

Dynamics slower than structural relaxation in viscous liquids

C. Gainaru, T. El Goresy, R. Böhmer

- Introduction
 Dielectric response of supercooled molecular liquids;
 Reorientation slower than α-process in type A polymers and monoalcohols;
- 2. Monohydroxy alcohol 2-ethyl-1-hexanol; new findings
- 3. Debye process vs. normal modes
- 4. Summary

Dielectric response of a supercooled molecular liquid

Slowest orientational process (α):

- dispersive, non-Arrhenius
- strong manifestation in mechanical and thermodynamical quantities

Reorientation slower than α -process: type A polymers

Slowest orientational process (NM):

- close to monodispersive, non-Arrhenius
- no manifestation in thermodynamical quantities
- controls the mechanical behavior (e.g. the flow)

Debye process:

- monodispersive, non-Arrhenius
- no manifestation in mechanical and thermodynamical quantities

Monohydroxy alcohol 2-ethyl-1-hexanol; new findings

Conductivity scales with $\alpha\text{-}process$

$$\tau_{\alpha} \propto \eta \propto 1/D \propto 1/\sigma_{DC}$$

Debye process not governed by the diffusion of free charges

Debye process - Charge fluctuations?

No aging effects on time scale of τ_{D}

$(BuBr)_{1-x}(BuOH)_{x}, 0 < x < 1$

Hydrogen bonds

Polypropylene glycol, 76 g/mol < M_w < 18 200 g/mol

Structural relaxation (α -process)

Debye process

Normal modes

Summary

Debye process

- not scaling with conductivity
- not aging during its time scale

Normal modes vs. Debye process

Difference of their mechanical signature High similariries between their dielectric response Crossover "chain-length" relevant for the slow dynamics (statics ?)

Polymer theory: starting point for description of the Debye process

Crossover oligmer / polymer dynamics

