## Fragility of High BaO Containing Glasses

Ralf Keding
Section of Chemistry
Department of Biotechnology,
Chemistry and Environmental Engineering
Aalborg University

- Compositions Investigated
- Structural Descriptions
- Viscosity and Fragility
- Invert Glass Hypothesis
- Results and Discussion

## Sample composition and occurrence

| Sample/<br>mol% | BaO       | SiO <sub>2</sub> | B <sub>2</sub> O <sub>3</sub> | $(Zr,Hf)O_2$ | La <sub>2</sub> O <sub>3</sub> | → crystalline |
|-----------------|-----------|------------------|-------------------------------|--------------|--------------------------------|---------------|
| 48              | 48        | <b>3</b> 7       | 5                             | 5            | 2,5                            | 1             |
| 45              | 45        | 40               | 5                             | 5            | 2,5                            | Í             |
| 40              | 40        | 45               | 5                             | 5            | 2,5                            | L .           |
| 35              | <b>35</b> | <b>50</b>        | 5                             | 5            | 2,5                            | → glassy      |
| 25              | <b>25</b> | 60               | 5                             | 5            | 2,5                            | 1             |
| 15              | 15        | 70               | 5                             | 5            | 2,5                            |               |
|                 |           |                  |                               |              |                                | ∟ I/I phase   |







- Melting procedure: 1500°C, 2h
- cast in C mould
- annealed at 690°C

48: crystalline at any casting conditions

25: cloudy in the middle

15: entire sample is phase separated



separated

### Prediction of glass forming from the composition





More network former higher undercooling better glass formability

Quantified from the composition

Separation between Network former NF and

Network modifier NM

Assumption: statistic distribution of NF and NM

# Stable glasses and Q<sub>n</sub>



Q<sup>n</sup>≥3,2: Good glass, no crystallisation expected

Q<sup>n</sup>=3,0: Surface crystallisation, glasses for nucleation experiments

Q<sup>n</sup>=2,7: Glass obtained by quenching on Cu-blocks

Q<sup>n</sup>≤2,4: No glass

| ^    |          |    |              |   |
|------|----------|----|--------------|---|
| Assı | ım       | ın | $\cap$       | • |
| 1331 | <i>.</i> |    | $\mathbf{y}$ | • |

La NM
Ba NM
Zr NF
Si NF

| Sample | Qn   |  |
|--------|------|--|
| 48     | 1,67 |  |
| 45     | 1,91 |  |
| 40     | 2,25 |  |
| 35     | 2,54 |  |
| 25     | 3,00 |  |
| 15     | 3,35 |  |

The stability of the melts 45,40 and 35 against crystallisation are in contradiction to  $Q_n$  and are quite unique.

Is the theory wrong?

# Fragility of the viscosity in sample 40



# Fragility of the viscosity in sample 45



# Glass Transition Temperature T<sub>g</sub>



# Fragility and $\Delta c_p$ in dependence of $Q^n$



## Invert glass

Invert Glass: has less than 50% network former

#### Literature:

15 Na<sub>2</sub>O, 15 K<sub>2</sub>O, 15 CaO, 15 BaO, 40 SiO<sub>2</sub> (Stevels, Trapp 1959): crystallises even on Cu-plate quenching

11-32 Na<sub>2</sub>O, 21-37 CaO, 8-16 Al<sub>2</sub>O<sub>3</sub>, 30-42 P<sub>2</sub>O<sub>5</sub> (Vogel 1992) but: 1. Al will take 1 NM charge and there are 2 NF in the Al<sub>2</sub>O<sub>3</sub> and P<sub>2</sub>O<sub>5</sub> formula

Structural explanation of the existence of invert glasses:

- There is chaos in the arrangement of the cations,
- Cations will need more time to rearrange to crystal than the cooling time
- assumption of a cationic network

In the melts here: much higher degree of depolymerisation

### Structure in the investigated glass

Ba<sup>2+</sup>, Zr<sup>4+</sup>, La<sup>3+</sup>: All are large ions with different charge

#### Normal glass:



Conversion from liquid structure to crystalline one requires Si-O-Si bond breaking: high activation energy low crystallisation, nucleation Large size of collective moving units: low fragility

#### Invert glass investigated:



Conversion melt – crystal requires transportation over large distances: high activation energy Low crystallisation, nucleation Large size of collective moving units: low fragility

# Invert glass and boric acid anomaly

[3]B will become [4]B- at lower T:

- anionic network will increase Qn
- cationic network will lose 1 charge





Invert glasses will be depolymerised at lower T because of coordination change of B at low temperature. Effect is stronger at more invert glasses

### Results and conclusion

The system xBaO (85-x)SiO<sub>2</sub>  $5B_2O_3$   $5ZrO_2$  2,5La<sub>2</sub>O<sub>3</sub>

- forms bulk size glasses x=15 ... 45, Qn= 1,91 ... 3,35
- crystallizes at x=48
- liquid liquid phase separates at x=15 and 25

The melts at x=45 and 40

- they are stabile in air
- are unusual resistant against crystallisation
- the fragility (3,5 and 3,4) is unexpected low
- the  $\Delta c_p$  for  $T_q$  is comparable low
- exhibits a reverse boric acid anomaly effect
  - fragility should not be calculated from  $\mathsf{T}_{\scriptscriptstyle \mathsf{q}}$  measured by DSC

The properties of the BaO rich melts gives hints for a cationic network. This idea can describe the observed effects. The theory is rescued.

The system could be used as a model system for high network modifier containing melts and glasses.

#### At higher BaO content

- the melt forms a glass
- the  $\Delta c_{_{D}}$  is comparable low
- the f will not decrease any more
- the f is lower than expected

#### Generally

- changes in T<sub>a</sub> are small
- there is a decrease for the T<sub>g</sub> measured and the one extrapolated from the fragility
- the decrease is more pronounced at high BaO content

| Sample | $Q_n$ (B <sup>[4]</sup> ) | $Q_n$ (B <sup>[3]</sup> ) |
|--------|---------------------------|---------------------------|
| 48     | 2.06                      | 1.67                      |
| 45     | 2.27                      | 1.91                      |
| 40     | 2.58                      | 2.25                      |
| 35     | 2.85                      | 2.54                      |
| 25     | 3.27                      | 3.00                      |
| 15     | 3.59                      | 3.35                      |
|        |                           |                           |