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Stability of supercooled binary liquid mixtures.
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Models for supercooled mixtures

Molecular Dynamics models for supercooled mixtures

•The Kob-Andersen model disobeys the Lorentz-Berthelot mixing

rules by having a strong covalent-like AB attraction

Lorentz-Berthelot (LB) mixing rules

•σ(AB) = (σ(A) + σ(B))/2 and ǫ(AB) =
√

ǫ(A)ǫ(B)

Crystallization

Both binary fluid models crystallize at supercooling

•Particle positions projected onto a plane for the Kob-Andersen

(standard) system. A: large solvent green particles in a fcc lat-

tice order and small B-particles are black. The binary mixture

consists of 800 A-particles and 200 B-particles

Theory for crystallization

•Equilibrium (at constant pressure) between a crystal of A and a

mixture with particle fraction x(A):

∆Gtrans,A = ∆Gfus,A+ ∆Gmix,A(x(A)) = 0
where the total change in Gibbs free energy is divided into a

melting (fus) and a dilution (mix)

•Real mixture: ∆Tfus,A

T∗fus,A

≈
∆A,mixupot(A)+kBTfus,Aln(x(A))

∆H∗

fus,A

•The creation of a critical crystal nucleus of NA A particles in the

mixture can be divided into two steps

NA(mix) → NA(liquid, xA = 1)
NA(liquid, xA = 1) → NA(crystal, xA = 1)

• δN∗/N∗
≈ −3(∆A,mixupot(A) + kBTfus,Aln(x(A)))/∆µ

where ∆Tfus,A is the freezing point depression and δN∗ is the

change in number of particles in the critical nucleus due to

the mixing energy. Ideal mixing and classical nucleation the-

ory ignores ∆A,mixupot(A); but the KA mixture has a neg.

∆A,mixupot(A) which stabilizes the supercooling mixture.

A modified model not prone to
crystallization

•Accordingly to the theory the stability of the supercooled state

is increased by increasing the strength of ∆A,mixupot(A) < 0.
In the case of Lennard-Jones like interaction one can simply re-

move the attraction between the solvent particles (and the so-

lute particles); but remain the attraction between the solvent A-

and solute B-particles. The structure (distribution functions) are

given by the repulsive part of the pair-potentials and in practice

unchanged. But the resulting mixture is prone against crystal-

lization.

•And faster to simulate. We have simulated it what corresponds

to t ≈ 0.1ms.

The ballistic- and diffusive regime
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• log− log plot of the mean square displacement for A-particles

as a function of time and for the temperature T=1.00, 0.40,

0.35, 0.325, 0.30, 0.275 and 0.25.

The self-diffusion constants
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•An Arrhenius plot, logD(1/T), of the self diffusion constants

D. With + is D(A) for the KA-mixture, and the points given

by × and connected with lines are D(A) for the modified mix-

ture. D(B) for the smaller B-particles in the modified mixture

are shown with *

Summary

•The theory for real mixture gives a recipe for modelling stable

supercooled mixture, not prone to crystallization

•A simple modification of the Kob-Anderson mixture does not

crystallize and can be simulated over longer times.

•Reference: Søren Toxvaerd, Ulf R. Pedersen, Thomas B.

Schrøder, and Jeppe C. Dyre, preprint


