

Dynamics of Structurally and Orientationally Disordered Materials Investigated by Broadband Dielectric Spectroscopy

<u>Melanie Köhler</u>, Yurii Goncharov, Thomas Bauer, Robert Wehn, Peter Lunkenheimer and Alois Loidl

Experimental Physics V Center of Electronic Correlations and Magnetism University of Augsburg

Outline

Introduction

- Disordered matter and hallmark features
- Characteristics of α and β relaxation

Results and Discussion

- Broadband spectra of propylene glycols
- α and β relaxation
- Mixed system of succino-glutaronitrile

Summary and Conclusion

Disordered matter

A. Loidl and R. Böhmer, Glass Transitions and Relaxation Phenomena in Orientational Glasses and Supercooled Liquids (Springer, Berlin, 1994), p. 659ff

Hallmark features of glassy matter

R. Wehn, P. Lunkenheimer and A. Loidl, *J. Non. Cryst. Solids*, **352**, 4941 (2006). C.A. Angell and W. Sichina, *Ann. N. Y. Acad. Sci.*, **279**, 53 (1976).

Broadband dielectric response of glassforming liquids

P. Lunkenheimer and A. Loidl, Contemp. Phys. **41**, 15 (2000); Chem. Phys. **284**, 205 (2002).

Relaxation map of the α and β relaxation

Explanations for the β **relaxation:**

M. Paluch, C. M. Roland, S. Pawlus, J. Ziolo and K L. Ngai, Phys. Rev. Lett. 91, 115701 (2003)

Relaxation map of the α and β relaxation

Explanations for the β **relaxation:**

M. Paluch, C. M. Roland, S. Pawlus, J. Ziolo and K L. Ngai, Phys. Rev. Lett. 91, 115701 (2003)

Angell plot of the α relaxation times

Fragility index m:

$$m = \frac{d \log \langle \tau \rangle}{d(T_g / T)} \bigg|_{T = T_g}$$

D. J. Platzek, K. L. Ngai, Macromolecules 25, 4911 (1991).R. Böhmer, C. A. Angell, Phys. Rev. B 45, 10091 (1992).

Angell plot of the α relaxation times

Investigation of Propylene glycol Dipropylene glycol Tripropylene glycol

Molecular size effects?

Angell plot of the α relaxation times

Dielectric loss spectra of tripropylene glycol

Relaxation map for α - and β -process

The system glutaro-succinonitrile

e.g.: F. Mizuni *et al. J. Non-Cryst. Solids* 352, 5147 (2006);
P.J. Alarco *et al., nature materials*, 3, 476 (2004);
P. Derollez *et al. J. Phys.: Condens Matter* 2, 6893 (1990);
G. Cardini *et al. J. Chem. Phys.* 95, 679 (1991).

Dielectric loss spectra of 60% succinonitrile 40% glutaronitrile

Relaxation map for 60SN-40GN

Potential energy in configuration space

Strong:

- Viscosity determined by thermal diffusion processes
- Nonhydrogen bonded network melts

Fragile:

- Additional configurational states
- Nondirectional interatomic/intermolecular bonds

R. Böhmer and C. A. Angell, Disorder Effects on Relaxational Processes (Springer, Berlin, 1994), p. 11

Is this also the cause of the high fragility in 60SN-40GN?

Summary

GLYCOLS:

- Broadband dielectric measurements on glycols (10⁻² – 10¹² Hz)
- α relaxation time does not develop systematically with molecular size

• β relaxation times above T_g nearly identical

THE SYSTEM SN-GN:

- Unusually high fragility
- Good ionic conductor
- Additional relaxation instead of ac conductivity possible

succino-glutaronitrile

Thank you for your attention!

Special thanks to:

Alois Loidl Peter Lunkenheimer Yurii Goncharov Thomas Bauer Robert Wehn

...and the EP V group