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Abstract 

The universal time-dependence of the mean-square displacement for motion in a random energy landscape with equal 
minima is evaluated analytically and numerically in the percolation path approximation (PPA), which was recently shown by 
extensive computer simulations in two and three dimensions [Dyre and Schr~ler, cond-mat/9601052] to be more accurate 
than the standard effective medium approximation (EMA). According to the PPA the universal mean-square displacement 
in dimensionless units as function of time varies as 1 / In 2 ( t -  ~ ) for t ~ 0. This implies a quite different short-time behavior 
than predicted by the EMA, where the universal mean-square displacement varies as 1/ln(t - t )  at short times [Dyre and 
Jacobsen, Phys. Rev. E 52 (1995) 2429]. 

1. Introduction 

The study of motion in rugged energy landscapes is relevant in a number of contexts [ 1,2]. Examples include 
models for dc [3-5] and ac conduction in disordered solids [6-9] ,  protein dynamics [10-12],  viscous flow 
of liquids close to the glass transition [ 13,14], diffusion in random flows [ 15], or rate processes controlled by 
the anomalous diffusion of reactants [ 16-20]. Usually, the complexity of a system is represented by some sort 
of randomness of the energy landscape. Recently, interest has focussed on the extreme disorder limit arrived 
at by letting the temperature go to zero [21-23]. In this limit the rates for jumps across energy barriers 
cover more and more decades of frequency. According to the effective medium approximation (EMA),  in the 
extreme disorder limit a universality arises: The frequency-dependent diffusion constant becomes independent 
of the energy barrier probability distribution [21 ]. The existence of universality was confirmed by computer 
simulations in two dimensions [21]. However, more extensive simulations in two and three dimensions have 
shown that the EMA is not quantitatively accurate [24]. Instead, a new approximation - the percolation path 
approximation (PPA) - has been proposed [24] and shown to work better than the EMA. 

The purpose of this paper is to evaluate the universal time-dependence of the mean-square displacement in 
the PPA, supplementing our earlier calculation of the mean-square displacement in the EMA [25]. This is 
done in Section 3 after setting up the model and reviewing basic concepts in Section 2. Section 4 studies the 
asymptotic behavior of the universal mean-square displacement at short and long times according to both the 
EMA and the PPA. Section 5 contains the conclusion. 
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2. Model and basic concepts 

In most cases it is realistic to model the motion of a "particle" (representing the state of the system) in 
a rugged energy landscape in d dimensions by a Langevin equation for motion in a potential that is random 
in some sense. Usually, one would assume that the potential is randomly Gaussian with some finite spatial 
correlation, for example with an exponentially decaying autocorrelation. In this case correlations beyond the 
correlation lenght may be ignored, leading to a hopping model with random jump rates as studied below. 

At low temperatures the "particle" spends most time vibrating in potential energy minima. Occasionally, 
by thermal excitation the "particle" acquires enough energy to "jump" between two minima. Thus, the low- 
temperature behavior may be described by a discrete so-called hopping model [6,26,27] characterized by an 
ordinary master equation for the probability to stay at some site. For simplicity it will be assumed that the 
sites lie on a d-dimensional cubic lattice, that all sites have the same energy (Model A of Ref. [22] ), and 
that the values of the barriers to be overcome in hopping from one site to a neighboring site are uncorrelated 
from link to link. Assuming rate theory, the jump frequency for jumps along a particular link, F, is given 
by F = F0 e x p [ - E / ( k B T ) ]  where the activation energy E is chosen randomly according to some probability 
distribution, p (E).  

The quantity of interest is the mean-square displacement in an axis direction i as function of time, 
(AX/2(t)). The frequency-dependent diffusion constant D(s) is defined [28] by [where a convergence factor 
l im~0  e -~' (e > 0) is implicitly understood in the integral] 

s2 f ) e-s' D(s) = -~- (AX/2(t) dt.  

0 

(1) 

Here s denotes the "Laplace" (imaginary) frequency: s = iw. For ordinary diffusion, where (AXe(t)) = 2Dr, 
Eq. (1) implies D(s) = D. In disordered systems the mean-square displacement at short times varies more 
rapidly than this. This implies [25] that D(s), if considered as function of real s, is an increasing function. 

Throughout this paper dimensionless units are used: The units of length and time are chosen such that 
the DC limit of D(s) is 1 and the frequency marking the onset of frequency-dependence of D(s) is one. 
It is sometimes convenient to regard the "particle" as charged; if the unit of charge is suitably chosen the 
fluctuation-dissipation theorem implies ~r(s) = D(s), where ~r(s) is the frequency-dependent conductivity. 

3. Universality in the extreme disorder limit 

The hopping model may be mapped to an electrical network consisting of resistors [equal to the inverse jump 
rate], identical capacitors, and a large number of voltage generators [21,29]. In the zero-frequency limit the 
network reduces to a simple resistance network. At low temperatures the DC current flows on the "percolation 
cluster" [30,31], the set of links with activation energy below Ec, where Ec in terms of the link percolation 
threshold Pc is defined by 

E~ 

p(E) 

o 

dE = Pc. (2) 

The physical background for the universality of the frequency-dependent diffusion constant (or equivalently, 
of the time-dependent mean-square displacement) is the fact [21] that low-frequency AC diffusion is also 
dominated by percolation. More precisely: At any given temperature percolation effects dominate AC diffusion 
for a finite frequency-range around the frequency marking the onset of frequency-dependence of D(s) [equal 
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to one in our unit system] ; however, this range of frequencies covers more and more decades as the temperature 
is lowered towards zero. 

Because of the dominance of percolation at low temperatures, the details of p ( E )  are unimportant if p ( E )  
is smooth at Ec and p(Ec)  4: 0, as is assumed throughout this paper. In these cases the EMA leads [21] to 
the following equation for the universal D = D(s) :  

D lnD = s. (3) 

This equation was first derived by Bryksin in 1980 [32] in a paper discussing the frequency-dependent 
conductivity in the dilute limit of the "r-hopping model" for tunneling between randomly placed sites in a 
d-dimensional solid. If one defines the two functions 

and 

E(O) = _ _ 0  e_0COt 0 (4) 
sin 0 

F(O) = c o s 0 -  + sin20, (5) 

the solution of Eq. (3) is [25] 

1 j sE(O) 
D( s )  = l + -- F(O) - -  dO. (6) 

Ir s + E( O) 
o 

The time-dependence of the mean square displacement is given [25] by 

( A X 2 ( t ) ) E M A  = 2t + 2 T F ( O  ) (1 - e -tE(O)) dO. (7) 
7/" d 

0 

At long times (t >> 1) Eq. (7) implies ordinary diffusion, (AXZ(t)) = 2t. At short times (t << 1) Eq. (7) 
implies (AX/2(t)) ~-" 2 / l n ( t  -1 ) [25]. This result is derived in a more general setting in the next section. 

The percolation path approximation (PPA) [24] is based on the following naive picture of "conduction" on 
the percolation cluster. Ignoring the fractal nature of the percolation cluster, the conducting paths are regarded 
as one-dimensional. In high dimensions this point of view leads to the correct percolation threshold. In two 
or three dimensions a large part of the percolation cluster does not contribute to low-frequency conduction. 
Only the "backbone" of the cluster is relevant here. In fact, on the backbone the so-called "red" bonds carry 
all current flowing through the cluster. The set of red bonds has a fractal dimension close to one (3 /4  in 
two dimension and 1.2 in three dimensions) [15], thus justifying the use of the PPA also in two or three 
dimensions. 

Since the criterion for a link of the lattice belonging to the percolation cluster is that the activation energy for 
the link jump rate is below Ec, we model a percolation path as a one-dimensional path with a randomly chosen 
activation energy below Eo Thus, according to the PPA diffusion in the extreme disorder limit is modelled 
as an effectively one-dimensional process that involves the same activation energy probability distribution as 
that of the d-dimensional lattice, p ( E ) ,  but with a sharp cut-off at E = Ec. Unfortunately, even this simple 
one-dimensional model cannot be solved analytically. The solution of the one-dimensional model in the EMA 
[24] is 

v/D In [1 + v/~-D] = v/s. (8) 
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Fig. 1. Log-log plot of the universal mean-square displacement in dimensionless units according to the effective medium approximation 
(EMA) and the percolation path approximation (PPA). The full curves give the exact mean-square displacement as function of time lEqs. 
(7) and (12)], the dashed lines give the rough analytical approximations [F_,qs. (31) and (32)1, and the dots give the approximation 
(AX2(t)) -~ 2tD(t- l) ,  where D(s) is the frequency-dependent diffusion constant defined in F_,q. (1). 

Since the motivation for constructing the PPA is the fact that the EMA is inaccurate, it may seem strange to use 
the EMA for approximately solving the one-dimensional model behind the PPA. However, in Ref. [24] it was 
shown by computer simulations that Eq. (8) works very well for systems with a sharp activation energy cut-off 
in one dimension. Note that we here have an unusual example of a mean-field theory (EMA) that works better 
in one dimension than in two or three dimensions. 

To calculate the mean-square displacement in the PPA, Laplace inversion of Eq. ( 1 ) is undertaken: 

1 / 2 D ( s )  eStds. (AXt2(t)) = ~ s 2 (9) 

Here, as usual for Laplace inversions, it is understood that the integration contour goes from - i o o  to i ~  to the 
right of all poles of the integrand. Introducing the variable z = 1 + v ' ~ ,  Eq. (8) implies 

(z - 1) lnz = s ,  (10) 

and Eq. (9) becomes 

1 / 2(z(s)-l)2eS, ds (11) (AX/2(t))pPA ---- ~ i  " S 3 

Since ds = [ (z  - 1 ) / z  + l n z ]  dz we may now eliminate the transcendental equation Eq. (10) and transfer Eq. 
(11 ) into an ordinary complex contour integral: 

, / (  l 
(AX2(t))pPA = ~ i  2 (z - 1) In 2 z + e[(Z-l) lnZ]tdz" (12)  

In the numerical evaluation of Eq. (12) we have used the integration contour given by the straight line in the 
complex plane through the number a = a + t i l t  parallel to the imaginary axis with a = 1.01 and fl = 0.05, 
associated with cut-offs at a + ib for b = 10 + lO/t. 

Fig. 1 shows the mean-square displacement (full curves) according to the EMA (Eq. (7))  and to the 
PPA (Eq. (12)) .  Clearly, at short times the two approximations give quite different results. This is verified 
analytically in the following section. 
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4. Asymptotic behavior of mean-square displacement 

The mean-square displacement at short times is dominated by the contributions from D(s) at large s. Eq. 
(3) implies that l nD/ ln s  ---+ 1 as s --~ c~ and therefore we have the following expression for the asymptotic 
behavior of D(s) in the EMA, 

s 
EMA:  D(s) ,,~ ~ (s--~o~). (13) 

In s 

Eq. (8) also implies lnD/ Ins  ~ 1 as s ---* o~ and just as above 

s 
- -  (s ~ e~) .  (14) PPA : D(s) In 2s 

Granted that the mean-square displacement in the EMA and PPA is positive and monotone the Tauberian 
theorem of Ref. [33] applies: I f  the Laplace transform fi(s) = 2D(s) /s  2 of a positive monotone function 
u(t) = (AX2(t)) for some p > 0 and all A > 0 satisfies 

D(sA) fi(sA) 1 
= , - -  for s ~ ~ (resp. 0) (15) 

A2D(s) ~(s) AP 

then 

(AX/2 ( t ))  u(t)t  1 
= , for t ~ 0 (resp. c~) .  (16) 

2tD(t -1 ) fi(t - I )  F(p) 

If  Eq. (15) holds for all nonnegative complex A (as in our case) one may argue heuristically for Eq. (16) via 
the inversion formula: By the change of variable z = st Eq. (9) implies 

(AX2(t)) = 1 d~ D ( t - l z )  e z 
dz ,  (17) 

2tD(t - l )  27ri f z2D(t -I)  

and from Eq. (15) for complex A = z then follows 

(AX/2 ( t ) )  1 f e z  1 for 
2tD(t - l )  ~ 27ri ~--~dz = F(p----S t ~ 0 ( r e s p ,  e~) (18) 

Since both Eq. (13) and Eq. (14) entails Eq. (15) with p = 1 for s ~ ~ ,  it follows by Eq. (16) that the 
short-time asymptotic behavior of the mean-square displacement is given by 

E M A "  (AX2(t))EM A ,,~ 2tD(t_l) ,,~ 2 (t ~ 0), (19) 
ln(t  -1 ) 

PPA : (AX2(t))pp A ,,~ 2tD(t_l)  ,,~ 2 (t  --* 0). (20) 
ln2(t - I  ) 

The expression 2tD ( t -  l ) also gives the leading term in the long-time behavior of the mean-square displacement: 
Since D(s) --~ 1 for s --~ 0 (by definition of the unit system), Eq. (15) holds with p = 2 for s --+ 0, so that 
by Eq. (16) 

(AXe(t)) ,,~ 2tD(t - l )  ~ 2t ( t - *c~ ) .  (21) 

In fact, as is clear from Fig. 1, the expression 2tD(t -1) (dotted curves) approximates the mean-square 
displacement well over the entire time scale: For the EMA the deviation is less than 7.5% and for the PPA it 
is less than 9%. 



66 J.C. Dyre, J.M. Jacobsen~Chemical Physics 212 (1996) 61-68 

As expected, at long times the mean-square displacement varies dominantly as 2t. More precisely, in the 
EMA Eq. (7) implies [25] 

( A X 2 ( t ) ) E M A  = 2t + 2 (t ~ c~) .  

A closer investigation of the PPA, to be detailed below, reveals that 

(22) 

2 
{ A X 2 ( t ) ) p p A  = 2t + ~ v ~ +  (t ~ cx~). (23) 

This will be used in an analytical approximation presented in the conclusion. To arrive at Eq. (23) we expand 
D(s )  into a power series in v/'S at s = 0 as follows. Let w = x/s--D. Then D(s )  = w2(s) /s ,  where w is defined 
as an analytic function of s off the negative real axis by 

s = wln(1 + w) .  (24) 

Here w takes values in the complex plane to the right of the curve defined by win(1 + w) being real and 
non-positive. The right hand side of Eq. (24) may be expanded 

w 3 w 4 w 5 
s - -  w 2 - -  - -  

- - 2 - +  3 - 4 + ' " '  (25) 

from which it follows that 

w 2 1 3 w  3 3 5 w  4 

= w -  -~- + 9----6- - 38---4 + ' " "  (26) 

The above series may be inverted, 

S S 3/2 
w = f l / 2 +  4 - 9--6- + O - s  2 + . . . ,  (27) 

thus giving 

W 2 S 1/2 S S 3/2 
D ( s ) = - - = l +  + - -  + . . . .  (28) 

s T 24 192 

Inserting this expansion of D(s )  into Eq. (9),  and using the well-known formula (used also above in Eq. 
(18)) 

1 J t n - I  
27ri s-neStds = F ( n ) '  (29) 

which for t > 0 holds for all real n when the integration contour encircles the negative real axis, we obtain the 
following asymptotic expansion valid for t ~ c~: 

i f (  s_3/2s-,s-,/2 ) (aX/2(/))PPA = ~ 2 s - 2 +  + 1---2- 9-----(-+... eS'ds 

= 2t + ~ t 1/2 1 1 t_l/2 
+ 12 96----~ + " ' "  (30) 

Truncating this series after the third term we obtain the approximation in Eq. (23), with an error given 
dominantly by the fourth term as t --~ cx~. 

The approximation in Eq. (23) is accurate within 0.2% for t/> 1 and within 2.5% for t ~> 0.1. 
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5. Conclusion 

We have calculated the universal mean-square displacement within the PPA for an extremely disordered system 
with equal energy minima. Asymptotically, at short times the universal mean-square displacement according to 
the EMA varies as I / I n ( t - l ) ,  while in the PPA it varies as 1 / l n 2 ( t - l ) .  From the asymptotic behaviors it is 
possible to construct rough analytical expressions, that at long times give a mean-square displacement equal to 
2t. For the EMA a rough analytical approximation is given [25] by 

2 
(AX2(/))EMA ~ l n ( l + t _ l  ) . (31) 

This expression is valid within 33% for all t. For the PPA the following expression is easily shown to have the 
correct short and long time behaviors to leading order: 

2 2t2. (32) (AX/2(t))ppA ~ l n 2 ( l + t _ l )  

This expression is valid within 51% for all t. The two approximate expressions are shown by dashed curves in 
Fig. 1. A more accurate analytical approximation to the EMA universal mean-square displacement is given in 
Ref. [25];  for the PPA the following approximation is accurate within 3.5% 

2 _ 2t 2 4 - - t ,  for t ~< 0.1 
ln2[ 1 + t - l / l n ( e  + t - l ) ]  e ' 

<A X/2 (t) >ppA ~--- (33) 
2 tl/2 1 2t + - ~  + ~ ,  for t ~> 0.1.  

The model studied in the present paper is somewhat artificial in the sense that all minima are assumed to 
be equal. Future work should look into the possible existence of  universality for the more general class of  
models dealing with hopping between energetically inequivalent sites (Model B of  Ref. [22] ). We conjecture 
that, if there is a lowest allowed energy, these models exhibit the same sort of  universality as found in the 
above studied "symmetric" hopping model in the low-temperature [extreme disorder] limit: At sufficiently low 
temperatures only the very lowest energies close to the ground state energy are populated and diffusion may 
effectively be regarded as a symmetric hopping between these very low-energy sites. 
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