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Synopsis 

Traditionally, the complex modulus is determined by Fourier analysis of steady state oscillatory 
data. However, steady state is not obtained immediately and data from the first period of oscillation 
must therefore be discarded. In the present work a recursive analysis algorithm for the determination 
of complex moduli from oscillatory data of the first period, which includes a transient response 
alongside the steady state response, is derived. The algorithm is based on Boltzmann’s principle of 
superposition. At any given time, the analysis algorithm provides the best possible estimate of the 
complex modulus on the basis of the information available at that time, i.e., the stress and strain 
history. The analysis algorithm has been tested on simulated data from a mathematical model of an 
amorphous polymer. The tests show that the new analysis algorithm can determine the dynamic 
mechanical properties with very good accuracy from oscillatory data of the first period, where 
Fourier analysis fails. Thus, use of the new algorithm allows a reduction of the experiment time by 
a factor of 2 for experiments with a sufficiently high signal-to-noise ratio to avoid averaging over 
several periods. This reduction of the measurement time is particularly important for experiments at 
very low frequencies where the long measurement times seriously limit the number of runs per day. 

INTRODUCTION 

Computers have found extensive use in rheology as analytical tools, as well as for 
control and data acquisition in rheological instrumentation. Computers can generate ar- 
bitrary stress or strain inputs and can be used for any kind of mathematical analysis of the 
data. This possibility raises the question of how to obtain maximum information about a 
material in a given experiment time. 

In the linear regime, a material is characterized in the frequency domain by its com- 
plex modulus function. To measure the complex modulus, a sinusoidal stress or strain is 
typically applied to the sample and the strain or stress response is recorded. Steady state 
data are then Fourier analyzed to calculate the complex modulus at the input frequency. 
This procedure is repeated for other frequencies until the desired frequency range is 
covered. 

Holly et al. (1988) showed how to shorten the experiment time by choosing the input 
as a sum of sinusoids of different frequencies, a method which has been implemented on 
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commercial instruments by, e.g., Rheometrics and Bohlin. However, one still has to wait 
for steady state before analysis by Fourier decomposition gives the correct complex 
modulus. 

Fourier decomposition is a general method for data analysis in the frequency domain. 
The method is based on the knowledge that, in the linear regime, a sinusoidal input 
results in a sinusoidal response at steady state. For viscoelastic materials, however, steady 
state is not obtained immediately. A transient response is present alongside the steady 
state response and Fourier analysis does not give the correct complex modulus until this 
transient response has died off. 

It has been shown [Winther (1993)] that the error introduced by performing Fourier 
analysis on data from the first period of a single frequency can be as large as 16%. 
Discarding all data taken during the first period and only analyzing data from the second 
period gives the correct modulus within 1%. When more frequencies are applied simul- 
taneously, the errors increase because the analyzed data include transient responses from 
all applied frequencies. 

An algorithm for determination of the complex modulus of linear viscoelastic mate- 
rials from data taken before steady state [Winther et al. (1993)] is derived and tested in 
detail in the present paper. The analysis algorithm is based on Boltzmann’s principle of 
superposition. A least-squares fit to a discrete “relaxation time spectrum” is obtained and 
the complex modulus may then be calculated from the obtained weights. The term relax- 
ation time spectrum is written in quotation marks because it merely is used as a param- 
etrization. Negative weights are allowed since the aim only is to determine the complex 
modulus. The algorithm employs recursive linear equations and utilizes well-known prin- 
ciples from time-series analysis, dating back to Gauss [Young (1984)]. 

The algorithm is especially useful for experiments at low frequencies where the ab- 
solute measurement time, and therefore also the time saved, is long. If the principle of 
time-temperature superposition does not apply to the sample, as for example in the case 
of biological systems such as gelatin and fibrin networks, it may be desirable to make 
measurements at frequencies of less than lop4 rad s-l, corresponding to periods of the 
order of a day. For such experiments it is particularly unfortunate that data collected 
during the first period must be discarded, because steady state has to be obtained before 
Fourier analysis gives the correct result. 

Many data points can usually be taken during the first period so it is unnecessary to 
average over several periods to suppress the influence of noise. Inertial effects are fur- 
thermore negligible at low frequencies so that perfect sinusoidal strains can be realized. 

Experimental data covering all the characteristic regions of viscoelastic behavior are 
not easily obtained, partly because lo-12 decades of dynamic mechanical moduli must 
be covered, and partly because we are particularly interested in the initial part of the data 
which usually are discarded by computerized rheometers. However, a full survey of the 
capabilities and limitations of the algorithm can be performed by computer simulations of 
“experiments” on a mathematical model which exhibits all the characteristics of a poly- 
mer, i.e., glassy, glass transition, plateau, terminal and liquid regions, and in a fraction of 
the time required for actual experiments. 

This paper presents the results of analyzing the simulated stress response from such a 
mathematical model both by Fourier decomposition and by the new analysis algorithm in 
order to compare their abilities to obtain the correct complex modulus function. The 
simulations demonstrate that the complex modulus can be determined from data of the 
first period which include a significant transient response. Thus, a reduction of the ex- 
periment time by a factor of 2 is accomplished with the new algorithm, since the tradi- 
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tional Fourier analysis uses data from the second period, discarding the transient data 
from the first period. 

Application of the algorithm to more limited experimental data from two different 
rheometers is planned. 

THE NEW ANALYSIS ALGORITHM 

This section addresses the problem of obtaining the best possible estimate of the 
complex modulus function from arbitrary data, i.e., data that do not necessarily come 
from an experiment where the input is periodic. In this paper the input is taken to be the 
strain but analogous equations may be derived for stress inputs. If y denotes the shear 
applied to a viscoelastic liquid and cr the shear stress, Boltzmann’s principle of superpo- 
sition gives the general linear relationship between them as described, e.g., by Bird et al. 
(1987): 

dyft-t’) 
u(t) = -[G(i) dt’ dt’. (1) 

Here, G(t’) is the relaxation modulus, i.e., the stress at time t’ after a unit step strain is 
applied. The relaxation modulus is expressed as a function of exponential decays [see, 
e.g. Ferry (1980)]: 

G(i) = (2) 

where c is the relaxation time and H(r) is the relaxation time spectrum. 
It has been shown that just a few relaxation times per decade are sufficient to describe 

the relaxation time spectrum [Baumgaertel and Winter (1992)] and Eq. (2) can be rewrit- 
ten as 

G(t’) = i Gj e-““j. 
j=l 

(3) 

The Gj’s of Eq. (3) correspond to a discretization of the function H(r) appearing in Eq. 
(2). The relaxation times are usually chosen to be uniformly distributed on a logarithmic 
scale. The new analysis algorithm is based on Eqs. (l)-(3) and determines a number of 
coefficients which for convenience also are called Gj although they do not constitute a 
true relaxation time spectrum. The reasons for this will become clear later. 

In many experiments data acquisition is performed by a digital computer, and stress 
and strain are both known only at discrete times with a spacing At. Discretizing the 
integral in Eq. (1) gives 

u(kAt) = G($ At){#At)-$(k-l)At]}+G(; Aht){$(k-l)At]-$(k-2)At]}+... 

= G( f At j fiW-j 1 [ G[ (--;j At]-G[ (m+;jAt]]$(k-m)At]. (4) 

Substituting Eq. (3) into Eq. (4) yields the predicted stress for given coefficients, Gj. 
Below, aPr denotes the predicted stress to distinguish it from the actually measured stress, 
CT. Equation (4) is then rewritten as 
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n 

gpr(kAt) = C Gjf(j,k), 
j=l 

(5) 

where 
m 

fl.i.k) = e -A”(27j)1XkAt)-[eAt/(27j)-e--t/(2?j)] x e-mAd7jy[(k-m)At] 
m=l 

At m 
= e-A”(27j),XkAt)-2 sinh c z e-mAt’7i$(k-m)At]. 

i I 
(6) 

Tim=1 

Some loss of information occurs when the continuous function is discretized. Relax- 
ation times that are much smaller than the sampling interval, At, cannot be properly 
incorporated into the discrete model because their contribution to the total relaxation of 
the material occurs between two data points. The inability to handle small relaxation 
times can be seen mathematically in Eq. (6) where the factor f(j,k), which describes the 
stress contribution from the relaxation time, 7, quickly vanishes as Atlrj --+ ~0. 

We now turn to the problem of estimating the coefficients, Gj , from given experimen- 
tal data, the relaxation times, 7;;, being fixed in this study. The Gj’s are determined so that 
the predicted stress matches the measured stress as closely as possible. To make maxi- 
mum use of the data, the entire measured stress history up to a given time should be 
approximated as well as possible by the predicted stress. The simplest approach to this 
problem is to optimize in the least-squares sense since this leads to linear equations for 
the coefficients [Young 19841. Adopting this strategy, the Gj’S at any time t = kAt are to 
be determined from 

(7) 

or 

;: [q&~t)-c+(p~tH 2 f(b) = 0. 
p=o 

(8) 

It is assumed that the errors can be considered constant as is the case for white noise. 
Introducing the quantities 

k 

Aij(k) = E f(i~)f(i~~P)~ 

p=o 

and remembering Eq. (5) Eq. (8) becomes 

(9) 

~ A~~k)Gj = hi(k). 
j=l 

00) 
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Thus, at any given time, t = kAt, the optimum Gj’S are determined as the solution of a 
linear system of equations with a symmetric coefficient matrix. This system of linear 
equations is ill-posed [Friedrich and Hoffmann (1983); Honerkamp (1989)], i.e., the 
solution is very sensitive to small fluctuations of tbe data. However, the determined Gj’s, 
some of which may be negative, fit the data, and as demonstrated below give accurate 
complex moduli even though they do not represent the true relaxation time spectrum. 
(The relaxation time spectrum may subsequently by derived from tbe determined com- 
plex modulus by one of the recently published methods [Baumgaertel and Winter (1989); 
Carrot et al. (1992); Elster et al. (1991); Elster and Honerkamp (1991); Emri and 
Tschoegl (1993); Honerkamp (1989); Honerkamp and Weese (1993)].) 

The system of equations is well suited to a recursive treatment, since the equations at 
time t = (k + 1) A t can be found from the equations one time step earlier: 

Ag(k+l) = Aij(k)+f(i,k+ l)fO’,k+ 1) 

b,(k+ 1) = bi(k)+f(i,k+ l)aC(k+ l)At]. (11) 

What makes the recursive approach useful is the fact that the functions f(j,k) from Eq. 
(6) can also be evaluated recursively: 

f(j,k+ 1) = e-Ar’7jf0.,k)+e-Ar’(27j){~(k+ l)At]- fikAr)}. (121 

The recursive formulation means that it is not necessary to store all strain and stress data 
during the experiment to perform a least-squares fit to a fixed set of relaxation times. The 
matrix Aij( k) and the right-hand side hi(k) of Eq. (10) carry all information needed for 
determination of the optimum Gi’s at any given time--even for an experiment of long 
duration. 

Complex modulus 

Application of a sinusoidal strain gives a sinusoidal stress in the steady state. In the 
case of continuous strain and stress data, the complex modulus is found by substituting 
Eq. (3) and a sinusoidal strain into Eq. (1) for t + m which gives the simple and well- 
known formula 

G*(O)= i Gjz. 
j=l J 

(13) 

The new algorithm is applied to discrete stress and strain data, and the complex 
modulus is found by substitution of a sinusoidal strain into Eq. (5). The result is 

l-e -iwAt 

G*(W) = i Gj e-*‘lt2?f) 1 -e-At,qe-joAt, 
j=l 

04) 

which is derived in Appendix A. In the limit At + 0, Eq. (14) reduces to the continuous 
case in Eq. (13). 

Again some information is lost by discretization. The problem of aliaaing frequencies 
arises so that components of frequencies that differ by the sampling frequency cannot be 
distinguished. The discrete expression for G*(w) is thus periodic with a period of 26A t, 

COMPUTER SIMULATIONS 

The new analysis algorithm can handle any strain history-periodic or aperiodic-but 
a sum of a fundamental sine wave and seven harmonics is chosen in the present paper, 
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FIG. 1. Storage modulus, G’(-), and loss modulus, G”(---), of the polymer model given by E?q. (18) which is 
derived from the relaxation time spectrum given by IQ. (15). 

The sum of the eight strain frequencies is applied to a mathematical polymer model 
described below and the resulting stress response is analyzed. The spacing between the 
frequencies on a logarithmic scale is log 2 and each simulated experiment thus covers a 
factor of 128 in frequency, i.e., a little more than two decades. After each simulated 
experiment, the Gj’s are calculated from Eq. (10) and used to calculate the complex 
modulus from the discrete expression in Eq. (14). 

The mathematical polymer model 

The mathematical model used in this study is an approximation of an amorphous 
polymer. Its relaxation time spectrum is a box and wedge distribution in a double loga- 
rithmic plot [Aklonis and Ma&night (1983)] and given by 

H(T) = 5 
7’ 

71 < 7 < 7. 

(15) 
H(7) = B; ‘2 < 7 < 73. 

The storage and loss moduli of the polymer model are shown in Fig. 1 with r1 = 10m4 s, 
72 = 1 s, 73 = 3X lo5 s, A = lo5 Pas, and B = 10’ Pa. These values are used in all 
simulations. Eight different sections are indicated in Fig. 1, covering all the possible 
mechanical properties of an amorphous polymer. The width of each section is chosen so 
that application of the eight frequencies, covering a factor of 128, gives an overlap of one 
frequency between the different sections. 

Please note that the slope of tbe wedge is considerably larger than the slope usually 
found for actual polymers [Ferry (1980)]. This means that short relaxation times contrib- 
ute considerably to the complex modulus. As discussed later in the paper, such contribu- 
tions may be problematic for the new algorithm and use of this polymer model is tbere- 
fore a very critical test of the algorithm. 
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In the computer simulations the strain input is applied to the system at equilibrium at 
t = 0 and the exact stress response of the polymer model is calculated from Eqs. (1) and 
(2). For a single sinusoid of amplitude 70 started at t = 0 the result is 

d(t) = Q(f) + qr(t), 

where a,,(t) is the steady state response and a&(t) is the transient response. 
The steady state stress response a,,(t) is given by 

(16) 

q&t) = y~G’(o)sin(ot)+yoG”(o)cos(ot), (17) 

where G’(W) and G”(o) are derived for this particular case in Appendix B and given by 

G’(o) = AwCarctan(o7,)-arcta(~T,)]+~ In 

(18) 
+B[arctan(w73)-arctan(wT*)]. 

where, A, B, ~1, 72, and 73 are defined in Eq. (15). 
The transient stress response adt) is also derived in Appendix B and given by 

UJt) = ~o{A~[R,(~)-R*(t)l+B[~3(t)-~*(t)l}cos(~) 

+ ro{-AW[z,(r)-I2(t)l+B[R3(t)-R2(r)l)sin(ot), (1% 

where 

(m = l-2,3). (20) 

Here E 1 denotes the exponential integral as defined by Abramowitz and Stegun (1966) 
(see Appendix B). Both Ri(f) and Zj(t) go to zero as t + m, implying that the transient 
stress response dies off. The numerical implementation is given in Appendix C. 

The total stress response from an input containing eight frequencies is the sum of the 
responses originating from each frequency. 

At any time, the Gj’s may be calculated by solving the linear equations given as Q. 
(10). It is of course not necessary to solve the equations for each updating. The equations 
are solved by the Doolittle method described by Ralston and Rabinowitz (1986). 

RESULTS AND DISCUSSION 

A series of simulations were performed in order to establish the parameters which give 
the most accurate determination of the complex modulus function. The relationship be- 
tween the applied frequencies, the relaxation times included in the fit and the sampling 
interval were varied. In the following we summarize the results of this optimization, and 
we then compare the complex moduli obtained with the new algorithm to those obtained 
with Fourier analysis. 

Optimization of the algorithm 

Not surprisingly, it was found that the relaxation times to be included in the fit depend 
on the frequency content of the strain input. The contribution from a single relaxation 
time, T, to the complex modulus at a given frequency, w, depends on the value of WT. For 
small values of 07, the contribution to G’ is proportional to W* and the contribution to 
G” is proportional to w. For large values of WT, the contribution to G’ is independent of 
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w and the contribution to G” is proportional to w- ’ . The contributions from very small or 
from very large relaxation times are consequently unresolvable because they cannot be 
distinguished by their frequency dependence. 

Only relaxation times in an interval around wr 4 1 for each frequency are included in 
the fit due to the above-mentioned problems with unresolvable relaxation times. Since the 
eight frequencies used in a simulation only cover about two decades, it means that the 
coefficients Gj obtained from Eq. (10) will not reflect the true relaxation time spectrum 
when relaxation times outside the included range contribute considerably to the proper- 
ties of the material. The Gj’s simply represent the best fit to the stress and strain data and 
this means that negative Gj’s may occur. However, the complex modulus calculated from 
these coefficients using Eq. (14) is nevertheless correct. 

The properties of the mathematical polymer model chosen for this study contain very 
large contributions from short relaxation times which cannot always be included and in 
this respect the simulations constitute a “worst case.” 

The optimal spacing of the relaxation times turned out to be about three relaxation 
times per decade. Baumgaertel and Winter (1992) have demonstrated that 1.5 relaxation 
times per decade are sufficient to discretize a continuous spectrum satisfactorily. If vari- 
able relaxation times are used even fewer relaxation times are needed to characterize a 
material [Baumgaertel and Winter (1989); Carrot et al. (1992)]. However, in the new 
algorithm the determined coefficients only represent the best fit and cannot be regarded as 
a discrete relaxation time spectrum. It is therefore not surprising that more coefficients 
are needed as fitting variables in regions where the unresolvable relaxation times give 
large contributions. 

As already mentioned, the algorithm cannot handle large values of Ar/r. The optimal 
value of the smallest relaxation time, Tmin, turns out to be the sampling interval, At. The 
optimal Tmmax is around lo/sir, (timin given in rad/s). 

The relationship between the values of the applied frequencies and the sampling 
interval has also been varied. It turns out that it is necessary to sample about 60 data 
points per period of w,, . This means that approximately 8000 ( = 60X 128) data points 
will be sampled during a period of mhn = w,,/128. 

The reader must bear in mind that the established optimal relationships between fre- 
quencies, relaxation times, and the sampling interval may not hold if the number of 
frequencies or the frequency interval of the applied strain are changed. A new set of 
optimal parameters will then have to be found. 

The algorithm is flexible with respect to the duration of the experiment. At any time, 
Eq. (10) can be solved for the best estimate of the coefficients Gj and thereby the 
complex modulus. However, the lowest frequency for which the calculated complex 
modulus is valid is determined by the duration of the experiment since the data must 
obviously contain information about the desired time scale. If the complex modulus is 
calculated after an experiment time, T, less than a full period of win, the calculated 
modulus cannot be expected to be valid down to Wmin but only down to about w = (27r)/ 
T. On the other hand, continuation of the experiment for more than a full period of Wmin 
does not improve the results because steady state will be obtained so that the data do not 
contain new information. In this paper, however, we only present results from simulations 
covering one full period of the lowest frequency. 

For convenience, relaxation times which are powers of two, i.e., 3.3 relaxation times 
per decade, are used in the rest of this paper. The frequencies are also chosen so that the 
number of data points per period is a power of two, i.e., wmax = (2rr)/(64At) rad/s and 
W,ln = (27~)/(128X64At) rad/s. Consequently, the number of data points in one period 
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of the lowest frequency is 8192. The fitting, parameters are the 15 Gj’s of Eq. (lo), 
corresponding to the relaxation times 7i = 2’At, i = 0,1,...,14. 

For each data point, the values of the quantities f(j,k), Aij(k), and hi(k) [Eqs. (11) 
and (12)] are updated. On a 50 MHz 486 DX2 PC each update took about 10 ms, 
allowing a maximum sampling frequency of about 100 Hz in an experimental situation. 
This corresponds to a maximum excitation frequency of about 1.6 Hz ( = 10 rad/s) 
because the sampling frequency must be about 60 times higher than the highest excitation 
frequency. It shows that modem computers are fast enough to implement the algorithm 
recursively. 

Determination of complex moduli 

Using the optimized parameters developed in the previous section, the complex 
moduli of the mathematical polymer model are calculated with the new algorithm and 
compared to the results obtained with traditional Fourier decomposition. Only data cov- 
ering the first period of the lowest applied frequency are analyzed which means that the 
results from the Fourier analysis may be invalid due to the transient stress component. 

In order to test both the fundamental properties of the algorithm and its usefulness in 
a realistic experimental situation, the simulations have been carried out without noise as 
well as with white noise added to the stress. The strain amplitudes for the eight applied 
frequencies have been adjusted to give equal stress amplitudes before each simulation. In 
this way all frequencies are affected equally by the noise present in some of the simula- 
tions. 

In Fig. 2 the relative errors of G’ and G” obtained from noise-free data covering the 
first period of the lowest applied frequency are shown for both Fourier analysis and the 
new algorithm. The letters denoting the subfigures refer to the sections indicated in Fig. 

In sections b-g, the new analysis algorithm determines the complex modulus accu- 
rately in the applied frequency range. In several of these regions, the errors are very small 
even for about a third of a decade on either side of the frequency range applied. The 
moduli obtained by Fourier decomposition are too low in sections c-g because the 
analyzed data include a significant transient response and Fourier analysis is not valid. 
These simulations show that the complex modulus can be determined from initial data 
which include a transient response, simply by substituting Fourier analysis with the new 
analysis algorithm. 

In the liquid and glassy zones (Fig. 2a and h), the relaxation times of the mathematical 
polymer model are either much smaller or much larger than the time scale probed by the 
applied frequencies. The transient response is therefore very small and Fourier decom- 
position gives good results. The storage and loss moduli differ by several orders of 
magnitude in these regions and the new analysis algorithm is only capable of determining 
the larger part well. In the liquid zone the storage modulus fluctuates wildly between 
errors of several thousand percent so it is easy to detect that the result is incorrect. In the 
glassy zone the loss modulus fluctuates somewhat in the range of applied frequencies. 
However, the inability to determine the smaller part in these zones is not a serious 
problem since materials are well characterized by just a single number, either the viscos- 
ity or the glass modulus. 

Figure 3 again shows the results from the first period but now Gaussian white noise 
has been added to the stress. The dispersion of the noise is 2% of the maximum stress 
value. In sections c-g, the largest error of the moduli found by the new analysis algo- 
rithm is about 5% and occurs for the lowest applied frequency. The errors for the higher 
frequencies are smaller except for section g, where the loss modulus becomes small at the 
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highest frequencies (see Fig. 1). The new analysis algorithm generally determines the 
moduli within a few percent for frequencies which are about a decade lower than the 
frequencies where Fourier analysis gives the correct moduli. However, the moduli cannot 
be determined at frequencies which are lower than the applied frequencies when noise is 
present. The results from Fourier decomposition are erroneous both because of the tran- 
sients, as in Fig. 2, and the noise. 

In contrast to the noise-free simulations in Fig. 2, Fourier analysis cannot determine 
the smaller part of the complex modulus in the liquid and glassy zones (Fig. 3a, b, and h). 
For both Fourier analysis and the new analysis algorithm, the errors are too large to be 
plotted on the scale used in Fig. 3. However, Fourier analysis will eventually succeed if 
data from a sufficient number of periods are averaged. 

CONCLUSION 

A thorough survey of the optimal conditions and potential capabilities of a new algo- 
rithm for analyzing nonsteady state oscillatory data has been performed, using computer 
simulations. 

The results demonstrate that the new analysis algorithm makes it possible to obtain the 
complex modulus from oscillatory data taken before steady state is obtained, i.e., during 
the first period. This means that the experiment time will be reduced by a factor of 2, 
since traditional Fourier analysis requires steady state data which are obtained in the 
second period. 

The computer simulations show that the new analysis algorithm is successful even on 
oscillatory data with white noise added. The next step is application of the algorithm to 
true, but more limited, experimental data. 
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APPENDIX A: DERIVATION OF THE DISCRETE EXPRESSION FOR THE 
COMPLEX MODULUS 

Application of a sinusoidal strain gives a sinusoidal stress in the steady state: 

where gi and $ are the complex amplitudes. Substitution of this into Eq. (5) gives 

w*eiwkAt = i Gje(j,k) 0 
j=l 

(A21 

where fz(j,k) is given by 

(A31 
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The last equality is obtained by means of the geometric series: 

m 
x ,-(At/r+ioAt)m = 1 

m=l 
1 -e-(At/rtiuAr)-lo 

For G*(w) one thus finds 

(A4) 

APPENDIX 6: EVALUATION OF STRESS RESPONSE FROM THE POLYMER 
MODEL 

We consider the polymer model defined by Eq (15). Substituting Eq. (15) into Eq. (2) 
one finds that the relaxation modulus is given by 

I 
-P/r 

G(t’) = A “e d In rfB r3e-t’J’d In 7. 
Q-1 T I 72 

Introducing the variable CY = I/T we find with the obvious definition of the new integra- 
tion limits 

G(t’) = A s “e-‘Y”&+B 

a2 
052) 

To calculate the stress response from a sinusoidal strain applied at t = 0 we first note that 
the strain may be written 

y(t) = sin(wt) = Im(elwr). 

When substituted into Eq. (1) we find 

(B3) 

off) = Im[ e’ti(io)[G((t’)e-iwtr 8’1. 034) 

Tbe term of the integral proportional to A is evaluated by introducing a small l that 
eventually is to go to zero; this term may be expressed in terms of the exponential 
integral defined by Abramowitz and Stegun (1966): 

El(z) = 

as follows 

035) 

= E1[(a2+iw)c]-El[(a2+iw)t] 

-El[(al+io)~]+E~[(cq+iw)t]. 036) 
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We now let E go to zero by utilizing the asymptotic behavior El(z) = -0.577-in(z) as 
z --P 0 and thus the term proportional to A reduces to 

The term proportional to B is the following 

a+ib,)t df' dcy = 
a 

Thus we find 

and 

ff2 

I 

1 
-----dd=l 

a3 a(a+iw) iw 
[In(z)-In(s) 

The integral is evaluated by making use of the identity 

1 

a(a+iw) 

-; J=J-(a+i-)t( &-L-J {[El(a~t)-El(azr)]e-‘O’ 

(B7) 

038) 

(B9) 

@lo) 

To summarize the calculation, the stress for a sinusoidal strain applied at t = 0 is given 
by 

a(t) = Im[C(t)eiwt], 0312) 

where 

+EI[(aI+h)t]-E1[(a~+ico)t] 1 
-rqqt)-E1(~2t)le -iwt +B{E1[(cq+iw)t]-E1[(az+iw)t]}. I 

(B13) 

It is now straightforward to derive Eqs. (16)-( 19). 

APPENDIX C: NUMERICAL IMPLEMENTATION 

The exponential integral El in Eqs. (19)-(20) is approximated by the following 
expressions’ given by Abramowitz and Stegun (1%6): 

‘@O ,.,q} = {-0.57721566, 0.99999193, -0.24991055, 0.05519968, -0.00976004, 0.00107857}, 
{bo,..bs} = {0.2677737343, 8.6347608925, 18.0590169730, 8.5733287401) and {co...c,} 
= {3.9584%9228, 21.0996530827,25.6329561486,9.5733223454}. 
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El(x) = ag+a,x+a2~+a3x3+a,x4+a~5-ln(x)+,1(X); 

Iq(x)l < 2x1o-7 (Cl) 

-,I b(J+blx+b$+b3x3+x4 
El(X) = ” 

X i co+clx+c2x2+c3x3+x4 
+Q(x) ; 

I 

/E*(X)/ -=z 2x 10-8. G9 
The complex variable tl Tj + i w t is used instead of the real value stated in the equa- 

tions, and Eq. (Cl) is used for lt/?j + iwtl G 1 and Eq. (C2) for It/Tj+iwtl > 1. In 
section h of Fig. 1, t/~-l 4 wt during the first period of the lowest frequency and the 
difference E , ( tl 71 + i wt) - E 1 (t/72 + iwt) is evaluated by the fourth-order Taylor expan- 
sion. This expansion is also used to calculate E 1 (tl~3 + iwt) -El (t/72 + iwt) for 
t/r2 < wt. 
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