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Fluctuation-dissipation theorem for frequency-dependent specific heat
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A derivation of the fluctuation-dissipatio(FD) theorem for the frequency-dependent specific heat of a
system described by a master equation is presented. The FD theorem is illustrated by a number of simple
examples, including a system described by a linear Langevin equation, a two-level system, and a system
described by the energy master equation. It is shown that for two quite different models with low-energy
cutoffs—a collection of two-level systems and a system described by the energy master equation—the
frequency-dependent specific heat in dimensionless units becomes universal at low temperatures, i.e., indepen-
dent of both energy distribution and temperature. These two models give almost the same universal frequency-
dependent specific heat, which compares favorably to experiments on supercooled alcohols.
[S0163-18296)06446-9

[. INTRODUCTION measurements of the frequency-dependent specific heat of
supercooled liquid&* a number of authors discussed theo-
ac calorimetry was introduced in the 1960’s as an accuries for this quantity’~2* The frequency-dependent specific
rate method for measuring the ordinary dc specific héat. heat was viewed in the context of generalized hydrodynam-
The use of ac calorimetry for measuring the frequencydcs for liquids with structural relaxatiof?.** It was suggested
dependent specific heat was pioneered in 1985 by Birge argy Zwanzig that the frequency-dependent specific heat is di-
Nagef and by ChristensehFrequency-dependence of the rectly related to the frequency-dependent longitudinal
specific heat occurs, e.g., in liquids close to the glasyiscosity?® Jakle** discussed heat conduction and
transition® where structural relaxations take place on a timeffequency-dependent specific heat in one-component liquids
scale depending strongly on temperafir®ther systems near the glass transition and showed that a frequency depen-
with slow enthalpy relaxations like unfolding protefrmiso ~ dence of the thermal conductivity is connected to a wave
exhibit frequency dependence of the specific heat. For meactor and frequency dependence of the specific heat. De-
surements of the frequency-dependent specific heat, the agpite these theoretical developments, a proof of the FD theo-
cessible time scale typically involves times longer than ondem for frequency-dependent specific heat does not seem to
second. exist in the literature. This is ironic, since one of the very
Studies of enthalpy relaxation in supercooled liquids uporparliest indications of the existence of FD theorems is Ein-
a large change of temperature had been carried out for segtein’s well-known result that the ordinary dc specific heat
eral years before the introduction of “specific heat Cp iS proportional to the mean-square enthalpy fluctuation in
spectroscopy.®®-1The study of enthalpy relaxation upon a the canonical ensemblghere and henceforth the subscript
small change of temperature, which is a linear phenomenor® denotes an equilibrium average
is conceptually simpler but experimentally more difficult.

This is probably why the first measurements of frequency- . :<(AH)2>0 @
dependent specific heat appeared just 11 years ago. From a P kBT2 '

theoretical point of view, however, a linear response is much

easier to model and understand than a nonlinear response. The outline of the paper is as follows. Section Il briefly

This may account for the recent increased interest in ac speeviews the stochastic framework within which the FD theo-

cific heat measurementg?- rem for frequency-dependent specific heat is derived in Sec.
The main reason for the simplicity of a linear response idV. This is done by analogy with the derivation of the ordi-

the fluctuation-dissipationlFD) theorem, which expresses nary FD theorem, which is reviewed in Sec. lll. Section V

the response of a system upon a slight time-dependeiitustrates the FD theorem for specific heat by working out a

change of external parameters in terms of equilibrium flucnumber of simple examples. In Sec. VI we discuss “quasi-

tuations. In effect, a linear response probes the equilibriununiversality” of the frequency-dependent specific heat in

dynamics(i.e., the dynamics in absence of any external discertain systems and compare the quasiuniversal frequency-

turbance. The standard proof of the FD theorem considersdependent specific heat to data for six supercooled alcohols.

an external field that perturbs the Hamiltonfat©Often, when  Section VII contains the conclusion.

dealing with the frequency-dependent specific heat, more or

less explicit reference is made to the standard FD Il. STOCHASTIC MODEL

theorem’1216-19Thjs, however, is inaccurate since the spe-

cific heat is not a response to an external field perturbing the The system is described by probabilities to be in some

Hamiltonian. “states” and the dynamics is given by a master equation. If
Shortly after the first appearance of publications reportingP; is the probability to be in stateandW;; is the probability
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per unit time for a transition from stajeto statei, the master
equatior® is the following first order differential equation:

JdP;

p )

__,E W, P; +Z W P; .
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In terms of the Green’s function the correlation function is

given by

(AA(0)AB(t))o= I}J} Goli,1]j,0)PeqAA;AB; . (10)

The first term on the right-hand side represents the probabil-

ity per unit time of leaving staté while the second term

represents the probability per unit time of jumping into state

. Equation (2) is linear. The Green’s functio(i,t|j,t')
is the probability to be in state at timet given that the
system is in statg at timet’<t; in terms of the Green'’s
function the linearity of Eq(2) implies?®

Pi<t>=§ Golit]j,t)Py(t")  (t>t"). &)

The equilibrium probabilityP
thus

eqi

eq| 2

]

Goli,t]j,t")P (t>t'). 4)

eqj

Ill. THE ORDINARY FLUCTUATION-DISSIPATION
THEOREM

Consider a system which is in thermal equilibrium at time

t=—o. Applying a time-dependent external fiefdt), the

is time independent and

Equation (10) comes from considering the actual “path” o

€the system in state space due to equilibrium thermal fluctua—
tions. The probability to be in stajeatt=0 is Pgq; and the
probability of subsequently being in statat timet is given

by the Green’s function. Note that the correlation function
refers to equilibrium fluctuations; the point of the FD theo-
rem is precisely that the linear response to an external field is
determined by fluctuations in thermal equilibrium with no
external field.

Following Doi and Edward$ the derivation of the ordi-
nary FD theorem proceeds in the following way. Suppose the
system is equilibrated at a small constant time-independent
external fieldf,, which is turned off at timé=0. Fort>0
the system relaxes towards equilibrium corresponding to the
zero field situation. The approach of the variaBléowards
equilibrium is via Eq.(5) given by

average deviation from equilibrium of some physical quan-

tity, 6B, depends linearly ori(t) if the field is sufficiently
small. The general linear expression &B(t) reflecting cau-
sality and time homogeneity is

5B(t)=J:,u(t’)f(t—t’)dt’. (5)

In the frequency domain, one considers a small oscillating, g A,

perturbation,f(t) = Re{foe“} wheres is the imaginary fre-

5B(0= | “wt) ot =avfo, (11
t
wherea(t) is related tow(t) by
da
T (12

If the unperturbed energy of stajes E; and the value of
the initial state probablllty at=0, P;(t=0),
is the eqU|I|br|um probability in the external field,

guency 6=iw) and Re denotes the real part. Inserting '[hIS[H Ho—foA implies that the energy of statg is

into Eq. (5) gives

5B(t)=Re{fou(s)e™}, (6)

where the frequency-dependent response functi¢g) is
the Laplace transform gf(t),

u(s)= fo w(t)e sdt. 7
If AB;=B;—(B) is the deviation from equilibrium of the
variableB in statei and AA, is the deviation from equilib-
rium of the variable conjugate to the external fié(d) [i.e.,
H(t)=Hy—f(t)A where Hy is the unperturbed Hamil-
tonian], the ordinary FD theoreti?® states that

1
p(t)=—7— —<AA(0)AB(t)>o

kgT dt ®

Combining Egs(7) and(8) leads to

1 (=/d
W=, (EMA(O)AB(t))O e sdt.  (9)

Ej—foAl:

e PE~ToA)

Pi(t=0)= ————, (13)

where 8=1/(kgT) andZ==;e A& ~ToA) |t is straightfor-
ward to show that Eq13) implies

P=0 1, A 14
Ao |y o KeT ewth- (19
o=
To first order infy one therefore has
1
Pi(t=0)=Peg)| 1+ {5 fodA |. (15)

Using Egs(3), (4), (10), (15), and the fact thatAB),=0, to
first order in the external fieldl,
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5B(t)=2 Pi(t)ABiziEj Gol(i,t|j,0P;(t=0)AB; 5B(t)=2i Pi(t)ABi=i2j Go(i,t]j,00P;(t=0)AB;
=> G t|j,0P 1+ 1% A |AB = Gy(i,t]j,0P 1+ Ay |aB
-2 0(i,t]j,0)Peg ket AA i =2 o(i,t]],0)Peq;(T) kg2 2Yi i
_ o an0)aB 16 _ O AY(0)AB 22
_kB_T( (0)AB(t))g. (16) —@< (0)AB(t))g. (22
Thus We can now extract the functiona(t) defined by
SB(t) = a(t) 5T:
t)= ! AA(0)AB(t 1 1
(D)= 1 7 (AADABM)o. @ a(t)= {2(AY(0)AB(V),. (23
Via Eg. (12) one now arrives at the ordinary FD theorem Eq. The frequency-dependent response function is given by Egs.
(8). (7) and(12), leading to
1 (=/d
IV. FLUCTUATION-DISSIPATION THEOREM _ st
S)=— —— —(AY(0)AB(t e °dt. (24
FOR SPECIFIC HEAT () kgT fo (dt< (0)AB(V)o 24

In measurements of the specific heat two different experiy, particular, the case whe is the energy(in the constant
mental situations may be realized. The most common igq| me casgor the enthalpyin the constant pressure case

keeping the pressure constdigobaric condition alterna-  giye5 the FD theorem for frequency-dependent specific heat.
tively the volume may be kept constafisochoric condi-

tions). For both corresponding canonical ensembles, the

equilibrium distribution is Boltzmann-like with an appropri- V. FREQUENCY-DEPENDENT SPECIFIC HEAT
ate quantityY; in the exponential: IN SOME SIMPLE MODELS
In the isobaric caseY is the enthalpyH and the
e P frequency-dependent specific heat is given by
Peq,j:Ta (18

1 = d
c(s)=— —— —(AH(0)AH(1))|e S'dt. (25
whereZ=3;e”#"i. In the canonical isobaric ensemblg is ® kBTZJ'O (dt< (0)AH( )>°) @9

the enthalpy ¥;=E;+pV;), in the canonical isochoric en-

sembleY; is the energy’ After a partial integration this becomes
Consider now a system exposed to a temperature “field”
T(t) given by (AH)?)o s [
= —st
c(s) KaT? kBTZJo (AH(0)AH(t))pe®'dt.
T+6T, t<0 (26)
T= T, t>0. (19

For s=0 we recover the standard expression for the dc spe-
cific heat Eq.(1). It is sometimes convenient to rewrite the
Equation (18) implies FD theorem by substituting the identi§AH(0)AH(t))o
=(H(0)H(1))o— (H)3 into Eq. (26), leading to

Peai py L b Ty (20)
RS i (H? s (= -
I B o(8) =177 72, (HOHD)ee dt  (27)
To first order in 6T, the distribution P;(t=0)=Pgq;(T
+ 6T) may via Eq.(20) be expressed in terms of the equi-  If the pressure is zero, the enthalpy is equal to the energy.
librium distribution atT: In this case, one calculates the frequency-dependent isobaric

specific heat by considering equilibrium energy fluctuations,
as done below for some simple models. Note thatc,

. (21) even whernp=0, although both quantities are given by for-
mally identical expressions involving energy autocorrelation
functions. This is because the dynamics in the two situations

The time dependence of the average deviation of a physicalre different(when the pressure is constant the volume fluc-

quantityB from equilibrium is fort>0 via Egs.(3), (4), and  tuates and more states are allowed than in the constant vol-

(21) given by ume casg

oT



A. Langevin equation in harmonic potential

Consider first a system described by a variablehich
fluctuates in a harmonic potentid(x) = 2kx?. We assume
thatx obeys the Langevin equation

. JE
X=—po HEU) =~ pkx+ (1), (29)
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(33

wherevy; is the rate of jumps out of state This is fulfilled if
the rates are given by those of transition state théatere
7o IS the inverse of the “attempt frequency”

')’OPeq,O: 'leeq,li

1

%ZT_O

e” B(Emax—Ej) . (34)

where &(t) is a Gaussian white noise term with variance The differential equation for the probability of being in state

given by (&(t)&(t'))o=2umkgTS(t—t"). The Langevin

number 1 is(utilizing the fact thatPy+P,=1)

equation ensures the correct canonical probability propor-

tional to exfi— BE(X)].2° Sincex(0) is uncorrelated with the
noise at later timegx(0)£(t))o=0 fort>0, Eq.(28) leads

o (d/dt(x(0)x(t))o=(X(0)X(t) }o=— k(X(0)X(t))o,
implying that

(X(0)X(1))o=(x?)oe ™.
For the energy autocorrelation function one finds

(29

(AE(0)AE(t))o=(E(0)E(1))o—(E)j
k2 k2 )
7 (0o = 7 (x5 (30)

As is well known, the linear Langevin equation E@8)
has the property thad(t) is distributed according to a Gauss-
ian.  Since (x3(0))o=(x?(t))o=(x?)y, this implies
that  (x2(0)x2(1))o=(x?)g+2(x(0)x(t))5 [if x are
Gaussian variables the following identity holds;X,X3X4)

= (X1X2)(XaXa) T (X1X3){(X2Xa) + (X1X2){X2X3)]. When this

is substituted into Eq(30) the following expression for the
equilibrium energy autocorrelation function is obtain@d-

ing the fact that in a harmonic potentidE),=3kgT)

k2 k2
(AE(0)AE(t))o= (X(0)X(1))5 = (x*) e 2~

1
=2(E)ge” 2K'=> (kgT)%e 24X,

(31)

P
Tz_ylpl—i"yopo: —(voty)Pitvo. (39
The solution is
Yo _ Yo
P,(t)=|P4(0)— e~ (otrty . (36
oY) 1(0) Yot v1 Yot 71 (36)
The energy autocorrelation function is given by
(AE(0)AE(1))o=(E(0)E())o—(E)3
1
:ijzzo Go(i,t]j,0E{EjPeq;—(E)3.
(37)

It straightforward to evaluate this sum using Eg§6) from
which all four conditional probabilitie$s(i,t|j,0) may be
found. However, it is easier to note that, since E3§) im-
plies that each of the conditional probabilities is a linear
function of e” (")t the entire energy autocorrelation
function also depends linearly on this quantity. Thus, for
some constantd andB we have
(AE(0)AE(t))o=Ae (0" 74 B, (39

Lettingt go to zero we findA+ B=((AE)?),, lettingt go to
infinity gives B=0. Therefore, Eq(38) becomes

(AE(0)AE(1))o=((AE)?)ge™ (7ot 7Y, (39
When substituted into the FD theorem E®5) we thus find

For the frequency-dependent specific heat one finally obtains

from Eq. (25)

uk

C(S)= kBm

(32

This is the Debye expression for a linear response funétion,

first derived for dielectric relaxation(remember that

c )_<(AE)2>0 Yot 71
(s)= keT?  s+(voty1)’

For s=0 Eq.(40) reduces to Eq(l).

Equation (40) is formally indistinguishable from the
frequency-dependent specific heat of the Langevin equation
for a harmonic potential Eq32), since for a suitable choice

(40)

s=iw). At high frequencies the specific heat goes to zeroof 1 Eqgs. (32) and (40) may both be writtenc(s)
This is because for a fast small periodic temperature varia=¢(0)r/(s+TI'). Thus the frequency-dependent specific
tion the average energy only has time to change insignifineat is not able to distinguish between the continuous Lange-

cantly.

B. Two-level system

Consider next a system which can be in two different

states = 0,1 with energie€; . It is assumed that there is an

vin model and a discrete two-level system.
It is straightforward to show that for a two-level system

E,;—Eg)%e AEoTE)

<(AE)2>0=( (41)

(e PFo+e FAE1)2

energy maximunE., which the system has to pass to go Combining Eqs(34), (40), and(41) and introducing the di-
from one state to the other. In thermal equilibrium the prob-mensionless imaginary frequency

ability flow between the two states is zefrinciple of de-
tailed balancg?® implying that

S=s7oelEmax, (42)
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the following expression is arrived at To find Go(E|E’)(s) one refers to the general solution of the
, EME [Eq. (A10) in Ref. 32, according to which the Laplace
(E1—Ep) transform ofP(E,t) is given by
c(S)=r—=o——pr = . (43
kgT?[e PFo+e PE1][S+ (efFo+efFr
o7l 05+ )] - T(E")P(E".1=0)
f s+T'(E") dE’
C. Collection of two-level systems P(E,s)= n(E) -

Consider a collection of two-level systems, each with the SIsHI(E)] fm n(—E)dEH

sameE, and E,,, but with a distributionE;’s, f(E,), —»S+T(E")
where Eq<E;<E.. The frequency-dependent specific

heat of this system is just the sum of all the single two-level +M' (48)
system specific heats given by H¢3); thus s+I'(E)
5 Go(E|E’)(s) is found by substituting P(E”,t=0)
c(3)= 1 ZJEmaX — (Elj EO) f(El)dEEl —. =4§(E"—E’) into Eqg. (48). After some elementary reduc-
keT*Jg, [e P o+e PRi][s+(efFo+eff)] tions utilizing the fact thaP o E)><n(E)/T'(E), one finally
(44)  finds® from Eq. (47)
A discussion of the low-temperature limit of this expression T'(E)E |2
is given in Sec. VI. =
1 I'(E)E? <S+F(E)>O
. c(8)=1—2 < > - (49
D. Energy master equation kT | \s+I'(E)/, < I'(E) >
This and related equations have been discussed as models s+I'(E) 0
for enthalpy relaxation in supercooled liquitf£—32 The
idea is the following. The supercooled liquid is thought of as VI. QUASIUNIVERSALITY
temporarily trapped in some Configuration. To jump into an- OF THE FREQUENCY-DEPENDENT SPECIFIC HEAT
other configuration, a number of molecul@s‘region™) col- AT LOW TEMPERATURES

lectively have to pass an energy barrier given by

AE=E ., E, whereE is the energy of the initial state. The This section discusses quasiuniversality at low tempera-
maximum to be Overcomﬁmaxi is assumed to be indepen- tures for two models. The one model is a collection of two-
dent of the initial state. A further assumption is that, oncelevel systemgSec. V Q, the other is defined by the EME
excited into the transition state, the region has forgottedSec. V D. Each model has a common value of the energy
which state it came from and ends up in a randomly chosefaximum to be overcome in transitions between any two

state. Ifn(E) is the normalized density of states and onestates. As shown below for both models, if the density of
defines states has a sharp low-energy cutoff, the frequency-

dependent specific heat at low temperatures in dimensionless
[(E)=Tye AEmaE) (45  units becomes independent of both temperature and density
of states. It turns out that the two universal curves are very
the above assumptions lead to the energy masteasimilar, justifying the term “quasiuniversality.”
equatioi->? (EME) for the energy probability distribution Consider first a collection of two-level systems, each with
P(E,t): ground state energlf,. If the distribution of excited states,
f(E,), obeysf(Eg) #0, this model results in a normalized
* , , , specific heat which is universal. This is because, in the low-
=—F(E)P(E,t)+n(E)f_mF(E )P(E".)dE". temperature limitf(E,) in the integral of Eq(44) may be
(46) replaced by the constafi{fEy) and the integration may be
extended to infinity. Doing this one finds that the normalized
The first term on the right-hand side represents the probabikpecific heaff(s)=c(5)/c(0), is given by
ity per unit time for jumping away from a state of energy
E, the second term is the probability per unit time for having - F(1+475,2+73)
a region changing its energy int6. To make sense physi- C@):W’ (50
cally, the energy integration in E@¢46) should only extend _
up to Eay; however, at not too high temperatures the inte-wheres is given by Eq.(42) and
gration may be extended to infinity without changing the
relaxation properties of the equation around the main parts of F(a,b)= J'w X dx
the relaxation spectrum. ' o +ae *+b
If Go(E|E’)(s) is the Laplace transform of the Green’s
function, Eq.(27) implies Consider now the energy master equation. In this case,
whenever there is a sharp low-energy cutofEat E, for the
(E%), S (= (= , density of stategi.e., n(E)=0 for E<E, and n(Eg) # 0],
C(S):%_Tf_@f_wj_meo(alz )(s) n(E) may be replaced by(E,) at low temperatures. Thus,
as shown in Appendix A, EQ.(49 implies [where
XPe{E")EE'dEdE'. (470 s=sIT'(E,) and Liy(z) is themth polylogarithni“]

IP(E,1)
at

2
(51)
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heat is to consider systems described by a master equation.
1 T T T T H H H
Collection of two-level systems —— The FD theorem was illustrated by simple examples, in-
Energy master equation - cluding a system described by a linear Langevin equation
1,2-propanediol and a two-level system. These models both give rise to De-

il
0.8 - 2-methyl-2,4-pemtanediol - 1 bye frequency dependence of the specific heat, so specific
1,3-butanediol x heat spectroscopy cannot distinguish between these concep-
glycerol 2 i
06 | 1.2,6-hexanetriol x | tually very different modelgof course, the models can be

distinguished by the temperature dependence of the loss peak
frequency. This is analogous to what happens for dielectric
relaxation described by the same two models; it reflects the
fact that both models have a single relaxation time.

In the low-temperature limit, a distribution of two-level
systems—each with the same energy difference between
ground state and barrier to be overcome—qgives rise to a
frequency-dependent specific heat, that in dimensionless
units is independent of the distribution of level spacings.
Interestingly, almost the same universal frequency-
dependent specific heat arises from a quite different ap-
proach, that of the energy master equation. In real units the

Real part of € frequency-dependent specific heat is usually strongly tem-
perature dependent; the prediction of universality just means

FIG. 1. Cole-Cole plot of normalized frequency-dependent spethat theshapeof the specific heat loss peak is temperature
cific heat data for six supercooled alcoh@ymbolg*3° compared  independent. Thus, universality implies that these systems at
to the two universality predictions valid at low temperatures for|gw temperatures have frequency-dependent specific heats
systems with sharp low-energy cutoff&q. (50) for a collection of obeying the time-temperature superposition principle. The
two-level systemgfull curve] and Eq.(52) for the energy master o universal curves give a good fit to four of the six alco-
equatior{dashed curvB. The horizontal axis gives the real part and hols studied in Refs. 4 and 35. Whether this is a pure coin-
the vertical axis gives the negative imaginary part of the normalizeq:idence or a result of general significance remains to be seen.
frequency-dependent specific héaith the frequency as parameter It is thus an open question whether or not supercooled lig-
tracing out the curje The figure shows that the two universality uids close to the laboratory glass transitiovhere the mea-

Bredlc_tlor_ls are.V(‘e,ry similar, thus giving rise to a hypothesis Ofsurements of Fig. 1 were madare at “low temperatures”
quasiuniversality” at low temperatures among different models.n the sense of Sec. VI. meaning that the molecular confiqu-
with sharp low-energy cutoffs. The quasiuniversal specific heal C 9 9

compares favorably to the data for four of the alcohols. The remain[f'jltlon is close to the ground staexcitations of which give

ing two alcohols give rather poor fits, possibly due to additighal rise to the universal frequency-dependent specific)hEat-

Negative imaginary part of ¢

relaxations above the dominasatrelaxation. ther work is needed to clarify this point.
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two universal curves are almost identical. Data for four of APPENDIX: DERIVATION OF UNIVERSAL
the alcohols compare favorably to the universality predic- | ow.TEMPERATURE FREQUENCY-DEPENDENT
tion; however, two alcohols deviate considerably. At present SPECIEIC HEAT IN THE EME

no clear conclusion can be reached regarding whether the WITH A LOW-ENERGY CUTOFE

simple models behind the quasiuniversality prediction reflect

the actual behavior of supercooled alcohols. If this is the We here derive Eq(52), the universal low-temperature
case, one may speculate that the two alcohols deviating frofiequency-dependent specific heat for the EME with a low-
universality both have additiongB relaxation above the energy cutoff in the density of states f&t E,. Introducing
dominanta relaxation. the quantity

VIl. CONCLUSION

We have derived the fluctuation-dissipation theorem for F(E)Em> (A1)
0

frequency-dependent specific heat. In this case the “external Am(S)= < s+I'(E)
field” does not enter into the Hamiltonian but is the

temperature—a statistical concept. Consequently, the suit-

able framework for discussing frequency-dependent specifiEg. (49) becomes
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Al(s)
Ag(s) |’

C(S)=r—=7| AxS)— (A2)

kgT?

The equilibrium energy probability distribution is given by

Pe(E)=n(E)e #5/Z where Z=f°§0n(E)e"BEdE. At low
temperatures the density of stateg€) may be replaced by

the numbem(E,) and the equilibrium energy probability is

simply Pe(E)=ge #E~Eo. Wwithout loss of generality it
may be assumed th&,=0 and Eq.(Al) becomes

FOe B(Emax—E) _pE
Am(s):ﬁfo S+Foe B(Emax_E) E e dE (A3)
Introducing the dimensionless imaginary frequency
- s
S=Tye Pomar (A4)
Eqg. (A3) becomesA(s)= B8~ "f(S) where
Xm
fn(S) = J dx. (A5)
0's+e*

In terms of f,(S), Eq. (A2) implies for the normalized
frequency-dependent specific heat c=c(s)/
c(0) [because(0)=kg for the flat density of statés

HE)
fo(S)

The functionf,,(S) may be expressed in terms of thah
polylogarithm Lj, defined* by

4
Lin(2) =§=: -

This is done by expanding fds|<1:

c(5)="11(s) - (AB)

(A7)

JOHANNES K. NIELSEN AND JEPPE C. DYRE

w yMg=X
fm(§):f dx

01+se X
=f xMe XY (—Se *)"dx
0 n=0

_2 (— S)nj xMa~ (N+1)xqy

I
=> (-73) n(njl}m, (A8)

n=0

implying thatf,(S)=—m!Li . ,(—S)/S. When this is sub-

stituted into Eqg. (A6) we find, using the fact that
Li;(z)=—In(1-2),
. 2 _ L%
S(3)=—=Lig(~3) - (A9)
S sin(1+s)

While Eq.(A9) was derived assuming|<1 the result is
valid for all frequencies by analytic continuation. The ana-
lytic continuation of the polylogarithm may be evaluated
from the following relatiori® valid for m=2,3, .. .:

(27i)™ Inz
mi Bm(ﬁ)-
(A10)

Here B,,(2) is the mth Bernoulli polynomial and the argu-
ment for the complex logarithm is chosen between 0 and
27,

Fors—0 Eq.(A9) impliesc=1—/4. Fors—« Eq. (A9)
implies for the real part of the frequency-dependent specific
heat[S=i®] ¢’ = wIn*®)/(8®) and for the imaginary part
T"=—In¥@)/(12®). The loss peak frequency is given by
w,=4.51 and the maximum of the negative imaginary part
is given bycy, .= —0.313.
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