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Model; Wahnstrom mixture

Binary Lennard-Jones mixture with size-ratio of 1.2 [Wahnstrom 1991]
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A standard liquid

(Kob-Andensen mixture
IS more studied)

from [Coslovich & Pastore (2007) J. Chem. Phys. 127, 124504]
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Long-lived first shells

Avg. number of first shells
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Color code: Smaller A's are green and larger B's are white
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Probability of finding particle
in cluster of size m

Average single particle life time

Cluster analysis

10% longest hved A part1cles
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Long-lived structural fluctuations
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Long-lived first shells and energy
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Potential energy per particle

When simulated for really long times
roughly 10*t_or 15us in Argon units (at T=0.624)

The close-packed MgZn

Laves structure
[Frank & Kasper (1959)]
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, , B's in hexagonal diamond structure.
M 1 argon units A's Z=12 with Za=Z8=6

Drop in energy due to freezing complex: 12 atoms/unit-cell
simulation is off-composition

Note: Kob-Andersen mix. can also crystallizes.
See Sgren Toxveerd's poster or [arXiv:0712.0377] 6




Crystal nucleation or glass transition

Upon supercooling,
a liquid can have two fates:

- arrest in a glass

- crystal growth

The glass puzzle is:

how can mechanical stable structures
avoid the ‘trap’ of crystal growth?




Common neighbor bipyramids (CNB)

Characterizing common neighbor arrangements

Six integers

1 AA “bond” with
« 1 for AA,
« 2 for AB
« 3 for BB
1 common A and
4 common B's having,
0 AA “bond”s,
2 AB “bond”s and
3 BB “bond”s.

... gives 114023

“bond”; within first minimum of g(r)
Color code: Smaller A's are green and larger B's are white

Crystal:

114023 (AA)
123122 (AA)
132221 (AA)
232140 (AB)
360600 (BB)

The BB “bond”,

“Frank-Kasper bond”

Variation of Honeycutt & Andersen's common neighbor analysis
[J. Phys. Chem. 91, 4950 (1987)]
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Abundance and life-time of CNB's
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Crystal structures
“pre-built” in liquid

All possible ways

of having 5 bonded
common neighbors
are above ?



Kasper clusters

Frank-

ips in energy

D

“Frank-Kasper”

clusters
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Frank-Kasper clusters, ||
W Few 4-fold FK bonds

(broken) pentagon
limits growth of cry.

Similar to crystal



So why?

The glass puzzle is:

how can mechanical stable structures
avoid the ‘trap’ of crystal growth?

Here, local preferred structure can fill space (crystal),
(no geometric frustration)

but can also build disordered structures
(“entropic frustration”)

Recall:
Local preferred structure of spheres
(icosahedra) cannot fill space

[Frank 1952] L




Conclusion

Long-lived clusters
iIntermediate between
liquid and crystal

Comment

Kob-Andersen mixture
can also form a crystal
another mechanism

Frank-Kasper bond
onset of crystallization )\
/

b) (0,3,6)-polyhedron




The end

Thanks for your attention

Looking for post.doc position
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Coordination in metastable liquid vs crystal

Coordination in crystal

In the AB liquid, most
A’'s have same coordination
number as crystal

The B environments
are very different from
those in the crystal

First shell coordination, Z

Crystallization must be
accompanied by
rearrangement around B's

SR cc=0.43615
| | I J | |
1 |
070 0.2 0.4 0.6 0.8 1
Local concentration; Z A/Z

Particles in first peak of g(r) (using

Z,: Number of A's in the first shell first minimum as cut-off) are

considered neighbors 15



Coordination of stable particles in liquid

On y-axis: Concentration of different kinds of first shells of stable particles
relative to the over all concentration
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Stable particle: Amongst the 10% with the longest lifetime of first shell
Lifetime: Time between first and last occurrence

Stable structures in liquid tend to be crystal-like
but variations also provide stability.




Relating structure and energy

normalised first shell distribution
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Stable particles cluster

10% most stabil A particles
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FK clusters are connected
to a local composition
fluctuation

Local B mole fraction
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Common neighbor bipyramids (CNB)

Common neighbor ‘bonds’ correspond to various irregular bipyramids.
These represent a useful class of elementary units for resolving structures

—amorphous or crystalline.

Six integers are used to distinguish between different
geometrical arrangements

223041

Example of the notation
1 AA contact
(1 for AA, 2 for AB

and 3 for BB ) with

1 common A

4 common B's having,

O AA contacts,

2 AB contacts and

3 BB contacts.

Notation: 114023

The crystal is build up
of the following kind
of bipyramids

114023 (AA)
123122 (AA)
132221 (AA)
232140 (AB)
360600 (BB)

The latter BB contact
with six touching
common A neighbors
is referred to as a

Frank-Kasper bond

First shell Color code:
of an A particle | Note: an A particle with Z=12 and Z,=6 = gmaller A's are green

(in liquid) but different from the crystal ones | and larger B's are white?2°




Conclusions, |

Structural relaxation is
slowed in the supercooled
The AB liquid exhibits mixture by the appearance
a tendency to local of stable clusters
coordination similar of well packed particles.
to those in the crystal

How stable these clusters
l.e. some crystal structure can be without explicit
IS ‘pre-organized’ crystal organization
in the liquid determines whether
one gets a metastable liquid
or crystal.




Conclusions, |l

Clusters exhibit features
Intermediate between that
of the liquid and the
crystal

- l.e. there is no need
to invoke completely
new non-crystalline structures
to explain liquid stability:.

Large unit cell crystal
structures provide more
opportunities for
these stable fragments.

A kind of
“entropic frustration”.




Conclusions, |l

Clusters exhibit features
iIntermediate between that
of the liquid and the
crystal

- i.e. there is no need
to invoke completely
new non-crystalline structures
to explain liquid stability:.

Large unit cell crystal
structures provide more
opportunities for
these stable fragments.

A kind of entropic frustration.

The improved packing
In the clusters involves
significant fluctuations in
the local composition.

What happens if
we suppress these
fluctuations by
strengthening
the AB attraction?
(last slide)
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