of time shorter than 	� the coherent
intermediate scattering function S�k , t� should obey

S�k,t�
S�k�

= exp�− Dk2t� . �13�

If a is the average intermolecular distance, the coherent dif-
fusion constant defines a characteristic time tc via tc=a2 /D.
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It is natural to expect that Eq. �13� applies only at times
much longer than tc. Thus the condition for the long-time tail
mechanism to work above the � loss peak frequency is that
tc�	�, or

a2

	�

� D . �14�

The single-particle diffusion constant Ds is defined by
Ds= 	�x2�t�
 /2t�t→
�. One naively expects that information
about the structure is basically forgotten when—and only
when—the molecules on average have moved an intermo-
lecular distance. This would imply that Ds�a2 /	�, which
may well be the case for some liquids. In several liquids,
however, it has been observed that Ds is much larger than
a2 /	� �52�. In either case, Eq. �14� is clearly obeyed if the
coherent and the incoherent diffusion constants decouple as
follows:

Ds � D . �15�

When asked what to expect if the coherent and incoherent
diffusion constants decouple, a majority of the researchers
asked opted for the opposite inequality. Equation �15� cannot
be ruled out on experimental grounds, however, because
there seems to be no measurements of the coherent diffusion
constant for liquids just above the calorimetric glass transi-
tion.

VI. DIFFUSION CONSTANT DECOUPLING
AS A CONSEQUENCE OF SOLIDITY

In this section we prove that the required diffusion con-
stant decoupling is consistent with the solidity of viscous
liquids. More accurately, it is shown that if the coherent dif-
fusion constant is frequency independent, solidity implies
diffusion constant decoupling. We consider N molecules in
volume V, however not with periodic boundary conditions.
Density fluctuations are conveniently described in terms of
the quantity �k defined �53� by the following sum over all
molecular positions r j:

�k =
1

�N
�

j

eik·rj . �16�

The static structure factor is given by S�k�= 	�k�−k
 and the
coherent intermediate scattering function by S�k , t�
= 	�k�t��−k�0�
 �53�. In liquids and solids the long-
wavelength limit of S�k� is a very small number equal to the
ratio between system compressibility and ideal gas com-
pressibility at same density and temperature. Alternatively,
the long-wavelength limit may be expressed in terms of the
number M of molecules in a large subvolume and its fluc-
tuations: S�k→0�= 	�M2
 / 	M
 �53,54� �which is one for an
ideal gas by Poisson statistics, but much smaller for liquids
and solids�. This number has two contributions, one from the
phonon degrees of freedom and one from the inherent dy-
namics. The inherent part of this small number �55� is thus
even smaller. Henceforth S�k� refers only to the inherent part
of the structure factor, so we clearly have

S�k → 0� � 1. �17�

We shall assume that inherent density fluctuations are de-
scribed by a linear Langevin equation,

�̇k = − ��k��k + �k�t� . �18�

The last term is the usual Gaussian white noise characterized
by �k

* =�−k and 	�k�t��k��t��
=2��k�S�k��k+k�,0��t− t��, which
ensures that S�k�= 	�k�−k
. We proceed to argue that in the
k→0 limit solidity implies that ��k��k2 �as expected from
particle conservation� and Ds�D, where D is defined by
��k�=Dk2. In particular, Eq. �18� implies Eq. �13� for the
intermediate scattering function.

It is assumed that V1/3 is smaller than the solidity length.
This implies that in the time between two flow events there is
elastic equilibrium throughout the sample �10�. We may thus
adopt inherent dynamics �50�, which regard flow events as
instantaneous rearrangements taking the system from one en-
ergy minimum �inherent state �56�� to another.

To prove that solidity implies ��k��k2 as k→0 we first
consider a single flow event. If �r j is the displacement of the
jth molecule, at small k the change in �k is given by

��k =
1

�N
�

j

eik·rjik · �r j �k → 0� . �19�

If r0 marks the location of largest molecular displacements,
at small k the exponentials may all be replaced by
exp�ik ·r0�. Thus, if R is the sum of all particle coordinates
we get

��k =
eik·r0

�N
ik · �R �k → 0� . �20�

If momentum conservation were relevant, one would have
�R=0, because the center of mass is fixed. A characteristic
feature of viscous liquids, however, is the already mentioned
irrelevance of momentum conservation �48�. Besides the co-
herent and single-particle diffusion constants there is conse-
quently a third diffusion constant, which we shall refer to as
the “center of mass diffusion constant,” DCM. In order to be
well defined in the N→
 limit, writing R= �X ,Y ,Z� the cen-
ter of mass diffusion constant should be defined by

DCM =
	�X2�t�


2Nt
�t → 
� . �21�

Here it is understood that the N, V→
 limit is taken before
t→
. If DCM is frequency dependent, the above expression
defines the dc limit. The high-frequency limit, DCM�
�, is
determined by the mean-square displacement at short times:

DCM�
� =
	�X2�t�


2Nt
�t → 0� . �22�

Over a short time span flow events are uncorrelated. Thus, if
the number of flow events per molecule per unit time is
denoted by � and 	�X2
 is the average squared change of X
in one flow event, the change in �k in a short time t is given
by
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	���k�t��2
 = N�t
1

N
k2	�X2
 = �tk2	�X2
 �k → 0� .

�23�

On the other hand, the change in �k over a short time is
determined by the noise term of Eq. �18�, leading to
	���k�t��2
=2��k�S�k�t. Equating these two expressions leads
to

S�k → 0� =
�k2	�X2

2��k → 0�

. �24�

For the limit to be well defined and nonzero we must have
��k��k2.

Writing ��k�=Dk2, we proceed to show that solidity im-
plies Ds�D. First note that, since DCM�
�=�	�X2
 /2, Eq.
�24� becomes

S�k → 0� =
DCM�
�

D
. �25�

From the inequality �17� we conclude that

DCM�
� � D . �26�

Consider a flow event taking the system from one minimum
to another. In the time between two flow events there is
elastic equilibrium. The liquid is indistinguishable from a
disordered solid, and a flow event induces slight adjustments
of the positions of molecules far from the relatively few mol-
ecules that move considerably �10,50�. If the liquid were
completely homogeneous and isotropic before and after the
flow event, the total displacement �R would be zero. This is
not realistic, however, so there is no reason to expect the
total displacements to be zero. According to standard elastic-
ity theory �10,31,57,58� displacements far from the center of
the flow event are small, varying with distance as r−2. Their
contribution to �R is insignificant, so we expect

�
j

�r j
2 � �

j

�r j�2
. �27�

This implies that the high-frequency limits of Ds and DCM
are comparable:

Ds�
� � DCM�
� . �28�

Finally, we note that when diffusion constants are frequency
dependent they always increase with frequency �see, e.g.,
Ref. �59��, and often quite a lot:

Ds � Ds�
� . �29�

To summarize, by representing the solidity of viscous liq-
uids by inherent dynamics we have argued that

a2

	�

� Ds � Ds�
� � DCM�
� � D . �30�

The strong inequality sign � was used liberally throughout
this section �the inequalities all hold with � replaced by �,
though�: The first strong inequality presumably applies only
for some liquids �52�, while for others there may well be near
equality. The second strong inequality is likely—because this

is what is generally observed for hopping in disordered sol-
ids �59�—but not compelling. Only the third strong inequal-
ity is compelling, being a direct consequence of the small
compressibility of liquids. Nevertheless, this is enough to
establish the inequality �14�, once it is assumed that the co-
herent diffusion constant is frequency independent.

VII. CONCLUSION

A long-time-tail mechanism �60� provides a natural expla-
nation for the seemingly generic �−1/2 high-frequency decay
of the � process. It has been argued that the required decou-
pling of coherent from incoherent diffusion follows from the
solidity of viscous liquids. There are still several problems to
be addressed. One is that the derivation of the diffusion con-
stant decoupling was based on the assumption that the
sample is smaller than the solidity length. If the � relaxation
time is 1s, the solidity length is a few thousand Angstroms
�10�. The question arises how to deal with bulk viscous liq-
uids. Given the fact that Eq. �18� does not allow bulk volume
relaxation on the � time scale, it is clear that something is
missing �61�. Nevertheless, we surmise that the long-time
tail mechanism survives the necessary supplements to arrive
at a full theory. Another problem is that the constants A and
C of Eq. �4�, which here appear as simple integration con-
stants, cannot be arbitrary: In order for the generalized BEL
expression to fit data these constants must be related to the
constant B by AC�B2. A final challenge is to establish the
consistency of the proposed scheme, where the coherent dif-
fusion constant is assumed to be frequency independent
whereas the incoherent diffusion constant most likely is
strongly frequency dependent.
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APPENDIX: LONG-TIME TAILS DERIVED FROM
THE DIFFUSION EQUATION

We here show an example of how long-time tails typically
arise. By “long time” is meant times long enough that den-
sity fluctuations decay following the diffusion equation. As a
simple case, consider a variable F which is a sum of pairwise
contributions, F=�ij��ri−r j�. In terms of the density ��r�
��i��r−ri� we have

F =� drdr���r − r����r���r�� . �A1�

If the deviation from average density is denoted by ����
− 	�
, F is given as

F = const +� drdr���r − r�����r����r�� . �A2�

The F-autocorrelation function is given by
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	F�0�F�t�
 = const +� dr1dr2dr3dr4��r1 − r2���r3 − r4�

� 	���r1,0����r2,0����r3,t����r4,t�
 . �A3�

In the Gaussian approximation the average of a product of
four variables by Wick’s theorem is a sum of three terms,
each being a product of two pair-correlation functions. One
of the three terms is time independent and we get �assuming
��r�=��−r��

	F�0�F�t�
 = const + 2� dr1dr2dr3dr4��r1 − r2���r3 − r4�

� 	���r1,0����r3,t�
	���r2,0����r4,t�
 .

�A4�

Letting t→
 we find 	F
2=const, so, if �F�F− 	F
, Eq.
�A4� implies

	�F�0��F�t�
 = 2� dr1dr2dr3dr4��r1 − r2���r3 − r4�

� 	���r1,0����r3,t�
	���r2,0����r4,t�
 .

�A5�

A standard assumption in liquid theory is that the density
correlation function 	���r ,0����r� , t�
 regarded as a func-
tion of r� and t obeys the diffusion equation at long times.
Since the density correlation function goes to zero as �r
−r��→
 and t→
, we have �where D is the diffusion con-
stant�

	���r,0����r�,t�
 � t−3/2exp−
�r − r��2

4Dt
� . �A6�

When this is substituted into Eq. �A5� one finds at long
times, if � is reasonably short ranged, I��dr��r�, and V is
the volume:

	�F�0��F�t�
 � + V I2 t−3/2. �A7�
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�12� implies that the generalized velocity autocorrelation func-

tion is given by �no sum over repeated indices� 	Ẋm�0�Ẋm�t�
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