Electrode-polarisation and its scaling: a microscopic model

A. Serghei, J.R. Sangoro, C.lacob and <u>F.Kremer</u>

Two temperature dependent regimes: Electrode polarisation and bulk charge transport

Questions to be adressed:

- 1. What is the *signature* of electrode polarisation in the complex dielectric function, resp. the complex conductivity?
- 2. What is the scaling of electrode polarisation with respect to frequency, temperature, concentration of charge carriers and length of the sample cell?
- 3. What is the effect of different materials of the electrode?
- 4. What is the *quantitative* model to describe EP?
- 5. What *novel quantitative* information can be deduced from fits of electrode-polarisation?

Dielectric spectra of ionic liquids - temperature dependence (experiment) -

HMIM-PF6

Dielectric spectra of ionic liquids - temperature dependence (experiment) -HMIM-PF6 3 2 log(σ') norm. 0 -1 288 K -2 -3 216K 304 K 24K 320 K 240K -4 256K 330 K \star -5 272K 4 2 log(ठ'') norm. 0 -2 -4 -2 2 6 8 10 -4 -6 0 4 log(f) norm.

perfect scaling with temperature over many orders of magnitude in time

Dielectric spectra of ionic liquids - temperature dependence (experiment) -

 $f_{max},\,f_{on}$ and σ_{DC} scale similarly with temperature

Dielectric spectra of ionic liquids- dependence on the length of the sample cell (experiment) -

Dielectric spectra of ionic liquids- dependence on the length of the sample cell (experiment) -

No scaling of f_{on} and f_{max} with respect to 1/L !

Dielectric spectra of ionic liquids – effect of the electrode material (experiment) -

2-MIMM-2MEPO4

Pronounced effect of electrode material !

Experimental features of EP in ILs:

- 1. EP shows a complex dependence on frequency, temperature, concentration, sample length, material of the electrodes.
- EP does not depend below a certain (low) treshold, i.e.
 10 V/cm on the applied electric field.
- 3. EP does not depend on the roughness of the electrodes, as long as: roughness << sample thickness
- 4. Over many decades in frequency, scaling with respect to variation of temperature and concentration
- 5. No scaling with respect to variation of the length of the sample cell and material of the electrodes.

What is the microscopic mechanism of EP?

Charge transport in the bulk

Charge transport at interfaces

electrode

electrolyte

Due to the coulombic interactions increase by many orders of magnitude in the hoping time at the interface.

hoping time at the interface:

$$E_{\rm i} \cong E_{\rm b} + \Delta E$$

$$\frac{\tau_e(\text{interface})}{\tau_e(\text{bulk})} \approx \exp\left(\frac{\Delta E}{kT}\right) >> 1$$

Since: $\sigma_0 \sim \frac{1}{\tau_e}$ (BNN relation)

this implies:

 $\sigma_0(\text{interface}) \ll \sigma_0(\text{bulk})$

Microscopic model of sample cell

$\boldsymbol{\mathcal{E}}_{i}^{*} = f\left(\boldsymbol{\mathcal{E}}_{\infty}, \boldsymbol{\mathcal{O}}_{0}^{1}, \boldsymbol{\mathcal{T}}_{0}^{1}\right)$
--

Electrode polarization

$$\mathcal{E}'_{\text{meas}} = (x+1) \left((\mathcal{E}'_{b})^{2} + (\mathcal{E}''_{b})^{2} \right) \frac{x\mathcal{E}'_{b} + y\mathcal{E}'_{i}}{(x\mathcal{E}'_{b} + y\mathcal{E}'_{i})^{2} + (x\mathcal{E}''_{b} + y\mathcal{E}''_{i})^{2}}$$

$$\mathcal{E}''_{\text{meas}} = (x+1) \left((\mathcal{E}'_{b})^{2} + (\mathcal{E}''_{b})^{2} \right) \frac{x\mathcal{E}''_{b} + y\mathcal{E}''_{i}}{(x\mathcal{E}'_{b} + y\mathcal{E}'_{i})^{2} + (x\mathcal{E}''_{b} + y\mathcal{E}''_{i})^{2}}$$

where: $x = \frac{L - 2d_{i}}{2d_{i}}$ $y = \frac{(\mathcal{E}'_{b})^{2} + (\mathcal{E}''_{b})^{2}}{(\mathcal{E}'_{i})^{2} + (\mathcal{E}''_{b})^{2}}$

with

$$\varepsilon^* = \frac{\sigma^*}{i\varepsilon_0\omega}$$
 and $\sigma^*(\omega) = \sigma_0 \left[\frac{i\omega\tau_e}{\ln(1+i\omega\tau_e)}\right]$ Dyre functions

EP - consequences of the model

Comparison of experiment and calculations - dielectric spectra of ionic liquids

experiment

calculations

Comparison of experiment and calculations dielectric spectra of ionic liquids

experiment

calculations

What information can be deduced from EP – a novel formula.

 $\sigma_0 = ?$ $\sigma_0 = 2\pi\varepsilon_0 \varepsilon_s \frac{(f_{on})^2}{f_{max}}$

Anatoli Serghei et al.

Test of the validity of the novel formula

2-MIMM-2MEPO4

Dielectric spectra of ionic liquids - length dependence (2MIMM-2MePO4, experiment and calculations) -

Calculations

experiment

Dielectric spectra of ionic liquids - length dependence, scaling -

experiment

Summary

Summary for EP

- What is the signature of electrode polarisation (EP) and how can it be analysed quantitatively?
 EP has a peculiar signature in the complex dielectric function and conductivity but as well the length of the sample cell.
- 2. What *quantitative* information can be deduced from fits of the EP? With a novel formula discovered by A. Serghei σ_0 can be deduced from f_{min} and f_{max} of σ ^{('(f)}.
- What is the *quantitative* model to describe EP?
 A model adding the complex impedances at the interface and in the bulk.
- 4. What information can be deduced from EP? A detailed understanding of the geometry and the complex dielectric function of the interphase is in reach.

Thanks to

...DFG for finacial support and you for attention