Dynamic Light Scattering in Glassforming Ultraphosphate Liquids

> R. Fabian, J. Changstrom, D. Sidebottom* Creighton University

Network forming glasses

- SiO₂ is strong
- alkali addition reduces covalent bonding and increases the fragility
- Why is this?
- In what other ways are dynamics influenced by structure?

Structural Relaxation in Liquids

Two step decay:

$-\beta$ relaxation

• fast, cage dynamics

$-\alpha$ relaxation

- slow, viscoelastic response
- -nonergodic level
 - plateau, f_q

Viscoelastic (a) Relaxation

- Non-exponential
 - Kohlraush or 'stretched' exponential
- Non-Arrhenius

1

- Vogel-Tamman-Fulcher

Dynamic Light Scattering

- other slow relaxations
- Photon Correlation

Small energy shifts (< MHz) cannot be measured using filter techniques (grating, Fabry-Perot) but are best resolved in the *time domain* ...

Photon Correlation Spectroscopy

Adding alkali ...

• Alters the network structure ... borate example

K. H. Mader and T. J. Loretz (1978)

- diversity of structural units
- initial *polymerization* of network (tetraborate)
- later *depolymerization* (NBO)
- *borate anomaly* (T_g maximum near 25 mol% alkali)

Phosphorus Pentoxide

- Third most significant glass oxide after Si, B
- applications: laser media, seals, bioglass, etc.
- challenge: very hygroscopic and volitile

structural information:

- PO₄ tetrahedra in random network
- Q³ (one oxygen is non-bridging)

Ultraphosphate Structure

- less diversity than borates
- initial *depolymerization* of network
- uniform conversion of Q³ to Q² (network to chains)

History

- 1963 Cormia, etal. measure viscosity (1.5 decades)
 from 545° C to 655° C
- •1986 Martin & Angell measure Cp
 - classify as strong based on Cormia's viscosity
 - but, intermediate based on ΔC_p
- Glass transition temperature water sensitivity
 - early literature: around 260° C
 - Martin & Angell: around 320° C
 - 1993 Hudgens & Martin: around 380° C

Experimental: P₂O₅

- P₂O₅ via Sigma (99.99%)
- handled in glovebag under dry argon
- quartz ampoules cleaned with HF wash
- P₂O₅ sublimed directly into upper region of ampoule under vacuum, then flamed sealed on each end and handle attached
- P_2O_5 fused at 900° C
- light scattering conducted at a fixed scattering angle (90°) from 850°C to 445°C

Experimental: Ultraphosphates

- only for $0.4 < x \le 0.5$ compositions
- batch with Na₂CO₃ and NH₄H₂PO₄
- quartz ampoules cleaned with HF wash
- open ampoule, fused at 900° C
- light scattering conducted at a fixed scattering angle (90 $^\circ\,$) from 600 $^\circ\,$ C to near T_g

Ultraphosphates: Fragility

 $(Na_2O)_x (P_2O_5)_{1-x}$

Significant variation in fragility

Ultraphosphates: KWW exponent

Ultraphosphates: Non-ergodic level

D. L. Sidebottom etal, PRB 75 (2007)

Mostly follows previous trend established for variety of liquids:

Strong -- $f_o \approx 1$

Fragile -- $f_o \approx 0.5$

Intuitive interpretation:

discrete bonding limits 'cage rattle'

continuous bonding promotes 'cage rattle'

Chalcogenides

Mixtures of certain metal elements (Se, As, Ge) produce topological changes in network structure like the oxide glasses but without the ionic byproduct.

As the *bond density*, <r>, increases a *rigidity percolation* is said to occur near <r> = 2.4 at which elastic stiffening first appears

Ultraphosphates vs. Chalcogenides

R. Boehmer and C. A. Angell, PRB 45 (1992)

Ultraphosphates display virtually identical variation of fragility as chalcogenides when represented in terms of the bond density!

Summary

- Ultraphosphates demonstrate the influence of network structure on liquid dynamics
- Decreasing bond density:
 - increases the fragility (just like chalcogenides)
 - decreases the KWW exponent
 - increases the cage effect (β relaxation)

Thanks to funding by the Petroleum Research Fund (#43743-GB10) and by Research Corporation (#CC6641)

and to Dr. S. W. Martin for his help

