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A derivation of the fluctuation-dissipation~FD! theorem for the frequency-dependent specific heat of a
system described by a master equation is presented. The FD theorem is illustrated by a number of simple
examples, including a system described by a linear Langevin equation, a two-level system, and a system
described by the energy master equation. It is shown that for two quite different models with low-energy
cutoffs—a collection of two-level systems and a system described by the energy master equation—the
frequency-dependent specific heat in dimensionless units becomes universal at low temperatures, i.e., indepen-
dent of both energy distribution and temperature. These two models give almost the same universal frequency-
dependent specific heat, which compares favorably to experiments on supercooled alcohols.
@S0163-1829~96!06446-6#

I. INTRODUCTION

ac calorimetry was introduced in the 1960’s as an accu-
rate method for measuring the ordinary dc specific heat.1,2

The use of ac calorimetry for measuring the frequency-
dependent specific heat was pioneered in 1985 by Birge and
Nagel3 and by Christensen.4 Frequency-dependence of the
specific heat occurs, e.g., in liquids close to the glass
transition,5 where structural relaxations take place on a time
scale depending strongly on temperature.6 Other systems
with slow enthalpy relaxations like unfolding proteins7 also
exhibit frequency dependence of the specific heat. For mea-
surements of the frequency-dependent specific heat, the ac-
cessible time scale typically involves times longer than one
second.

Studies of enthalpy relaxation in supercooled liquids upon
a large change of temperature had been carried out for sev-
eral years before the introduction of ‘‘specific heat
spectroscopy.’’6,8–11The study of enthalpy relaxation upon a
small change of temperature, which is a linear phenomenon,
is conceptually simpler but experimentally more difficult.
This is probably why the first measurements of frequency-
dependent specific heat appeared just 11 years ago. From a
theoretical point of view, however, a linear response is much
easier to model and understand than a nonlinear response.
This may account for the recent increased interest in ac spe-
cific heat measurements.7,12–14

The main reason for the simplicity of a linear response is
the fluctuation-dissipation~FD! theorem, which expresses
the response of a system upon a slight time-dependent
change of external parameters in terms of equilibrium fluc-
tuations. In effect, a linear response probes the equilibrium
dynamics~i.e., the dynamics in absence of any external dis-
turbance!. The standard proof of the FD theorem considers
an external field that perturbs the Hamiltonian.15Often, when
dealing with the frequency-dependent specific heat, more or
less explicit reference is made to the standard FD
theorem.7,12,16–19This, however, is inaccurate since the spe-
cific heat is not a response to an external field perturbing the
Hamiltonian.

Shortly after the first appearance of publications reporting

measurements of the frequency-dependent specific heat of
supercooled liquids,3,4 a number of authors discussed theo-
ries for this quantity.20–24 The frequency-dependent specific
heat was viewed in the context of generalized hydrodynam-
ics for liquids with structural relaxation.20,21It was suggested
by Zwanzig that the frequency-dependent specific heat is di-
rectly related to the frequency-dependent longitudinal
viscosity.23 Jäckle24 discussed heat conduction and
frequency-dependent specific heat in one-component liquids
near the glass transition and showed that a frequency depen-
dence of the thermal conductivity is connected to a wave
vector and frequency dependence of the specific heat. De-
spite these theoretical developments, a proof of the FD theo-
rem for frequency-dependent specific heat does not seem to
exist in the literature. This is ironic, since one of the very
earliest indications of the existence of FD theorems is Ein-
stein’s well-known result that the ordinary dc specific heat
cp is proportional to the mean-square enthalpy fluctuation in
the canonical ensemble~here and henceforth the subscript
0 denotes an equilibrium average!:

cp5
^~DH !2&0
kBT

2 . ~1!

The outline of the paper is as follows. Section II briefly
reviews the stochastic framework within which the FD theo-
rem for frequency-dependent specific heat is derived in Sec.
IV. This is done by analogy with the derivation of the ordi-
nary FD theorem, which is reviewed in Sec. III. Section V
illustrates the FD theorem for specific heat by working out a
number of simple examples. In Sec. VI we discuss ‘‘quasi-
universality’’ of the frequency-dependent specific heat in
certain systems and compare the quasiuniversal frequency-
dependent specific heat to data for six supercooled alcohols.
Section VII contains the conclusion.

II. STOCHASTIC MODEL

The system is described by probabilities to be in some
‘‘states’’ and the dynamics is given by a master equation. If
Pi is the probability to be in statei andWij is the probability
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per unit time for a transition from statej to statei , the master
equation25 is the following first order differential equation:

]Pi

]t
52(

jÞ i
Wji Pi1(

jÞ i
Wi j Pj . ~2!

The first term on the right-hand side represents the probabil-
ity per unit time of leaving statei while the second term
represents the probability per unit time of jumping into state
i . Equation ~2! is linear. The Green’s functionG0( i ,tu j ,t8)
is the probability to be in statei at time t given that the
system is in statej at time t8,t; in terms of the Green’s
function the linearity of Eq.~2! implies25

Pi~ t !5(
j
G0~ i ,tu j ,t8!Pj~ t8! ~ t.t8!. ~3!

The equilibrium probabilityPeq,i is time independent and
thus

Peq,i5(
j
G0~ i ,tu j ,t8!Peq,j ~ t.t8!. ~4!

III. THE ORDINARY FLUCTUATION-DISSIPATION
THEOREM

Consider a system which is in thermal equilibrium at time
t52`. Applying a time-dependent external fieldf (t), the
average deviation from equilibrium of some physical quan-
tity, dB, depends linearly onf (t) if the field is sufficiently
small. The general linear expression fordB(t) reflecting cau-
sality and time homogeneity is

dB~ t !5E
0

`

m~ t8! f ~ t2t8!dt8. ~5!

In the frequency domain, one considers a small oscillating
perturbation,f (t)5Re$ f 0e

st%, wheres is the imaginary fre-
quency (s5 iv) and Re denotes the real part. Inserting this
into Eq. ~5! gives

dB~ t !5Re$ f 0m~s!est%, ~6!

where the frequency-dependent response functionm(s) is
the Laplace transform ofm(t),

m~s!5E
0

`

m~ t !e2stdt. ~7!

If DBi5Bi2^B&0 is the deviation from equilibrium of the
variableB in statei andDAi is the deviation from equilib-
rium of the variable conjugate to the external fieldf (t) @i.e.,
H(t)5H02 f (t)A where H0 is the unperturbed Hamil-
tonian#, the ordinary FD theorem15,26 states that

m~ t !52
1

kBT

d

dt
^DA~0!DB~ t !&0 . ~8!

Combining Eqs.~7! and ~8! leads to

m~s!52
1

kBT
E
0

`S ddt ^DA~0!DB~ t !&0De2stdt. ~9!

In terms of the Green’s function the correlation function is
given by

^DA~0!DB~ t !&05(
i , j

G0~ i ,tu j ,0!Peq,jDAjDBi . ~10!

Equation ~10! comes from considering the actual ‘‘path’’ of
the system in state space due to equilibrium thermal fluctua-
tions. The probability to be in statej at t50 is Peq,j and the
probability of subsequently being in statei at timet is given
by the Green’s function. Note that the correlation function
refers to equilibrium fluctuations; the point of the FD theo-
rem is precisely that the linear response to an external field is
determined by fluctuations in thermal equilibrium with no
external field.

Following Doi and Edwards26 the derivation of the ordi-
nary FD theorem proceeds in the following way. Suppose the
system is equilibrated at a small constant time-independent
external fieldf 0, which is turned off at timet50. For t.0
the system relaxes towards equilibrium corresponding to the
zero field situation. The approach of the variableB towards
equilibrium is via Eq.~5! given by

dB~ t !5E
t

`

m~ t8! f 0dt8[a~ t ! f 0 , ~11!

wherea(t) is related tom(t) by

m52
da

dt
. ~12!

If the unperturbed energy of statej is Ej and the value of
A is Aj , the initial state probability att50, Pj (t50),
is the equilibrium probability in the external fieldf 0
@H5H02 f 0A implies that the energy of statej is
Ej2 f 0Aj #:

Pj~ t50!5
e2b~Ej2 f0Aj !

Z
, ~13!

whereb51/(kBT) andZ5( je
2b(Ej2 f0Aj ). It is straightfor-

ward to show that Eq.~13! implies

]Pj~ t50!

] f 0
U
f050

5
1

kBT
Peq,jDAj . ~14!

To first order inf 0 one therefore has

Pj~ t50!5Peq,j S 11
1

kBT
f 0DAj D . ~15!

Using Eqs.~3!, ~4!, ~10!, ~15!, and the fact that̂DB&050, to
first order in the external fieldf 0
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dB~ t !5(
i
Pi~ t !DBi5(

i , j
G0~ i ,tu j ,0!Pj~ t50!DBi

5(
i , j

G0~ i ,tu j ,0!Peq,j S 11
f 0
kBT

DAj DDBi

5
f 0
kBT

^DA~0!DB~ t !&0 . ~16!

Thus

a~ t !5
1

kBT
^DA~0!DB~ t !&0 . ~17!

Via Eq. ~12! one now arrives at the ordinary FD theorem Eq.
~8!.

IV. FLUCTUATION-DISSIPATION THEOREM
FOR SPECIFIC HEAT

In measurements of the specific heat two different experi-
mental situations may be realized. The most common is
keeping the pressure constant~isobaric conditions!; alterna-
tively the volume may be kept constant~isochoric condi-
tions!. For both corresponding canonical ensembles, the
equilibrium distribution is Boltzmann-like with an appropri-
ate quantityYj in the exponential:

Peq,j5
e2bYj

Z
, ~18!

whereZ5( je
2bYj . In the canonical isobaric ensembleYj is

the enthalpy (Yj5Ej1pVj ), in the canonical isochoric en-
sembleYj is the energy.27

Consider now a system exposed to a temperature ‘‘field’’
T(t) given by

T~ t !5H T1dT, t,0

T, t.0.
~19!

Equation ~18! implies

]Peq,j

]T
~T!5

1

kBT
2Peq,j~T!DYj . ~20!

To first order in dT, the distribution Pj (t50)5Peq,j (T
1dT) may via Eq.~20! be expressed in terms of the equi-
librium distribution atT:

Pj~ t50!5Peq,j~T!S 11
dT

kBT
2DYj D . ~21!

The time dependence of the average deviation of a physical
quantityB from equilibrium is fort.0 via Eqs.~3!, ~4!, and
~21! given by

dB~ t !5(
i
Pi~ t !DBi5(

i , j
G0~ i ,tu j ,0!Pj~ t50!DBi

5(
i , j

G0~ i ,tu j ,0!Peq,j~T!S 11
dT

kBT
2DYj DDBi

5
dT

kBT
2 ^DY~0!DB~ t !&0 . ~22!

We can now extract the functiona(t) defined by
dB(t)5a(t)dT:

a~ t !5
1

kBT
2 ^DY~0!DB~ t !&0 . ~23!

The frequency-dependent response function is given by Eqs.
~7! and ~12!, leading to

m~s!52
1

kBT
2E

0

`S ddt ^DY~0!DB~ t !&0De2stdt. ~24!

In particular, the case whereB is the energy~in the constant
volume case! or the enthalpy~in the constant pressure case!
gives the FD theorem for frequency-dependent specific heat.

V. FREQUENCY-DEPENDENT SPECIFIC HEAT
IN SOME SIMPLE MODELS

In the isobaric caseY is the enthalpyH and the
frequency-dependent specific heat is given by

c~s!52
1

kBT
2E

0

`S ddt ^DH~0!DH~ t !&0De2stdt. ~25!

After a partial integration this becomes

c~s!5
^~DH !2&0
kBT

2 2
s

kBT
2E

0

`

^DH~0!DH~ t !&0e
2stdt.

~26!

For s50 we recover the standard expression for the dc spe-
cific heat Eq.~1!. It is sometimes convenient to rewrite the
FD theorem by substituting the identitŷDH(0)DH(t)&0
5^H(0)H(t)&02^H&0

2 into Eq. ~26!, leading to

c~s!5
^H2&0
kBT

2 2
s

kBT
2E

0

`

^H~0!H~ t !&0e
2stdt. ~27!

If the pressure is zero, the enthalpy is equal to the energy.
In this case, one calculates the frequency-dependent isobaric
specific heat by considering equilibrium energy fluctuations,
as done below for some simple models. Note thatcpÞcv
even whenp50, although both quantities are given by for-
mally identical expressions involving energy autocorrelation
functions. This is because the dynamics in the two situations
are different~when the pressure is constant the volume fluc-
tuates and more states are allowed than in the constant vol-
ume case!.
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A. Langevin equation in harmonic potential

Consider first a system described by a variablex which
fluctuates in a harmonic potential,E(x)5 1

2kx
2. We assume

that x obeys the Langevin equation

ẋ52m
]E

]x
1j~ t !52mkx1j~ t !, ~28!

where j(t) is a Gaussian white noise term with variance
given by ^j(t)j(t8)&052mkBTd(t2t8). The Langevin
equation ensures the correct canonical probability propor-
tional to exp@2bE(x)#.25 Sincex(0) is uncorrelated with the
noise at later times,̂x(0)j(t)&050 for t.0, Eq.~28! leads
to (d/dt)^x(0)x(t)&05^x(0)ẋ(t)&052mk^x(0)x(t)&0,
implying that

^x~0!x~ t !&05^x2&0e
2mkt. ~29!

For the energy autocorrelation function one finds

^DE~0!DE~ t !&05^E~0!E~ t !&02^E&0
2

5
k2

4
^x2~0!x2~ t !&02

k2

4
^x2&0

2 . ~30!

As is well known, the linear Langevin equation Eq.~28!
has the property thatx(t) is distributed according to a Gauss-
ian. Since ^x2(0)&05^x2(t)&05^x2&0, this implies
that ^x2(0)x2(t)&05^x2&0

212^x(0)x(t)&0
2 @if xi are

Gaussian variables the following identity holds:^x1x2x3x4&
5^x1x2&^x3x4&1^x1x3&^x2x4&1^x1x4&^x2x3&#. When this
is substituted into Eq.~30! the following expression for the
equilibrium energy autocorrelation function is obtained~us-
ing the fact that in a harmonic potential^E&05

1
2kBT)

^DE~0!DE~ t !&05
k2

2
^x~0!x~ t !&0

25
k2

2
^x2&0

2e22mkt

52^E&0
2e22mkt5

1

2
~kBT!2e22mkt.

~31!

For the frequency-dependent specific heat one finally obtains
from Eq. ~25!

c~s!5kB
mk

s12mk
. ~32!

This is the Debye expression for a linear response function,28

first derived for dielectric relaxation~remember that
s5 iv). At high frequencies the specific heat goes to zero.
This is because for a fast small periodic temperature varia-
tion the average energy only has time to change insignifi-
cantly.

B. Two-level system

Consider next a system which can be in two different
statesi50,1 with energiesEi . It is assumed that there is an
energy maximumEmax which the system has to pass to go
from one state to the other. In thermal equilibrium the prob-
ability flow between the two states is zero~principle of de-
tailed balance!,25 implying that

g0Peq,05g1Peq,1, ~33!

whereg i is the rate of jumps out of statei . This is fulfilled if
the rates are given by those of transition state theory~where
t0 is the inverse of the ‘‘attempt frequency’’!:

g i5
1

t0
e2b~Emax2Ei !. ~34!

The differential equation for the probability of being in state
number 1 is~utilizing the fact thatP01P151)

]P1

]t
52g1P11g0P052~g01g1!P11g0 . ~35!

The solution is

P1~ t !5FP1~0!2
g0

g01g1
Ge2~g01g1!t1

g0

g01g1
. ~36!

The energy autocorrelation function is given by

^DE~0!DE~ t !&05^E~0!E~ t !&02^E&0
2

5 (
i , j50

1

G0~ i ,tu j ,0!EiEjPeq,j2^E&0
2 .

~37!

It straightforward to evaluate this sum using Eq.~36! from
which all four conditional probabilitiesG0( i ,tu j ,0) may be
found. However, it is easier to note that, since Eq.~36! im-
plies that each of the conditional probabilities is a linear
function of e2(g01g1)t, the entire energy autocorrelation
function also depends linearly on this quantity. Thus, for
some constantsA andB we have

^DE~0!DE~ t !&05Ae2~g01g1!t1B. ~38!

Letting t go to zero we findA1B5^(DE)2&0, letting t go to
infinity givesB50. Therefore, Eq.~38! becomes

^DE~0!DE~ t !&05^~DE!2&0e
2~g01g1!t. ~39!

When substituted into the FD theorem Eq.~25! we thus find

c~s!5
^~DE!2&0
kBT

2

g01g1

s1~g01g1!
. ~40!

For s50 Eq. ~40! reduces to Eq.~1!.
Equation ~40! is formally indistinguishable from the

frequency-dependent specific heat of the Langevin equation
for a harmonic potential Eq.~32!, since for a suitable choice
of G Eqs. ~32! and ~40! may both be writtenc(s)
5c(0)G/(s1G). Thus the frequency-dependent specific
heat is not able to distinguish between the continuous Lange-
vin model and a discrete two-level system.

It is straightforward to show that for a two-level system

^~DE!2&05
~E12E0!

2e2b~E01E1!

~e2bE01e2bE1!2
. ~41!

Combining Eqs.~34!, ~40!, and~41! and introducing the di-
mensionless imaginary frequency

s̃5st0e
bEmax, ~42!
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the following expression is arrived at

c~ s̃!5
~E12E0!

2

kBT
2@e2bE01e2bE1#@ s̃1~ebE01ebE1!#

. ~43!

C. Collection of two-level systems

Consider a collection of two-level systems, each with the
sameE0 and Emax, but with a distributionE1’s, f (E1),
where E0,E1,Emax. The frequency-dependent specific
heat of this system is just the sum of all the single two-level
system specific heats given by Eq.~43!; thus

c~ s̃!5
1

kBT
2E

E0

Emax ~E12E0!
2f ~E1!dE1

@e2bE01e2bE1#@ s̃1~ebE01ebE1!#
.

~44!

A discussion of the low-temperature limit of this expression
is given in Sec. VI.

D. Energy master equation

This and related equations have been discussed as models
for enthalpy relaxation in supercooled liquids.10,29–32 The
idea is the following. The supercooled liquid is thought of as
temporarily trapped in some configuration. To jump into an-
other configuration, a number of molecules~a ‘‘region’’ ! col-
lectively have to pass an energy barrier given by
DE5Emax2E, whereE is the energy of the initial state. The
maximum to be overcome,Emax, is assumed to be indepen-
dent of the initial state. A further assumption is that, once
excited into the transition state, the region has forgotten
which state it came from and ends up in a randomly chosen
state. If n(E) is the normalized density of states and one
defines

G~E!5G0e
2b~Emax2E!, ~45!

the above assumptions lead to the energy master
equation31,32 ~EME! for the energy probability distribution
P(E,t):

]P~E,t !

]t
52G~E!P~E,t !1n~E!E

2`

`

G~E8!P~E8,t !dE8.

~46!

The first term on the right-hand side represents the probabil-
ity per unit time for jumping away from a state of energy
E, the second term is the probability per unit time for having
a region changing its energy intoE. To make sense physi-
cally, the energy integration in Eq.~46! should only extend
up toEmax; however, at not too high temperatures the inte-
gration may be extended to infinity without changing the
relaxation properties of the equation around the main parts of
the relaxation spectrum.

If G0(EuE8)(s) is the Laplace transform of the Green’s
function, Eq.~27! implies

c~s!5
^E2&0
kBT

2 2
s

kBT
2E

2`

` E
2`

`

G0~EuE8!~s!

3Peq~E8!EE8dEdE8. ~47!

To findG0(EuE8)(s) one refers to the general solution of the
EME @Eq. ~A10! in Ref. 32#, according to which the Laplace
transform ofP(E,t) is given by

P~E,s!5
n~E!

s@s1G~E!#

E
2`

` G~E9!P~E9,t50!

s1G~E9!
dE9

E
2`

` n~E9!

s1G~E9!
dE9

1
P~E,t50!

s1G~E!
. ~48!

G0(EuE8)(s) is found by substituting P(E9,t50)
5d(E92E8) into Eq. ~48!. After some elementary reduc-
tions utilizing the fact thatPeq(E)}n(E)/G(E), one finally
finds33 from Eq. ~47!

c~s!5
1

kBT
2 5 K G~E!E2

s1G~E! L
0

2

K G~E!E

s1G~E! L
0

2

K G~E!

s1G~E! L
0

6 . ~49!

VI. QUASIUNIVERSALITY
OF THE FREQUENCY-DEPENDENT SPECIFIC HEAT

AT LOW TEMPERATURES

This section discusses quasiuniversality at low tempera-
tures for two models. The one model is a collection of two-
level systems~Sec. V C!, the other is defined by the EME
~Sec. V D!. Each model has a common value of the energy
maximum to be overcome in transitions between any two
states. As shown below for both models, if the density of
states has a sharp low-energy cutoff, the frequency-
dependent specific heat at low temperatures in dimensionless
units becomes independent of both temperature and density
of states. It turns out that the two universal curves are very
similar, justifying the term ‘‘quasiuniversality.’’

Consider first a collection of two-level systems, each with
ground state energyE0. If the distribution of excited states,
f (E1), obeys f (E0)Þ0, this model results in a normalized
specific heat which is universal. This is because, in the low-
temperature limit,f (E1) in the integral of Eq.~44! may be
replaced by the constantf (E0) and the integration may be
extended to infinity. Doing this one finds that the normalized
specific heat,c̃( s̃)5c( s̃)/c(0), is given by

c̃~ s̃!5
F~11 s̃,21 s̃!

F~1,2!
, ~50!

wheres̃ is given by Eq.~42! and

F~a,b!5E
0

` x2

ex1ae2x1b
dx. ~51!

Consider now the energy master equation. In this case,
whenever there is a sharp low-energy cutoff atE5E0 for the
density of states@i.e., n(E)50 for E,E0 and n(E0)Þ0#,
n(E) may be replaced byn(E0) at low temperatures. Thus,
as shown in Appendix A, Eq.~49! implies @where
s̃5s/G(E0) and Lim(z) is themth polylogarithm34#
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c̃~ s̃!5
22

s̃
Li3~2 s̃!2

Li2
2~2 s̃!

s̃ln~11 s̃!
. ~52!

Figure 1 shows a Cole-Cole plot of the two universal
frequency-dependent specific heats and data for six super-
cooled alcohols obtained by the ‘‘adiabatic’’ method.4,35The
two universal curves are almost identical. Data for four of
the alcohols compare favorably to the universality predic-
tion; however, two alcohols deviate considerably. At present
no clear conclusion can be reached regarding whether the
simple models behind the quasiuniversality prediction reflect
the actual behavior of supercooled alcohols. If this is the
case, one may speculate that the two alcohols deviating from
universality both have additionalb relaxation above the
dominanta relaxation.

VII. CONCLUSION

We have derived the fluctuation-dissipation theorem for
frequency-dependent specific heat. In this case the ‘‘external
field’’ does not enter into the Hamiltonian but is the
temperature—a statistical concept. Consequently, the suit-
able framework for discussing frequency-dependent specific

heat is to consider systems described by a master equation.
The FD theorem was illustrated by simple examples, in-

cluding a system described by a linear Langevin equation
and a two-level system. These models both give rise to De-
bye frequency dependence of the specific heat, so specific
heat spectroscopy cannot distinguish between these concep-
tually very different models~of course, the models can be
distinguished by the temperature dependence of the loss peak
frequency!. This is analogous to what happens for dielectric
relaxation described by the same two models; it reflects the
fact that both models have a single relaxation time.

In the low-temperature limit, a distribution of two-level
systems—each with the same energy difference between
ground state and barrier to be overcome—gives rise to a
frequency-dependent specific heat, that in dimensionless
units is independent of the distribution of level spacings.
Interestingly, almost the same universal frequency-
dependent specific heat arises from a quite different ap-
proach, that of the energy master equation. In real units the
frequency-dependent specific heat is usually strongly tem-
perature dependent; the prediction of universality just means
that theshapeof the specific heat loss peak is temperature
independent. Thus, universality implies that these systems at
low temperatures have frequency-dependent specific heats
obeying the time-temperature superposition principle. The
two universal curves give a good fit to four of the six alco-
hols studied in Refs. 4 and 35. Whether this is a pure coin-
cidence or a result of general significance remains to be seen.
It is thus an open question whether or not supercooled liq-
uids close to the laboratory glass transition~where the mea-
surements of Fig. 1 were made! are at ‘‘low temperatures’’
in the sense of Sec. VI, meaning that the molecular configu-
ration is close to the ground state~excitations of which give
rise to the universal frequency-dependent specific heat!. Fur-
ther work is needed to clarify this point.
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APPENDIX: DERIVATION OF UNIVERSAL
LOW-TEMPERATURE FREQUENCY-DEPENDENT

SPECIFIC HEAT IN THE EME
WITH A LOW-ENERGY CUTOFF

We here derive Eq.~52!, the universal low-temperature
frequency-dependent specific heat for the EME with a low-
energy cutoff in the density of states atE5E0. Introducing
the quantity

Am~s!5 K G~E!Em

s1G~E! L
0

, ~A1!

Eq. ~49! becomes

FIG. 1. Cole-Cole plot of normalized frequency-dependent spe-
cific heat data for six supercooled alcohols~symbols!4,35 compared
to the two universality predictions valid at low temperatures for
systems with sharp low-energy cutoffs„Eq. ~50! for a collection of
two-level systems@full curve# and Eq.~52! for the energy master
equation@dashed curve#…. The horizontal axis gives the real part and
the vertical axis gives the negative imaginary part of the normalized
frequency-dependent specific heat~with the frequency as parameter
tracing out the curve!. The figure shows that the two universality
predictions are very similar, thus giving rise to a hypothesis of
‘‘quasiuniversality’’ at low temperatures among different models
with sharp low-energy cutoffs. The quasiuniversal specific heat
compares favorably to the data for four of the alcohols. The remain-
ing two alcohols give rather poor fits, possibly due to additionalb
relaxations above the dominanta relaxation.
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c~s!5
1

kBT
2 FA2~s!2

A1
2~s!

A0~s!
G . ~A2!

The equilibrium energy probability distribution is given by
Peq(E)5n(E)e2bE/Z where Z5*E0

` n(E)e2bEdE. At low

temperatures the density of statesn(E) may be replaced by
the numbern(E0) and the equilibrium energy probability is
simply Peq(E)5be2b(E2E0). Without loss of generality it
may be assumed thatE050 and Eq.~A1! becomes

Am~s!5bE
0

` G0e
2b~Emax2E!

s1G0e
2b~Emax2E! E

me2bEdE. ~A3!

Introducing the dimensionless imaginary frequency

s̃5
s

G0e
2bEmax

, ~A4!

Eq. ~A3! becomesAm(s)5b2mfm( s̃) where

f m~ s̃!5E
0

` xm

s̃1ex
dx. ~A5!

In terms of f m( s̃), Eq. ~A2! implies for the normalized
frequency-dependent specific heat c̃[c(s)/
c(0) @becausec(0)5kB for the flat density of states#

c̃~ s̃!5 f 2~ s̃!2
f 1
2~ s̃!

f 0~ s̃!
. ~A6!

The function f m( s̃) may be expressed in terms of themth
polylogarithm Lim defined34 by

Lim~z!5 (
n51

`
zn

nm
. ~A7!

This is done by expanding forus̃u,1:

f m~ s̃!5E
0

` xme2x

11 s̃e2x
dx

5E
0

`

xme2x(
n50

`

~2 s̃e2x!ndx

5 (
n50

`

~2 s̃!nE
0

`

xme2~n11!xdx

5 (
n50

`

~2 s̃!n
m!

~n11!m11 , ~A8!

implying that f m( s̃)52m!Lim11(2 s̃)/ s̃. When this is sub-
stituted into Eq. ~A6! we find, using the fact that
Li 1(z)52 ln(12z),

c̃~ s̃!5
22

s̃
Li3~2 s̃!2

Li2
2~2 s̃!

s̃ln~11 s̃!
. ~A9!

While Eq.~A9! was derived assumingus̃u,1 the result is
valid for all frequencies by analytic continuation. The ana-
lytic continuation of the polylogarithm may be evaluated
from the following relation36 valid for m52,3, . . . :

Lim~z!1~21!mLimS 1zD52
~2p i !m

m!
BmS lnz2p i D .

~A10!

HereBm(z) is themth Bernoulli polynomial and the argu-
ment for the complex logarithm is chosen between 0 and
2p.

For s̃→0 Eq.~A9! implies c̃512 s̃/4. Fors̃→` Eq. ~A9!
implies for the real part of the frequency-dependent specific
heat @s̃5 i ṽ# c̃85p ln2(ṽ)/(8ṽ) and for the imaginary part
c̃952 ln3(ṽ)/(12ṽ). The loss peak frequency is given by
ṽm54.51 and the maximum of the negative imaginary part
is given byc̃max9 520.313.
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